
TUGboat, Volume 0 (9999), No. 0 draft: June 16, 2023 22:16 901

What every (LA)TEX newbie should know

Barbara Beeton

Abstract

LATEX has a reputation for producing excellent re-
sults, but at the cost of a steep learning curve. That’s
true, but by understanding a few basic principles,
and learning how to avoid some techniques that may
seem obvious but often lead one into the weeds, it’s
possible to avoid some of that pain.

This presenttion is based on years of looking at
good and bad document input and output, answering
questions from problem-plagued authors, and trying
to write documentation that can be understood on
first reading.

Another source of material is the collection of
questions and answers provided by the TEX segment
of StackExchange. Many newbie questions appear
over and over again. Good “duplicate” answers for
these have been identified, and links are collected
as “Often referenced questions”, found at https:

//tex.meta.stackexchange.com/q/2419.

Conventions

In order to avoid overfull lines, error and warning
messages shown here will be broken to fit the narrow
columns of this article style. Many error messages
output by LATEX will consist of several lines, the first
being the message, and the next showing the number
of the line on which the error is identified along with
the content of that line, up through the error text. A
following line, indented so that it, with the numbered
line, completes the line as it appears in the input.

Although this presentation will mostly deal with
details, please remember that the basic concept of
LATEX is to separate content from structure.

Another applicable concept, one that is often
misconstrued in the (LA)TEX community is that of
“template”. When that term is used here, it means
a source file that is an “outline” beginning with
\documentclass and containing a minimum of basic
structural commands into which text and additional
definitions can be inserted as appropriate.

Basic structure:
Commands, modes and scope

Instructions are communicated to (LA)TEX by means
of commands, or “control sequences”, which by de-
fault begin with a backslash (\). There are two vari-
eties: those which consist of the backslash followed
by one character (“control symbol”), and multi-letter
commands (“control words”) in which only letters
(upper- or lowercase) are permitted (no digits or spe-

cial characters). A control word will be terminated
by a space or any other non-letter. But a space after
a control symbol will appear as a space in the output.

A user can define new commands, or assign new
meanings to existing commands. It’s advisable to
use \newcommand when creating a new definition; this
checks to make sure that the command name hasn’t
been used before, and complains if it has. If it’s nec-
essary to redefine a command that already exists, the
recommended way is to use \renewcommand—but
be sure you know what you’re doing. For example, re-
defining \par is chancy, as LATEX uses this “under the
covers” for many different formatting adjustments,
and it’s very easy to mess things up. Single-letter
commands are also bad candidates for (re)definition
by users, as many of them are predefined as accents
or forms of letters not usual in English text; redefin-
ing \i, for example, can give a nasty surprise if there
is the name of a Turkish author in your bibliography.
But single-digit commands are not predefined in core
LATEX, so are available for ad hoc use.

TEX, and therefore LATEX, functions in several
distinct modes:

• horizontal— text,

• vertical—beginning of job and between para-
graphs,

• math—two varieties: in-text and display.

Starting to input ordinary text is one way to enter
horizontal mode. A blank line or explicit \par will
transition from horizontal to vertical mode. Some
operations are limited to a particular mode, or are
most effective and predictable within such a mode.
For example, it’s best to specify \vspace and most
floats while in vertical mode.

Along with modes, there is the concept of scope,
making it possible to localize definitions and opera-
tions.

Math mode is one instance of scope; certain
characters and operations are valid only within math,
and others are invalid there. Within text, math
usually begins and ends with $, and these must
be matched. Display math breaks the flow of text;
closing a display returns to text mode unless followed
by a blank line or \par. More about math later.

Another way of delimiting scope is to wrap it
in braces: {...}. Within this scope, the mean-
ing of a command may be changed for temporary
effect; the definition in effect before the opening
brace will be restored as soon as the closing brace
is digested. Instead of a brace pair, the commands
\begingroup. . . \endgroup have the same effect.

In LATEX, closed environments can be defined,
inside which the conditions may be quite different

What every (LA)TEX newbie should know

https://tex.meta.stackexchange.com/q/2419
https://tex.meta.stackexchange.com/q/2419

902 draft: June 16, 2023 22:16 TUGboat, Volume 0 (9999), No. 0

than in the surrounding material. Such environments
begin with \begin{⟨env-name⟩} and end \end{⟨env-
name⟩}. One example is the theorem environment,
inside which text is italic. If the environment name
at the \end doesn’t match the one used at \begin,
an error will be reported:

! LaTeX Error: \begin{...} on input line ...

ended by \end{...}.

How to end a paragraph: Not with \\

\\ does end a line. It is the designated command to
end lines in tables, poetry, multi-line math environ-
ments, and some other situations. But it does not
end a paragraph. A paragraph is ended by a blank
line or an explicit \par.

Trying to end a paragraph with \\ can result
is some confusing warnings and error messages. For
example, \\ on a line by itself will result in this
warning:

Underfull \hbox (badness 10000)

in paragraph at lines ...

Furthermore, if the \\ is preceded by a (typed) space,
in addition to the above warning, there may be an
extra, unwanted, blank line in the output.

If extra vertical space is wanted after a line bro-
ken with \\, it can be added by inserting an optional
dimension, wrapped in brackets: \\[⟨dimen⟩]. If
such a bracketed expression is really meant to be
typeset, it must be preceded by \relax.

Spaces. spurious and otherwise unwanted

A goal of high-quality typesetting is even spacing in
text. This is really possible only with ragged-right
setting, but even margins are usually preferred, so
TEX is designed to optimize spacing in that context.

By default, multiple consecutive spaces are inter-
preted as a single space. Also, a slightly wider space
is left at the end of a sentence, making it easy to tell
where the sentence ends. (In French typography, or
in the presence of \frenchspacing, all spaces are
treated the same.) When other unequal spacing is
observed in a line, something is fishy.

A sentence is presumed to end with a period or
similar punctuation. But abbreviations also end with
periods, and abbreviations occur frequently in aca-
demic documents, and the wider space isn’t wanted
there. To indicate an ordinary space, insert a back-
slash after the period, as in e.g.\ this or that,
or, if the line should not break after the abbreviation,
insert an unbreakable space, as in Dr.~Knuth.

A similar, but reverse, situation can occur when
an uppercase letter is followed by a period. This is
assumed to be the initial of a name; it usually is, and

an ordinary interword space is set. But sometimes
the uppercase letter is at the end of an acronym,
and that ends a sentence. In such a case, add \@

before the period, and it will restore the wider end-
of-sentence space.

But sometimes wider spaces appear in text where
they are not expected. This is often caused by spaces
inadvertently included in definitions. The end-of-line
(here called EOL) is interpreted as a space. (Differ-
ent operating systems define an EOL differently, but
that is taken care of by the TEX engine.) A neatly
laid-out definition may be the culprit:

\newcommand{\abc}{

\emph{abc def}

}

will output unwanted spaces abc def when used.
This can be avoided by placing a % sign at the ends
of the lines that cause the problem:

\newcommand{\ABC}{%

\emph{abc def}%

}

Then using that command abc def will not have the
unwanted spaces.

It isn’t necessary to use the % sign after a con-
trol word; remember that a space there just ends
the command and is then discarded. But there are
places where adding a % can cause trouble. After
defining any numeric value, TEX will keep looking for
anything else that can be interpreted as numeric, so
if a line ends with \xyz=123, no % should be added.
Or, if setting a dimension, say \parindent=2pc, TEX
will keep looking for plus or minus; a better “stop-
per” is an empty token, {}. (If “plus” or “minus”
is there and happens to be actual text, a confusing
error message will be produced, but that is rare, and
beyond the scope of this presentation.)

There are some other, more obscure situations
where unwanted spaces can show up. One is when
multiple index entries are inserted in the same place
in a file. Often, these are placed on separate lines,
and the EOL principle takes effect. Since the multiple
spaces aren’t consecutive, they remain in the output.
Add % signs judiciously, remembering to keep one
intentional space.

I learned just recently of a really obscure and
surprising space. It occurs, like this, in the middle of
a w or d, and is caused by the application of a small
frame around the colored element by the tcolorbox.
This must be suppressed explicily, like this:

\usepackage{tcolorbox}

\newcommand{\pink}[1]{{\fboxsep=0pt

\colorbox{red!20}{#1}}}

Barbara Beeton

TUGboat, Volume 0 (9999), No. 0 draft: June 16, 2023 22:16 903

The resulting word is colorized with no unwanted
spaces. While this is really beyond the scope of this
presentation, it’s something that one should be aware
of. If it happens, seek expert assistance.

Font changes

Font changes are a time-honored method of commu-
nicating shades of meaning or pointing out distinct
or particularly important concepts. Many such in-
stances are built into document classes and packages;
for example, theorems are set in an italic font, sec-
tion headings in bold, and some journals set figure
captions in sans serif to distinguish them from the
main text.

LATEX provides two distinct methods for mak-
ing font changes. Commands of one class take an
argument and limit the persistence of the change to
the content of that argument; these have the form
of \textbf{...} for bold, \textit{...} for italic,
etc. The other class sets the font style so that it will
not change until another explicit change is made, or
it is limited by the scope of an environment; some ex-
amples are {\itshape...}, {\bfseries...}, and
{\sffamily...}. These command names are best
looked up in a good user guide.

Several font-changing commands do different
things depending on the context. \emph{...} will
switch to italic if the current text is upright, or to
upright if the current text is italic. Within math,
\text{...} will set a text string in the same style
as the surrounding text; thus, within a theorem,
\text{...} will be set in italic. If this string should
always be upright, like function words, \textup{...}
should be used instead.

Basic TEX defined two-letter names for most font
styles. All of these are of the persistent type. They
should be avoided with LATEX, as some of the LATEX
forms provide improvements, such as automatic appli-
cation of the italic correction, which would otherwise
have to be input explicitly.

Math

Math is always a closed environment. If started, it
must be ended explicitly and unambiguously. Within
text, math begins and ends with $; there must there-
fore be an even number of $ signs in a document.
LATEX also provides \(...\) for in-text math, but
most users stick with the $. Many different display
environments are defined by the packages amsmath
and mathtools, and it is worthwhile to learn them by
reading the user guides. (mathtools loads amsmath,
so it’s not necessary to load amsmath separately.)

Within math, all input spaces are meaningless
to (LA)TEX; they can be entered in the source file as

useful to make it readable to a human. Blank lines,
however, are considered errors. This was a decision
in the design of TEX to make it easy to detect an
unterminated math element, because math should
not span a paragraph break. In both in-text math
and displays, the error message will be

! Missing $ inserted.

If a blank line occurs in a multi-line display environ-
ment from amsmath, the first error message will be

! Paragraph ended before ⟨env-name⟩
was complete.

<to be read again>

This will be followed by many more error messages,
all caused by the first. These will be confusing and
misleading. Always fix the problem identified by the
first error and ignore the rest; they will disappear
once the first error is fixed, here, the blank line is
removed.

If the appearance of a blank line is wanted for
readaility, begin it with a % sign. It’s also bad form
to leave a blank line before display math; a display
is usually a continuation of the preceding paragraph,
and avoiding a paragraph break also avoids a possible
page break before the display.

As in other environments, the \end name must
exactly match the name specified at \begin. A
“shorthand” for a single-line, unnumbered display is
\[...\]. The environments designed for multi-line
displays should not be used for a single-line display.

Although LATEX provided eqnarray as a display
environment, don’t use it. If the display is num-
bered and the equation is long, the equation can be
overprinted by the equation number.

Tables, figures, and other floats

The number of floats, their positions on a page, and
the spacing around and between them is defined by
the document class. So if something doesn’t work
as you expect (hope for?), any potential helper will
insist on learning what document class is being used.

Input for a float must appear in the source file
while there is still enough space on the output page
to fit it in. In particular, on two-column pages, a
\begin{figure*} or \begin{table*} must occur in
the source before anything else is set on the page.
The basic float handling does not allow full-width
floats to be placed anywhere but at the top of a page;
some packages extend this capability, but those won’t
be discussed here.

Here are the defaults for the basic article class.

• Total number of floats allowed on a page with
text: 3.

What every (LA)TEX newbie should know

904 draft: June 16, 2023 22:16 TUGboat, Volume 0 (9999), No. 0

• Number of floats allowed at top of page: 2.
Percentage of page allowed for top-of-page floats:
70%/

• Number of floats allowed at bottom of page: 1.
Percentage of page allowed for bottom-of-page
floats: 30%/

• Minimum height of page required for text: 20%.
• Minimum height of float requiring a page by
itself: 50%.

The reference height is \textheight. That is, the
height of page headers and footers is excluded.

If an insertion is small, must be placed pre-
cisely and fits in that location, don’t use a float.
\includegraphics or one of several available table
structures should be used directly, often wrapped
in \begin{center} ... \end{center}/ (Within a
float, use \centering instead.)

The wrapfig package supports cut-in inserts at
the sides of a page or column. Refer to the documen-
tation for details.

By tradition, captions are applied at the top
of tables and the bottom of figures. If an insertion
is not a float, the usual \caption can’t be used.
Instead, \usepackage{caption} and the command
\captionof.

The document class and preamble

When embarking on a new document, the first thing
is to choose the document class. If the goal is publi-
cation in a particular journal, check the publisher’s
instructions to see what is required. Many, but not
all, popular journal classes are available from CTAN.
If the project is a thesis or dissertation, find out the
special requirements, and if your institution provides
a tailored class, obtain a copy. Try to determine
whether it is actively maintained, and if there is
local support. Read the documentation. It is the
responsibility of the document class to define the
essential structure of the intended document. If the
document you are preparing differs in essential ways
from what is supported by the document class, the
time to get help is now.

There will be features not natively supported by
the document class; for example, the choice of how
to prepare a bibliography may be left to the author.
This is why packages have been created.

Most packages are loaded in the preamble; the
one exception is \RequirePackage, which may be
specified before \documentclass, and is the place
where options should be loaded. Some authors cre-
ate a preamble that is suitable for one document,
then use the same preamble for their next document,
adding more packages as they go. And some unwit-
ting newbies “adopt” such second-hand “templates”

without understanding how they were created. Don’t
do it!

Start with a suitable document class and add
features (packages, options, and definitions) as they
become necessary. Organize the loading of packages
into logical groups (all fonts together, for example),
and be careful not to load a package more than once;
if options are needed, any loaded with a non-first
\usepackage will be ignored. Some packages auto-
matically load other packages; for example, mathtools
loads amsmath and amssymb loads amsfonts. And,
very important, pay attention to the order of package
loading: hyperref must be loaded (almost) last; the
few packages that must come after hyperref are all
well documented. Read the documentation.

Processing the job

Once the file is created, it’s time to produce output.
There are several engines to choose from: pdfLATEX,
X ELATEX, and lusLATEX. These can be run interac-
tively from the command line, or initiated from an
editor. Assuming there are no errors, how many
times the file must be processed depends on what
features it contains.

(LA)TEX is “one-way”. If any cross-references or
\cites are present, this information is written out
to an .aux file; information for a table of contents
is written to a toc file, and other tables are also
possible. The bibliography must be processed by
a separate program (and its log checked for errors)
with the reformatted bib data written ont to yet
another file. Then LATEX must be run (at least) twice
more—once to read in the .aux and other secondary
files and include the bibliography and resolved cross-
references, and the second time to resolve the correct
page numbers (which will change when the TOC and
similar bits are added at the beginning).

All this assumes that there are no errors. Errors
will be recorded in the log file. Learn where the log
file is located, and make a habit of referring to it.
Warnings, such as those for missing characters, will
also be recorded there, but not shown online:

Missing character: There is no ⟨char⟩
in font ⟨font⟩!
In the log, errors may appear with closely grouped

line numbers. If so, and the first is one that inter-
rupts the orderly processing of a scoped environment,
following errors may be spurious. So fix the first er-
ror and try processing before trying to understand
the others; often, they may just go away.

Good luck. With practice comes understanding.

Barbara Beeton

