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Abstract

MiniLateX is a subset of LaTeX that can be rendered on the fly to HTML. With it, one can
build web apps with true HTML display that can be viewed on any device from smart phone
to tablet to desktop. Typesetting occurs in real time, and error messages are displayed in-line
in the rendered text. MiniLaTeX documents can be exported to standard LaTeX. We describe
the main features of the MiniLaTeX application minilatex.lamdera.app, then describe some
the technical work required to implement an on-the-fly LaTeX-to-Html compiler. This is
done in Elm, a strongly typed language of pure functions that is designed for building web
apps.

Website. minilatex.io.
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minilatex.io

1 Introduction

MiniLaTeX refers both t MiniLaTeX as a subset of LaTeX, and also to a system for
managing documents written in MiniLaTeX:

1.1 Subset of LaTeX

A subset which is well-defined, has a grammar, and is small enough for one human to write
an efficient parser by hand, yet large enough to be useful (lecture notes, problem sets, small
articles, just learning LaTeX).

MiniLaTeX apps

• Example of class notes: knode.io/424

• Read-only app for distributing content: reader.minilatex.app

• Simple no-signin app for learning LaTeX: demo.minilatex.app
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minilatex.lamdera.app

1.2 Newly released app

Minilatex.lamdera.app was released for alpha testing on July 18, 2020.

• Guest access. Sign in as guest with password minilatex to explore documents that
have been made public by their authors. Both the source and rendered text are
available, so you can see how MiniLaTeX documents are written.

• User on any device. Create and edit documents on a dektoop computer or tablet.
Works in read-only mode on smart phones.

• Accounts. Sign up and establish a free account if you want to create MiniLaTeX
documents, or just experiment.

1.3 Anywhere, any device

As a web app, https://minilatex.lamdera.app is available anywhere there is an internet
connection. Just sign in and start working.

On your computer On your phone On a smart phone, the app displays public

documents only. They can be read, but not created or edited. There are two modes. In
the first, a list of documents is presented If you click on a title in the list, the document is
displayed. To display the document list again, click on the List button in the header. Use
the search bar in the header to display fewer documents. For example, if you put minilatex
or just mini, only documents with MiniLaTeX in the title are shown.
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1.4 Real-time typesetting

Changes to the rendered text of your documents are displayed as you type, as are any
error messages. The. error messages are displayed in the rendered text. While editing,
only parts of the text which have changed are recompiled. The advantage of this strategy
is that recompilation is very fast. The disadvantage is that things like tables of contents,
cross-references, etc., can get out of sync. To put things back in sync, click on the Full
Render button ion the footer.

NOTE. MiniLaTeX is paragraph-centric, meaning that the smallest unit of recompilation
is the logical paragraph. A logical paragraph is either an ordinary paragraph or an outer
begin-end block. For this reason, it is good practice to use plenty of white space in Mini-
LaTeX documents: a blank line before and after defines a logical paragraph. The source
text of your document will be easier to read, and the compiler will better do its work.
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1.5 Export to Standard LaTeX

Use the Export button in the footer. The exported document will be saved in the Down-
loads folder unless you tell your computer otherwise. If your document has images, a button
Images will appear to the right of Export. Click on that button to bring up a window that
lists the images in your document. Right-click on these images to download them. They
should be stored in folder image in the same place as your exported document. Below are
two links exported documents:

• MiniLaTeX: Examples

• Anharmonic Oscillator

• This document

2 Features

No setup. MiniLaTeX documents require no setup: no preamble, no \usepackage, no
\begin {document} etc. Just start typing. On the otherand, all of the relevant boilerplate
is present in exported documents so that they can be processed in the way that you woiuld
normally process a LaTeX document.

Live typesetting, error messages. Source text is typeset and rendered on the fly, as
demonstrated in this VIDEO. If the user makes syntax errors (or if an expression cannot be
parsed because it is incomplete), a color-coded error message is displayed in the rendered
text. We are working to further improve error messages and error handling.

Documents are saved at intervals of roughly 400 milliseconds while editing.

Images. You can place an image in a MiniLaTeX document if it it exists somewhere
on the internet and you have its ”limage ocation” or URL. You can usuallly find the
location/URL of an image that you see in a browser by right-clcking on it. The URL for
the image displayed below is

https://psurl.s3.amazonaws.com/images/jc/beats-eca1.png

Place an image like this:

\image{URL}{Caption}{Format}

The caption and format are optional. The format has two parts, both of which are optional:
the width and the placement. The width is a fragment like width: 350. Placement can be
one of the following:
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Figure 1. Two-frequency beats
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SVG Images SVG images can be placed like this:

\begin{svg}

CODE FOR SVG IMAGE

\end{svg}

In the example below, the SVG code was produced by a graphics program. You can also
produce SVG code by hand, or by writing a program.

Cannot yet render Svg images; convert to some other format, e.g., png When a MiniLaTeX
document is exported, a placeholder is put in the place of the SVG image. The TeX
processors I am a aware of require png, pdf, etc., so you will have to ocnvert the SVG
image to one of those formats.

Collaboration. To add a collaborator to a document, click on the Collaborators button
in the footer. Enter collaborators in the resulting popup window one collaborator per line.
Collaborators may edit a document synchronoulsy or asynchronously. In the former case,
when both authors are online, changes by one author are reflected a fraction of a second
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later in the other others app. To facilitate collaboration, there is a chat window (lower
right, in footer). The chat feature needs a good deal more work.

3 The MiniLaTeX compiler

LaTeX documents consist of snippets of math-mode LaTeX (the equations and formulas)
and text-mode LaTeX (everything else, e.g. section headings, lists, and environments of
various knds). The strategy that makes writing a compiler that transforms MiniLaTeX
to HTML feasible is divide and conquer. Parse the the document, identifying the math
elements as such, but not transforming them. Then render the resulting abstract syntax
tree (AST) to Html, again passing on the math elements. Finally, have MathJax render
the math elements. One can also use KaTeX.

An abstract syntax tree is a tree of things that expresses a grammatical analysis of the
source text. It is akin to what one gets when one diagrams a sentence in English class,
something the present author did in Marge Lee’s sophomore class in high school. More on
this later.

The MiniLaTeX compiler consists of two parts, a parser and a renderer. The first is a
function

parse : Source text→ AST

The second is a function

render : AST→ HTML

Here we are simplifying somewhat because of various optimizations that are needed, but
this is the general idea. The compiler is the composite of these two functions:

compile = render ◦ parse

In designing a parser, one generally starts with a grammar. However, there is no pub-
lished grammar for LaTeX or for TeX, so one has to improvise. The approach taken with
MiniLaTeX was first to imagine the type of the AST, then to write a parser using parser
combinators. The parser then consists of a bunch of functions which call one another.
They are in rough correspondence with the productions of a grammar, and so one can
write down a grammar after the fact. Ideally one should have written the grammar, then
the parser, but real life is often messy.
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3.1 AST

Every value in a statically typed language like Haskell, ML, or Elm, has a type. Below is
the type of AST for the MiniLaTeX compiler.

1 type LatexExpr

2 = LXString String

3 | Comment String

4 | Item Int LatexExpression

5 | InlineMath String

6 | DisplayMath String

7 | SMacro String (List LatexExpr) (List LatexExpr) LatexExpr

8 | Macro String (List LatexExpr) (List LatexExpr)

9 | Environment String (List LatexExpr) LatexExpr

10 | LatexList (List LatexExpr)

11 | NewCommand String Int LatexExpr

12 | LXError (List (DeadEnd Context Problem))

Below is a series of examples that give an idea of how the parser works. The examples are
generated using a command-line tool that applies the parser to a string of text supplied by
the user.

> Pythagoras

LXString "Pythagoras"

> \strong{Pythagoras}

Macro "strong" [] [LatexList [LXString "Pythagoras"]]

> \strong{Pythagoras} says that $a^2 + b^2 = c^2$

Macro "strong" [] [LatexList [LXString "Pythagoras"]]

, LXString "says that "

, InlineMath "a^2 + b^2 = c^2"

Below is the top-level parser function. Note the close correspondence with the AST type.
The lazy function is needed for recursion. The oneOf function is a combinator that takes
a list of parrsers and produces a new parser from them. The resulting parser operates as
follows: try the first parser. If it succeeds, return the result. If not, try the next parser.
And so on. If the list is exhausted without success, return an error.

1 latexExpression : LXParser LatexExpr
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2 latexExpression =

3 oneOf

4 [ texComment

5 , displayMathDollar

6 , displayMathBrackets

7 , inlineMath

8 , newcommand

9 , macro

10 , smacro

11 , words

12 , lazy (\_ -> environment)

13 ]

Below is the parser for macros. It uses a parser pipeline in the following way. First, find the
name of the macro, then the list of optional arguments, then the list of actual arguments,
then eat any whitespace (spaces, newlines). Second, feed the values found in the order
found to the constructor Macro for the LatexExpr type. In this example, whitespace is
a parser for white space, which can come in different flavors depending on context e.g.,
spaces only or spaces and newlines.

1 macro : LXParser () -> LXParser LatexExpr

2 macro =

3 succeed Macro

4 |= macroName

5 |= itemList optionalArg

6 |= itemList arg

7 |. whitespace

One can continue down the rabbit hole, explaining the parsers and macroName, optionalArg,
arg and the combinators itemList, etc, but we stop here. What is important to understand
is that there are really only three things in something like the MiniLaTeX parser: primitive
parsers, combinators that choose among alternatives, and combinators that sequence other
parsers.

3.2 Rendering

The top-level renderiing function is much like the top-level parsing functions. It analyzes
the type of a LatexExpr and dispatches the appropriater renderer, which may in turn call
other rendering functions, including the top level one. And so on, down the rabbit hole of
function calls we go.
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1 render : String -> LatexState -> LatexExpr -> Html msg

2 render source latexState latexExpr =

3 case latexExpression of

4 Comment str ->

5 Html.p [] [ Html.text "" ]

6

7 Macro name optArgs args ->

8 renderMacro source latexState name optArgs args

9

10 Item level latexExpr ->

11 renderItem source latexState level latexExpr

12

13 InlineMath str ->

14 Html.span [] [

15 inlineMathText

16 latexState

17 (evalStr latexState.macroDict str) ]

18

19 DisplayMath str ->

20 Html.span [] [

21 displaMathText

22 latexState

23 (evalStr latexState.macroDict str) ]

24

25 Environment name args body ->

26 renderEnvironment source latexState name args body

27

28 LatexList latexList ->

29 renderLatexList source latexState latexList

3.3 Code

Code for the MiniLaTeX compiler is at github.com/jxxcarlson/meenylatex. The strange
name is to reserve the name github.com/jxxcarlson/minylatex for a future stable version
with a polished API. The repository just mentioned also contains simple demos t show how
to use the compiler.

The code for the minilatex.lamdera.app is at github.com/jxxcarlson/lamdera-minilatex-
app.

All code is open source. The web application minilatex.lamdera.app is offered as a service.
It is free for now, and the intent is to (a) keep it free for students, (b) eventually charge
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a small annual fee for other users. Bills have to be paid and code has to be maintained!
Note that guests may browse the site without establishing an account.

This document was written in MiniLaTeX and is avaiable at https://minilatex.lamdera.app
with title TUG Talk: MiniLaTeX

4 Plans

I am very interested in feedback from the community regarding features, bugs, etc. Of
special interest is: what should the subset of LaTeX be. Below are some ideas.

1. An image uploader. With this in place, you can post images on a server and use the
resulting URL to place images in your MiniLaTeX documents.

2. Address documents by URL.

3. Better error messages

4. An IDE/editor with sync of source and rendered text, syntax highlighting, etc.

5. There will eventually be a small annual fee (unless you are a student) so that we can
sustain the project over the long term. If you decide against the annual fee, your
content will remain on the site. Your account can be re-activated at any time.
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