TUGboat, Volume 44 (2023), No. 2

METAFONT /METAPOST and a complex Indic
script: Malayalam

C.V. Radhakrishnan, K. V. Rajeesh,
K. H. Hussain

Abstract

Malayalam is an Indic script with numerous
shape-shifting characters. We explore a reusable
component-based design for Malayalam fonts, and
develop them using METAFONT/METAPOST [6, 1]
to assemble the characters. We discuss the para-
digm shift from GUI design tools to ‘code-based’
design of shapes and glyphs, even by non-coders,
and the advantages and challenges of using METRA-
FONT/METAPOST to develop an OpenType font
for a complex script. Finally, the progress made by
our small team is shared.

1 Indic scripts and Malayalam

The Union of India has 23 languages [11], each one
being the official language of one or more states. For
convenience of governance, the Union was divided
into states comprising areas with people speaking
the same language. Thus, Kerala is the state of
people speaking Malayalam, the adjacent state of
Tamil Nadu is that of Tamil-speaking people, Kar-
nataka of Kannada-speaking people, and so on. Any
of these 23 languages can be used for official commu-
nication, including deliberations in the Indian Par-
liament. The Indian currency note bears the de-
nomination in all languages (see Figure 1; fewer en-
tries are due to the fact that some of the languages
share the same script, apart from Hindi and English,
which are already on the face of the note).

The Brahmic scripts [10], the family of lan-
guages to which Malayalam belongs, have a few
common properties among most of the members.
Each consonant has an inherent vowel, which is usu-
ally a short ‘a’, and other vowels are written by con-

Figure 1: The picture of the 200 rupees currency note
of India; the denomination is printed in 15 scripts.
(courtesy: Reserve Bank of India)

gﬂ/é’?zoo RESERVE BANK OFINDIA TWO HUNDRED RUPEES 300 E%

g
Feree
15

P2

2200

LN AP

draft: July 8, 2023 00:31 71

Figure 2: A few Malayalam characters to show the
generally rounded shape.

@) O R OW A M 6M @Y

Figure 3: Manuscript leaves of Malayalam text.
(courtesy: Wikipedia)

joining with the character. Each vowel has an inde-
pendent form when not attached to a consonant,
and a dependent form, attached to a consonant, at
times to both on the left and right sides of the conso-
nant. Up to four consonants can be combined in lig-
atures. Special marks are added to denote the com-
bination of ‘r’ with another consonant. Nasalization
and aspiration of a consonant’s dependent vowel are
also denoted by separate signs. The alphabetical
order is: vowels, velar consonants, palatal conso-
nants, retroflex consonants, dental consonants, bila-
bial consonants, approximants, sibilants, and other
consonants. Each consonant grouping has four stops
(with all four possible values of voicing and aspira-
tion, see Table 3) ending with a nasal consonant [10].

The above properties of the Brahmic family can
be found in the Malayalam script. For instance, the
first syllable in the word poppler, written in Malay-
alam, needs a vowel representation on both sides of
the consonant p, which will look like ‘@al10’ where
the middle character (al) represents p and those on
the sides represent the vowel o. Thus, a Malayalam
font table can be enormous in size, with over 900
glyphs that constitute basic vowels and consonants
for forming 57 characters, while the rest constitute
the ligatures, vertical and horizontal conjuncts de-
rived from the basic character set. RIT Rachana [3],
a popular font in Malayalam, has over 920 glyphs
derived from a base font table comprising 117 char-
acters in the Unicode font table [9]. The script occu-
pies the code points between 00D0O and OD7F in the
Unicode table.

METAFONT/METAPOST and a complex Indic script: Malayalam

example.org/10.47397/tb/44-2/tb137radhakrishnan-malayalam

https://example.org/10.47397/tb/44-2/tb137radhakrishnan-malayalam

?2 draft: July 8, 2023 00:31

Figure 4: Two glyphs showing shape components used
with different colors.

2 Rationale

Upon closer examination of the characters in the
Malayalam script (refer to Figure 2), one will no-
tice that the majority of these characters are com-
posed of arcs, semicircles, and circles of varying
sizes. These elements harmoniously come together
to form the distinctive shape of each character. The
origins of the rounded and cursive design of these
letters can often be attributed to the writing mate-
rials that were used in the past.

It is believed that the prevalence of round and
cursive shapes in the letters of Indic languages can
be traced back to the practicality of the writing in-
struments employed during their origin. The tradi-
tional writing instrument was a long, sharp metallic
stylus used for inscribing text on dried and smoked
palm leaves. Angular shapes would have been un-
suitable as they could potentially tear the delicate
leaves as they were being written upon. Hence, it
seems plausible that this practical consideration in-
fluenced the widespread adoption of round and cur-
sive letter forms (see Figure 3 showcasing a manu-
script as an example).

The inherent rounded and cursive nature of the
letters naturally led to the conclusion to create a
set of predefined components with specific shapes.
These components could then be reused effectively
to construct complete characters. As one can eas-
ily deduce, the concept of reusability not only saves
considerable time and effort but also ensures a con-
sistent and uniform quality in terms of curves, cut
angles, and similar attributes. Nonetheless, it is es-
sential to acknowledge that this approach does have
its limitations, some of which will be discussed in
the following sections pertaining to reusable compo-
nents and glyphs (Sections 3.3 and 3.4).

These limitations have significantly influenced
design decisions, resulting in the development of
methods to manipulate coordinates, adjust widths,
and alter angles in the components as needed to fit
the overall shape of the character of which they are
part. In Figure 4, which showcases two glyphs, you
can observe the utilization of shape components, dis-
tinguished by different colors to ease comprehension
and analysis.

C.V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain

TUGDboat, Volume 44 (2023), No. 2

Figure 5: Four variants of a consonant character (pro-
nounced dja) from the same METAPOST source code.

Another significant factor in our decision to uti-
lize METAFONT /METAPOST was the potential for
reusing the source code to generate variants of the
font family. By employing separate configurations
for each variant and requiring only minimal adjust-
ments, we could easily create font variations of re-
markable quality, thereby reducing both develop-
ment time and effort. Four variants of a consonant
character (pronounced dja), using the same META-
POST source code with different values for a few
variables can be seen in Figure 5.

In the realm of character description languages,
our choice of the code-based METAFONT/META-
POST can be attributed to our enduring associa-
tion with the illustrious TEX [5] and its companions.
We derive immense pleasure from employing TEX’s
sagacious and programmable markup language to
fulfill our multifarious text processing requisites, es-
chewing the allure of graphical interface-driven ap-
plications. However, the merits of METAFONT/
METAPOST extend far beyond mere preference.

The selection of METAFONT/METAPOST en-
dows us with an array of supplementary advantages,
including seamless cross-platform compatibility and
the remarkable capability to produce vector outputs
in the form of SVG and PostScript. Furthermore,
the maintenance of our codebase becomes a simpli-
fied endeavor through the use of text-based source
code, fostering clarity and facilitating future mod-
ifications. It is a confluence of these factors that
harmoniously resonate with our intrinsic predilec-
tion for code-driven development, making the adop-
tion of METAFONT/METAPOST an instinctive and
judicious decision.

3 Research and design process

Once the design based on reusable components was
finalized, the subsequent undertaking entailed iden-
tifying the most suitable curves and shapes to fulfill
the objective. A comprehensive list of components
was meticulously compiled, along with a correspond-
ing catalog of potential characters and glyphs that
could harness the potential of these components.
To facilitate reader comprehension, a typeset list
containing the components and the characters as-
sociated with them is provided in PDF format at

TUGboat, Volume 44 (2023), No. 2

Figure 6: Reusable components and characters that can
use them. The components are shown in red.

3 3 63 H63 (03 613
993 68183 8 B OB

3 | 3w em B

(6 @ ©N O] O 03
oM @ Q) OB

the link in [7]. In Figure 6, you will find three repre-
sentative examples selected from this extensive list,
providing a glimpse into the range of possibilities
that await exploration.

Although the choice to delve into the realm of
METAFONT/METAPOST came naturally to us, none
of us possessed prior familiarity with the language
or its intricacies. Consequently, our initial focus re-
volved around acquiring a firm grasp and cultivating
a reasonable proficiency in the art of METAFONT/
METAPOST. This endeavor demanded unwavering
dedication and a significant investment of time, but
it granted us the confidence necessary to embark on
our creative journey.

As we delved deeper into the captivating world
of METAFONT, we soon encountered a crucial turn-
ing point. After careful deliberation, we made the
decision to transition to METAPOST. We recog-
nized that METAPOST held a distinct advantage,
enabling direct generation of vector outputs in the
form of SVG and PostScript. These invaluable fea-
tures seamlessly aligned with our ultimate objective
of crafting fonts using software like FontForge or
fontmake. Thus, our pursuit of perfection urged
us to embrace the versatility and convenience of-
fered by METAPOST, as it emerged as the perfect
companion on our path towards mastering the art
of font creation.

3.1 Initial attempts

Initially, our endeavors centered on creating the
foundational characters in adherence to the Unicode
table [9], employing fixed coordinates and distinct
penstroke [6, p. 273] and draw [6, p. 271] functions
for serif and sans-serif variants respectively. How-
ever, it wasn’t long before we encountered the inher-
ent limitations of this approach. Firstly, the fixed
coordinate system presented a significant drawback,
as it required users to manually input all the coor-
dinates, contrasting with the more flexible algebraic
expressions that would prompt METAFONT to cal-
culate the coordinates through solving these expres-
sions. The design of METAFONT itself encourages

draft: July 8, 2023 00:31 7?3

users to adopt the latter method, as it allows for
greater parametrization and versatility.

The sans-serif variants in SVG format, gener-
ated through the draw function with uniform line
thickness, were initially considered viable candi-
dates. However, they exhibited potential flaws when
it came to removing overlaps during the font cre-
ation process, whether through FontForge or appli-
cations like Inkscape. It became apparent that uti-
lizing stroke commands such as penstroke, which
enables drawing an envelope of specified thickness
and angles around the central line, as dictated by
penpos [6, p. 273] commands for each coordinate,
would ensure seamless overlap removal. This real-
ization prompted us to abandon fixed coordinates in
favor of a more suitable approach.

3.2 Parametrized approach

Various factors that impact the shape, angle, and
thickness of strokes have been successfully parame-
terized. These encompass a range of essential pa-
rameters, as well as supplementary parameters that
rely on the values of the foundational ones. A
comprehensive listing of these parameters, includ-
ing both the fundamental and dependent ones, can
be found in Tables 1 and 2.

The parameters t and u play a crucial role in
finely adjusting dimensions, although they differ in
their impact. While both parameters contribute to
this adjustment process, it’s worth noting that t has
the unique characteristic of having no effect on sans-
serif variants. In other words, its influence becomes
apparent only when serif variants come into play.

In addition to the aforementioned parametriza-
tion, we have also undertaken another set of param-
eter adjustments concerning the widths and angles
of strokes, tailored to accommodate various variants.
Initially, our focus encompassed four primary vari-
ants: serif, sans-serif, serif thin, and sans-serif thin.
However, it is important to note that we have the
flexibility to incorporate additional variants in the
future, should the need arise.

To facilitate this parametrization process, we
defined a numeric variable, width_angle, with val-

Table 1: The essential/foundational parameters used.

Parameter Description Default
mag magnification 4

thick width of thick line 17.2bp
thin width of thin line 8.3bp
t unit dimen for adjustments 5.5bp
u unit width/height 5.5bp

METAFONT/METAPOST and a complex Indic script: Malayalam

74 draft: July 8, 2023 00:31

Table 2: Supplementary parameters used.

Parameter Description Default

o_cor overshoot correction .ou

lbearing left bearing 2u

rbearing right bearing lu

ascent distance from baseline 10.4u
of character to top edge

dscent distance from baseline Ou

of character to bottom edge

ues ranging from 1 to 4, corresponding to the afore-
mentioned variants: serif, sans-serif, serif thin, and
sans-serif thin, respectively. Leveraging the GNU
tools within our workflow, passing the value of
width_angle to the build process is an effortless
task. This approach also has the advantage of easily
observing the successive outputs of different variants
as we construct characters.

We strongly believed that utilizing predefined
variables for width and angles relating to different
directions, based on the cardinal directions of north,
north-east, east, south-east, south, south-west, west
and north-west, would greatly enhance comprehen-
sibility and ease of use. These variables would also
have fixed values assigned to them. To ensure clar-
ity and consistency, width variables will be prefixed
with w_, followed by one or two characters indicat-
ing the respective direction. Similarly, angle vari-
ables will be prefixed with a_, followed by the same
characters indicating the direction. It’s worth not-
ing that the east direction deviates slightly from the
expected ‘e’ since using ‘e’ in the penpos command
would result in an error. Therefore, the character
sequence ‘ea’ has been employed in its place.

For a comprehensive list of all the width and
angle variables, along with their suggested values,
please refer to the following code listing. Please bear
in mind that the usage of ‘ea’ instead of ‘e’ is a
unique exception in the provided variables.

For detailed reference, the definitions and cor-
responding values of variables pertaining to the
eight cardinal directions, for each value of the
width_angle variable, are presented in the subse-
quent code listings (refer to Listings 1-4). This
comprehensive resource offers a valuable point of ref-
erence for accessing precise information.

Listing 1: Width and angle variables for width_angle
value 1 (serif normal).

% width of thick line
% width of thin line

1 thick:=17.2bp*mag;

2 thin:=8.3bp*mag;

3 w_cor:=(thick-thin);
a_w=180; 7% west
a_nw=135; % north-west

4+ w_w=thin;
s w_nw=thin+.25w_cor;

C.V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain

TUGDboat, Volume 44 (2023), No. 2

6 w_n=thin+.b5w_cor; a_n=90; % north

7 w_ne=thick-.25w_cor; a_ne=45; Y% north-east
s w_ea=thick; a_ea=0; % east

9 w_se=thick-.2b5w_cor; a_se=-45; % south-east
a_s=-90; % south
a_sw=-135;% south-west

10 w_s=thick-.bw_cor;
11 w_sw=thin+.25w_cor;

Listing 2: Width and angle variables for width_angle
value 2 (sans-serif normal).

1 thick:= 1.5u;

2 thin := 1.5u;

3 w_cor:=(thick-thin);

4t := 0.0u;

5 W_W = thin+.5t; a_w := 180;
e w_ea := thick+.2t; a_ea := 0;
7W_N = thin+.2t; a_n := 90;
s w_sw := thick-.1t; a_sw := -140;
9 W_OW := W_SW; a_nw := 135;
10 W_Ne := W_SW; a_ne := 45;
11 W_se := w_ea-1.2t; a_se := -50;
12 W_S = wW_Dh; a_s := -90;

Listing 3: Width and angle variables for width_angle
value 3 (serif thin).

1 thick:=8.6bp*mag;

2 thin:=4.3bp*mag;

3 w_cor:=(thick-thin);

2 w_ea:=thick+.2t; a_ea:=0;

s w_w:=thin+.3t; a_w:=180;

6 w_n:=thin+.5t; a_n:=90;

7 w_sw:=thick-.1t; a_sw:=-140;
8 W_NW:=W_SW; a_nw:=135;
9 W_NEe:=W_SW; a_ne:=45;

10 W_se:=w_ea-.6t; a_se:=-50;
11 W_S:=wW_Dn; a_s:=-90;

Listing 4: Width and angle variables for width_angle
value 4 (sans-serif thin).

1 thick:= .b5u;

2 thin := .bu;

3 w_cor:=(thick-thin);

4t := Qu;

5 W_W = thin+.5t; a_w := 180;
6 w_sw := thick-.1t; a_sw := -140;
7w_ea := thick+.2t; a_ea := 0;

s W_n = thin+.2t; a_n := 90;
9 W_DW := W_SW; a_nw := 135;
10 W_Ne = W_SW; a_ne := 45;
11 W_se := w_ea-1.2t; a_se := -50;
12 W_S = wW_Dh; a_s := -90;

3.3 Reusable components

Now let us look into a typical instance, the con-
struction of the consonant character m, which bears
the phonetic resemblance to the initial syllable of
the word ‘November’. This character is ingeniously

TUGboat, Volume 44 (2023), No. 2

brought to life through the deployment of two shape
components. Keen observers will note the presence
of two distinct lobes—an elegant left lobe and an
equally poised right lobe. These lobes find their al-
gebraic expressions in the form of two shapes, known
as c_llobe and c_rlobe, respectively. The nomen-
clature itself displays an inherent clarity, with the
prefix ‘c’ symbolizing the component.

The algebraic pursuit of shaping this character
involves the harmonious interplay of two fundamen-
tal elements. Firstly, we encounter the precise coor-
dinates of each pivotal point that contribute to the
formation of the character’s curved contours. Sec-
ondly, the width/angle values assigned to each co-
ordinate, accompanied by the stroke command that
gracefully connects them, further embellish the vis-
ual tapestry. In order to gain a better understanding
of this intricate process, the following code unveils
the craftsmanship behind its creation.

Listing 5: Listing of the METAPOST source code in the
character build file of m.

1 input mpost-defs; Y MetaPost definitions
2 input ml-shape-lib;% lib. of shape comps.
% proofing, width/angle opts

% PDF/SVG output options

3 input option;
4 input out;

5

6 beginfig(34);
7 coor_c_llobe (1) (0,0);

s pstroke_c_llobe (1);

9 coor_c_rlobe (nl1.2) (x1f.r-.5wd2b,0);
10 pstroke_c_rlobe (2);

11 endfig;

12 end;

The files that are evident inputs within the
build source, as enumerated in Listing 5, mani-
fest a diverse array of categories. The first file,
mpost-defs.mp, consists of a select assortment of
definitions derived from plain.mp, albeit redefined
or customized to align with our objectives. The
second file, ml1-shape-1lib.mp, is an extensive com-
pendium of shape components with their affili-
ated macros. Notably, this file internally invokes
ml-glyphs-1ib.mp, which in turn houses the es-
sential definitions of glyphs. The option.mp and
out .mp files help in the build process.

Now, let us examine the macro coor_c_llobe,
which encompasses the x and y values representing
the coordinates of the left lobe. This macro accepts
one suffix argument and two expression arguments,
namely, xsh and ysh. These expression arguments
serve as containers for the dimensions that dictate
the horizontal and vertical shifts of the component
when it is positioned within the character construc-
tion process.

draft: July 8, 2023 00:31 75

Listing 6: Listing of the definition of c_llobe.

1 def coor_c_llobe (suffix $) (expr xsh,ysh) =
2 z$a=(xsh+.55b, ysh+Oh);

3 z$b=(xsh+.05b, ysh+.5h);

4 z$c=(xsh+.8b, ysh+1ih); oc$c(-.5);
s z$d=(xsh+1.5b, ysh+.63h);

6 z$f=(x$d, ysh+Oh);

7 enddef;

8

9 def pstroke_c_llobe (suffix $) =

10 penpos$a(w_w-.5t,a_sw);

11 penpos$b(w_w+.2t, a_w);

12 penpos$c(w_n, a_n);

13 penpos$d(w_ea-.1t,a_ea);

14 penpos$f(w_ea-.1t,a_ea);

15 penstroke subpath (start,stop) of

16 (z$a.e .. z$b.e{up} .. {right}z$c.e
17 .. z$d.e{down} .. z$f.e);

18 penlabels($a,$b,$c,$d,$f);

19 enddef;

In terms of providing the x-coordinate values,
we employ the symbol ‘b’ to represent breadth, while
the y-values are denoted by ‘h’, which stands for
height. By default, the default values assigned to b
and h are 10u and 20u respectively. This flexibil-
ity empowers us to modify the values of b and h,
thereby generating condensed or extended variants
with ease.

The macro responsible for stroking the paths
is named pstroke_c_llobe. It encompasses all the
penpos commands, specifying the width and angle
of each coordinate as defined within the correspond-
ing coor_(component) macro. It is worth noting
that the width and angle values are expressed in
terms of the width/angle variables, as outlined in
Listings 1-4, which correspond to the specific font
variant being built.

In addition to the penpos commands, the path
stroking macro also includes one or more (in other
cases) penstroke commands. These commands con-
nect each coordinate in a sequential manner, em-
ploying curves or straight lines as required by the
character design. Further, the macro incorporates
one or more penlabels commands, which facilitate
the printing of labels and the left /right edges of the
coordinates when generating proofs. It is important
to mention that if the value of the proofing variable
exceeds 2, the penlabels command will also display
the angle and width values of each coordinate, pro-
viding valuable insights during the debugging phase.

The coordinate and path stroking macros for
c_rlobe are provided in Listing 7, to allow the
reader to examine the implementation.

METAFONT/METAPOST and a complex Indic script: Malayalam

76 draft: July 8, 2023 00:31

20 P .y P
4 1 "N 4 < AN
o/ L 0 4 N pE= 1] N
// . o \\ N // L N\
/ / f \\ ‘ / [\
// | kopd \
/ |- € \\
10%5% > w%
Ho |
|| /
A \\ /
NI | /
\ /
A\ |4 /
\ < /|
N, <
00 e e
0 10 20 30

Figure 7: The proof image of the character m.

Listing 7: Listing of the definition of c_rlobe.

1 def coor_c_rlobe (suffix $) (expr xsh,ysh) =
> z$a=(xsh+Ob, ysh+.5h);

3 z$b=(x$a, .65h);

4+ z$c=(xsh+.65b, ysh+ih);

s z$d=(xsh+1.45b, ysh+.5h);

6 z$f=(xsh+.95b, ysh+Oh+.2t);

7 y$c:=y$c-.5wd$c;

s enddef;

9

10 def pstroke_c_rlobe (suffix $) =

11 penpos$a(w_sw-.5w_cor,a_w) ;

12 penpos$b(wd$a,a_w);

13 penpos$c(w_n,a_n);

1« penpos$d(w_ea,a_ea);

15 penpos$f(w_s-.1t,a_se+10);

16 penstroke subpath (start,stop) of
17 (z$a.e{up}

18 .. z$b.e{up} .. z$c.e{right}
19 .. z$d.e{down} .. z$f.e);

20 penlabels($a,$b,$c,$d,$f);

21 enddef;

Figure 7 illustrates the character constructed
for the serif normal variant of the font (wa=1), utiliz-
ing the code presented in Listings 5-7. The compo-
nents have been visually distinguished using varying
shades of gray to aid comprehension.

In a prior section (Section 2, Rationale), we
highlighted the fact that the predefined component
approach is not exempt from limitations. It is worth
noting that there were instances where we encoun-
tered the need to adjust the position of coordinates
to align with a particular character shape or design.
This task proved to be quite challenging, given that
the x and y values of the coordinates had been prede-
termined. Consequently, in order to overcome this
obstacle, we undertook the task of redefining the
z macro [6, p. 277] that assigns values to x and y
coordinates. This revised version of the macro now

C.V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain

TUGDboat, Volume 44 (2023), No. 2

includes (refer to Listing 8) a check for any delta val-
ues associated with x or y, to add prior to assigning
the respective original values.

Listing 8: The modified definition of z macro.
1 vardef z@#=(x@# - if known dx@#: dxO#
2 else:0 fi,
3 yo# - if known dy@#: dy0# else:0 fi)
4 enddef;

Thus, if there exists a definition for dx or dy as-
sociated with a coordinate z, signifying the intended
horizontal and vertical shifts respectively, then these
shifts will duly be applied to their respective coor-
dinate values prior to final assignment within the
pair definition. To illustrate this concept, let us
consider the example dx1b = -2u (provided in code
Listing 9). It is worth noting that the delta values
need to be provided just before the occurrence of
coor_c_{component).

Listing 9: Example to show the shifting of coordinates.
1 beginfig(32);

2> % dxlb=-2u;

s coor_g_da (1) (0,0);

4 pstroke_g_da (1);

s endfig;

This code generates the consonant character 3
(using different subroutines than the previous ex-
amples). Should we desire a slightly more rounded
contour for the left curve, it becomes necessary to
adjust the position of the coordinate labelled 1b to-
wards the left, aligning it with the desired dimen-
sions. This adjustment can be accomplished by em-
ploying the delta variable, written as dxib = -2u.
It specifies the intended shift of 2u to the left. It’s
commented out in line 2 of Listing 9. To gain a vis-
ual understanding of the original design alongside
the modified version, kindly refer to the images pre-
sented in Figure 8.

Similarly, we can utilize the dy{coordinate) ap-
proach to shift the vertical position. Nevertheless,
the need for precise adjustments extends beyond
mere shifts in the z and y directions. At times,
it becomes necessary to modify the predetermined
angles and widths using the penpos commands for
individual coordinates. To enable this functionality,
we had to redefine the original penpos command [6,
p. 273], as shown in Listing 10.

Listing 10: Redefined penpos.
1 vardef xangle@#(expr xd) =
> (ang@#)=(xd); enddef;
s vardef xwidth@#(expr xb) =
4 (wd@#)=(xb); enddef;
s vardef penpos@#(expr b,d) =

TUGboat, Volume 44 (2023), No. 2

Figure 8: Example showing horizontal shift of a
coordinate. The figure at the top is the original
character, while the one below shows the midpoint of
the left curve shifted by 2u towards the left.

20 e —
1c
,////Jrgﬁ‘k\\\\\ B
// \\

/ N

/ \
/ —1id—+»
) |

/ /
I / - <// '

10| | I

«1b+ 1g |if \\<
LE . N
| T~ \
\ N \
\ el I
\ [F~in—
\ /
\\\] y /
P /|
\ 4 el i
0 0 —gta L :
0 10 20
20 = =L
/// V/lJCi B ‘\\‘
AT HEEN
~ N N\
P . \
74V N
/| \ |
/S id—>
J /
1/ /
/ //
| [| —/;

0 <
e
- + & N
(- I~ \
Vo N \
\ \ \ \

) F=in
ALY) =
BN A
\ N e /

\\ 1;\\71/// /|

i /
0 0 gta e
0 10 20

6 if unknown ang@#: xangle®#(d); fi
7 if unknown wd@#: xwidth@#(b); fi
s (xQ#r-xQ#l,yQ#r-yo#l) =

9 (wd@#,0) rotated ang®#;

10 x@#=.5(xQ#1+x0#r) ;

11 yO#=.5(y0#1+yQ#r) ;

12 enddef;

Let’s examine the impact of utilizing these fea-
tures through a practical example. In the image on
the right side of Figure 8, it appears that the angle
of coordinate 1a (the bottom ending of the left-hand
stroke) isn’t correct as initially set by the command
penpos$a(w_w+.2t, a_sw-20);. However, it was
deemed suitable for the image on the left side of
the same figure. To address this, we can make ad-
justments by inserting the code angla = a_sw; in

draft: July 8, 2023 00:31 77

Figure 9: Revised image of the character after changing
the widths and angles.

20 —— & ~

/’/ ic E=SN ~_
LA I NG|
// N N
- \\ \
/ f N
Vi A
Jaw, In Il
S / /
/ /
/ pe /
19 S
e 1g |1f ~
| ol el ™
| A) \\
| < \
\ —
Th—
\ \\ /
N \ //
\\ 1‘:‘] r
) -J i 7
0 0 ta AL
0 10 20

Listing 11: New source with changed angle and widths.
1 beginfig(32);

> dx1b=-2u; % change x-pos

s angla=a_sw; 7% change angle

4 coor_g_da (1) (0,0);

s wdld=wdlh=w_ea+1t; % change width

6 pstroke_g_da (1);

7 endfig;

the character code; ang(coordinate)= followed by the
value is the syntax of the command.

In a similar fashion, we can also modify the
width of any coordinate by using the command
wd(coordinate) = (value). Suppose we wish to alter
points 1d and 1h. This can be achieved by incor-
porating the code wdild = wdlh = w_ea+1t;. Es-
sentially, this means that one unit of width will be
added to the current width (which was initially de-
fined as w_ea).

Please refer to the updated image of the char-
acter in Figure 9 and take a moment to compare it
with the right image in Figure 8.

There remain a few additional features worthy
of explanation, which we shall defer to a subsequent
section (refer to Section 3.5). These features give
the user additional tools to undertake the task with
utmost ease. Among these capabilities are the abil-
ity to incise a path at any given point, ascertain the
coordinates, angle, and width of said incision point,
the redefined penlabels command, as well as the
utilization of the find_outline, pstroke_stem and
overshoot correction commands.

METAFONT/METAPOST and a complex Indic script: Malayalam

7?8 draft: July 8, 2023 00:31

Figure 10: The consonant character, al (pa).

20 b <
_—F T
LA ic N
% I N\
10
\
\
\ \
<1t —.1a
| /
\
\
N b a———4d
NI i
0 ol——12 L, .2d
0 10 20 30

3.4 Reusable glyphs

The necessity for reusable definitions of glyphs,
much like that of reusable components, arose when
encountering certain horizontal conjuncts such as
88, 00, o, and so forth, where characters are re-
peated horizontally. Similarly, the need for reusable
definitions arose in the case of vertical conjuncts
like 61, o, etc., that involve the repetition of the
same characters vertically. Such requirements also
emerged in cases such as &, oy, ®4, and others,
where different characters are stacked vertically.

In such circumstances, it is only natural to har-
ness the programmability of METAPOST as a logical
progression. This enables the definition of all the
glyphs that might undergo repetition, whether in
the formation of horizontal or vertical conjuncts, or
when glyphs are combined with vowel signs to form
ligatures, such as @J, @J, @ (phonetically equiva-
lent to pra, pru, pru), derived from the consonant
‘al’ (pa). Needless to say, the utilization of these
reusable definitions greatly expedites the creation
of conjunct build files.

Let us now see the typical composition of a
glyph definition by carefully examining the source
code for the consonant character a1 (refer to Fig-
ure 10), given in Listing 12. This exploration will
shed light on the intricate details that contribute to
the formation of this particular character.

Listing 12: The glyph definition of a1 from
ml-glyph-1lib.mp.

1 def gl_pa (suffix prx) =

2 coor_c_ra_sm (prx.1)(0,0);

3 % Lift up end point of ra_sm (1f)
4 % and set width relative to its

s % start point (la)

6 y.prx.1f := y.prx.la.l;

7 wd.prx.1f := wd.prx.la;

s pstroke_c_ra_sm (prx.1);

C.V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain

TUGDboat, Volume 44 (2023), No. 2

9 stroke_stem (prx.3)

10 (x.prx.1f.r+30,0,2.1b,w_w) ;

11 pstroke_stem (prx.4)

12 (x.prx.3d-thick,y.prx.3c,thick,lh-w_w);
13 pstroke_edge ((x.prx.1f.l,y.prx.3a),

14 z.prx.1f.1,z.prx.3b,z.prx.3a);

15 reset_xst;

16 enddef;

The definitions of the routines coor_c_ra_sm
and pstroke_c_ra_sm called by gl_pa are part of
ml-shape-lib.mp and are given in Listing 13.

Listing 13: The definition of coordinates, width, angles
and path stroke of oI from ml-shape-1lib.mp.

1 def coor_c_ra_sm (suffix $)(expr xsh,ysh) =
2> z$a=(xsh+.35b, ysh+0); oc$a(.1);
s z$b=(xsh+Ob, .5[y$a,y$cl);

s z$c=(.5[x$b,x$d], ysh+.63h);

s z$d=(xsh+1.3b, .5[y$a,y$cl);

6 z$f=(xsh+.9b, y$a+.0h);

7 enddef;

8

9 def pstroke_c_ra_sm (suffix $) =
10 penpos$a(w_w-.5t, a_sw+20);

11 penpos$b(w_w, a_w);

12 penpos$c(w_n, a_n);

13 penpos$d(w_ea, a_ea);

1 penpos$f(w_s-.5t, a_se);

15 penstroke subpath (start,stop) of

16 (z$a.e .. z$b.e .. z$c.e ..
17 z$d.e .. z$f.e);

18 penlabels($a,$b,$c,$d,$f);

19 enddef;

The commands pstroke_stem, stroke_stem
and pstroke_edge and their usage are described in
detail in Section 3.5.

The above definitions allow building, fairly eas-
ily, a plethora of glyphs (58 in number) listed below,
those where a1 is an integral part:

The suffix argument, denoted as prx, within
the glyph definition of gl_pa may pose a puzzling
query in the minds of readers, warranting a thor-
ough explanation. It is crucial to comprehend that
the suffixes of macros must possess unique identities
within a beginfig ... endfig environment. Fail-
ure to adhere to this requirement will result in an
error, halting the processing by METAPOST.

In instances where we need to invoke the same
shape functions multiple times, as exemplified in the
source code in Listing 14 (its output can be seen

TUGboat, Volume 44 (2023), No. 2

in Figure 11), it becomes imperative to ensure the
uniqueness of suffixes. To achieve this, we resort to
the practice of prefixing the suffixes with additional
characters while calling the glyph definitions. (The
usage of vconj shall be explained in Section 3.5.7
on vertical conjuncts.)

Listing 14: The source listing of p1lp1, a vertical
conjunct o]

1 beginfig(00);

> gl:=image(gl_pa(p));
s vconj:=true; width_angle(wa_n);

4+ g2:=image(gl_pa(pp)); % different prefix
5 g3:=g2 xscaled .6 yscaled .6;

% first prefix

6 currentpicture:=gi;
7 addto currentpicture also g3

8 shifted (xpart (lrcorner gi)
9 -xpart (urcorner g3),-(12u+5));
10 endfig;

Figure 11: The vertical conjunct, o], created by the
code in Listing 14.

20

i
/ T B
bo / -1 ~~
[/ \
/ \
' \
|
\ /
\ /
\EAN T
0 o bl .
///' " ——
AT TN
[/ 3
[)
R
‘ LY L
A EEEIE|
0 10 20 30

3.4.1 A word about glyph naming

It’s time to provide a brief explanation of the glyph
naming convention utilized in our fonts. Instead of
using Unicode code points as identifiers for charac-
ters, or Adobe glyph list conventions, we have cho-
sen a specialized abbreviated form for both vowels
and consonants. This methodology was developed
by one of the authors, Hussain, over two decades
ago for simplified glyph naming in the fonts he had
created, including the most popular, “Rachana”.
Vowels are indicated by the prefix ml_ fol-
lowed by the corresponding vowel sound in the Latin

draft: July 8, 2023 00:31 79

script. For example, m1_a represents the vowel, @o
(0DO5).

Each of the consonant groups, such as velar,
palatal, retroflex, dental, bilabial, approximants,
sibilants, and others, consist of four stops encom-
passing all possible values of voicing and aspiration.
They are named using one or two representative
characters in Latin script (k for velar, ch for palatal,
t for retroflex, th for dental, p biblabial; but each
member of the approximants, sibilants and others
has been assigned a unique character depending on
the sound), followed by a numerical index ranging
from 1 to 4. For instance, the first velar consonant
& (0D15) is designated as k1. As you can infer,
the other three (eu, , oel) are named k2, k3, and
k4 respectively. Certain vowel signs and consonants
conjoin with many base characters; these are also
named appropriately. Table 3 provides a detailed
picture of the naming of consonants. It is interest-
ing to note that this naming convention suits most
Indic scripts.

Table 3: Table showing all the consonants, vowel signs
and their glyph names.

Voiceless Voiced

Unasp. Asp. Unasp. Asp. Nasal

velar k1 k2 k3 k4 ng
o 6l n ap) o3
alatal chl ch2 ch3 ch4 nj
’ al 20 = oW)
retroflex t1 t2 t3 t4 nh
> < . N " ub
dental thi th2 th3 th4 nl
(] Ta) 3 w o
biblabial pl p2 p3 pd ml
al an onl ®
i , vl 3 13 vl
approximants
(W) () el al
sibilants z1 sh sl hil
w o 1)) a0
1h zh rh
others s .)
vowel/ ul u2 y2 r4 13
consonant 2 o3 o @ o
signs v2

Unasp. = unaspirated; Asp. = aspirated

This convention allows for convenient usage of
these intuitive consonant names when construct-
ing conjuncts and ligatures, eliminating the need
for lengthy and less user-friendly combinations of

METAFONT/METAPOST and a complex Indic script: Malayalam

710 draft: July 8, 2023 00:31

Listing 15: Source listing of the redefined penlabels.

1 vardef penlabels@#(text t) =
2 if proofing > 1:

3 forsuffixes $$=1,r: forsuffixes $=t:
a if known z$:

5 interim linecap:=rounded;

6 interim ahlength:=8bp;

7 interim ahangle:=60;

8 drawarrow z$.1 -- z$.r

9 withcolor red;

10 drawdot (x$,y$) withpen pencircle
11 scaled 5mm withcolor white;

12 defaultscale:=.75;

13 s_len:=length(str$); st_idx:=s_len-3;
14 makelabel®@# (substring(st_idx,s_len)of
15 (str$), (x$,y$)) withcolor red;

16 if proofing > 2:

17 label(decimal (wd$) ,z$-(0,1uw))

18 withcolor .5white;

19 label(decimal (ang$) ,z$-(0,1.5u))
20 withcolor .5white;

21 fi

22 fi

23 endfor

22 endfor
s fi
26 enddef ;

code points. Undoubtedly, the glyph name of
k1thlr3 for @m (pronounced like kthra) is much
easier to remember than the cryptic hex sequence
ODO5 0D4D 0D24 0D4D 0OD31.

3.5 Additional features

The supplementary features elucidated in this sec-
tion are not absolutely imperative for carrying out
the font creation process. Nonetheless, they en-
hance the workflow by equipping users with addi-
tional tools that contribute to making their lives a
tad more convenient.

3.5.1 Redefined penlabels command

The command penlabels [6, pp. 36, 274] has been
redefined (see Listing 15):

1. to display no labels if proofing < 2.

2. if proofing = 2, to display the labels in a
white circle (since the path is filled with gray
color in proof mode) and display a red arrow,
the head of which points to the right edge which
provides an indication of the angle visually.
This is in lieu of the default method of display-
ing 1 and r labels in black.

C.V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain

TUGDboat, Volume 44 (2023), No. 2

3. to display the widths and angle of the coordi-
nates if proofing > 2, which is handy in cer-
tain debugging situations.

3.5.2 Slicing the path — subpath

The subpath command [6, p. 133] has been exten-
sively utilized in the penstroke macros, as it pro-
vides a convenient means to slice the path at ar-
bitrary locations without affecting the path’s flow
or curvature, even when the cut point happens
to intersect a curve. Most penstroke commands,
if required, include the subpath command with
(start, stop) variables as its arguments, default-
ing to 0 and infinity respectively. This allows
users to modify these variables in the build file as
per the dictates of the shape of the glyph. The code,
as shown in Listing 16, illustrates how the start and
stop points of two consonants, t1 (s) and th3 (3),
have been applied to the cut just after the start of
t1 and towards the end of th3 to create derivative
glyphs of t1r1 (s) and th3r1l (@) respectively.

Listing 16: Application of subpath.
1 %h% glyph def of t1 %%%
2def gl_Ta =
3 coor_g_ta (t1.1) (0,0);
4 reset_cut; start:=xstt;), set start of subpath
s pstroke_g_ta (t1.1); % strokes from ’start’
6 Treset_xst;
7 enddef;
s %hh glyph def of tirl %%%
odef gl_TR =
10 xstt:=3; gl_Ta; % draw curve from 4th point
11 ang_cor:=-5;
12 coor_c_prkar (t1.5) (x.t1.1f,3u);
13 start:=0;
12 wd.tl.5a=wd.tl.1f;
15 x.tl1.5f:=x.tl.1g;
16 X.tl.ba:=x.tl1.1d;
17 y.tl.ba:=y.tl.1d;
18 wd.tl.5f:=wd.tl.1g;
19 pstroke_c_prkar (t1.5);
20 reset_cut;
21 enddef;
2 %%h%h glyph def of th3 %%%
23 def gl _da =
24 coor_g_da (th3.1) (0,0);
25 stop:=xstp; % stop last part of curve at ’xstp’
26 pstroke_g_da (th3.1);
27 reset_xst;
28 enddef;
2 %%% glyph def of th3rl %%%
30 def gl _dR =
31 dy.th3.1f=-2u;
2 coor_g_da (th3.1) (0,0);
3 stop:=1; % stop curve at 2nd point
34 % of last part

TUGboat, Volume 44 (2023), No. 2

Figure 12: Illustration of subpath operation. The
image at left is the consonant s, the right-hand image

is after slicing at fourth coordinate is applied, and the
one below is after appending the vowel sign to the sliced
character.

20 — —— 20 — =
= i — = = —
AT AT
/ T ~ N / T ~
/ N /
r-. 1g—~ r-. lg~
\ \
N BUNEELE N BuEEEL
id L IIE SE AN id o IIE S
T N T—— v
~ \
N \
EmEg
jl . ic— | <. lo—
flaN_| L4 y fla
~_ = ya
S =] 4 %
olol | 1b L o 1b

20 = —

—=
T
=

o
1T

s pstroke_g_da (th3.1);

3 coor_c_krkar (th3.2)

37 (x.th3.1f-1u,0);

38 y.th3.2a:=y.th3.1f;

39 wd.th3.2a=wd.th3.1g;

20 stop:=infinity;

41 pstroke_c_krkar (th3.2);
42 enddef;

The three images in Figure 12 illustrate the
subpath operation with respect to the consonant s
and the second set in Figure 13 is that of a.

3.5.3 Overshoot correction

The overshoot correction was previously done using
a dimension variable oc which has the default value
of 0.5u. Since in serif versions, the characters have
different stroke widths at top or bottom owing to
the different angles of curves, and the oc variable is
insufficient to manage overshoot corrections in this
situation. However, it was felt that addition of a half
stroke width at the bottom and subtraction of a half
stroke width at the top will be the ideal solution
for it. The images in Figures 14 and 15 illustrate
the state of overshoot in pre- and post-application
scenario respectively.

draft: July 8, 2023 00:31 711

Figure 13: llustration of subpath operation
(continued). The image at the left is the consonant 8,
the middle image is sliced at the beginning of last lobe
and the one below is after appending the vowel sign to
the sliced character.

20/ 20 T -
/'/ ic
[T~ AT T TN
N X A r N \
A} \ / NEH
= Fid
/ / / / /
I/ / /
] 1 1
10 1g it g ol1p 1g e i
ol N | ol lal
INEEA |
Y I \ I
| o= ~1h=
\\ \\
N e af \ 1 -
0 0l et 21 EE I i 0 ol aat R E
0 10 20 0 10 20
20 -
s ‘e
)%
/ AN
/ N\ Y
\ \
YL L
/ ‘—.lli-t
[/ /
boll V
|10)
| ra 4
| 1]9 ~
| o N|
\] N
\ N AN
N Y
Wt N ot
VBN . \26%)
LR Il | |
0 te 0] 7
P / /
y L /AN
AR 2il AT/
e 2F~ A4 /
N 2
2d =
1l

Figure 14: Overshot curves at the top of serif version of
the vowel @n).

The syntax of the command is:

oc{coordinate suffix) ({corr value))

A few usage examples are provided below, for situa-
tions of both directly coded coordinates like z1, z2,
z3, ... and $-suffixed situations like za, zb, z$c,

. The correction line is provided just after the co-
ordinate definition of the point needing correction.

1 ocl (-0.5);
2 och (0.5);
3 oc$a(-0.5);
4 0c$d(0.5);

Any arbitrary value can be given as the argument.

METAFONT/METAPOST and a complex Indic script: Malayalam

?12 draft: July 8, 2023 00:31

Figure 15: Corrected overshot curves at the top of serif
version of the vowel @n.

£y
the

Listing 17: Definition and usage of pstroke_stem.
1 %% definition:
> def pstroke_stem (suffix §)
s (expr xsh,ysh,width,height) =
4 x$a=x$b=xsh+0b; x$c=x$d=xsh+width;
s y$a=y$d=ysh+Oh; y$b=y$c=ysh+height;
¢ filldraw z$a -- z$b —-

7 z$c -- z$d --cycle withcolor gcolor;
s 1f proofing>0:

9 draw z$a -- z$b -- z$c —-

10 z$d --cycle withcolor black; fi

11 labels($a,$b,$c,$d);

12 enddef;

13 %% usage:

14 % pstroke_stem (<suffix>)

15 % (<h-shift>, <v-shift>,
16 % <width>, <height>);

3.5.4 The pstroke_stem macro

The horizontal and vertical stems that form part of
some characters (e.g., Ql, &, al, a4, 10, 1, 201, ...) are
drawn using the function pstroke_stem; its usage
is shown in Listing 17.

After one argument for the suffix, the function
requires four expression arguments: horizontal and
vertical shifts, width, and height of the stem. If the
height is greater than the width, the stroke becomes
a vertical stem.

Readers are encouraged to examine lines 9-12
of Listing 12, where the usage of pstroke_stem
is evident. Instead of pstroke_stem, you can see
stroke_stem in line 10. Both have the same func-
tionality, except that the latter invokes outline
mode which is explained later (Section 3.5.10).

The image in Figure 10 demonstrates the effect
of the aforementioned code.

3.5.5 The pstroke_edge macro

There exists a typographical nuance of reducing the
height of an edge of a horizontal stem when it joins
with a curved stroke as seen in Figure 16.

The pstroke_edge command draws a cyclic
path connecting the left end coordinates of the hor-

C.V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain

TUGDboat, Volume 44 (2023), No. 2

Figure 16: Example of pstroke_edge when the left
edge of a horizontal stem joins with the rounded part
of the character. The path in light green color is the
rounded path; the hstem is colored light blue while the
segment filled with yellow color is the pstroke_edge.

\ |
¢.1b- }——.:Ld—-h/f
\ \\ f;‘lslteré\ke // /
\\ \ edge‘ /
N N\ A sl
\ \\ égi L4; ___left edge of
0 \\ 1\', i L{ /tf the hstem

izontal stem (points 3a and 3b in the figure) with
the left and right edges of end point of the curve
(1f) and fills it. The macro definition and usage are
provided in Listing 18.

Listing 18: Definition and usage of pstroke_edge.
1 %% definition:
> def pstroke_edge (expr 11,ul,ur,lr) =
3 filldraw 11 -- ul -- ur -- 1lr —-

4 cycle withcolor gcolor;

s 1f proofing>0:

6 draw 11 -- ul -- ur —- 1lr --
7 cycle withcolor black; fi

s enddef;

9 %% usage example:

10 %% lines 13, 14 of Listing 12
11 pstroke_edge (

12 (x.prx.1f.1, y.prx.3a),

13 z.prx.1f.1,

14 z.prx.3b,
15 z.prx.3a
16);

The four coordinates needed for pstroke_edge
can be provided starting from any point, as long as
the coordinates are sequentially in cyclic order, no
matter clockwise or anticlockwise.

3.5.6 DocGrid and PrintGrid

The DocGrid macro overlays a grid on top of the
glyph image in proofmode (proofing > 0). It is
an extended form of Knuth’s makegrid macro, ex-
plained in [6, p. 275]. Listing 19 provides the source
code of the macro.

Listing 19: The source code of DocGrid.
1 def DocGrid (expr w,h) =
2 if proofing > O:
3 begingroup

4 defaultscale := 1.1;

5 pickup pencircle scaled minor_rulewidth;
6 rulecolor:=minor_rulecolor;

7 bm=(ypart(llcorner pp)-1u);

TUGboat, Volume 44 (2023), No. 2

8 makegrid(0,for i=u-4u step u

9 until w+3u: , i endfor)

10 (0,for i=0 step u

11 until h+2u+1: , i endfor)

12 makegrid(0,for i=u-4u step u

13 until w+3u:, i endfor)

1 (0,for i=0 step -u

15 until bm-1u: , i endfor)

16 pickup pencircle scaled major_rulewidth;

17 rulecolor:= major_rulecolor;

1s makegrid(0,for i=0 step 10u until w+2u+iu: ,
19 i endfor)

20 (0,for i=0 step 10u until h+2u+l: ,

21 i endfor);

22 makegrid(0,for i=0 step 10u
23 until w+2u+liu: , i endfor)
24 (0,for i=0 step -10u

2 until bm-1u: , i endfor);

26 draw (0,bm)--(w,bm) withcolor rulecolor;
27 makelabel.lft("0", (Ou,0u));

28 makelabel.bot("0", (Ou,bm));

29 makelabel.bot("10", (10u,bm));

30 makelabel.bot("20", (20u,bm));

31 if (w+2u) >= 30u :

32 makelabel.bot ("30", (30u,bm)); fi
33 if (w+2u) >= 40u :

34 makelabel.bot ("40", (40u,bm)); fi
s if (w+2u) >= 50u :

36 makelabel.bot ("50", (50u,bm)); fi
ar if (w+2u) >= 60u :

38 makelabel.bot ("60", (60u,bm)); fi
39 if (w+2u) >= 70u :

40 makelabel.bot ("70", (70u,bm)); fi
11 makelabel.lft("0",(-1u,0u));

42 makelabel.lft("10", (-1u,10u));

43 makelabel.lft("20", (-1u,20u));

44 endgroup;

a5 £1

46 enddef;

The DocGrid macro requires the width and
height of the character as its arguments and adds
2u space around the bounding box of the charac-
ter before overlaying with the grid. It is invoked by
the PrintGrid function though the endfig hook,
extra_endfig, as shown in Listing 20.

Listing 20: The source code of PrintGrid.

1 def PrintGrid =

2 picture pp; pp:=currentpicture;
s pw = xpart(urcorner pp);

4 ph = ypart(urcorner pp);

s DocGrid(pw,ph);

s enddef;

s extra_endfig:="if proofing = O:
¢ add_space_around; else: PrintGrid; fi";

draft: July 8, 2023 00:31 713

3.5.7 The vertical conjuncts

The process of generating vertical conjuncts, where
two characters are stacked on top of each other, was
mentioned in Section 3.4, Reusable glyphs. The cor-
responding source code in Listing 14 demonstrated
how this is achieved. You may notice that the below-
base character is always scaled down to ensure typo-
graphic appeal and to limit the overall depth of the
glyph to a reasonable level. However, this scaling
action has the unintended consequence of reducing
the stroke width in the bottom character.

To address the limitation of width reduction, a
boolean variable called vconj is introduced. When
set to true, it automatically increases the width of
the thick and thin lines by a factor of 1.35. Since
all other stroke widths are derived from these two
fundamental dimensions, the overall width dimen-
sions are adjusted proportionately and accurately.

Listing 21: Change of the widths thick and thin
depending on the state of the boolean, vconj.

1 wa:=1;

2 if vconj:

s thick:=(1.35%17.2bp)*mag; % width of thick line
4 thin:=(1.35%8.3bp)*mag; 7% width of thin line
s else:

6 thick:=17.2bp*mag; % width of thick line
7 thin:=8.3bp*mag; % width of thin line
s fi

The images in Figure 17 show the difference
in stroke widths of the below-base character with
different states of the vconj boolean.

Figure 17: The effect of the boolean vconj on the
stroke width of the below-base character. The image on
the left is when vconj is false; observe that the widths
of strokes of the below-base character are thinner than
its counterpart on the right, with vconj true.

al ol

3.5.8 The consonant doubling macro

Some consonants, such as s, n0l, @, QI (phonetically
similar to chcha, bba, yya, vva), behave in a par-
ticular fashion when conjuncts with the same con-
sonants are created. This is different from others
like oy, em, @ (ppa, nna as in running, gga), etc.,
when forming vertical conjuncts with its own copy
of the below-base character and om, om, 88 (mma,
ththa, lla as in culling), etc., where conjuncts are

METAFONT/METAPOST and a complex Indic script: Malayalam

714 draft: July 8, 2023 00:31

formed with their own copy of the post-base char-
acter packed horizontally.

Since the shape of the bottom construct is an
ideal candidate for a component, we devised one,
called c_cons_dbl, the source of which is provided
in Listing 22.

Listing 22: Consonant doubling macro, c_cons_dbl.

1 def c_cons_dbl (suffix $) (expr xsh,ysh,wid,hgt) =
> pstroke_stem ($) (xsh+Ob,ysh+Oh,-thick,-hgt);

s dx$a.c=-.15b;

4+ stroke_stem ($a) (x$b,y$b-thin,-wid,thin);

5 if not outln_i: ypenstroke stem; fi

s z$aa=(x$a-.65wid,y$a); penpos$aa(w_n,a_w);

7 z$ab=(x$a.d-.2b,y$a.d+.5wd$ab) ;

s penpos$ab(.6thin,a_n);

9 penstroke z$aa.e {dir 263} ..
10 penlabels($aa,$ab);

z$ab.e;

11 pstroke_edge((x$ab.r,y$a.d),z$ab.r,z$a.c,z$a.d);

12 enddef;

Figure 18: The consonant doubling macro in action.

9] oY & Q

The macro requires four expression arguments
of horizontal shift, vertical shift, width and height,
after the suffix argument. A usage example showing
the source of the conjunct 4] is provided in List-
ing 23.

Listing 23: Usage of the consonant doubling macro.
1 beginfig(20);
2 coor_c_ch_1t (1) (Ou,0u);
3 pstroke_c_ch_1t (1);
4 pstroke_stem (2)(0,0,3b,thin);
s pstroke_stem (3)(x2d,0,thick,1h);
¢ c_cons_dbl (4)(x3d,y3a,1.8b,.4h);
7 endfig;

3.5.9 The vowel signs

Among all the vowel signs, four of them — 3, 3, 4,
<y — exhibit the tendency to join with consonants to
form conjuncts. Another speciality is that each of
the first two—«) and <:3— has four different forms
depending on the shape and other characteristics of
the conjoining consonant. A few examples below
illustrate the diverse conjunct formation with the
sign o)

(i) &, @ (ku, ru);

(i) @ = @, ... (gu, ju, thu);
(iii) a, em, 0, ... (nu, nu, nnu) and
(IV) 3, ad, M), Q, ... (du7 pu, bu, mu)

C.V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain

TUGDboat, Volume 44 (2023), No. 2

Similarly, the longer form 3 creates four different
conjuncts that correspond to the shorter forms cited
in the previous list:

(i) @@, @ (ju, ru);

(i) &, 8, @, ... (kua, gu, thu);
(iii) 0, ey, M), ... (nu, nu, nna) and
(iv) @, a4, 60, Q, ... (du, pu, ba, mu).
However, the other two vowel signs —ay, oy—

do not tend to create different kinds of conjuncts.
The first assumes the uniform shape of &, ¥, oJ, G,

. while the conjuncts of the latter have the shape
of @, ¥, o), 3, ... There is yet another consonant,
0, that conjoins with base characters to make the
‘reph’ form as @, ©, @J, G, - -. that is defined using
make_reph macro (see Table 4).

We observed that the majority of the conjuncts
with the first two vowel signs tend to form rounded
variants of «:) and <3 (see the examples in item iv of
the above two lists); hence, two macros have been
designed so that the corresponding conjuncts are
created via simple calling of one of these macros
augmented with appropriate z,y coordinate values
at which to attach. The two examples of the con-
juncts aJ and g provided in Figure 19 illustrate the
process. The corresponding METAPOST sources are
in Listing 24.

Figure 19: Formation of conjuncts with rounded vowel
signs aligned with the bottom of a horizontal stem.

Listing 24: The conjuncts with rounded vowel forms.
1 %k od hhh
>def gl_pu (suffix prx) =
3 outln:=true;
s gl_pa(prx);
s make_stem_u (21) (x.prx.3d-.5wd2lc,
6 y.prx.3c-.75wd21b) ;
7 enddef;
8 hhh ad hhh
9 def gl_puu (suffix prx) =
10 outln:=true;
11 gl_pa(prx);
12 make_stem_uu (21) (x.prx.3d-(x21c.r-x21b),
13 y.prx.3c-.5wd21b);

Two macros, make_stem_u and make_stem_uu
are used to align the <3 and <) respectively with the

TUGboat, Volume 44 (2023), No. 2

horizontal stem of al. One may also notice a bool-
ean outln has been set true to improve the align-
ment process (this will be explained in detail in Sec-
tion 3.5.10 on outline mode). The macro requires
two arguments, the horizontal and vertical coordi-
nates, where the rounded object will align with the
stem. The sources in Listing 25 will amplify this
further.

Listing 25: The conjuncts with rounded vowel forms
conjoining with horizontal stems of consonants.

1 %ty wy-sign %k

> def make_stem_u (suffix $) (expr xsh,ysh) =

3 coor_vl_round_u_alt ($) (xsh,ysh);

4 pstroke_vl_round_u_alt (21);

s if not noreverse: stem:= reverse stem; fi

6 find_outlines(rmpath,stem) (P);

7 for i=1 upto P.num: ypenstroke P[i]; endfor
s enddef;

o hthh 3-sign hhh

10 def make_stem_uu (suffix $) (expr xsh,ysh) =

11 coor_vl_round_uu_alt ($) (xsh,ysh);

12 pstroke_vl_round_uu_alt (21);

13 if not noreverse:stem:= reverse stem; fi

1 find_outlines(rmpath,stem) (P);

15 for i=1 upto P.num: ypenstroke P[i]; endfor
16 enddef;

As you might surmise, there are also variant
forms of the macros to accommodate rounded bot-
tom curves where the vowel sign is expected to align.
The source code is provided in Listing 26, and the
corresponding output in Figure 20.

Listing 26: The conjuncts with rounded vowel forms
conjoin with bottom curves of consonants.

1 %t 0 Yokt

2def gl Du (suffix prx) =

3 outln:=true;

4+ gl Da (prx);

s make_round_u (21) (x.prx.4a+20+(x21c-x21b),

6 y.prx.4a.r-.75wd21b);
7 enddef;
8 hhle Y hhh

9 def gl Duu (suffix prx) =

10 outln:=true;

1 gl Da (prx);

12 make_round_uu (21) (x.prx.4a,y.prx.4a+.1wd21b);
13 enddef;

The other forms of these two vowels are lim-
ited to a very few consonants and therefore created
individually by slicing the paths at appropriate lo-
cations and adding necessary components from the
ml-shape-1lib.mp library.

A variety of macros, listed in Table 4, defined
in ml-vlsigns-1lib.mp, can be used to create con-
juncts with different vowels depending on the shape
of the consonant and the final form of the conjunct.

draft: July 8, 2023 00:31 715

Figure 20: Formation of conjuncts with rounded vowel
signs aligned with the bottom of a curve.

3.5.10 outline mode

The rounded forms of the vowel signs <3 and)
present the unusual challenge of excising the por-
tions not encompassed by their curved structures,
when juxtaposed on a horizontal stem or rounded
path. This typographical intricacy is meticulously
adhered to by all the fonts crafted and published by
the Rachana Institute of Typography. Figure 21
shows two illustrative images, demonstrating this
requisite nuance, ensuring harmonious integration
of the rounded vowel signs within the textual fabric.

Figure 21: Example images showcasing the removal of
uncovered parts from <3 and 3.

S/ ',‘}21:4‘{

20 30

20 30

Implementing this particular requirement in
METAPOST presents itself as a formidable undertak-
ing. Happily, however, the bundled plain_ex.mp
library accompanying the METATYPE1 package [4]
emerged as a veritable fairy godmother to nav-
igate this very challenge. Thus we will share
a snippet from the self-documented code base of
plain_ex.mp, perfectly suited for the readers seek-
ing enlightenment in this matter.

The problem can be stated as follows: two paths
are given (precisely: expressions of type path); as-
sume that the positively directed (anti-clockwise)
path accomplishes filling, and negatively directed
(clockwise) —erasing; the task is to find the
outline of the resulting (visible) figure. Such
a task is known as “removing overlaps” which
seems too narrow for such a complex opera-
tion. Actually, the basic macro of that part,
i.e., find_outlines, accomplishes set-theory
operations: sum, difference and product, depend-
ing on the turning number of the input paths.
The illustration below demonstrates the results

METAFONT/METAPOST and a complex Indic script: Malayalam

716 draft: July 8, 2023 00:31

TUGboat, Volume 44 (2023), No. 2

Table 4: List of macros, glyphs in which used, and the glyphs in Malayalam script.

Macro Glyph ID ML glyph
¢ thrkar hirl, kikirl, k3rl, ch2ril, thirl, thithirl, kithiri, a0, 89, O, aQ), @, OY), HQ), O, 0D,
- nirl, ninirl, nithirl, zirl, zich2rl), 0y, VAR
¢ krkar nlth3rl, ngkirl, p4rl, r3rl, thlp4rl, kirl, k3th3rl,
_ th3r1, th3th3ri &, 5, @, 05, &, B3, 3, 3
ch3r1l, ch3ch3rl, himlrl, kishrl, k2ri1, k3k4ril, k4ri,
¢ orkap 1371 miri, mipiri, nimirl, nith3ri, njchirl, njch2ri, £, 223, 0B, &Y, &, 4, °R), &), @, W,
-P piri, p3ri, shri, sith2ri, tirl, thimirl, thith2rl, B, 6, 6D, o, 61, oY, MY, S, OB,
thisirl, virl @0, Y, U
¢ srkar ch4rl, k3th3th4rl, nith4rl, nht3rl, nht4rl, sirl, t3ril, 0W), (3Y, MY, aMY), MY, aY, O, A9,
- t4rl, thisirl, th3th4rl, thé4ril, yiril o, AY, W, Y
ch2ul, ch3ul, ch3u2, ch3ch3u2, hiul, hilu2, kilkliu2, k3ul,
1 bot k3u2, kithiul, kithiu2, nithiul, nithiu2, njch2ul, pdui, °2 & & ®& 00,080,830, &
- p4u2, thip4u2, thiul, thiu2, thithiul, thithiu2, zlui, 20, 23, I, 13, D, &, 6, &, &,
0, B, O, OB, Y3, V2D
zlch2ul
c_chhuu kiu2, ch2u2, ngklu2, njch2u2, ziu2 &, o, B, 610@, B
c_ku rt ch3u2, ch3ch3u2, njch3u2, p4u2, thipdu2 &3, OR, R, @, O3
c_noo_rt hinilu2, k3nlu2, ninlu2, nlu2, ninlu2, nhu2 oy, V1Y,), O, 61

make_reph

chich2r3, ch2r3, ch3r3, ch4r3, hir3, kilklr3, kir3,
k1t1r3, kithir3, k3r3, k3th3th4r3, k4r3, 13pir3, miplr3,
mlr3, nimlr3, ninlr3, nlr3, nlthlr3, nl1th3r3, nlth4r3,
nhtir3, nht3r3, plr3, plsir3, p2r3, p3r3, p4r3, r3,
slklr3, silplr3, sir3, sislr3, si1tlr3, s1thlr3, sirhrhr3,
shklr3, shplr3, shr3, shtir3, tir3, t3r3, t4r3, thir3,
thls1r3, thithlr3, th3r3, th3th4r3, th4r3, vir3, z1r3,

al, 00, @, QW, @O, @9, &, @, @),
©, W, eel, 8], O, @,
@, QW, @B, MW, @J, o, @0, 6,

©, 0, 4y, @, @V, Y, Q> B> Y, Y,
@Y, o, S, W, W, @, @Y, @V, G,
@, W, Q, WY

z1z1r3

yielded by the macro find_outlines. There
are four cases since there are four combinations
of turning numbers for two “regular” paths. Each
case shows the initial situation (left) and the re-
sulting one (right). Filling is omitted, the outline
colour shows the turning number: blue — positive,
red — negative.

In the realm of typography, where every de-
tail matters, the plain_ex.mp library proves itself to
be an indispensable ally. Therefore, without a mo-
ment’s hesitation, the find_outlines macros have
been unabashedly borrowed in their entirety from
the plain_ex.mp library. They have been encap-
sulated within a function and employed to scruti-
nize the paths whenever the rounded vowel signs
align themselves alongside the horizontal stem or
the curved lower boundaries of the consonants. This
judicious integration ensures that the typographi-
cal integrity remains intact. Many of the compo-
nents that form part of the bottom curves and the
pstroke_stem macros have been redefined to in-
clude code to check the state of outln and apply

C.V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain

find_outlines macros appropriately depending on
the state of the boolean. A closer examination of the
METAPOST sources listed in Listings 24 through 26
will provide ample illustration of the above.

4 OpenType font generation

METAFONT gives us parametric font design and
METAPOST gives us vector format glyphs, SVG be-
ing the preferred output format. Contemporary font
building tools work with vector glyph outlines; and
we have a few free software choices, viz., FontForge,
fontmake, etc. We did look at METATYPE1L but it
is suitable for generating Type 1 fonts only; still,
macros such as find_outlines from METATYPE1
are made use of. Khaled Hosny has built an Open-
Type version of Knuth’s Punk font [2], utilizing the
Python scripting abilities of FontForge (we thank
Hosny for adding an open license to the build script
on our request). We had earlier developed font
building tools based on FontForge for Malayalam
font development and this was found to be a natu-
ral fit.

TUGboat, Volume 44 (2023), No. 2

We thus developed a font build tool in Python,
heavily utilizing FontForge Python libraries, driven
by a configuration file to (1) import the SVG outlines
into glyph slots; (2) assign Unicode codepoints to
them; (3) set left/right bearing, width and other
properties; (4) set font metadata and (5) generate
the final OpenType font formats such as TTF, OTF,
WOFF. Thus, the overall development workflow is:

METAPOST — SVG — FontForge + scripts
— OTF/TTF/WOFF

Each character is defined in its own METAPOST
file following the glyph naming convention, which is
then compiled to generate an SVG file in a directory
for the variant being generated (serif-regular,
serif-thin, etc.), bearing the same glyph name,
for e.g., m1_a.mp — ml_a.svg. In general, all the
glyph names in the METAPOST files, generated SVG
files, config files and OpenType layout rules follow
the convention explained in Section 3.4.1.

Once the SVG files are generated, the next
round of scripts, driven by a configuration file that
associates glyph names with its Unicode codepoint
and other properties, are run. The Malayalam script
has many conjuncts that do not have individual
codepoints themselves but are formed by a combi-
nation of basic Unicode codepoints. These glyphs
do not need a mapping entry for codepoint but may
need other properties.

The configuration file also holds the font meta-
data such as family name, PostScript name, variant
name, version, license, etc. Crucially, it should also
be possible to adjust the left/right side bearings of
all the glyphs. A default bearing value suffices for
most; but quite a few need either a smaller or neg-
ative value, for e.g. <1 (U+0D3F, glyph name i1) and
¢ (U+0D4D, glyph name xx) which extends outside
the left margin (negative side bearing). In addition,
setting the width for non-printable characters like
space is crucial, as this affects word spacing.

The common ini configuration file format is
used; and a self-explanatory sample file is provided
in Listing 27.

Listing 27: Configuration file for font building.
1 # Metadata
> [font]
3 family=Sayahna
4+ name=Sayahna-Regular
s version=0.9.1
s ascent=820
7 descent=180
s copyright=Copyright 2021-2023 Rachana
9 Institute of Typography
10 <info@rachana.org.in>

draft: July 8, 2023 00:31 7?17

12 # SVG, OpenType feature file, Unicode mapping
13 [source]

12 glyphdir=svgs-regular/

1s featurefile=features/sayahna-feature.fea

16 ucglyphmapfile=tools/rit-ml-uc-glyph.map

17

18 # Width of specific glyphs

19 [width]

20 space=300

21

22 # Default and overridden left, right bearings
23 [bearing]

24 default=30,40

25 11=-74,30 # negative left bearings
26 12=-80,30

27 r1=-112,30

28 Xx=-57,30

20 y2=-70,30

30 y2ul=-70,30
31 y2u2=-70,30
32 v2=-40,30

The font build tool performs a number of steps:

e Assemble all the SVG format glyphs found in
the target directory glyphdir.

e Remove overlap of outlines.

e Add additional glyphs/codepoints for space,
zero-width joiner/non-joiner (U+0020, U+200D,
U+200C), etc. These are used in certain charac-
ter combinations.

o Adjust side bearings/widths of glyphs as spec-
ified in the config file.

o Set metadata.

e Assign the Unicode code points for all base
characters, given in a simple mapping file
rit-ml-uc-glyph.map.

e Apply the OpenType shaping rules for Malay-
alam [8], given in a file sayahna-feature.fea.

e Set kerning values as specified.

e Finally, produce the font in any desired for-
mat(s), such as TTF, OTF or WOFF2.

All these steps are fully automated by a few
Makefile targets. Thus, if a font developer wishes
to make amendments to a glyph, she can make
the changes in the METAPOST file and then run
a make font (or equivalent) command that goes
through all the above steps and generates the re-
vised font a few moments later.

5 Data availability

All of the source code of the project, including
METAPOST libraries, glyph definitions, font build
tools, OpenType shaping rules, Unicode mapping
files and other configuration files, is available at
gitlab.com/rit-fonts/Sayahna-font under free
software licenses, such as the LPPL and the OFL.

METAFONT/METAPOST and a complex Indic script: Malayalam

https://gitlab.com/rit-fonts/Sayahna-font

718 draft: July 8, 2023 00:31 TUGhboat, Volume 44 (2023), No. 2

References

[1] J. Hobby, et al. MetaPost: A Users Manual.
tug.org/metapost

[2] K. Hosny. The Punk Nova font. 2010.
github.com/aliftype/punk-otf

.H. Hussain, R. itrajakumar, et al.

3] KH. H in, R. Chitrajak , 1
The Rachana font. 2023.
gitlab.com/rit-fonts/RIT-Rachana

[4] B. Jackowski, J.M. Nowacki, P. Strzelczyk.
Programming PostScript Type 1 fonts using
METATYPEL: Auditing, enhancing, creating.
TUGboat 24(3), 2003. Proceedings of
EuroTEX 2003.
tug.org/TUGboat/tb24-3/jackowski.pdf

[5] D.E. Knuth. The TgXbook, vol. A of
Computers & Typesetting. American
Mathematical Society and Addison Wesley,
Reading, Massachusetts, 1986.

[6] D.E. Knuth. The METAFONTbook, vol. C
of Computers & Typesetting. American
Mathematical Society and Addison-Wesley,
Reading, Massachusetts, 1986.

[7] Rachana Institute of Typography. Malayalam
glyphs, components and sectors. 2022.
rachana.org.in/docs/rit-comp-1list.pdf

[8] K.V. Rajeesh. Malayalam OpenType shaping
rules. 2020. gitlab.com/rit-fonts/
malayalam-shaping/

[9] Unicode. Malayalam: 0D00-0D7F.
unicode.org/versions/latest/ch12.pdf
unicode.org/charts/PDF/UODOO. pdf

[10] Wikipedia. Brahmic scripts. 2019.
wikipedia.org/wiki/Brahmic_scripts

[11] Wikipedia. Languages of India. 2023.
wikipedia.org/wiki/Languages_of_India

¢ C.V. Radhakrishnan
River Valley Technologies, River Valley
Campus, Malayinkeezh
Trivandrum 695571, India
cvr (at) river-valley (dot) org
http://river-valley.com
ORCID 0000-0001-7511-2910

o K. V. Rajeesh
Rachana Institute of Typography
rajeesh (at) rachana (dot) org (dot) in
https://rachana.org.in/

¢ K.H. Hussain
Rachana Institute of Typography, Jagathy,
Trivandrum 695014, Kerala, India
hussain (at) rachana (dot) org (dot) in
https://rachana.org.in

C.V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain

https://tug.org/metapost
https://github.com/aliftype/punk-otf
https://gitlab.com/rit-fonts/RIT-Rachana
https://tug.org/TUGboat/tb24-3/jackowski.pdf
https://rachana.org.in/docs/rit-comp-list.pdf
https://gitlab.com/rit-fonts/malayalam-shaping/
https://gitlab.com/rit-fonts/malayalam-shaping/
https://unicode.org/versions/latest/ch12.pdf
https://unicode.org/charts/PDF/U0D00.pdf
https://wikipedia.org/wiki/Brahmic_scripts
https://wikipedia.org/wiki/Languages_of_India

	Indic scripts and Malayalam
	Rationale
	Research and design process
	Initial attempts
	Parametrized approach
	Reusable components
	Reusable glyphs
	A word about glyph naming

	Additional features
	Redefined penlabels command
	Slicing the path–subpath
	Overshoot correction
	The pstroke_stem macro
	The pstroke_edge macro
	DocGrid and PrintGrid
	The vertical conjuncts
	The consonant doubling macro
	The vowel signs
	outline mode

	OpenType font generation
	Data availability

