
Hooks & Sockets

Frank Mittelbach

Prague, July 2024

Frank Mittelbach Hooks & Sockets

What’s a hook?

Frank Mittelbach Hooks & Sockets

And for what is it needed?

Frank Mittelbach Hooks & Sockets

Characteristics of (my garage) hooks

Hook status
▶ A hook can be empty
▶ or it could hold one or more items

Hook items
▶ Items can be

▶ added
▶ removed
▶ reordered

Offsite storage
▶ A hook can be used to store items for future use

Frank Mittelbach Hooks & Sockets

Characteristics of (my garage) hooks

Hook status
▶ A hook can be empty
▶ or it could hold one or more items

Hook items
▶ Items can be

▶ added
▶ removed
▶ reordered

Offsite storage
▶ A hook can be used to store items for future use

Frank Mittelbach Hooks & Sockets

Characteristics of (my garage) hooks

Hook status
▶ A hook can be empty
▶ or it could hold one or more items

Hook items
▶ Items can be

▶ added
▶ removed
▶ reordered

Offsite storage
▶ A hook can be used to store items for future use

Frank Mittelbach Hooks & Sockets

History of LATEX hooks

LATEX 2.09
▶ None — only patching of internal commands was possible

LATEX2ε
▶ A few, mainly \AtBeginDocument and \AtEndDocument
▶ No management — first come, first served

Today
▶ A general hook management
▶ Hooks in many places (number is growing)
▶ Hook data can be manipulated from the outside

Frank Mittelbach Hooks & Sockets

History of LATEX hooks

LATEX 2.09
▶ None — only patching of internal commands was possible

LATEX2ε
▶ A few, mainly \AtBeginDocument and \AtEndDocument
▶ No management — first come, first served

Today
▶ A general hook management
▶ Hooks in many places (number is growing)
▶ Hook data can be manipulated from the outside

Frank Mittelbach Hooks & Sockets

History of LATEX hooks

LATEX 2.09
▶ None — only patching of internal commands was possible

LATEX2ε
▶ A few, mainly \AtBeginDocument and \AtEndDocument
▶ No management — first come, first served

Today
▶ A general hook management
▶ Hooks in many places (number is growing)
▶ Hook data can be manipulated from the outside

Frank Mittelbach Hooks & Sockets

The problem with the LATEX2ε hooks . . .

No alterations possible / no offsite storage / only a few

Frank Mittelbach Hooks & Sockets

The problem with the LATEX2ε hooks . . .
No alterations possible / no offsite storage / only a few

Frank Mittelbach Hooks & Sockets

No alterations possible / no offsite storage / only a few

No alterations possible
▶ The order of code execution was fixed by the order in which

the code was added
▶ In case of problems the advice therefore was:

“Alter the package loading order” but that often didn’t work

No offsite storage
▶ You couldn’t provide code for other packages unless they were

already loaded
▶ As a consequence, a package like hyperref had to provide

complex conditional code
▶ based on packages already loaded;
▶ check at \AtBeginDocument if some got loaded later
▶ execute different code depending on package combination

Frank Mittelbach Hooks & Sockets

No alterations possible / no offsite storage / only a few

No alterations possible
▶ The order of code execution was fixed by the order in which

the code was added
▶ In case of problems the advice therefore was:

“Alter the package loading order” but that often didn’t work

No offsite storage
▶ You couldn’t provide code for other packages unless they were

already loaded
▶ As a consequence, a package like hyperref had to provide

complex conditional code
▶ based on packages already loaded;
▶ check at \AtBeginDocument if some got loaded later
▶ execute different code depending on package combination

Frank Mittelbach Hooks & Sockets

No alterations possible / no offsite storage / only a few

No alterations possible
▶ The order of code execution was fixed by the order in which

the code was added
▶ In case of problems the advice therefore was:

“Alter the package loading order” but that often didn’t work

No offsite storage
▶ You couldn’t provide code for other packages unless they were

already loaded
▶ As a consequence, a package like hyperref had to provide

complex conditional code
▶ based on packages already loaded;
▶ check at \AtBeginDocument if some got loaded later
▶ execute different code depending on package combination

Frank Mittelbach Hooks & Sockets

No alterations possible / no offsite storage / only a few

Not enough hooks
▶ Mainly \AtBeginDocument and \AtEndDocument
▶ Some packages tried to provide a few additional hooks

For anything else, one had to patch (a.k.a. overwrite) internals

Patching means
▶ Different packages cannot “hook” into the same place, unless

▶ they knew about each other
▶ account for the different scenarios (i.e., which packages are

present and in what order)

▶ Thus, packages are often incompatible with others
▶ Furthermore, updates to the internals would break the patches

Result: Users were often unhappy

Frank Mittelbach Hooks & Sockets

No alterations possible / no offsite storage / only a few

Not enough hooks
▶ Mainly \AtBeginDocument and \AtEndDocument
▶ Some packages tried to provide a few additional hooks

For anything else, one had to patch (a.k.a. overwrite) internals

Patching means
▶ Different packages cannot “hook” into the same place, unless

▶ they knew about each other
▶ account for the different scenarios (i.e., which packages are

present and in what order)

▶ Thus, packages are often incompatible with others
▶ Furthermore, updates to the internals would break the patches

Result: Users were often unhappy

Frank Mittelbach Hooks & Sockets

No alterations possible / no offsite storage / only a few

Not enough hooks
▶ Mainly \AtBeginDocument and \AtEndDocument
▶ Some packages tried to provide a few additional hooks

For anything else, one had to patch (a.k.a. overwrite) internals

Patching means
▶ Different packages cannot “hook” into the same place, unless

▶ they knew about each other
▶ account for the different scenarios (i.e., which packages are

present and in what order)

▶ Thus, packages are often incompatible with others
▶ Furthermore, updates to the internals would break the patches

Result: Users were often unhappy

Frank Mittelbach Hooks & Sockets

No alterations possible / no offsite storage / only a few

Not enough hooks
▶ Mainly \AtBeginDocument and \AtEndDocument
▶ Some packages tried to provide a few additional hooks

For anything else, one had to patch (a.k.a. overwrite) internals

Patching means
▶ Different packages cannot “hook” into the same place, unless

▶ they knew about each other
▶ account for the different scenarios (i.e., which packages are

present and in what order)

▶ Thus, packages are often incompatible with others
▶ Furthermore, updates to the internals would break the patches

Result: Users were often unhappy

Frank Mittelbach Hooks & Sockets

No alterations possible / no offsite storage / only a few

Not enough hooks
▶ Mainly \AtBeginDocument and \AtEndDocument
▶ Some packages tried to provide a few additional hooks

For anything else, one had to patch (a.k.a. overwrite) internals

Patching means
▶ Different packages cannot “hook” into the same place, unless

▶ they knew about each other
▶ account for the different scenarios (i.e., which packages are

present and in what order)

▶ Thus, packages are often incompatible with others
▶ Furthermore, updates to the internals would break the patches

Result: Users were often unhappy

Frank Mittelbach Hooks & Sockets

No alterations possible / no offsite storage / only a few

Not enough hooks
▶ Mainly \AtBeginDocument and \AtEndDocument
▶ Some packages tried to provide a few additional hooks

For anything else, one had to patch (a.k.a. overwrite) internals

Patching means
▶ Different packages cannot “hook” into the same place, unless

▶ they knew about each other
▶ account for the different scenarios (i.e., which packages are

present and in what order)

▶ Thus, packages are often incompatible with others
▶ Furthermore, updates to the internals would break the patches

Result: Users were often unhappy

Frank Mittelbach Hooks & Sockets

The LATEX maintenance / improvement dilemma

Not fixing bugs / not making improvements
▶ Users are unhappy when these are needed but unavailable
▶ The increase in incompatibility over time makes everybody

unhappy

Fixing bugs / making improvements
▶ Makes developers unhappy if their patches are broken by kernel

fixes or improvements
▶ Makes users unhappy — something new always breaks some

existing usage somewhere (even if only for a short while)

Our answer until 2016: Keep the kernel frozen

Frank Mittelbach Hooks & Sockets

The LATEX maintenance / improvement dilemma

Not fixing bugs / not making improvements
▶ Users are unhappy when these are needed but unavailable
▶ The increase in incompatibility over time makes everybody

unhappy

Fixing bugs / making improvements
▶ Makes developers unhappy if their patches are broken by kernel

fixes or improvements
▶ Makes users unhappy — something new always breaks some

existing usage somewhere (even if only for a short while)

Our answer until 2016: Keep the kernel frozen

Frank Mittelbach Hooks & Sockets

The LATEX maintenance / improvement dilemma

Not fixing bugs / not making improvements
▶ Users are unhappy when these are needed but unavailable
▶ The increase in incompatibility over time makes everybody

unhappy

Fixing bugs / making improvements
▶ Makes developers unhappy if their patches are broken by kernel

fixes or improvements
▶ Makes users unhappy — something new always breaks some

existing usage somewhere (even if only for a short while)

Our answer until 2016: Keep the kernel frozen

Frank Mittelbach Hooks & Sockets

The LATEX maintenance / improvement dilemma (cont.)

Our answer today
▶ Get rid of patching in packages by providing suitable hooks
▶ This still makes developers unhappy, as this means changing

packages to use these hooks
▶ However, hopefully only a one-time effort for developers!

The task
▶ Identify all places where patching was considered necessary

▶ For example, \@footnotetext is currently patched by
7 packages in 4 different places

▶ Provide suitable hooks to avoid the need to patch
▶ Then update the packages to use these hooks

Frank Mittelbach Hooks & Sockets

The LATEX maintenance / improvement dilemma (cont.)

Our answer today
▶ Get rid of patching in packages by providing suitable hooks
▶ This still makes developers unhappy, as this means changing

packages to use these hooks
▶ However, hopefully only a one-time effort for developers!

The task
▶ Identify all places where patching was considered necessary

▶ For example, \@footnotetext is currently patched by
7 packages in 4 different places

▶ Provide suitable hooks to avoid the need to patch
▶ Then update the packages to use these hooks

Frank Mittelbach Hooks & Sockets

Hooks and code chunks

Characteristics
▶ A hook can hold arbitrarily many (labeled) code chunks
▶ These labeled chunks can be reordered or removed

Names and labels
▶ Hook ⟨names⟩ have to be unique across the document
▶ Only code chunks with distinct labels can be manipulated.

Defaults
▶ New hooks are empty and do not alter typesetting
▶ However, they are by default not transparent to expandable

input scanning!
▶ For full transparency, e.g., in tabular a special version of

\UseHook is needed (without debugging information)

Frank Mittelbach Hooks & Sockets

Hooks and code chunks

Characteristics
▶ A hook can hold arbitrarily many (labeled) code chunks
▶ These labeled chunks can be reordered or removed

Names and labels
▶ Hook ⟨names⟩ have to be unique across the document
▶ Only code chunks with distinct labels can be manipulated.

Defaults
▶ New hooks are empty and do not alter typesetting
▶ However, they are by default not transparent to expandable

input scanning!
▶ For full transparency, e.g., in tabular a special version of

\UseHook is needed (without debugging information)

Frank Mittelbach Hooks & Sockets

Hooks and code chunks

Characteristics
▶ A hook can hold arbitrarily many (labeled) code chunks
▶ These labeled chunks can be reordered or removed

Names and labels
▶ Hook ⟨names⟩ have to be unique across the document
▶ Only code chunks with distinct labels can be manipulated.

Defaults
▶ New hooks are empty and do not alter typesetting
▶ However, they are by default not transparent to expandable

input scanning!
▶ For full transparency, e.g., in tabular a special version of

\UseHook is needed (without debugging information)

Frank Mittelbach Hooks & Sockets

Key takeaways from the new hook management

Easy and fast
▶ Packages can easily offer hooks that allow for

▶ coordination with other packages
▶ safe/controlled extensions
▶ easy user customizations

▶ If a hook is unused, there is nearly no overhead

Improved compatibility
▶ Different packages can add to the same hook without conflicts
▶ If code ordering is necessary, rules can be set up
▶ No destructive patching is needed

Anticipated usage supported
▶ Add code to a hook even if it doesn’t exist yet

(the defining package may or may not get loaded later)

Frank Mittelbach Hooks & Sockets

Key takeaways from the new hook management

Easy and fast
▶ Packages can easily offer hooks that allow for

▶ coordination with other packages
▶ safe/controlled extensions
▶ easy user customizations

▶ If a hook is unused, there is nearly no overhead

Improved compatibility
▶ Different packages can add to the same hook without conflicts
▶ If code ordering is necessary, rules can be set up
▶ No destructive patching is needed

Anticipated usage supported
▶ Add code to a hook even if it doesn’t exist yet

(the defining package may or may not get loaded later)

Frank Mittelbach Hooks & Sockets

Key takeaways from the new hook management

Easy and fast
▶ Packages can easily offer hooks that allow for

▶ coordination with other packages
▶ safe/controlled extensions
▶ easy user customizations

▶ If a hook is unused, there is nearly no overhead

Improved compatibility
▶ Different packages can add to the same hook without conflicts
▶ If code ordering is necessary, rules can be set up
▶ No destructive patching is needed

Anticipated usage supported
▶ Add code to a hook even if it doesn’t exist yet

(the defining package may or may not get loaded later)

Frank Mittelbach Hooks & Sockets

Hook examples

Putting something into the page background

\AddToHookNext{shipout/background}
{\put(.5\paperwidth,-.5\paperheight)%

{\makebox(0,0)%
{\includegraphics{figures/hummingbird.png}}}}

Patching package code (if loaded)

\AddToHook{file/dinbrief.cls/after}[firstaid]
{\FirstAidNeededT{dinbrief}{cls}%

{2000/03/02 LaTeX2e class}%
{\AddToHook{env/document/begin}{\begingroup}}}

Frank Mittelbach Hooks & Sockets

Hook examples

Putting something into the page background

\AddToHookNext{shipout/background}
{\put(.5\paperwidth,-.5\paperheight)%

{\makebox(0,0)%
{\includegraphics{figures/hummingbird.png}}}}

Patching package code (if loaded)

\AddToHook{file/dinbrief.cls/after}[firstaid]
{\FirstAidNeededT{dinbrief}{cls}%

{2000/03/02 LaTeX2e class}%
{\AddToHook{env/document/begin}{\begingroup}}}

Frank Mittelbach Hooks & Sockets

Hook examples

Putting something into the page background

\AddToHookNext{shipout/background}
{\put(.5\paperwidth,-.5\paperheight)%

{\makebox(0,0)%
{\includegraphics{figures/hummingbird.png}}}}

Patching package code (if loaded)

\AddToHook{file/dinbrief.cls/after}[firstaid]
{\FirstAidNeededT{dinbrief}{cls}%

{2000/03/02 LaTeX2e class}%
{\AddToHook{env/document/begin}{\begingroup}}}

Frank Mittelbach Hooks & Sockets

Hook examples

Make my document shorter please

\AddToHook{para/begin}{\looseness=-1 }

\newcommand\cancellooseness
{\AddToHookNext{para/begin}{\looseness=0 }}

Notes
▶ Don’t try doing the same with \looseness=1
▶ It will result in many paragraphs with just a

single word (or worse a partial word) on the last line!

Frank Mittelbach Hooks & Sockets

Hook examples

Make my document shorter please

\AddToHook{para/begin}{\looseness=-1 }

\newcommand\cancellooseness
{\AddToHookNext{para/begin}{\looseness=0 }}

Notes
▶ Don’t try doing the same with \looseness=1
▶ It will result in many paragraphs with just a

single word (or worse a partial word) on the last line!

Frank Mittelbach Hooks & Sockets

Hook examples (cont.)

Record file nesting (from structuredlog.sty)

\AddToHook{file/before}
{ __filehook_log_file_record:n { START } }

\AddToHookNext{file/after}
{ \AddToHook{file/after}

{ __filehook_log_file_record:n { STOP } } }

Reorder code chunks in hooks

\DeclareHookRule{begindocument}{showkeys}{before}{nameref}

Dropping a code chunk

\DeclareHookRule{enddocument/info}
{kernel/testmode}{voids}{kernel/release}

Frank Mittelbach Hooks & Sockets

Hook examples (cont.)

Record file nesting (from structuredlog.sty)

\AddToHook{file/before}
{ __filehook_log_file_record:n { START } }

\AddToHookNext{file/after}
{ \AddToHook{file/after}

{ __filehook_log_file_record:n { STOP } } }

Reorder code chunks in hooks

\DeclareHookRule{begindocument}{showkeys}{before}{nameref}

Dropping a code chunk

\DeclareHookRule{enddocument/info}
{kernel/testmode}{voids}{kernel/release}

Frank Mittelbach Hooks & Sockets

Hook examples (cont.)

Record file nesting (from structuredlog.sty)

\AddToHook{file/before}
{ __filehook_log_file_record:n { START } }

\AddToHookNext{file/after}
{ \AddToHook{file/after}

{ __filehook_log_file_record:n { STOP } } }

Reorder code chunks in hooks

\DeclareHookRule{begindocument}{showkeys}{before}{nameref}

Dropping a code chunk

\DeclareHookRule{enddocument/info}
{kernel/testmode}{voids}{kernel/release}

Frank Mittelbach Hooks & Sockets

What are sockets?

Frank Mittelbach Hooks & Sockets

And what are plugs?

Frank Mittelbach Hooks & Sockets

And what are their characteristics?

Frank Mittelbach Hooks & Sockets

Code sockets and code plugs

Characteristics
▶ A socket can have at most one plug inserted at any one time
▶ In analogy, socket code can be replaced but not augmented

LATEX sockets and plugs
▶ A socket defines a named place in the code where a selection

of alternatives can be “plugged in”
▶ These alternative for a socket are therefore called its “plugs”
▶ Each socket, and its selection of plugs, must be declared

before use

Frank Mittelbach Hooks & Sockets

Code sockets and code plugs

Characteristics
▶ A socket can have at most one plug inserted at any one time
▶ In analogy, socket code can be replaced but not augmented

LATEX sockets and plugs
▶ A socket defines a named place in the code where a selection

of alternatives can be “plugged in”
▶ These alternative for a socket are therefore called its “plugs”
▶ Each socket, and its selection of plugs, must be declared

before use

Frank Mittelbach Hooks & Sockets

Code sockets and code plugs (cont.)

Names
▶ Like hooks, sockets (i.e., their ⟨names⟩) have to be unique

across the document
▶ Plug ⟨names⟩ have to be unique per socket

Defaults
▶ Each new socket has the plug noop plugged in. This means

that the socket is ignored (with its arguments, if any)
▶ Exception: a new socket with exactly one argument has the

plug identity plugged in, so that its argument is processed
(after removing the outer braces)

Frank Mittelbach Hooks & Sockets

Code sockets and code plugs (cont.)

Names
▶ Like hooks, sockets (i.e., their ⟨names⟩) have to be unique

across the document
▶ Plug ⟨names⟩ have to be unique per socket

Defaults
▶ Each new socket has the plug noop plugged in. This means

that the socket is ignored (with its arguments, if any)
▶ Exception: a new socket with exactly one argument has the

plug identity plugged in, so that its argument is processed
(after removing the outer braces)

Frank Mittelbach Hooks & Sockets

Hook or Socket? — When to use which?

Use Hooks
▶ in places where (general) initialization can happen
▶ when additions from different packages are likely to be

meaningful

Use Sockets
▶ when code has to be tightly controlled
▶ in typical “on/off” situations
▶ when supporting different processing models

(i.e., one algorithm being replaced with another)

Frank Mittelbach Hooks & Sockets

Hook or Socket? — When to use which?

Use Hooks
▶ in places where (general) initialization can happen
▶ when additions from different packages are likely to be

meaningful

Use Sockets
▶ when code has to be tightly controlled
▶ in typical “on/off” situations
▶ when supporting different processing models

(i.e., one algorithm being replaced with another)

Frank Mittelbach Hooks & Sockets

Final advice — be careful with the wiring

▶ . . . otherwise your users will not know how to use it
▶ And don’t go overboard with it — or it will slow things down

Frank Mittelbach Hooks & Sockets

Final advice — be careful with the wiring

▶ . . . otherwise your users will not know how to use it
▶ And don’t go overboard with it — or it will slow things down

Frank Mittelbach Hooks & Sockets

The nitty gritty details (if time permits)

Time Check

Frank Mittelbach Hooks & Sockets

The nitty gritty details (if time permits) — otherwise . . .

Documentation for hooks
▶ texdoc lthooks-doc main documentation
▶ texdoc ltcmdhooks-doc generic cmd/env hooks
▶ Supplementary documentation in

▶ ltfilehook-doc,
▶ ltmarks-doc,
▶ ltpara-doc,
▶ ltshipout-doc

Documentation for sockets
▶ texdoc ltsockets-doc main documentation

Frank Mittelbach Hooks & Sockets

The nitty gritty details (if time permits) — otherwise . . .

Documentation for hooks
▶ texdoc lthooks-doc main documentation
▶ texdoc ltcmdhooks-doc generic cmd/env hooks
▶ Supplementary documentation in

▶ ltfilehook-doc,
▶ ltmarks-doc,
▶ ltpara-doc,
▶ ltshipout-doc

Documentation for sockets
▶ texdoc ltsockets-doc main documentation

Frank Mittelbach Hooks & Sockets

The new hook management

Declaring hooks
▶ \NewHook{⟨name⟩}
▶ \NewReversedHook{⟨name⟩}
▶ \NewHookWithArguments{⟨name⟩}{⟨number⟩}
▶ . . . plus a few more

Notes
▶ ⟨name⟩ has to be unique

Best practice: ⟨name⟩ = ⟨pkg⟩ / ⟨identifier⟩
▶ Reversed hooks have the code chunks backwards
▶ ⟨number⟩ is the number of arguments

Frank Mittelbach Hooks & Sockets

The new hook management

Declaring hooks
▶ \NewHook{⟨name⟩}
▶ \NewReversedHook{⟨name⟩}
▶ \NewHookWithArguments{⟨name⟩}{⟨number⟩}
▶ . . . plus a few more

Notes
▶ ⟨name⟩ has to be unique

Best practice: ⟨name⟩ = ⟨pkg⟩ / ⟨identifier⟩
▶ Reversed hooks have the code chunks backwards
▶ ⟨number⟩ is the number of arguments

Frank Mittelbach Hooks & Sockets

The new hook management

Using hooks
▶ \UseHook{⟨name⟩}
▶ \UseOneTimeHook{⟨name⟩}

Using hooks with arguments
▶ \UseHookWithArguments{⟨name⟩}{⟨number⟩}{⟨. . . ⟩}. . .
▶ \UseOneTimeHookWithArguments{⟨name⟩}{⟨number⟩}{⟨. . . ⟩}. . .

Notes
▶ Note that the ⟨number⟩ of arguments has to be explicitly

given for hooks with arguments (for efficiency reasons)
▶ If a hook is empty it will be therefore bypassed with little

overhead

Frank Mittelbach Hooks & Sockets

The new hook management

Using hooks
▶ \UseHook{⟨name⟩}
▶ \UseOneTimeHook{⟨name⟩}

Using hooks with arguments
▶ \UseHookWithArguments{⟨name⟩}{⟨number⟩}{⟨. . . ⟩}. . .
▶ \UseOneTimeHookWithArguments{⟨name⟩}{⟨number⟩}{⟨. . . ⟩}. . .

Notes
▶ Note that the ⟨number⟩ of arguments has to be explicitly

given for hooks with arguments (for efficiency reasons)
▶ If a hook is empty it will be therefore bypassed with little

overhead

Frank Mittelbach Hooks & Sockets

The new hook management

Using hooks
▶ \UseHook{⟨name⟩}
▶ \UseOneTimeHook{⟨name⟩}

Using hooks with arguments
▶ \UseHookWithArguments{⟨name⟩}{⟨number⟩}{⟨. . . ⟩}. . .
▶ \UseOneTimeHookWithArguments{⟨name⟩}{⟨number⟩}{⟨. . . ⟩}. . .

Notes
▶ Note that the ⟨number⟩ of arguments has to be explicitly

given for hooks with arguments (for efficiency reasons)
▶ If a hook is empty it will be therefore bypassed with little

overhead

Frank Mittelbach Hooks & Sockets

The new hook management

Adding code to hooks
▶ \AddToHook{⟨name⟩}[⟨label⟩]{⟨code⟩}
▶ \AddToHookNext{⟨name⟩}{⟨code⟩}

Notes
▶ ⟨label⟩ identifies the code chunk

default: package/class name; on document-level: toplevel
▶ You can use both commands with hooks taking arguments

(if you are not referring to them)
▶ You can add to a hook that is not yet declared!
▶ If you add to a one-time hook after it was used, then

⟨code⟩ is used immediately

Frank Mittelbach Hooks & Sockets

The new hook management

Adding code to hooks
▶ \AddToHook{⟨name⟩}[⟨label⟩]{⟨code⟩}
▶ \AddToHookNext{⟨name⟩}{⟨code⟩}

Notes
▶ ⟨label⟩ identifies the code chunk

default: package/class name; on document-level: toplevel
▶ You can use both commands with hooks taking arguments

(if you are not referring to them)
▶ You can add to a hook that is not yet declared!
▶ If you add to a one-time hook after it was used, then

⟨code⟩ is used immediately

Frank Mittelbach Hooks & Sockets

The new hook management

Adding code to hooks with arguments
▶ \AddToHookWithArguments{⟨name⟩}[⟨label⟩]{⟨code⟩}
▶ \AddToHookNextWithArguments{⟨name⟩}{⟨code⟩}

Notes
▶ ⟨code⟩ can contain #1, #2, . . .
▶ Real #’s have to be doubled, i.e., entered as ##
▶ You can’t add to a one-time hook this way after it was used

Frank Mittelbach Hooks & Sockets

The new hook management

Adding code to hooks with arguments
▶ \AddToHookWithArguments{⟨name⟩}[⟨label⟩]{⟨code⟩}
▶ \AddToHookNextWithArguments{⟨name⟩}{⟨code⟩}

Notes
▶ ⟨code⟩ can contain #1, #2, . . .
▶ Real #’s have to be doubled, i.e., entered as ##
▶ You can’t add to a one-time hook this way after it was used

Frank Mittelbach Hooks & Sockets

The new hook management

Remove code from hooks
▶ \RemoveFromHook{⟨name⟩}[⟨label⟩]

Notes
▶ Without the optional argument the default ⟨label⟩ is used
▶ Special case: [*] remove all code (naughty)

Frank Mittelbach Hooks & Sockets

The new hook management

Remove code from hooks
▶ \RemoveFromHook{⟨name⟩}[⟨label⟩]

Notes
▶ Without the optional argument the default ⟨label⟩ is used
▶ Special case: [*] remove all code (naughty)

Frank Mittelbach Hooks & Sockets

The new hook management

Displaying the hook status
▶ \ShowHook{⟨name⟩} or \LogHook{⟨name⟩}

Output example

-> The hook ’enddocument’:
> Code chunks:
> pgfcore -> \ifpgf@external@grabshipout ...
> beamerbasemisc -> \clearpage ...
> csquotes -> \ifnum \csq@qlevel >\z@ \csq@err@gleft \fi
> Document-level (top-level) code (executed last):
> ---
> Extra code for next invocation:
> ---
> Rules:
> ---
> Execution order:
> pgfcore, beamerbasemisc, csquotes.

Frank Mittelbach Hooks & Sockets

The new hook management

Displaying the hook status
▶ \ShowHook{⟨name⟩} or \LogHook{⟨name⟩}

Output example

-> The hook ’enddocument’:
> Code chunks:
> pgfcore -> \ifpgf@external@grabshipout ...
> beamerbasemisc -> \clearpage ...
> csquotes -> \ifnum \csq@qlevel >\z@ \csq@err@gleft \fi
> Document-level (top-level) code (executed last):
> ---
> Extra code for next invocation:
> ---
> Rules:
> ---
> Execution order:
> pgfcore, beamerbasemisc, csquotes.

Frank Mittelbach Hooks & Sockets

The new socket management

Declaring sockets and plugs
▶ \NewSocket{⟨socket-name⟩}{⟨number-of inputs⟩}
▶ \NewSocketPlug{⟨socket-name⟩}

{⟨socket-plug-name⟩}{⟨code⟩}

Notes
▶ ⟨socket-name⟩ has to be unique

Best practice: ⟨name⟩ = ⟨pkg⟩ / ⟨identifier⟩
▶ ⟨socket-plug-name⟩ has to be unique per socket

but can be reused in different sockets, e.g., noop

Frank Mittelbach Hooks & Sockets

The new socket management

Declaring sockets and plugs
▶ \NewSocket{⟨socket-name⟩}{⟨number-of inputs⟩}
▶ \NewSocketPlug{⟨socket-name⟩}

{⟨socket-plug-name⟩}{⟨code⟩}

Notes
▶ ⟨socket-name⟩ has to be unique

Best practice: ⟨name⟩ = ⟨pkg⟩ / ⟨identifier⟩
▶ ⟨socket-plug-name⟩ has to be unique per socket

but can be reused in different sockets, e.g., noop

Frank Mittelbach Hooks & Sockets

The new socket management

Assigning plugs to sockets
▶ \AssignSocketPlug{⟨socket-name⟩}{⟨socket-plug-name⟩}
▶ Default assignments are

▶ identity for sockets with one argument
▶ noop for all others

Showing sockets
▶ \ShowSocket{⟨socket-name⟩} or \LogSocket{⟨socket-name⟩}

Using sockets
▶ \UseSocket{⟨socket-name⟩}

▶ Number of arguments is implicit in LATEX2ε
but explicit in L3 layer, e.g., \socket_use:nn

Frank Mittelbach Hooks & Sockets

The new socket management

Assigning plugs to sockets
▶ \AssignSocketPlug{⟨socket-name⟩}{⟨socket-plug-name⟩}
▶ Default assignments are

▶ identity for sockets with one argument
▶ noop for all others

Showing sockets
▶ \ShowSocket{⟨socket-name⟩} or \LogSocket{⟨socket-name⟩}

Using sockets
▶ \UseSocket{⟨socket-name⟩}

▶ Number of arguments is implicit in LATEX2ε
but explicit in L3 layer, e.g., \socket_use:nn

Frank Mittelbach Hooks & Sockets

The new socket management

Assigning plugs to sockets
▶ \AssignSocketPlug{⟨socket-name⟩}{⟨socket-plug-name⟩}
▶ Default assignments are

▶ identity for sockets with one argument
▶ noop for all others

Showing sockets
▶ \ShowSocket{⟨socket-name⟩} or \LogSocket{⟨socket-name⟩}

Using sockets
▶ \UseSocket{⟨socket-name⟩}

▶ Number of arguments is implicit in LATEX2ε
but explicit in L3 layer, e.g., \socket_use:nn

Frank Mittelbach Hooks & Sockets

