TUGboat, Volume 0 (9999), No. 0

News from the HINT Project
Martin Ruckert

Abstract

The HINT file format[5] was presented at TEX Users
Group 2019[4] and at TEX Users Group 2020[6], the
first usable viewer for HINT files was presented. The
HiTEX engine became part of TEX Live in 2022.
This presentation will explore the changes that have
taken place since then and what to expect in the fu-
ture. The talk will focus on

e demonstrating the more recent versions of the
HINT file viewer and the improvements in glyph
rendering;

e demonstrating the use of links, labels, and out-
lines;

e explaining the capabilities of the HINT file for-
mat to convert pages to plain text for searching
or text-to-speech processing; and

e presenting hints on how to design TEX macros
for variable page sizes.

1 Displaying Glyphs

Initially, the HINT viewer did support only .pk fonts.
These font files contain METAFONT fonts at a fixed
resolution, usually at 600 dpi. Rendering such a font
on a computer screen with a typically much lower
resolution, was done in three steps:

1. Decoding the font file header and caching it for
later use.

2. Decoding a glyph into a black and white bitmap
and caching it for later use.

3. For each pixel on screen intersecting the glyph’s
bounding box

e map the pixel center to a source point in
the glyph’s bitmap and

e compute the pixel’s gray value by linear
interpolating the black and white values
of the four pixels surrounding the source
point in the bitmap.

Since high dpi values, often above 300 dpi, are com-
mon on small mobile devices, the results were more
than acceptable on these devices. On ordinary com-
puter screens typically with dpi values below 100,
the results were insufficient. Especially the ren-
dering of thin lines would distribute the available
amount of black ink over a two pixel wide area and
the line would fade away into a blurry light-gray.
Things changed with the use of the FreeType
font rendering library[7]. This library can render
PostScript Type 1 outline fonts at any resolution de-
sired. After replacing the .pk fonts by .pfb fonts,

draft: June 13, 2023 10:01 71

the viewer could render the glyphs as gray-value bit-
maps for the actual screen resolution[3]. To produce
good looking glyphs from an outline font, first the
positions of key points of the outline, for example
the points where the outline has a horizontal or ver-
tical tangent, will be rounded to the pixel grid. After
that, pixels that are only partly covered by the out-
line will be assigned gray values depending on the
amount of coverage. This will result in less blur and
consistent stroke widths. Improving the readability
especially for small font sizes.

The quality of the font rendering in the HINT
viewer was, however, still inferior to a rendering of
the same font by other programs. The reason was,
that the viewer would not map the glyph bitmap
one to one to the screen but instead would map
the bitmap to TEX’s exact glyph position —usually
not aligned to the pixel grid —using step 3 as given
above.

To improve the readability at small font sizes,
the current viewer will round the glyph position to
the pixel grid before rendering the glyph. And it
replaces the linear interpolation of pixel values by
using the gray value of the nearest source pixel. The
rounding will occur only if the font size is below a
given threshold. In principle the rounding can be
split into rounding horizontal and rounding vertical
position. While the first affects character distances,
the latter moves entire lines and is less distracting.

For a demonstration see [3].
b) vertical alignment

a) no alignment
" T
|] ||
||
| |

¢) horizontal alignment d) full alignment

Figure 1: A cmr 10pt V with different alignment to
the pixel grid.

Further improvements are possible, but not yet
implemented. One method is oversampling, where a

7?2 draft: June 13, 2023 10:01

glyph is rendered at, for example, four different hor-
izontal positions on the pixel grid. Choosing one of
these four renderings, the horizontal glyph position
must be rounded to 1/4 of the pixel size which is far
less distracting. Another method is sub-pixel ren-
dering. This method uses the fact that one white
pixel on screen actually consists of three colored
dots: red, green, and blue. So by considering them
a independent light sources, the horizontal resolu-
tion can be tripled. This improves the positioning
but leads to colored borders which some people find
distracting.

2 Links, Labels, and Outlines

People my age have learned navigating through thick
books already in primary school, if not in kindergar-
ten. These skills are more or less obsolete when it
comes to navigating through “thick” electronic doc-
uments. So good replacements are necessary. The
most obvious point to start exploring a book is its
table of content where for each section the corre-
sponding page number is listed. The HINT file for-
mat supports the concept of a home page: a position
in the document identified be the author that can be
reached in the viewer with a single key stroke, touch,
or click. The HINT document, however, has no fixed
page numbers. The pages grow and shrink with the
window size (and with the magnification factor). So
instead a table of content must use a click-able link
that brings you immediately to the section in ques-
tion. Similar links are used for the table of figures,
the index, and for all kinds of cross-references, be it
to individual parts of the text, a figure, a table, a
citation, or a displayed formula.

As an alternative to the table of content, the
HINT file format also supports “outlines”: A click-
able table of content, hierarchically organized and
displayed in a separate window. To allow optimal
use of the available space, sub levels of the hierarchy
can be hidden or expanded as needed|[3].

In the mean time, the IWTEX hyperref package
offers support for most of the above features.

In one respect HINT files are radically differ-
ent from books or pdf files: There are no predefined
pages. So following a link is not as simple as display-
ing a page with a given page number, but it requires
finding two good page breaks so that the target is
on the page between them. The algorithm used in
the current HINT viewer is still under development
and there are cases where the choice of page breaks
could be better.

TUGboat, Volume 0 (9999), No. 0

3 Designing Macros for Variable Pages

The traditional implementation of centering text is
the \centerline macro. It expands to \hbox to
\hsize { \hfill text \hfill } which will look nice
as long as the text is shorter than \hsize. If the text
is longer, it will produce an overfull box, stick out
into the margin, and even goes over the edge of the
window. A better solution uses TEX’s line breaking
procedure[3], which requires a vertical box.

\vbox{\rightskip Opt plus2em
\leftskip=\rightskip
\parfillskip=Opt\parindent Opt
\spaceskip.3333en

\xspaceskip.b5em\relax
This is Text Centered on the Page
}

Letting \rightskip and \leftskip stretch enough,
but not too much, so that the line breaking routine
will try to keep the lines filled but still has enough
room to produce decent lines. The inter-word-glue,
on the other hand, is prevented from stretching. (It
could be made to allow for some shrinking to gain
additional flexibility.)

The only new feature introduced in HiTEX since
2019 is the support for \vtop. This is important be-
cause writing for variable page sizes often requires
replacing a horizontal box by a vertical box to en-
able the breaking of paragraphs into lines. \vtop is
required if multiple vertical boxes need to be aligned
on the top baseline[3].

4 Searching

The user input into a search field is just a plain se-
quence of characters coded in UTF8 or some local
encoding like ISO 8859-1. The text, as represented
in a TEX document is far more complex and search-
ing requires finding a match between both represen-
tations. Even if the input consist only of ASCII
characters the HINT viewer must handle some spe-
cial cases.

If the word the user wants to find uses a liga-
ture, the match is made using the replacement char-
acters, that are retained in TEX’s ligature node. If
the word on the page is hyphenated and split across
two lines, the match must ignore extra characters in-
serted by the pre and post hyphenation lists as well
as the space that is usually separating the word at
the end of one line from the word that starts the new
line. Indeed the HINT backend provides a function,
that converts entire pages into sequences of char-
acters moving from top left to bottom right, elimi-
nating the effects of ligatures and hyphenations and
condensing various combinations of glue —inter-word

TUGboat, Volume 0 (9999), No. 0

glue, baseline skips, left skips, right skips, and inden-
tations to name just a few —to a single space. Kerns,
on the other hand, are completely ignored. An in-
felicity here is the definition of the KTEX macro,
which uses a glue instead of a kern between ‘A" and
“T”. So you have to search for “LA TEX”.

It is planed to use the page to string function
also to feed a Text-to-Speech converter.

Currently searching does not work well with
non ASCII characters, but it is planed to implement
UTFS8 as the default encoding used for HiTEX and
HINT files.

5 New Viewers for Linux, MacOS, and iOS

Together with the viewers for Windows and An-
droid, the applications for Linux, MacOS, and i0OS
complete the set of Viewers. The Windows appli-
cation, being the oldest and my work-horse for con-
ducting experiments, is the most complex. The ap-
plication for MacOS is the most recent and was pre-
sented at Jonathan Fines’s TEX hour[l, 3]. The
application for Linux is the most simple. It con-
sists beside the backend and the OpenGL renderer
(shared between all applications) only of a 600 line
main program|2]. This is a good starting point for
writing your own viewer.

References

[1] Jonatan Fine, Martin Ruckert, et al. Rethinking
TEX in STEM. https://texhour.github.io/
2022/09/29/rethink-tex-in-stem/, 9 2022.

[2] Martin Ruckert. Hint source repository. https:
//github.com/ruckertm/HINT.

[3] Martin Ruckert. The HiTEX video collection.
http://hint.userweb.mwn.de/hint/video/.

[4] Martin Ruckert. The design of the HINT file
format. TUGboat, 40(2):143-146, 2019.

[5] Martin Ruckert. HINT: The File Format. 2019.
ISBN 1-079-48159-1.

[6] Martin Ruckert and Gudrun Socher. The HINT
project: Status and open questions. TUGboat,
41(2):208-211, 2020.

[7] David Turner, Werner Lemberg, et al. Freetype.
http://www.freetype.org/.

¢ Martin Ruckert
Hochschule Miinchen
Lothstrasse 64
80336 Miinchen
Germany
martin.ruckert@hm.edu

draft: June 13, 2023 10:01

73

https://texhour.github.io/2022/09/29/rethink-tex-in-stem/
https://texhour.github.io/2022/09/29/rethink-tex-in-stem/
https://github.com/ruckertm/HINT
https://github.com/ruckertm/HINT
http://hint.userweb.mwn.de/hint/video/
http://www.freetype.org/

	Displaying Glyphs
	Links, Labels, and Outlines
	Designing Macros for Variable Pages
	Searching
	New Viewers for Linux, MacOS, and iOS

