Symmetry in the Coplanarity Condition

We can rewrite the triple product without difficulty using

t =id-qf =i-qbd* = q*F - £d*. (1)
Noting that 0% = —fand i* = —T, since t and 0 are quaternions with zero
scalar parts, we first obtain

t =tq-dl

(2)
We then find by expanding the dot-prqduct for t in terms of the scalar and
vector components of § = (q,q) and d = (d,d):
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While
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We also still have the three equations
4-6§4=0, d-8d=0, and ¢-6d+d-dq=0, (5)
all of which we can shuffled around into matrix form
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Note that the upper left 8 X 8 sub-matrix is the weighted sum of flattened
dyadic products (as first shown by Zari, Bartk, and Lolaz)

]

n
> widici, (7)
i=1

where the eight component vector ¢; is given by
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We conclude that the number of solutions is equal to the number of ways
of partitioning the set of variables, namely
n+m-2\ (m+m-2\ (n+m-2)!
( n-1 )‘( m-1 )_ (n—-1!(m-1)!
To implement the numerical solution, take a small step A in A and solve
for the increment 6x in

(9)

dh dh
H(SA-F&&X—O, (10)

where J = (dh/dx) is the Jacobian of h with respect to x.



