
preliminary draft, June 15, 2018 17:57 preliminary draft, June 15, 2018 17:57

TUGboat, Volume 0 (9999), No. 0 preliminary draft, June 15, 2018 17:57 ? 1

FreeTypeMFModule: A module for using
METAFONT directly inside the FreeType
rasterizer

Jaeyoung Choi, Ammar Ul Hassan and
Geunho Jeong

Abstract

METAFONT is a font description language which
generates bitmap fonts for the use by TEX system,
printer drivers, and related programs. One advan-
tage of METAFONT over outline font is its capability
to produce different font styles by changing various
parameter values defined in its font specification file.
Other major advantage of using METAFONT is that
it produces various font styles like bold, italic, and
bold-italic from one source file unlike outline fonts,
which require development of a separate font file for
each style in one font family. These advantages can
be applied to design CJK (Chinese-Japanese-Korean)
fonts which require significant time and cost because
of the large number of characters used in Hangeul
(Korean character) and Hanja (Chinese character).
However, to use METAFONT in current font systems,
users need to convert it into its corresponding out-
line font. Furthermore, font rendering engines like
FreeType doesn’t support METAFONT.

In this paper, FreeType MF Module for FreeType
rasterizer is proposed. The proposed module enables
a direct usage of METAFONT just like any other
outline and bitmap font support in FreeType raster-
izer. Users of METAFONT don’t need to pre-convert
METAFONT into its corresponding outline font as
FreeType MF Module automatically performs this.
Furthermore, FreeType MF Module allows the user
to easily generate various font styles from one META-
FONT source file by changing parameter values.

1 Introduction

As of today’s, information society, the traditional pen
and paper usage for communication between people
are swiftly replaced by computers and mobile devices.
Text has become an effective source for gathering
information and means of communication between
people. Although people use smart devices commonly
these days with effective resources like media and
sound, text plays the key role of interaction between
user and device. Text is composed of characters, and
these characters are physically build from specific
font files in digital environment system.

Fonts are the graphical representation of text in
a specific style and size. These fonts are mainly cate-
gorized in two types; outline fonts and bitmap fonts.
Outline fonts are the most popular fonts for produc-

ing high-quality output used in digital environment
system. However, for creating a new font style for
outline font, font designers have to design a new font
with extensive cost and time. This recreation of font
files for each variant of font can be very hectic for
font designers especially in case of CJK fonts which
require designing of thousands individual letters one
by one. Since CJK fonts have a lot more letters and
complex shapes compared to Roman fonts, it often
takes more than a year to design CJK fonts.

To overcome this disadvantage of outline fonts
mentioned above a programmable font, METAFONT

was developed. METAFONT is a programming lan-
guage introduced by D. E. Knuth [1] that generates
TeX-oriented bitmap fonts. It allows users to gen-
erate various font styles easily. METAFONT file is
different from outline font file. It consists of func-
tions for drawing characters and has parameters for
different font styles. By changing the parameter val-
ues defined in its font specification file, various font
styles can be easily generated. Therefore, a variety of
font variants can be generated from one METAFONT

source file.
However, users are unable to use METAFONT on

their PCs because current font engines like FreeType
[2] doesn’t provide any direct support of METAFONT.
Unlike standard bitmap and outline fonts, META-
FONT is expressed as a source code that is compiled
to generate fonts. To use METAFONT in a general
font engine like FreeType rasterizer users have to
convert METAFONT into its corresponding outline
font. As it was developed in 1980s, the PC hardware
was not fast enough to provide a real-time conversion
of METAFONT into its corresponding outline font.

Current PC hardware, however, is fast enough
to provide a real-time conversion of METAFONT into
its corresponding outline font. If METAFONT is used
directly in font engines like FreeType, then users can
easily generate variety of font styles. METAFONT

can also be used to produce various font styles like
bold, italic, and bold-italic with one source file unlike
outline fonts, which require development of a sepa-
rate font file for each style in a font family. These
advantages can also be applied to design CJK fonts
to produce various high-quality font styles because,
compared to alphabetic scripts, CJK characters are
both complicated in shape and expressed by combi-
nations of radicals [3].

In this paper, a FreeType MF Module for Free-
Type rasterizer is proposed. The proposed module
enables a direct use of METAFONT in FreeType ras-
terizer just like any other default outline and bitmap
font modules in it. With FreeType MF Module, users



preliminary draft, June 15, 2018 17:57 preliminary draft, June 15, 2018 17:57

? 2 preliminary draft, June 15, 2018 17:57 TUGboat, Volume 0 (9999), No. 0

don’t need to pre-convert METAFONT into its corre-
sponding outline font before using it with FreeType
rasterizer as FreeType MF Module automatically per-
forms this. It allows users to easily generate variants
of font styles by applying different parameter val-
ues. This module is directly installed in FreeType
rasterizer just like its default font modules so, there
is no dependability and performance issues. We have
tested our proposed module by generating different
font styles with METAFONT and compared its perfor-
mance with default modules of FreeType and other
researches.

This paper is organized as follows. In Sec-
tion 2, the related research regarding font mod-
ules and libraries are explained. The architecture
of FreeType MF Module is explained in Section 3.
The authors have tested the FreeType MF Module by
demonstrating how FreeType can provide support for
METAFONT directly in Section 4. FreeType MF Mo-
dule’s performance is also compared with FreeType
default modules and other researches in this section.
Section 5 gives concluding remarks.

2 Related research and their problems

MFCONFIG [4] is a plug-in module for Fontconfig [5].
It enables the use of METAFONT on Linux font sys-
tem. Figure 1 shows the architecture of MFCONFIG
module linked with Fontconfig.

Figure 1: Basic architecture of MFCONFIG module

Although MFCONFIG supports METAFONT in
Linux font system, it has performance and depend-
ability problems. Since MFCONFIG is plugged into
the high-level of font system i.e. Fontconfig, and
not directly plugged inside FreeType, it makes its
performance very slow compared to the font-specific
driver modules supported by FreeType. Whenever
the client application sends a METAFONT file request,
Fontconfig communicates with MFCONFIG, per-
forms operations, and then sends input to FreeType
for rendering text. This whole process becomes slow

because of the high-level operations before FreeType
receives its input.

Other than the performance problem, MFCON-
FIG also has a dependability problem. As it is depen-
dent on Fontconfig library, this means that if there is
a font environment where there is no Fontconfig, then
this module cannot be used. Fontconfig is mainly
used in Linux font system for locating fonts and no
other operating systems, so MFCONFIG cannot be
supported in them.

VFlib [6], a virtual font library, is a font ras-
terizer developed for supporting multilingual fonts.
VFlib can process fonts which are represented in
different font formats and outputs glyphs as bitmap
images from various font files. VFlib supports many
font formats like TrueType, Type 1, GF, and PK
fonts [7] etc. It provides a unified API for accessing
different font formats. A new module can be added
in this font library for adding support for META-
FONT but this library has its own drawbacks; as
it supports many different font formats and with a
database support it can be very heavy font library for
embedded systems. It is also dependent on additional
font libraries like FreeType engine for TrueType font
support, T1lib [8] for Type 1 font support so it has
its dependency problems as well. Therefore, VFlib
is not suitable to add support for METAFONT.

FreeType is a font rasterizer to render fonts and
it can produce high quality output for mainly two
kinds of font formats, vector and some bitmap font
formats. FreeType mainly supports font formats such
as TrueType, Type1, Windows, and OpenType fonts
using same API irrespective of their font formats.
Although FreeType supports many different font
formats but it doesn’t provide any support for META-
FONT directly. If there is a module for FreeType
that directly supports METAFONT then users can
take the advantages of METAFONT by generating
variants of font styles by just changing parameter
values. MFCONFIG module problems can also be
resolved using this module. FreeType can also be
used for supporting TEX oriented fonts and not only
outline or bitmap fonts.

The proposed FreeType MF Module in this pa-
per uses the process for printing METAFONT from
MFCONFIG module. FreeType MF Module intends
to solve the two problems of MFCONFIG module.
METAFONT can be used with any system having
FreeType using the proposed module. As it is imple-
mented just like any other default FreeType module,
it can be easily installed or uninstalled.



preliminary draft, June 15, 2018 17:57 preliminary draft, June 15, 2018 17:57

TUGboat, Volume 0 (9999), No. 0 preliminary draft, June 15, 2018 17:57 ? 3

3 Implementation of FreeTypeMFModule
in FreeType rasterizer

3.1 FreeTypeMFModule as an internal
module of FreeType

FreeType can support various font formats. Process-
ing a font file corresponding to its format is done
by an internal module in FreeType. This internal
module is called a font driver. FreeType contains a
configuration list of all the driver modules installed in
a specific order. When FreeType receives a request of
font file from an application, it passes this request to
the driver module mentioned on the top of the list for
processing. This module performs some internal op-
erations to check if this font format can be processed
or not. If this driver module supports this request, it
performs all other operations to process this font file
request. Otherwise this font file request is sent to
the second driver module mentioned in the list. This
process continues until a font driver is selected for
processing the font file request. If no font driver can
process the request, an error message is sent to the
client application. Similarly, FreeType MF Module is
directly installed inside FreeType just like its other
internal modules. When the client application sends
a request of METAFONT file, FreeType MF Module
receives this request and processes it. Figure 2 shows
how FreeType will select a driver module for process-
ing a METAFONT file request.

Figure 2: Process of selecting a module in FreeType

FreeType MF Module consists of three sub-mod-
ules: Linker module, Administrator module, and
Transformation module.

3.2 Linker Module

Linker module is the starting point of FreeType MF-
Module. It is mainly responsible for linking Free-

Type internal modules with FreeType MF Module.
It is divided into two parts: inner meta interface and
outer meta interface. Inner meta interface receives
font file request from internal modules and delivers

it to Administrator module for processing. After
processing by Administrator module, outer meta
interface delivers the response to internal modules
for further operations. The process of Linker module
is shown in Figure 3.

Figure 3: Linker module

3.3 Administrator Module

The core functionality of FreeType MF Module is
performed in Administrator module. This module
is divided into two layers; Search layer and Manage-
ment layer.

Search layer is responsible for finding all the
installed METAFONT fonts in a table. This table
contains a list of all the METAFONT fonts installed
and for fetching information related to them. Search
layer is implemented in Meta scanner and Meta table.

Management layer mainly performs following
tasks. (1) Checking whether the requested font file is
METAFONT or not, (2) Checking the cache if the cor-
responding outline font for the METAFONT request is
already stored. If yes, it directly sends the response
from the cache. This functionality is implemented to
achieve better performance and re-usability. (3) If
the outline font is not prepared in the cache this re-
quest is sent to Transformation layer. (4) The outline
font prepared by Transformation layer is stored in
the cache (5) The response is sent back to FreeType
internal modules by management layer. Management
layer is implemented in Meta analyzer, Meta request,
and Meta cache. Figure 4 shows the Administrator
module and its sub layers.



preliminary draft, June 15, 2018 17:57 preliminary draft, June 15, 2018 17:57

? 4 preliminary draft, June 15, 2018 17:57 TUGboat, Volume 0 (9999), No. 0

Figure 4: Administrator module

Figure 5: Transformation module

3.4 Transformation Module

Transformation module is mainly responsible for con-
verting the METAFONT file into its corresponding
outline font file. If the outline font file for a requested
METAFONT file doesn’t exist in the table then Ad-
ministrator module sends the request to Transforma-
tion module. This module processes the request and
returns the corresponding outline font file to Admin-
istrator module. Figure 5 shows how Transformation
module converts METAFONT files into corresponding
outline files.

3.5 METAFONT support in FreeType using
FreeTypeMFModule

As shown in the Figure 6, FreeType MF Module is
an internal module of FreeType which is responsible

for processing METAFONT file request. First an ap-
plication sends a font file to FreeType (step 1). If
all other driver modules fail to process this font file
request, this request is sent to FreeType MF Module
through Linker module. Inner meta interface deliv-
ers this request to Administrator module (step 2).
Meta request in Administrator module receives all
information of this font file request and sends it Meta
Analyzer to check if this font file is METAFONT or
not (step 3). If this font file is not METAFONT this
request is sent back to FreeType (step 3a). If this
request is METAFONT file, Meta analyzer checks if
this METAFONT file is installed or not by scanning
Meta table. If this METAFONT information is not
found in Meta table an error is sent back to FreeType
internal modules(step 3b). There can be a scenario in
which METAFONT is installed but its corresponding
outline font is not stored in the cache. In this case,
Meta cache is scanned to check if the corresponding
outline file is stored in it (step 4). If it is already
stored in the Meta cache with the same style param-
eters as requested, it is directly sent to FreeType
(step 4a). If it is not stored in the Meta cache, the
request is sent to Transformation layer (step 4b).
Transformation layer converts the METAFONT file
into its corresponding outline font by applying re-
quested style parameters (step 5). Outline font is
returned from Transformation module to adminis-
trator module where the Meta cache is updated for
future re-usability (step 6). Outer Meta interface
returns this outline font to core FreeType module for
further processing (step 7). Lastly, FreeType renders
this outline font that was made from the requested
METAFONT with the styled parameter values.

The FreeType MF Module is perfectly compati-
ble with the standard FreeType rasterizer. FreeType-
MF Module provides direct support of METAFONT

in FreeType rasterizer just like its default Type1
driver module, TrueType driver module etc. The
module manages METAFONT and its conversion to
corresponding outline font. Client applications can
request for any style parameters of METAFONT , Fr-
eeType MF Module processes them and the result
can be easily displayed on the screen. As it is di-
rectly implemented inside FreeType rasterizer, it has
no dependability problems as discussed in Section
2. FreeType MF Module can easily generate mul-
tiple font families like bold, italic, and bold-italic
depending on the style parameter values passed to
it.

4 Experiment and performance evaluation
of FreeTypeMFModule

For the experiment, that FreeType MF Module can



preliminary draft, June 15, 2018 17:57 preliminary draft, June 15, 2018 17:57

TUGboat, Volume 0 (9999), No. 0 preliminary draft, June 15, 2018 17:57 ? 5

Figure 6: FreeType MF Module

Table 1: FreeSerif font family

Table 2: Various font styles with Computer Modern

be used to generate different font styles from META-
FONT the authors have used a font viewer applica-
tion in Linux. This application directly uses Free-
Type to render fonts. It takes a font file and text

as input and displays the styled text on the screen
using X windows system. For testing, the authors
have used all four styles of FreeSerif font family of
TrueType font i.e. normal, bold, italic, bold-italic,
and Computer Modern font of METAFONT.

Table 1 shows the FreeSerif font family in four
different styles. These styles are generated by using
four different font files. Table 2 shows Computer
Modern font in same four styles using different pa-
rameter values. These styles are made from one
single METAFONT source file. The parameter values
which are modified for generating these font styles
are hair, stem, curve, and slant. The three parame-
ters, hair, curve, and stem are related with the bold
style. Incrementing their value, increases the bold-
ness of text. These parameter values are different
for lower-case and upper-case characters. The slant
parameter is related with italic style. As shown in
the Table 2, for normal style the default values of
all these four parameters are used. For bold style,
the values used are stem+20, hair+20, curve+20,
and slant parameter default value. Default values of
stem, hair, curve, and slant= 0.4 are used for italic
style. Whereas, stem+20, hair+20, curve+20, slant
= 0.4 values are used for bold-italic style. Similarly,
many other font styles can be generated with this



preliminary draft, June 15, 2018 17:57 preliminary draft, June 15, 2018 17:57

? 6 preliminary draft, June 15, 2018 17:57 TUGboat, Volume 0 (9999), No. 0

(a) FreeSerif normal style (b) FreeSerif bold style

(c) FreeSerif italic style (d) FreeSerif bold-italic style

Figure 7: Dataset printed with FreeSerif font family

(a) default values of stem, hair, curve, slant (b) stem+20, hair+20, curve+20, slant default

(c) default values of stem, hair, curve, slant= 0.4 (d) stem+20, hair+20, curve+20, slant = 0.4

Figure 8: Dataset printed with Computer Modern

single METAFONT source file by changing parameter
values.

For the performance testing of FreeType MF -
Module compared with FreeType default driver mod-
ules and MFCONFIG module, an experiment was
performed using the same font viewer application.
All four font files of FreeSerif in Table 1 were used for
testing TrueType driver module of FreeType, Com-
puter Modern source file was used with four different
parameter values to generate four different styles in
Table 2. For the text input, a sample dataset was
used, which comprised of 2,000 words and over 8000
characters, including space character. The average
time per millisecond between the font style request
from application and the successful display of styled
text on the screen was computed and compared.

Figure 7 shows the result of printing four Free-
Serif fonts and Figure 8 shows the result of four
Computer Modern METAFONT fonts. Table 3 shows
the average time to print the dataset with FreeSerif
font by TrueType driver module, Computer Mod-
ern font by FreeType MF Module, and Computer
Modern font with MFCONFIG module. The de-
fault TrueType driver module of FreeType takes 3
ms to 7 ms to print dataset with all four families of
FreeSerif font. FreeType MF Module takes 4 ms to
10 ms to print this dataset with Computer Modern
font. Whereas, MFCONFIG module took 50 ms to
120 ms to display similar size dataset.

The performance of FreeType MF Module is com-
paratively slower than default FreeType driver mod-
ule, because it takes an extra time to convert a META-
FONT into its corresponding outline font by applying
styled parameters. Whereas, FreeType MF Module
has a very good performance than MFCONFIG
module, because it is directly implemented inside
FreeType rasterizer just like any other internal mod-
ule of FreeType and it is not dependent on any other
font libraries like Fontconfig and Xft [9] etc. Hence,
we can conclude that FreeType MF Module can be
used in FreeType rasterizer for providing direct sup-
port of METAFONT in almost real time on a modern
Linux PC.

FreeType MF Module is a suitable module to
provide users with parameterized font support on
the screen by applying style parameters directly to
the METAFONT font. Users don’t need to pre-convert
METAFONT into its corresponding outline font be-
fore using with FreeType rasterizer, as FreeType MF -
Module automatically performs this. The users can
use METAFONT easily just like TrueType fonts using
FreeType. FreeType MF Module has also overcome
the problems of MFCONFIG module. The perfor-
mance can be further improved by optimizing the
METAFONT converter in Transformation layer. Cur-
rently, the METAFONT converter works with mftrace
and autotrace programs. Future work will consider



preliminary draft, June 15, 2018 17:57 preliminary draft, June 15, 2018 17:57

TUGboat, Volume 0 (9999), No. 0 preliminary draft, June 15, 2018 17:57 ? 7

Table 3: Average time to display dataset with TrueType driver, FreeType MF Module, and MFCONFIG

about proposed module optimization and direct us-
age of TEX bitmap fonts like GF and PK which are
not supported by FreeType rasterizer.

5 Conclusion

In this paper, we have proposed a module named
FreeType MF Module, which enables the direct sup-
port of METAFONT in FreeType rasterizer. Outline
fonts such as TrueType and Type1 don’t allow users
to easily change font styles. For every different font
style in outline fonts, a new font file is created which
can be very time consuming and costly process for
CJK fonts which consists of large number of charac-
ters. To overcome this disadvantage of the outline
font production method, METAFONT font can be
used.

FreeType supports many different font formats
like TrueType, Type1, windows font etc. but doesn’t
provide any support for METAFONT . The proposed
module, FreeType MF Module is installed directly
inside FreeType and can be used just like other in-
ternal modules to support METAFONT font. The
authors have demonstrated experiments which shows
that variety of styled fonts can be generated from
METAFONT by adjusting parameter values in single
METAFONT source file with FreeType MF Module in
almost real time.

Acknowledgement

This work was supported by Institute for Information
& Communications Technology Promotion (IITP)
grant funded by the Korean government(MSIT) (No.
R0117-17-0001, Technology Development Project for
Information, Communication, and Broadcast).

References

[1] Donald E. Knuth, Computers and Typesetting,
Volume C: The METAFONTbook. Addison-
Wesley, 1996.

[2] David Turner, Robert Wilhelm, Werner Lem-
berg, FreeType, www.freetype.org.

[3] Kim Jinpyung, et al. Basic Study of Hangeul
Font. Seoul: Korea Publishing, Research Insti-
tute, 1988.

[4] Choi Jaeyoung, MFCONFIG: METAFONT
plug-in module for Freetype rasterizer TUG
2016 (TUGboat, 2016): 163170.

[5] K. Packard, Keith Packard, Behdad Esfahbod,
et al. Fontconfig. www.fontconfig.org.

[6] H. Kakugawa, VFlib - a general font library
that supports multiple font formants, EuroTEX
conference, March 1998.

[7] Rokicki T, GFtoPK version 2.3,17 April 2001
https://www.tug.org/svn/texlive/trunk/Mast-
er/texmf-dist/doc/generic/knuth/mfware-
/gftopk.pdf?view=co.

[8] Menzner R, A library for generating char-
acter bitmaps from Adobe Type 1 fonts.
www.fifi.org/doc/t1lib-dev/t1lib doc.pdf.gz.

[9] Keith Packard, The Xft font library:
Architecture and users guide. Pro-
ceedings of the 5th annual conference
on Linux Showcase Conference, 2001.
https://keithp.com/keithp/talks/xtc2001/xft.-
pdf.


	Introduction
	Related research and their problems
	Implementation of FreeType_MF_Module in FreeType rasterizer
	FreeType_MF_Module as an internal module of FreeType
	Linker Module
	Administrator Module
	Transformation Module
	Metafont support in FreeType using FreeType_MF_Module

	Experiment and performance evaluation of FreeType_MF_Module
	Conclusion

