Symmetry in the Coplanarity Condition

We can rewrite the triple product without difficulty using

t=fd-§f = §ld* = §*F - éa*. 1)
Noting that{* = —¢ and?* = —*, sincef and? are quaternions with zero scalar
parts, we first obtain
t=Fg-de
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We then find by expanding the dot-product foin terms of the scalar and vector
components off = (g, ) andd = (d, d):
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While
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We also still have the three equations
§-84=0, d-6d=0, and §-sd+d-8§=0, (5)
all of which we can shuffled around inoto matrjx form
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Note that the upper left & 8 sub-matrix is theveightedsum of flattened dyadic
products (as first shown by ZaBariik, and tola)
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where the eight component vect®ris given by
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We conclude that the number of solutions is equal to the number of ways of partitioning
the set of variables, namely
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To implement the numerical solution, take a small stedn A and solve for the
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whereJ = (dh/dx) is the Jacobian df with respect tox.



