
TUG2018 program

Friday
July 20

8:00 am registration
8:55 am Paulo Ney de Souza,

UC Berkeley & BooksInBytes
Opening

9:00 am Roberto Ierusalimschy,
PUC-Rio & Lua team

The making of Lua

9:45 am Eduardo Ochs, UFF Dednat6: An extensible (semi-)preprocessor for LuaLATEX
that understands diagrams in ASCII art

10:20 am break
10:45 am Mico Loretan, Zurich, Switzerland Selective ligature suppression with the selnolig package
11:15 am Joseph Wright, LATEX Project Fly me to the moon: (LA)TEX testing (and more) using Lua
11:50 am Paulo Cereda, University of São Paulo From parrot 1.0 to phoenix 4.0: 6 years of arara,

the beginning of a new era

12:25 pm lunch
1:45 pm Will Robertson, University of Adelaide Creating teaching material with LATEXML for the Canvas

Learning Management System

2:25 pm Ross Moore, Macquarie University Authoring accessible ‘Tagged PDF’ documents using LATEX
3:00 pm break
3:20 pm Sandro Coriasco, Anna Capietto,

Università di Torino
An automated method based on LATEX for the realization of

accessible PDF documents containing formulae

3:55 pm Doris Behrendt, DANTE e.V. The General Data Protection Regulation (GDPR) in the
European Union

4:30 pm TUG meeting
4:30 pm Workshop: Accessibility challenges

in LATEX

Saturday
July 21

8:55 am announcements
9:00 am Frank Mittelbach, LATEX Project A quarter century of doc
9:35 am Joseph Wright Through the looking glass, and what Joseph found there

10:10 am break
10:30 am Boris Veytsman, George Mason

Univ. & Chan Zuckerberg Initiative
Stubborn leaders six years later

11:05 am Joseph Wright siunitx: Past, present and future
11:40 am Frank Mittelbach Compatibility in the world of LATEX
12:40 pm lunch
2:00 pm Joachim Heinze, Springer Verlag The unchanged changing world of mathematical publishing
2:35 pm Tom Hejda, Charles University Prague yoin— Yet another package for automation of journal

typesetting

3:10 pm break
3:30 pm Paulo Ney de Souza Minimizing LATEX files — First steps on journal automated

processing

4:05 pm Boris Veytsman R+knitr workshop (tug.org/tug2018/workshops.html)

Sunday
July 22

8:55 am announcements
9:00 am S.K. Venkatesan and TNQ Lab WaTEX (WYSIWYG and LATEX) and Hegelian

contradictions in classical mathematics

9:35 am Susanne Raab, Paulo Cereda* A short introduction to the TikZducks package
10:10 am break
10:30 am Jaeyoung Choi, Soongsil University FreeType MF Module: A module for using METAFONT

directly inside FreeType’s rasterizer

11:05 pm robertson-fonts
11:40 am lunch
1:00 pm bus to Sugarloaf

≈ 5:30 pm back at hotel
* = presenter

TUG 2018 j 1

Doris Behrendt

The General Data Protection Regulation (GDPR) in the
European Union

On 25 May 2018 the GDPR was applied in the EU.
In my position as treasurer of the German TEX user
group DANTE e.V. I studied this regulation from the
DANTE perspective and will talk about some aspects
of this regulation, which are concerning us.

As some of you probably know, a lot of Euro-
peans — including myself — are somewhat delicate
about data processing and privacy. While the industry
complains about the GDPR being a monster of bu-
reaucracy, there are also some quite interesting legal
bearings that come with it, e.g. it will also apply “to
the processing of personal data of data subjects who
are in the Union by a controller or processor not estab-
lished in the Union, where the processing activities are
related to . . . the offering of . . . services, irrespective
of whether a payment of the data subject is required,
to such data subjects in the Union . . . ”.

This should be interesting especially to companies
that are not based in the EU but are handling data
of EU citizens, and by GDPR Article 83 (5) not
complying could become expensive: “Infringements
. . . shall . . . be subject to administrative fines up to
20,000,000 EUR, or in the case of an undertaking, up
to 4% of the total worldwide annual turnover of the
preceding financial year, whichever is higher . . . ”.

You can imagine that this could become very
interesting when the next Facebook or similar data
scandal comes up.

Paulo Cereda

From parrot 1.0 to phoenix 4.0: 6 years of arara,
the beginning of a new era

For the uninitiated, arara is a TEX automation tool
based on rules and directives. It determines its actions
from metadata in the source code, rather than relying
on indirect resources, such as log file analysis. The
tool does not employ any guesswork, so you get exactly
what you asked for. Historically, the very first version
of arara was released on 2012. The feedback was very
positive. However, it didn’t take much time for bug re-
ports and feature proposals to arrive. The author then
decided to take a bold step and rewrite the tool en-
tirely from scratch, fixing bugs and including new fea-
tures on his own spare time. It took a bit longer than
expected due to a concurrent never-ending thesis writ-
ing process, but the result is now version 4.0 of arara,
the most exciting release of the tool’s entire life cycle.

In this talk, the author will present an overview
of arara’s greatest new features, including friendly
and helpful messages, improved command line layouts,
better logging, multiline directives, dry-run mode,
file hashing, UI elements and conditionals. However,
there is a lot more to the tool than meets the eye, so
be prepared for a mind-blowing live demonstration
(beware, there might be sound involved as well!).
Expect lots of use case scenarios, and of course,
bird-related jokes.

Jaeyoung Choi

FreeType MF Module: A module for using METAFONT

directly inside FreeType’s rasterizer

METAFONT is a font description language which
generates bitmap fonts for use by the TEX system,
printer drivers, and related programs. One advantage
of METAFONT over outline fonts is its capability to
produce various font styles by changing parameter
values defined in its font specification file. Another
major advantage of using METAFONT is that it
produces various font styles like bold, italic, and
bold-italic from one source file, unlike outline fonts,
which require development of a separate font file
for each style in one font family. These advantages
can be applied to design CJK (Chinese-Japanese-
Korean) fonts, which require significant time and cost
because of the large number of characters used in
these scripts. However, in order to use METAFONT in
current font systems, users need to convert its bitmaps
into a corresponding outline font. Furthermore,
font rendering engines like FreeType do not support
METAFONT.

In this paper, an MF Helping Module for FreeType
rasterizer is proposed. This ‘FreeType MF Module’
enables direct usage of METAFONT just like any
other outline and bitmap font support in FreeType
rasterizer. Users of METAFONT don’t need to pre-
convert METAFONT into its corresponding outline font
as the module automatically does this. Furthermore,
the module allows users to easily and directly generate
various font styles from METAFONT by changing
parameter values.

Joachim Heinze

The unchanged changing world of mathematical
publishing

1. A very short overview of the history of mathemat-
ical publishing with some Springer examples is given.
Numerische Mathematik was the first of all Springer-
Nature journals ever over all disciplines to go online in
1994.

2. The change of the world of publishing: generat-
ing (scientists), composing (publishers and scientists)
and disseminating (librarians and publishers) math-
ematical content in electronically form. TEX and
“online visibility” are the buzzwords here.

3. Open access for all mathematical content?
“New” initiatives like “Overlay Journals”, based on
arXiv, are briefly discussed, as well as the more recent
Sci-Hub and ResearchGate initiatives.

4. Keep track of what has been published and
cited. MathSciNet and zbMATH, the two big math
review journals, in comparison to other initiatives,
like Google Scholar/xs.glgoo.com, Scopus, and Web of
Science. A new initative from China? MathSciDoc.

5. Recent developments in the dissemination of
scientific information are discussed. Social media
(Scholarly Collaboration Networks (SCN)) in scientific
communication and some new initiatives such as
“Sharedit” and “SciGraph” are briefly reflected upon.
Artificial intelligence and some hope for the future will
close the presentation.

TUG 2018 j 2

Tom Hejda

yoin—Yet another package for automation of journal
typesetting

A new LATEX package will be presented that allows
combining journal, conference and similar papers into
issues. The most important premises the package
is built upon are (1) the papers themselves are
independent documents to the extent that even
different compilers can be used for different papers,
and (2) the papers’ page numbering is automated and
there are tools for communicating metadata between
the whole issue and the papers.

Please note that a preliminary version of the pack-
age will be presented and help from the community
will very likely be sought at the conference.

Mico Loretan

Selective ligature suppression with the selnolig

package

TEX has long provided straightforward methods for
creating typographic ligatures. Until recently, though,
suppressing inappropriate ligatures selectively could
only be achieved by applying mark-up by hand to a
document. selnolig, a LuaLATEX package, provides
the machinery to perform selective ligature suppression
in an automated way that requires minimal user
involvement. The package also provides sets of ligature
suppression rules for English and German language
documents. The talk provides an overview of the
package’s design philosophy and main features,
discusses some of its current limitations, and gives the
outlook for further developments.

Frank Mittelbach

A quarter century of doc

In this talk I will re-examine my poor attempts at
Literate Programming and how they have shaped
(for the better or worse) the LATEX world in the past
decades.

It’s about time to rethink some of the concepts
invented back then — but can we still evolve?

Frank Mittelbach

Compatibility in the world of LATEX

In this talk I take a look at the major disruptions that
have rocked the LATEX world in the past decades and
how we handled them, covering some of the resulting
consequences.

In the latest part of this saga a rollback concept
for the LATEX kernel was introduced (around 2015).
Providing this feature allowed us to make corrections
to the software (which more or less didn’t happen
for nearly two decades) while continuing to maintain
backward compatibility to the highest degree.

I will give some explanation on how we have now
extended this concept to the world of packages and
classes which was not covered initially. As the classes
and the extension packages have different requirements
compared to the kernel, the approach is different (and
simplified). This should make it easy for package
developers to apply it to their packages and authors to
use when necessary.

Ross Moore

Authoring accessible ‘Tagged PDF’ documents using
LATEX

Several ISO standards have emerged for what
should be contained in PDF documents, to support
applications such as ‘archivability’ (PDF/A) and
‘accessibility’ (PDF/UA). These involve the concept
of ‘tagging’, both of content and structure, so that
smart reader/browser-like software can adjust the view
presented to a human reader, perhaps afflicted with
some physical disability. In this talk we will look at a
range of documents which are fully conformant with
these modern standards, mostly containing at least
some mathematical content, created directly in LATEX.
The examples are available on the author’s website
(http://web.science.mq.edu.au/ ross/TaggedPDF/).

The desirability of producing documents this
way will discussed, along with aspects of how much
extra work is required of the author. Also on the
above website is a ‘five-year plan’ proposal how to
modify the production of LATEX-based scientific
publications to adopt such methods. This will
involve cooperation between academic publishers
and a TUG working group. The proposal PDF

(http://web.science.mq.edu.au/ ross/TaggedPDF/

PDF-standards-v2.pdf) is itself produced to be
fully accessible, complying with both PDF/UA-1 and
PDF/A-2a standards.

Eduardo Ochs

Dednat6: An extensible (semi-)preprocessor for
LuaLATEX that understands diagrams in ASCII art

(LA)TEX treats lines starting with “%” as comments,
and ignores them. This means that we can put
anything we want in these “%” lines, even code to be
processed by other programs besides TEX.

In this talk we will describe a “semi-preprocessor”,
called dednat6, that makes blocks of lines starting
with “%L” be executed as Lua code, treats blocks
of lines starting with “%:” as 2D representations of
derivation trees, and treats blocks of lines starting
with “%D” as diagrams in which a 2D representation
specifies where the nodes are to be placed and a stack-
based language inspired by Forth is used to connect
these nodes with arrows.

A predecessor of dednat6, called dednat4, was a
preprocessor in the usual sense: running “dednat4.lua
foo.tex” on a shell would convert the trees and
diagrams in “%:” and “%D”-blocks in foo.tex to
“\def”s that LATEX can understand, and would put
these “\def”s in a file foo.dnt; we had to put in
foo.tex an “\input "foo.dnt"” that would load
those definitions. Dednat6 does something almost
equivalent to that, but it uses LuaLATEX to avoid the
need for an external preprocessor and for an auxiliary
“.dnt” file. Here is how; the workflow is unusual, so
let’s see it in detail.

Put a line
\directlua{dofile("loaddednat6.lua")}

in a file bar.tex. When we run “lualatex bar.tex”
that line loads the dednat6 library, initializes the
global variable tf in the Lua interpreter with a

TUG 2018 j 3

TexFile object, and sets tf.nline=1 to indicate
that nothing in bar.tex has been processed with
dednat6 yet. A (low-level) command like \di-

rectlua{processlines(200, 300)} in bar.tex

would “process the lines 200 to 300 in bar.tex

with dednat6”, which means to take all the blocks
of “%L”-lines, “%:”-lines, and “%D”-lines between
the lines 200 to 300 in bar.tex, run them in the
adequate interpreters, and then send the result-
ing LATEX code — usually “\def”s — to the latex

interpreter. The high-level macro “\pu” runs “\di-
rectlua(processuntil{tex.inputlineno})”, that
runs processlines on the lines between tf.nline=1

and the line where the current “\pu” is, and advances
tf.nline— i.e., it processes with dednat6 the lines
in the current file between the previous “\pu” and the
current one.

The strings “%L”, “%:”, and “%D” are called
“heads” in dednat6, and it’s easy to add support for
new heads; this can even be done in a “%L” block.

Note that with dednat4 all the “\def”s had to be
loaded at once; in dednat6 idioms like “{\pu ...}”,
“$\pu ...$”, and “$$\pu ...$$” can be used to make
the “\def”s between the last “\pu” and the current
one be local.

Susanne Raab, Paulo Cereda (presenter)

A short introduction to the TikZducks package

The TikZducks package is a little package (and TikZ
library) that allows one to easily add rubber duck
images to LATEX documents. As implied by the name,
the package uses the graphics language TikZ to create
the ducks based on simple geometrical shapes and
paths.

Besides the ducks themselves, the package also
provides a large (and ever growing) assortment of
accessories which can be added to the ducks. Under
the hood of the TikZducks package a simple key–
value interface is used to access and customise all the
available options.

After a short introduction to the package and its
options, some examples will be presented in this talk,
including how the ducks can be personalised. One of
the examples will show a step-by-step guide how a
duck can be designed based on a photo of a person.

Will Robertson

Creating teaching material with LATEXML for the
Canvas Learning Management System

In this presentation I will outline the system by which
I produce PDF and HTML versions of course material
for the honours project students in the School of
Mechanical Engineering, The University of Adelaide.

This course material is broad and relatively
dynamic in that it needs both frequent and periodic
updates, and there is a soft need to have it available
in a single document PDF and a hyperlinked HTML

version. There are a number of tools to perform such
a task, and LATEXML was chosen for its robustness
and relative simplicity. Nonetheless, the processing
phase does involve some regexps to clean up the

resulting HTML, which is not ideal from a maintenance
perspective.

On the back end, this project could not have
been accomplished without the API provided by the
Learning Management System that we use, Canvas by
Instructure. The web API allows HTML pages to be
updated from the command line as well as PDF files to
be automatically uploaded.

This system allows me to have a single source for
the documentation for the course and makes updates
almost entirely friction-free. While still cobbled
together from a number of technologies (largely curl

and shell scripts), it provides an interface that could be
expanded for more general use.

In the future, as well as re-writing the code in Lua
for cross-platform functionality, I also plan to overcome
the problems involving use of embedded graphics with
text, and mathematical content in general.

Will Robertson

Unicode fonts with fontspec and unicode-math

While the fundamentals of both the fontspec and
unicode-math packages have stayed the same, these
packages have undergone a significant amount of
development behind the scenes. While many users
won’t be interested in the technical details, there are
a number of feature additions that deserve broader
discussion.

In this presentation I will cover the basics of these
packages and best practices for using them, specifically
including more recent features that users may not
yet have seen. I will also try to give an overview of
some technical details to focus on expl3 package
development and lessons learned.

Boris Veytsman

Stubborn leaders six years later

After six years the journal Res Philosophica changed
the style of its table of contents. The new design
requires the dotted line with the page number
to follow the last line of the article title rather
than the first one. The old design was described
in a TUGboat article (33:3, pp. 316–318, 2012,
tug.org/TUGboat/tb33-3/

tb105veytsman-leaders.pdf). We use this occasion
to revisit the old code, discuss the new one and the
fact that deceptively similar designs require completely
different code.

S.K. Venkatesan and TNQ Lab

WaTEX (WYSIWYG and LATEX) and Hegelian
contradictions in classical mathematics

Contradictions exist in life and are the mill through
which the world evolves. We will demonstrate a
strange hybrid that has evolved from the contradiction
between LATEX and WYSIWYG, WaTEX, a new LATEX
editor based on KaTEX. However, we will also be
presenting many other common varieties of Hegelian
contradictions that exist in classical mathematics
which don’t lead to blow-ups in classical logic and
which don’t require a new paraconsistency logic
proposed by the Peruvian philosopher Francisco Miró

TUG 2018 j 4

Quesada, which quantum computing (QPU) may
demand.

Joseph Wright

Through the looking glass, and what Joseph found there

The LATEX3 programming language, expl3, has grown
over the past decade to form a strong and stable
environment for solving problems in TEX. A key aim
is to grow this work to cover a wider range of areas.
In recent work, the team have been building on the
existing code, and in particular the expandable FPU,
to develop approaches to color, drawing and image
support. In this talk, I will look at why this work is
useful, what models we can work from and where the
work has taken us so far.

Joseph Wright

siunitx: Past, present and future

Over the past decade, siunitx has become established
as the major package for typesetting physical quanti-
ties in LATEX. Here, I will look at the background to
the package, and how it’s developed over the years. I’ll
also lay out plans for the future: where are we going
for version 3, and why is that important for users.

Joseph Wright

Fly me to the moon: (LA)TEX testing (and more)
using Lua

Testing has been important to the LATEX team since
its inception, and over the years a sophisticated set of
test files have been created for the kernel. Methods for
running the tests have varied over the past quarter-
century, following changes in the way the team work.

In recent years, the availability of Lua as a
scripting language in all TEX systems has meant it has
become the natural choice to support this work. With
this as a driver, the team have developed l3build

for running tests automatically. Building on the
core work, l3build has grown to provide a powerful
approach to releasing packages (and the LaTeX kernel)
reliably.

Here, I’ll look at the background of our testing
approach, before showing how and why Lua works for
us here.

TUG 2018 j 5

preliminary draft, July 16, 2018 0:56 preliminary draft, July 16, 2018 0:56

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 16, 2018 0:56 ? 1

From parrot 1.0 to phoenix 4.0

Paulo Roberto Massa Cereda

Abstract

This article covers a bit of history behind arara, the
cool TEX automation tool, from the earlier stages of
development to the new 4.0 series. We also highlight
some noteworthy features of our tool.

1 Introduction

Writing software is easy. Writing good software is
extremely difficult. I was working on a Catholic
songbook with 1200+ songs and several indices and
cross-references. The compilation steps required to
achieve the final result were getting out of hand.

At some point, I realized I knew all the steps I
had to reproduce beforehand, I only had to find a way
to automate them! Inspired by the way compilers
work (i.e., read a source file, ignore all comments
and process the rest), I could exploit TEX comments
to include special indications on what to do on the
document. Since engines do ignore comments, no
side effects would arise, at least document-wise.

It was a cold afternoon. I sat in front of my
computer and decided to work on this new tool.
It was a matter of time to reach preliminary yet
promising results. I mentioned this effort in the chat
room of the TEX community at StackExchange and
some friends asked me to make a public release out
of it, as other users could benefit from this new tool.

However, a name was needed for the tool. In
the chat room, we used to have a lot of fun with
palindromes (specially palindromic reputations in
arbitrary bases), so I took that aspect as inspiration.
Then I thought of a very beautiful, colourful bird of
the Brazilian fauna: the macaw, or as we like to call
it, the arara. The name was immediately adopted!

Once the name was chosen, I needed a logo.
Since I am a Fedora Linux user, I was always a fan
of their default typeface, which is quite round! The
choice was made: the humble arara tool becamearara. My life was about to change.

2 A bit of history

A lot of things happened since version 1.0, released in
2012, to the new version 4.0, released in 2018. This
section presents a bit of history of arara, including
challenges in each version.

2.1 The first version

There is a famous quote along the lines of “if at first
you do not succeed, call it version 1.0”. The first
version of arara was also the first public release,

dated April 2012. Nothing much was there, besides
the core concepts that exist until this very date:

• Rules: a rule is a formal description of howarara handles a certain task. It tells the tool
how to do something.

• Directives: A directive is a special comment
inserted in the source file in which you indicate
how arara should behave.

Back then, we could write directives in our doc-
ument and have the tool process them as expected,
like the following example:

% arara: pdftex

Hello world!

\bye

Amusingly, the first version only offered a log
output as an additional feature. There was no ver-
bose mode at all. The log file was a gathering of
streams (error and output) from the sequence of com-
mands specified through directives. And that was it.

2.2 The second version

The first version had a serious drawback: compilation
feedback was not in real time and, consequently, no
user input was allowed. For the second version, real
time feedback was introduced when the tool was
executed in verbose mode.

$ arara -v mydoc.tex

...

[real time feedback]

...

Two other features were included in this version:
a flag to set the execution time out, in milliseconds,
as a means to prevent a potentially infinite execution,
and a special variable in the rule context for handling
cross-platform operations.

2.3 The third version

So far, arara was only a tiny project with a very
restricted user base. However, for version 3.0, a
qualitative goal was reached: the tool became inter-
national, with localised messages in English, Brazil-
ian Portuguese, German, Italian, Spanish, French,
Turkish and Russian. Besides, new features such as
configuration file support and rule methods broughtarara to new heights. As a direct consequence, the
lines of code virtually doubled from previous releases.

$ arara --help -L es

...

-h,--help imprime el mensaje de ayuda

-l,--log genera el registro de la salida

...

When the counter stopped at version 3.0, Brent
Longborough, Marco Daniel and I decided it was
time for arara to graduate and finally be released in

TUG 2018 j 6

preliminary draft, July 16, 2018 0:56 preliminary draft, July 16, 2018 0:56

? 2 preliminary draft, July 16, 2018 0:56 TUGboat, Volume 0 (9999), No. 0

TEX Live. Then things really changed in my life. The
tool was a success! Given the worldwide coverage of
that specific TEX distribution, arara silently became
part of the daily typographic tool belt of many users.
But then, the inevitable happened: a lot of bugs
emerged from the dark depths of my humble code.

2.4 Critical and blocker bugs

Suddenly, several questions about arara were posted
in the TEX community at StackExchange and I was
not able to provide a consistent, definitive answer
for many of them! It was very tricky to track the
bugs to their sources, and some of them were really
nasty. For instance, a simple scenario of a file with
spaces in the name was more than enough to make
the poor tool cry for help for apparently no reason:

$ arara "My PhD thesis.tex"

Likewise, the issues page of the project repos-
itory hosted at GitHub had a plethora of reports,
and little I could do about them. I delved into the
code of third party libraries, but the root of all evil
seemed to lie in my own sources.

2.5 Nightingale

In all seriousness, I was about to give up. My code
was not awful, but there were a couple of critical
and blocking bugs. Something very drastic had to be
done in order to put arara back on track. Then, pro-
ceeding on faith, I decided to rewrite the tool entirely
from scratch. In order to achieve this goal, I created
a sandbox and started working on the new code. And
this new project got a proper name: nightingale.

It was the right thing to do. Nicola Talbot
helped me with the new version, writing code, fixing
bugs and suggesting new features. She was writing
a book about LATEX for administrative work at the
time and was extensively using arara in the code
examples. Her writing indirectly became my writing
as well, as I progressively improved the code and
added new features to match her suggestions.

2.6 The fourth version

At some point, nightingale had to say farewell and
gave most of its features to the bigger, older bird in
the nest. It is worth mentioning that nightingale still
lives in my repository at GitHub for those who are
bold to try it. From 1500+ lines of code in version
3.0, arara 4.0 tripled that number: a whooping
4500+ lines of code! And the most important: all
critical and blocking bugs were completely fixed.

However, although the code was ready for pro-
duction, the user manual was far from being finished.
In fact, the documentation had to be written en-
tirely from scratch. Then another saga had started:

find proper time and effort to document a great yet
complex tool in all details, from user to developer
perspectives.

It took me a lot of dedication to write the user
manual and try to cover as much detail as possible
for every feature, old and new, and the tool itself.
Some of the internals had to be changed, so more
explanations were needed. Documenting a tool is
almost as difficult as writing code for it!

3 New features

This section highlights some noteworthy features
found in the new version 4.0 of arara. For additional
information, please refer to our user manual.

3.1 REPL work flow

In version 4.0, arara employs a REPL work flow for
rules and directives. In previous versions, directives
were extracted, their corresponding rules were ana-
lyzed, commands were built and added to a queue be-
fore any proper execution or evaluation. I decided to
change this work flow, so now arara evaluates each
rule on demand, i.e., there is no a priori checking.
A rule will always reflect the current state, including
potential side effects from previously executed rules.

3.2 Multiline directives

Sometimes, directives can span several columns of a
line, particularly the ones with several parameters.
From arara 4.0 on, we can split a directive into
multiple lines by using the arara: --> mark on
each line which should compose the directive. We
call it a multiline directive. Let us see an example:

% arara: pdflatex: {

% arara: --> shell: yes,

% arara: --> synctex: yes

% arara: --> }

It is important to observe that there is no need
for them to be in contiguous lines, i.e., provided that
the syntax for parametrized directives hold for the
line composition, lines can be distributed all over the
code. In fact, the log file (when enabled) will contain
a list of all line numbers that compose a directive.

3.3 Directive conditionals

arara 4.0 provides logical expressions, written in
the MVEL language, and special operators processed
at runtime in order to determine whether and how a
directive should be processed. This feature is named
directive conditional, or simply conditional as an
abbreviation. The following list describes all condi-
tional operators available in the directive context.

• if: The associated MVEL expression is evalu-
ated beforehand, and the directive is interpreted

TUG 2018 j 7

preliminary draft, July 16, 2018 0:56 preliminary draft, July 16, 2018 0:56

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 16, 2018 0:56 ? 3

if, and only if, the result of such evaluation is
true. This directive, when the conditional holds
true, is executed at most once.

% arara: pdflatex if missing(’pdf’)

% arara: --> || changed(’tex’)

• until: The directive is interpreted the first time,
then the associated MVEL expression evaluation
is done. While the result holds false, the direc-
tive is interpreted again and again. There is no
guarantee of proper halting.

% arara: pdflatex until !found(’log’,

% arara: --> ’undefined references’)

• unless: Technically an inverted if conditional,
the associated MVEL expression is evaluated
beforehand, and the directive is interpreted if,
and only if, the result is false. This directive,
when the conditional holds false, is executed at
most once.

% arara: pdflatex unless unchanged(’tex’)

% arara: --> && exists(’pdf’)

• while: The associated MVEL expression is eval-
uated beforehand, the directive is interpreted if,
and only if, the result is true, and the process is
repeated while the result still holds true. There
is no guarantee of proper halting.

% arara: pdflatex while missing(’pdf’)

% arara: --> || found(’log’, ’undefined

% arara: --> references’)

Although there are no conceptual guarantees for
proper halting of unbounded loops, we have provided
a technical solution for potentially infinite iterations:arara has a predefined maximum number of loops.
The default value is set to 10, but it can be overridden
either in the configuration file or with a command
line flag.

3.4 Directive extraction only in the header

The --header command line option changes the
mechanics of how arara extracts the directives from
the code. The tool always reads the entire file and
extracts every single directive found throughout the
code. However, by activating this switch, arara will
extract all directives from the beginning of the file
until it reaches a line that is not empty and is not
a comment (hence the option name). Consider the
following example:

% arara: pdftex

Hello world.

\bye

% arara: pdftex

When running arara without the --header op-
tion, two directives will be extracted (the ones found
in lines 1 and 4). However, if executed with this

switch, the tool will only extract one directive (from
line 1), as it will stop the extraction process as soon
as it reaches line 2.

3.5 Dry-run execution

The --dry-run command line option makes arara
go through all the motions of running tasks and
subtasks, but with no actual calls. It is a very useful
feature for testing the sequence of underlying system
commands to be performed on a file.

[DR] (PDFLaTeX) PDFLaTeX engine

--

Authors: Marco Daniel, Paulo Cereda

About to run: [pdflatex, hello.tex]

Note that by the rule, authors are displayed (so
they can be blamed in case anything goes wrong),
as well as the system command to be executed. It is
an interesting approach to see everything that will
happen to your document and in which order. It is
important to observe, though, that conditionals are
not evaluated in this mode.

3.6 Local configuration files

From version 4.0 on, arara provides support for local
configuration files. In this approach, the configura-
tion file should be located in the working directory
associated with the current execution. This direc-
tory can also be interpreted as the one relative to
the processed file. This approach offers a project-
based solution for complex work flows, e.g., a thesis
or a book. However, arara must be executed within
the working directory, or the local configuration file
lookup will fail. Observe that this approach has
the highest lookup priority, which means that it will
always supersede a global configuration.

3.7 File hashing

arara 4.0 features four methods for file hashing in
the rule and directive scopes, presented as follows.
The file base name refers to the file name without
the associated extension.

• changed(extension): checks if the file base
name concatenated with the provided extension
has changed its checksum from last verification.

• changed(file): the very same idea as the previ-
ous method, but with a proper Java File object
instead.

• unchanged(extension): checks if the file base
name concatenated with the provided extension
is unchanged from last verification. It is the
opposite of the changed(...) method.

• unchanged(file): the very same idea as the
previous method, but with a proper Java File

object instead.

TUG 2018 j 8

preliminary draft, July 16, 2018 0:56 preliminary draft, July 16, 2018 0:56

? 4 preliminary draft, July 16, 2018 0:56 TUGboat, Volume 0 (9999), No. 0

The value is stored in a database file named
arara.xml as a pair containing the full path of the
provided file and its corresponding CRC-32 hash (the
database is created if missing). If the entry already
exists, the value is updated, or created otherwise.

3.8 Dialog boxes

A dialog box is a graphical control element, typically
a small window, that communicates information to
the user and prompts them for a response. arara
4.0 provides UI methods related to such interactions.
As good practice, make sure to provide descriptive
messages to be placed in dialog boxes in order to
ease and enhance the user experience.

3.9 Session

Rules are designed under the encapsulation notion,
such that direct access to the internal workings of
such structures is restricted. However, as a means
of supporting framework awareness, arara provides
a mechanism for data sharing across rule contexts,
implemented as a Session object. In practical terms,
this particular object is a global, persistent map
composed of keys and values available throughout
the entire execution.

3.10 Redesigned user interface

For arara 4.0, we redesigned the interface in order
to look more pleasant to the eye; after all, we work
with TEX and friends. Please note that the output
was deli‘berately truncated to respect the column
width.

__ _ _ __ __ _ _ __ __ _

/ _‘ | ’__/ _‘ | ’__/ _‘ |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing ’doc.tex’ (size: 307 bytes, last

modified: 05/29/2018 08:57:30), please wait.

(PDFLaTeX) PDFLaTeX engine SUCCESS

(PDFLaTeX) PDFLaTeX engine SUCCESS

Total: 1.45 seconds

First of all, we have the nice application logo,
displayed using ASCII art. The entire layout is based
on monospaced font spacing, usually used in terminal
prompts. Hopefully you follow the conventional use
of a monospaced font in your terminal, otherwise
the visual effect will not be so pleasant. First and
foremost, arara displays details about the file being
processed, including size and modification status:

Processing ’doc.tex’ (size: 307 bytes, last

modified: 05/29/2018 08:57:30), please wait.

The list of tasks was also redesigned to be fully
justified, and each entry displays both task and sub-
task names (the former being displayed enclosed in
parentheses), besides of course the usual execution
result:

(PDFLaTeX) PDFLaTeX engine SUCCESS

(PDFLaTeX) PDFLaTeX engine SUCCESS

If a task fails, arara will halt the entire execu-
tion at once and immediately report back to the user.
This is an example of how a failed task looks like:

(PDFLaTeX) PDFLaTeX engine FAILURE

Also, observe that our tool displays the execu-
tion time before terminating, in seconds. The execu-
tion time has a very simple precision, as it is meant
to be easily readable, and should not be considered
for command profiling.

Total: 1.45 seconds

The tool has two execution modes: silent, which
is the default, and verbose, which prints as much
information about tasks as possible:

• When in silent mode, arara will simply display
the task and subtask names, as well as the ex-
ecution result. Nothing more is added to the
output.

• When executed in verbose mode, arara will
display the underlying system command output
as well, when applied. In version 4.0 of our
tool, this mode was also entirely redesigned in
order to avoid unnecessary clutter, so it would
be easier to spot each task.

It is important to observe that, when in verbose
mode, arara can offer proper interaction if the sys-
tem command requires user intervention. However,
when in silent mode, the tool will simply discard this
requirement and the command will almost surely
fail.

4 The future

Now that arara 4.0 is officially released and already
available in CTAN and TEX Live, it is time to plan
the future. Our repository already has suggestions
for new features and improvements. The work onarara 5.0 has begun! If you have any feedback about
our tool, please drop us a note.

Also, if you believe your custom rule is com-
prehensive enough and deserves to be in the official
pack, please contact us. We will be more than happy
to discuss the inclusion of your rule in forthcoming
updates. Happy TEXing with arara!

� Paulo Roberto Massa Cereda
Analândia, São Paulo, Brazil
cereda.paulo (at) gmail.com

TUG 2018 j 9

preliminary draft, June 15, 2018 17:57 preliminary draft, June 15, 2018 17:57

TUGboat, Volume 0 (9999), No. 0 preliminary draft, June 15, 2018 17:57 ? 1

FreeTypeMFModule: A module for using
METAFONT directly inside the FreeType
rasterizer

Jaeyoung Choi, Ammar Ul Hassan and
Geunho Jeong

Abstract

METAFONT is a font description language which
generates bitmap fonts for the use by TEX system,
printer drivers, and related programs. One advan-
tage of METAFONT over outline font is its capability
to produce different font styles by changing various
parameter values defined in its font specification file.
Other major advantage of using METAFONT is that
it produces various font styles like bold, italic, and
bold-italic from one source file unlike outline fonts,
which require development of a separate font file for
each style in one font family. These advantages can
be applied to design CJK (Chinese-Japanese-Korean)
fonts which require significant time and cost because
of the large number of characters used in Hangeul
(Korean character) and Hanja (Chinese character).
However, to use METAFONT in current font systems,
users need to convert it into its corresponding out-
line font. Furthermore, font rendering engines like
FreeType doesn’t support METAFONT.

In this paper, FreeType MF Module for FreeType
rasterizer is proposed. The proposed module enables
a direct usage of METAFONT just like any other
outline and bitmap font support in FreeType raster-
izer. Users of METAFONT don’t need to pre-convert
METAFONT into its corresponding outline font as
FreeType MF Module automatically performs this.
Furthermore, FreeType MF Module allows the user
to easily generate various font styles from one META-
FONT source file by changing parameter values.

1 Introduction

As of today’s, information society, the traditional pen
and paper usage for communication between people
are swiftly replaced by computers and mobile devices.
Text has become an effective source for gathering
information and means of communication between
people. Although people use smart devices commonly
these days with effective resources like media and
sound, text plays the key role of interaction between
user and device. Text is composed of characters, and
these characters are physically build from specific
font files in digital environment system.

Fonts are the graphical representation of text in
a specific style and size. These fonts are mainly cate-
gorized in two types; outline fonts and bitmap fonts.
Outline fonts are the most popular fonts for produc-

ing high-quality output used in digital environment
system. However, for creating a new font style for
outline font, font designers have to design a new font
with extensive cost and time. This recreation of font
files for each variant of font can be very hectic for
font designers especially in case of CJK fonts which
require designing of thousands individual letters one
by one. Since CJK fonts have a lot more letters and
complex shapes compared to Roman fonts, it often
takes more than a year to design CJK fonts.

To overcome this disadvantage of outline fonts
mentioned above a programmable font, METAFONT

was developed. METAFONT is a programming lan-
guage introduced by D. E. Knuth [1] that generates
TeX-oriented bitmap fonts. It allows users to gen-
erate various font styles easily. METAFONT file is
different from outline font file. It consists of func-
tions for drawing characters and has parameters for
different font styles. By changing the parameter val-
ues defined in its font specification file, various font
styles can be easily generated. Therefore, a variety of
font variants can be generated from one METAFONT

source file.
However, users are unable to use METAFONT on

their PCs because current font engines like FreeType
[2] doesn’t provide any direct support of METAFONT.
Unlike standard bitmap and outline fonts, META-
FONT is expressed as a source code that is compiled
to generate fonts. To use METAFONT in a general
font engine like FreeType rasterizer users have to
convert METAFONT into its corresponding outline
font. As it was developed in 1980s, the PC hardware
was not fast enough to provide a real-time conversion
of METAFONT into its corresponding outline font.

Current PC hardware, however, is fast enough
to provide a real-time conversion of METAFONT into
its corresponding outline font. If METAFONT is used
directly in font engines like FreeType, then users can
easily generate variety of font styles. METAFONT

can also be used to produce various font styles like
bold, italic, and bold-italic with one source file unlike
outline fonts, which require development of a sepa-
rate font file for each style in a font family. These
advantages can also be applied to design CJK fonts
to produce various high-quality font styles because,
compared to alphabetic scripts, CJK characters are
both complicated in shape and expressed by combi-
nations of radicals [3].

In this paper, a FreeType MF Module for Free-
Type rasterizer is proposed. The proposed module
enables a direct use of METAFONT in FreeType ras-
terizer just like any other default outline and bitmap
font modules in it. With FreeType MF Module, users

TUG 2018 j 10

preliminary draft, June 15, 2018 17:57 preliminary draft, June 15, 2018 17:57

? 2 preliminary draft, June 15, 2018 17:57 TUGboat, Volume 0 (9999), No. 0

don’t need to pre-convert METAFONT into its corre-
sponding outline font before using it with FreeType
rasterizer as FreeType MF Module automatically per-
forms this. It allows users to easily generate variants
of font styles by applying different parameter val-
ues. This module is directly installed in FreeType
rasterizer just like its default font modules so, there
is no dependability and performance issues. We have
tested our proposed module by generating different
font styles with METAFONT and compared its perfor-
mance with default modules of FreeType and other
researches.

This paper is organized as follows. In Sec-
tion 2, the related research regarding font mod-
ules and libraries are explained. The architecture
of FreeType MF Module is explained in Section 3.
The authors have tested the FreeType MF Module by
demonstrating how FreeType can provide support for
METAFONT directly in Section 4. FreeType MF Mo-
dule’s performance is also compared with FreeType
default modules and other researches in this section.
Section 5 gives concluding remarks.

2 Related research and their problems

MFCONFIG [4] is a plug-in module for Fontconfig [5].
It enables the use of METAFONT on Linux font sys-
tem. Figure 1 shows the architecture of MFCONFIG
module linked with Fontconfig.

Figure 1: Basic architecture of MFCONFIG module

Although MFCONFIG supports METAFONT in
Linux font system, it has performance and depend-
ability problems. Since MFCONFIG is plugged into
the high-level of font system i.e. Fontconfig, and
not directly plugged inside FreeType, it makes its
performance very slow compared to the font-specific
driver modules supported by FreeType. Whenever
the client application sends a METAFONT file request,
Fontconfig communicates with MFCONFIG, per-
forms operations, and then sends input to FreeType
for rendering text. This whole process becomes slow

because of the high-level operations before FreeType
receives its input.

Other than the performance problem, MFCON-
FIG also has a dependability problem. As it is depen-
dent on Fontconfig library, this means that if there is
a font environment where there is no Fontconfig, then
this module cannot be used. Fontconfig is mainly
used in Linux font system for locating fonts and no
other operating systems, so MFCONFIG cannot be
supported in them.

VFlib [6], a virtual font library, is a font ras-
terizer developed for supporting multilingual fonts.
VFlib can process fonts which are represented in
different font formats and outputs glyphs as bitmap
images from various font files. VFlib supports many
font formats like TrueType, Type 1, GF, and PK
fonts [7] etc. It provides a unified API for accessing
different font formats. A new module can be added
in this font library for adding support for META-
FONT but this library has its own drawbacks; as
it supports many different font formats and with a
database support it can be very heavy font library for
embedded systems. It is also dependent on additional
font libraries like FreeType engine for TrueType font
support, T1lib [8] for Type 1 font support so it has
its dependency problems as well. Therefore, VFlib
is not suitable to add support for METAFONT.

FreeType is a font rasterizer to render fonts and
it can produce high quality output for mainly two
kinds of font formats, vector and some bitmap font
formats. FreeType mainly supports font formats such
as TrueType, Type1, Windows, and OpenType fonts
using same API irrespective of their font formats.
Although FreeType supports many different font
formats but it doesn’t provide any support for META-
FONT directly. If there is a module for FreeType
that directly supports METAFONT then users can
take the advantages of METAFONT by generating
variants of font styles by just changing parameter
values. MFCONFIG module problems can also be
resolved using this module. FreeType can also be
used for supporting TEX oriented fonts and not only
outline or bitmap fonts.

The proposed FreeType MF Module in this pa-
per uses the process for printing METAFONT from
MFCONFIG module. FreeType MF Module intends
to solve the two problems of MFCONFIG module.
METAFONT can be used with any system having
FreeType using the proposed module. As it is imple-
mented just like any other default FreeType module,
it can be easily installed or uninstalled.

TUG 2018 j 11

preliminary draft, June 15, 2018 17:57 preliminary draft, June 15, 2018 17:57

TUGboat, Volume 0 (9999), No. 0 preliminary draft, June 15, 2018 17:57 ? 3

3 Implementation of FreeTypeMFModule
in FreeType rasterizer

3.1 FreeTypeMFModule as an internal
module of FreeType

FreeType can support various font formats. Process-
ing a font file corresponding to its format is done
by an internal module in FreeType. This internal
module is called a font driver. FreeType contains a
configuration list of all the driver modules installed in
a specific order. When FreeType receives a request of
font file from an application, it passes this request to
the driver module mentioned on the top of the list for
processing. This module performs some internal op-
erations to check if this font format can be processed
or not. If this driver module supports this request, it
performs all other operations to process this font file
request. Otherwise this font file request is sent to
the second driver module mentioned in the list. This
process continues until a font driver is selected for
processing the font file request. If no font driver can
process the request, an error message is sent to the
client application. Similarly, FreeType MF Module is
directly installed inside FreeType just like its other
internal modules. When the client application sends
a request of METAFONT file, FreeType MF Module
receives this request and processes it. Figure 2 shows
how FreeType will select a driver module for process-
ing a METAFONT file request.

Figure 2: Process of selecting a module in FreeType

FreeType MF Module consists of three sub-mod-
ules: Linker module, Administrator module, and
Transformation module.

3.2 Linker Module

Linker module is the starting point of FreeType MF-
Module. It is mainly responsible for linking Free-

Type internal modules with FreeType MF Module.
It is divided into two parts: inner meta interface and
outer meta interface. Inner meta interface receives
font file request from internal modules and delivers

it to Administrator module for processing. After
processing by Administrator module, outer meta
interface delivers the response to internal modules
for further operations. The process of Linker module
is shown in Figure 3.

Figure 3: Linker module

3.3 Administrator Module

The core functionality of FreeType MF Module is
performed in Administrator module. This module
is divided into two layers; Search layer and Manage-
ment layer.

Search layer is responsible for finding all the
installed METAFONT fonts in a table. This table
contains a list of all the METAFONT fonts installed
and for fetching information related to them. Search
layer is implemented in Meta scanner and Meta table.

Management layer mainly performs following
tasks. (1) Checking whether the requested font file is
METAFONT or not, (2) Checking the cache if the cor-
responding outline font for the METAFONT request is
already stored. If yes, it directly sends the response
from the cache. This functionality is implemented to
achieve better performance and re-usability. (3) If
the outline font is not prepared in the cache this re-
quest is sent to Transformation layer. (4) The outline
font prepared by Transformation layer is stored in
the cache (5) The response is sent back to FreeType
internal modules by management layer. Management
layer is implemented in Meta analyzer, Meta request,
and Meta cache. Figure 4 shows the Administrator
module and its sub layers.

TUG 2018 j 12

preliminary draft, June 15, 2018 17:57 preliminary draft, June 15, 2018 17:57

? 4 preliminary draft, June 15, 2018 17:57 TUGboat, Volume 0 (9999), No. 0

Figure 4: Administrator module

Figure 5: Transformation module

3.4 Transformation Module

Transformation module is mainly responsible for con-
verting the METAFONT file into its corresponding
outline font file. If the outline font file for a requested
METAFONT file doesn’t exist in the table then Ad-
ministrator module sends the request to Transforma-
tion module. This module processes the request and
returns the corresponding outline font file to Admin-
istrator module. Figure 5 shows how Transformation
module converts METAFONT files into corresponding
outline files.

3.5 METAFONT support in FreeType using
FreeTypeMFModule

As shown in the Figure 6, FreeType MF Module is
an internal module of FreeType which is responsible

for processing METAFONT file request. First an ap-
plication sends a font file to FreeType (step 1). If
all other driver modules fail to process this font file
request, this request is sent to FreeType MF Module
through Linker module. Inner meta interface deliv-
ers this request to Administrator module (step 2).
Meta request in Administrator module receives all
information of this font file request and sends it Meta
Analyzer to check if this font file is METAFONT or
not (step 3). If this font file is not METAFONT this
request is sent back to FreeType (step 3a). If this
request is METAFONT file, Meta analyzer checks if
this METAFONT file is installed or not by scanning
Meta table. If this METAFONT information is not
found in Meta table an error is sent back to FreeType
internal modules(step 3b). There can be a scenario in
which METAFONT is installed but its corresponding
outline font is not stored in the cache. In this case,
Meta cache is scanned to check if the corresponding
outline file is stored in it (step 4). If it is already
stored in the Meta cache with the same style param-
eters as requested, it is directly sent to FreeType
(step 4a). If it is not stored in the Meta cache, the
request is sent to Transformation layer (step 4b).
Transformation layer converts the METAFONT file
into its corresponding outline font by applying re-
quested style parameters (step 5). Outline font is
returned from Transformation module to adminis-
trator module where the Meta cache is updated for
future re-usability (step 6). Outer Meta interface
returns this outline font to core FreeType module for
further processing (step 7). Lastly, FreeType renders
this outline font that was made from the requested
METAFONT with the styled parameter values.

The FreeType MF Module is perfectly compati-
ble with the standard FreeType rasterizer. FreeType-
MF Module provides direct support of METAFONT

in FreeType rasterizer just like its default Type1
driver module, TrueType driver module etc. The
module manages METAFONT and its conversion to
corresponding outline font. Client applications can
request for any style parameters of METAFONT , Fr-
eeType MF Module processes them and the result
can be easily displayed on the screen. As it is di-
rectly implemented inside FreeType rasterizer, it has
no dependability problems as discussed in Section
2. FreeType MF Module can easily generate mul-
tiple font families like bold, italic, and bold-italic
depending on the style parameter values passed to
it.

4 Experiment and performance evaluation
of FreeTypeMFModule

For the experiment, that FreeType MF Module can

TUG 2018 j 13

preliminary draft, June 15, 2018 17:57 preliminary draft, June 15, 2018 17:57

TUGboat, Volume 0 (9999), No. 0 preliminary draft, June 15, 2018 17:57 ? 5

Figure 6: FreeType MF Module

Table 1: FreeSerif font family

Table 2: Various font styles with Computer Modern

be used to generate different font styles from META-
FONT the authors have used a font viewer applica-
tion in Linux. This application directly uses Free-
Type to render fonts. It takes a font file and text

as input and displays the styled text on the screen
using X windows system. For testing, the authors
have used all four styles of FreeSerif font family of
TrueType font i.e. normal, bold, italic, bold-italic,
and Computer Modern font of METAFONT.

Table 1 shows the FreeSerif font family in four
different styles. These styles are generated by using
four different font files. Table 2 shows Computer
Modern font in same four styles using different pa-
rameter values. These styles are made from one
single METAFONT source file. The parameter values
which are modified for generating these font styles
are hair, stem, curve, and slant. The three parame-
ters, hair, curve, and stem are related with the bold
style. Incrementing their value, increases the bold-
ness of text. These parameter values are different
for lower-case and upper-case characters. The slant
parameter is related with italic style. As shown in
the Table 2, for normal style the default values of
all these four parameters are used. For bold style,
the values used are stem+20, hair+20, curve+20,
and slant parameter default value. Default values of
stem, hair, curve, and slant= 0.4 are used for italic
style. Whereas, stem+20, hair+20, curve+20, slant
= 0.4 values are used for bold-italic style. Similarly,
many other font styles can be generated with this

TUG 2018 j 14

preliminary draft, June 15, 2018 17:57 preliminary draft, June 15, 2018 17:57

? 6 preliminary draft, June 15, 2018 17:57 TUGboat, Volume 0 (9999), No. 0

(a) FreeSerif normal style (b) FreeSerif bold style

(c) FreeSerif italic style (d) FreeSerif bold-italic style

Figure 7: Dataset printed with FreeSerif font family

(a) default values of stem, hair, curve, slant (b) stem+20, hair+20, curve+20, slant default

(c) default values of stem, hair, curve, slant= 0.4 (d) stem+20, hair+20, curve+20, slant = 0.4

Figure 8: Dataset printed with Computer Modern

single METAFONT source file by changing parameter
values.

For the performance testing of FreeType MF -
Module compared with FreeType default driver mod-
ules and MFCONFIG module, an experiment was
performed using the same font viewer application.
All four font files of FreeSerif in Table 1 were used for
testing TrueType driver module of FreeType, Com-
puter Modern source file was used with four different
parameter values to generate four different styles in
Table 2. For the text input, a sample dataset was
used, which comprised of 2,000 words and over 8000
characters, including space character. The average
time per millisecond between the font style request
from application and the successful display of styled
text on the screen was computed and compared.

Figure 7 shows the result of printing four Free-
Serif fonts and Figure 8 shows the result of four
Computer Modern METAFONT fonts. Table 3 shows
the average time to print the dataset with FreeSerif
font by TrueType driver module, Computer Mod-
ern font by FreeType MF Module, and Computer
Modern font with MFCONFIG module. The de-
fault TrueType driver module of FreeType takes 3
ms to 7 ms to print dataset with all four families of
FreeSerif font. FreeType MF Module takes 4 ms to
10 ms to print this dataset with Computer Modern
font. Whereas, MFCONFIG module took 50 ms to
120 ms to display similar size dataset.

The performance of FreeType MF Module is com-
paratively slower than default FreeType driver mod-
ule, because it takes an extra time to convert a META-
FONT into its corresponding outline font by applying
styled parameters. Whereas, FreeType MF Module
has a very good performance than MFCONFIG
module, because it is directly implemented inside
FreeType rasterizer just like any other internal mod-
ule of FreeType and it is not dependent on any other
font libraries like Fontconfig and Xft [9] etc. Hence,
we can conclude that FreeType MF Module can be
used in FreeType rasterizer for providing direct sup-
port of METAFONT in almost real time on a modern
Linux PC.

FreeType MF Module is a suitable module to
provide users with parameterized font support on
the screen by applying style parameters directly to
the METAFONT font. Users don’t need to pre-convert
METAFONT into its corresponding outline font be-
fore using with FreeType rasterizer, as FreeType MF -
Module automatically performs this. The users can
use METAFONT easily just like TrueType fonts using
FreeType. FreeType MF Module has also overcome
the problems of MFCONFIG module. The perfor-
mance can be further improved by optimizing the
METAFONT converter in Transformation layer. Cur-
rently, the METAFONT converter works with mftrace
and autotrace programs. Future work will consider

TUG 2018 j 15

preliminary draft, June 15, 2018 17:57 preliminary draft, June 15, 2018 17:57

TUGboat, Volume 0 (9999), No. 0 preliminary draft, June 15, 2018 17:57 ? 7

Table 3: Average time to display dataset with TrueType driver, FreeType MF Module, and MFCONFIG

about proposed module optimization and direct us-
age of TEX bitmap fonts like GF and PK which are
not supported by FreeType rasterizer.

5 Conclusion

In this paper, we have proposed a module named
FreeType MF Module, which enables the direct sup-
port of METAFONT in FreeType rasterizer. Outline
fonts such as TrueType and Type1 don’t allow users
to easily change font styles. For every different font
style in outline fonts, a new font file is created which
can be very time consuming and costly process for
CJK fonts which consists of large number of charac-
ters. To overcome this disadvantage of the outline
font production method, METAFONT font can be
used.

FreeType supports many different font formats
like TrueType, Type1, windows font etc. but doesn’t
provide any support for METAFONT . The proposed
module, FreeType MF Module is installed directly
inside FreeType and can be used just like other in-
ternal modules to support METAFONT font. The
authors have demonstrated experiments which shows
that variety of styled fonts can be generated from
METAFONT by adjusting parameter values in single
METAFONT source file with FreeType MF Module in
almost real time.

Acknowledgement

This work was supported by Institute for Information
& Communications Technology Promotion (IITP)
grant funded by the Korean government(MSIT) (No.
R0117-17-0001, Technology Development Project for
Information, Communication, and Broadcast).

References

[1] Donald E. Knuth, Computers and Typesetting,
Volume C: The METAFONTbook. Addison-
Wesley, 1996.

[2] David Turner, Robert Wilhelm, Werner Lem-
berg, FreeType, www.freetype.org.

[3] Kim Jinpyung, et al. Basic Study of Hangeul
Font. Seoul: Korea Publishing, Research Insti-
tute, 1988.

[4] Choi Jaeyoung, MFCONFIG: METAFONT
plug-in module for Freetype rasterizer TUG
2016 (TUGboat, 2016): 163170.

[5] K. Packard, Keith Packard, Behdad Esfahbod,
et al. Fontconfig. www.fontconfig.org.

[6] H. Kakugawa, VFlib - a general font library
that supports multiple font formants, EuroTEX
conference, March 1998.

[7] Rokicki T, GFtoPK version 2.3,17 April 2001
https://www.tug.org/svn/texlive/trunk/Mast-
er/texmf-dist/doc/generic/knuth/mfware-
/gftopk.pdf?view=co.

[8] Menzner R, A library for generating char-
acter bitmaps from Adobe Type 1 fonts.
www.fifi.org/doc/t1lib-dev/t1lib doc.pdf.gz.

[9] Keith Packard, The Xft font library:
Architecture and users guide. Pro-
ceedings of the 5th annual conference
on Linux Showcase Conference, 2001.
https://keithp.com/keithp/talks/xtc2001/xft.-
pdf.

TUG 2018 j 16

preliminary draft, March 26, 2018 14:20 preliminary draft, March 26, 2018 14:20

TUGboat, Volume 0 (9999), No. 0 preliminary draft, March 26, 2018 14:20 ? 1

A rollback concept for packages and classes

Frank Mittelbach

Abstract

In 2015 a rollback concept for the LATEX kernel was
introduced. Providing this feature allowed us to
make corrections to the software (which more or
less didn’t happen for nearly two decades) while
continuing to maintain backward compatibility to
the highest degree.

In this paper we explain how we have now ex-
tended this concept to the world of packages and
classes which was not covered initially. As the classes
and the extension packages have different require-
ments compared to the kernel, the approach is dif-
ferent (and simplified). This should make it easy for
package developers to apply it to their packages and
authors to use when necessary.

Contents

1 Introduction ? 1

2 Typical scenarios ? 2

3 The document interface ? 2
3.1 Global rollback ? 2
3.2 Individual rollback ? 2
3.3 Specifying a version instead of a date ? 3
3.4 Erroneous input ? 3
3.5 Advice for early adopters ? 3

4 The package/class interface ? 4

5 Special considerations for developers ? 4
5.1 Early adopters ? 5
5.2 New major release in beta ? 5
5.3 Two major releases in use ? 5
5.4 Fine grained control (if needed) . . . ? 6
5.5 Using l3build for source management ? 6

6 Command summary ? 6
6.1 Document interface ? 6
6.2 Package and class interface ? 6

1 Introduction

In 2015 we introduced a rollback concept for the
LATEX kernel that enables a user to request a kernel
rollback to its state at a given date by using the
latexrelease package [1]. For example,

\RequirePackage[2016-01-01]{latexrelease}

would result in undoing all kernel modifications (cor-
rections or extensions) released between the first of

January 2016 and the current date.1 Undoing means
reinstalling the definitions current at the requested
date and normally also removing new commands
from TEX’s memory so that \newcommand and simi-
lar declarations do not fall over because a name is
already declared.

This mechanism helps in correctly processing
older documents that contain workarounds for issues
with an older kernel, issues that have since been fixed
in a way that would make the old document fail, or
produce different output, when processed with the
newer, fixed kernel.

If necessary, the latexrelease package also allows
for rolling the kernel forward without installing a
new format. For example, if the current installation
is dated 2016-04-01 but you have a document that
requires a kernel with date 2018-01-01, then this can
be achieved by starting it with
\RequirePackage[2018-01-01]{latexrelease}

provided you have of a version of the latexrelease
package that knows about the kernel changes be-
tween the date of your kernel and the requested date.
Getting this version of the package is simple as the
latest version can always be downloaded from ctan.
Thus you will be able to process your document cor-
rectly even when updating your complete installation
is not advisable or impossible for one or the other
reason.

However, rolling back the kernel state is only
doing half of the job: the LATEX universe consists of
many add-on packages and those were not affected by
a rollback request. We are therefore now extending
the concept by providing a much simpler method for
use in packages and classes, one that we think will
be straightforward for the developers and also easy
for document authors to use.

Unlike the method used by the kernel, which
tracks every change individually and is able to roll
back the code to precisely the state it had on any
given day, the new method for packages and classes is
intended to cover only major change points, e.g., the
introduction of major new features or (incompatible)
changes in syntax or interfaces.

As we will have only a few rollback points per
package or class the different releases are all stored in
separate files. In the main file it therefore only needs
a single declaration per release to enable rollback.
The downside is, of course, that for each release the
whole package code is stored, instead of managing

1 There are a few exceptions as some modifications are kept:
for example, the ability to accept date strings in iso format
(i.e., 2016-01-01) in addition to the older LATEX convention
(i.e., 2016/01/01). These are not rolled back because removing
such a feature would result in unnecessary failures.

TUG 2018 j 17

preliminary draft, March 26, 2018 14:20 preliminary draft, March 26, 2018 14:20

? 2 preliminary draft, March 26, 2018 14:20 TUGboat, Volume 0 (9999), No. 0

the differences between releases. This is one of the
reasons why this approach should be used only for
major changes, i.e., at most a handful in the lifetime
of a package.

From a technical perspective it is also possible
to use the method introduced with latexrelease in
package and class files, i.e., to mark up modifica-
tions using the commands \IncludeInRelease and
\EndIncludeInRelease—the package’s documenta-
tion [1] gives some advice on how to apply it in a
package scenario—but the use of these commands in
package code is cumbersome and results in fairly un-
readable code, especially when there are many minor
changes. This is an acceptable price to pay for fairly
stable code, such as the kernel itself, since it offers
complete control over the rollback to any date, but
it is not really practical in package or class develop-
ment and so, to our knowledge, it was therefore never
used up to now. Section 5.4 gives some advice how
to achieve fine-grain control in a somewhat simpler
manner.

2 Typical scenarios

A typical example, for which such a rollback func-
tionality would have provided a major benefit (and
will do for packages in the future) is the caption pack-
age by Axel Sommerfeldt. This package started out
under the name of caption with a certain user inter-
face. Over time it became clear that there were some
deficiencies in the user interface; to rectify these with-
out making older documents fail, Axel introduced
caption2. At a later point the syntax of that pack-
age itself was superseded, resulting in caption3 and
then, finally that got renamed back to caption. So
now older documents using caption will fail whilst
documents from the intermediate period will require
caption2 (which is listed as superseded on ctan but
is still distributed in the major distributions). So
users accustomed to copying their document pream-
ble from one document to the next are probably still
continuing to use it without noticing that they are
in fact using a version with defective and limited
interfaces).

Another example would be the fixltx2e package
that for many years contained fixes to the LATEX
kernel. In 2015 these were integrated into the kernel
so that today this package is an empty shell, only
telling the user that it is no longer needed. How-
ever, if you process an old document (from before
2015) that loads fixltx2e then of course fixes originally
provided package (like the corrections to the floats
algorithm). However, with a kernel rollback they
would get lost as they are now neither in the kernel

nor in the “empty” fixltx2e package if that doesn’t
roll back as well.

A somewhat different example would be the
amsmath package, which for nearly a decade didn’t
see any corrections even though several problems
have been found in it over the years. If such bugs
finally get corrected, then that would affect many
of the documents written since 2000, since their au-
thors may have manually worked around one or the
other deficiencies of the code. Of course, as with the
caption package, one could introduce an amsmath2,
amsmath3, . . . package, but that puts the burden on
the user to always select the latest version (instead
of automatically using the latest version unless an
earlier one is really needed).

3 The document interface

By default LATEX will automatically use the current
version of any class or package—and prior to offering
the new rollback concept it always did that unless
the package or class had its own scheme for providing
versioning, either using alternative names or by hand-
coded options that select a version.

3.1 Global rollback

With the new rollback concept all the user has to do
(if he or she wants their document processed with
a specific version of the kernel and packages) is to
add the latexrelease package at the beginning of the
document and specify a desired date as the package
option, e.g.,
\RequirePackage[2018-01-01]{latexrelease}

This will roll back the kernel to its state on that day
(as described earlier) and for each package and the
document class it will check if there are alternate
releases available and select the most appropriate
release of that package or class in relation to the
given date.

3.2 Individual rollback

There is further fine-grain adjustment possible: both
\documentclass as well as \usepackage have a sec-
ond (less known) optional argument that up to now
was used to allow the specification of a “minimal
date”. For example, by declaring
\usepackage[colaction]

{multicol}[2018-01-01]
you specify that multicol is expected to no older than
the beginning of 2018. If only an older version is
found, then processing such a document results in a
warning message:
LaTeX Warning: You have requested, on input

line 12, version ‘2018-01-01’ of package

TUG 2018 j 18

preliminary draft, March 26, 2018 14:20 preliminary draft, March 26, 2018 14:20

TUGboat, Volume 0 (9999), No. 0 preliminary draft, March 26, 2018 14:20 ? 3

multicol, but only version
‘2017/04/11 v1.8q multicolumn formatting
(FMi)’ is available.

The idea behind this approach is that packages sel-
dom change syntax in an incompatible way, but more
often add new features: with such a declaration you
can indicate that you need a version that provides
certain new features.

The new rollback concept now extends the use
of this optional argument by letting you additionally
supply a target date for the rollback. This is done
by prefixing a date string with an equal sign. For
example,
\usepackage{multicol}[=2017-06-01]

would request a release of multicol that corresponds
to its version in June 2017.

So assuming that at some point in the future
there will be a major rewrite of this package that
changes the way columns are balanced, the above
would request a fall back to what right now is the
current version from 2017-04-11. The old use of this
optional argument is still available because existence
or absence of the = determines how the date will be
interpreted.

The same mechanism is available for document
classes via the \documentclass declaration, and for
\RequirePackage if that is ever needed.

3.3 Specifying a version instead of a date

Specifying a rollback date is most appropriate if you
want to ensure that the behavior of the processing
engine (i.e., the kernel and all packages) corresponds
to that specific date. In fact, once you are finished
with editing a document, you can preserve it for
posterity by adding this line:
\RequirePackage[〈today’s-date〉]

{latexrelease}
This would mean that it will be processed a little
more slowly (since the kernel may get rolled back
and each package gets checked for alternate versions),
but it would have the advantage that processing it
a long time in the future will probably still work
without the need to add that line later.

However, in a case such as the caption package
or, say, the longtable package, that might eventually
see a major new release after several years, it would
be nice to allow the specification of a “named” release
instead of a date: for example, a user might want
to explicitly use version 4 rather than 5 of longtable
when these versions have incompatible syntax, or
produce different results.

This is also now possible if the developer declares
“named” releases for a package or class: one can then

request a named version simply by using this second
optional argument with the “name" prefixed by an
equal sign. For example, if there is a new version of
longtable and the old (now current) version is labeled
“v4”, then all that is necessary to select that old
version is
\usepackage{longtable}[=v4]

Note that there is no need to know that the new
version is dated 2018-04-01 (nor to request a date
before that) to get the old version back.

The version “name" is an arbitrary string at
the discretion of the package author—but note that
it must not resemble a date specification, i.e., it
must not contain hyphens or slashes, since these will
confuse the parsing routine.2

3.4 Erroneous input

The user interface is fairly simple and to keep the
processing speed high the syntax checking is therefore
rather light. Basically the standard date parsing from
the kernel is used, which is rather unforgiving if it
finds unexpected data.

Basically any string containing a hyphen or a
slash will trigger the date parsing which then expects
two hyphens (in case of an iso date) or two slashes
(otherwise) and other than these separators, only
digits. If it does find anything else, chances are
that you get a “Missing \begin{document}” error
or, perhaps even more puzzling, a strange selection
being made. For example, 2011/02 may mean to us
February 2011 but for the parsing routine it is some
day in the year 20 a.d. That is, it gets converted to
the single number 201102, so that, when this number
is compared numerically to, say, 20000101, it will
be the smaller number, i.e., earlier, even though the
latter is the numerical representation of January 1st

2000.
So bottom line: do not misspell your dates and

all is fine. That hasn’t been a problem in the past,
so hopefully it will be okay to continue with just this
light checking. If not, then we may have to extend
the checks made during parsing.

3.5 Advice for early adopters

If your document makes use of the new global roll-
back features, then it should be processable at any
installation later than early 2015, when the latexre-
lease package was first introduced. If the installation
is even older, then it needs upgrading or, at least,
one has to add a current latexrelease package to the
installation.

2 Of course, more sophisticated parsing could fix this, but
we use the fast and simple parsing that scans for slashes or
hyphens with no further analysis.

TUG 2018 j 19

preliminary draft, March 26, 2018 14:20 preliminary draft, March 26, 2018 14:20

? 4 preliminary draft, March 26, 2018 14:20 TUGboat, Volume 0 (9999), No. 0

However, if your document uses the new concept
for individual rollbacks of packages or classes (i.e.,
with the =... syntax in the optional argument),
then it is essential to use a LATEX distribution from
2018 or later.3 Earlier distributions will choke on
the equal sign inside the argument as they will only
expect to see a date specification there.

4 The package/class interface

The rollback mechanism for packages or classes is
provided by putting, at the beginning of the file con-
taining the code, a declaration section that informs
the kernel about existing alternative releases.

These declarations have to come first and have
to be ordered by date because the loading mechanism
will evaluate them one by one and, once a suitable
release is found, it will be loaded and then processing
of the main package or class file will end. If there are
no such declarations, or if the older releases are all
ruled out for one reason or the other, processing will
continue as normal by reading all of the main file.

The old releases are stored in separate files, one
for each release, and we suggest using a scheme such
as 〈package-name〉-〈date〉.sty as this is easy to un-
derstand and will sort nicely within a directory. How-
ever, any other scheme will do as well, as the name
will be part of the declaration.

The contents of this release file will will be sim-
ply the package or class file as used in the past. This
means that before making a new version all you need
to do is to make a verbatim copy of the current file
and give it a new suitable name.4

This way it is also very simple to include older
releases after the fact, e.g., to take our famous caption
example, Axel could provide the very first version of
his package as caption-〈some-date〉.sty and cap-
tion2 as caption-〈another-date〉.sty in addition to
adding the necessary declarations to the current re-
lease.

The necessary declarations in the main file are
provided by the two commands, \DeclareRelease,
and \DeclareCurrentRelease, that must be used
in a release selection section at the beginning of
the file. For each old release you can to specify a

3 Alternatively you can try to roll the installation forward,
by using a current latexrelease package together with a suitable
date option.

4 Instead of making a verbatim copy you may want to
adjust the commentary added by docstrip at the top of the
file. Though technically correct, it is a bit misleading if the file
still contains the phrase “was generated from . . . ”, given that it
is now a frozen version representing a particular state in time,
rather than being a generated one that can be regenerated
any time as necessary.

〈name〉, the 〈date〉 when it was first available and
the 〈external-file〉 that contains the code.
\DeclareRelease

{〈name〉}{〈date〉}{〈external-file〉}
Either the 〈name〉 or the 〈date〉 can be empty, but
not both at the same time. Not specifying a 〈date〉
is mainly intended for providing “beta” versions that
people can explicitly select but that should play no
role in date rollbacks.

The current release also gets a declaration, but
this time with only two arguments: a 〈name〉 (again
possibly empty) and a 〈date〉 since the code for this
release will be the rest of the current file:
\DeclareCurrentRelease{〈name〉}{〈date〉}
This declaration has to be the last one in sequence
as it will end the release selection processing.

The order of the other releases has to be from
the oldest to the newest since the loading mechanism
compares every release declaration with the target
rollback date and stops the moment it finds one that
is newer than this target date. It will then select the
one before, i.e., the last one that is at least as old as
the target. Since the \DeclareRelease declarations
with an empty 〈date〉 argument do not play a role in
date rollbacks, they can be placed anywhere within
the sequence.

If the rollback target is not a date but a name,
the mechanism works in the same way with the ex-
ception that a release is selected only if the name
matches. If none of the names is a match, then the
mechanism will raise an error and continue by using
the current release.

5 Special considerations for developers

While loading an older release of a package or class,
both types of release declarations are made no-ops,
so that, in case the files containing the code also
have such declarations, they will not be looked at or
acted upon. This makes it possible to simply move
the code from an old release into a new file without
the need to touch it at all. Of course, removing those
declarations doesn’t hurt and will make loading a
tiny fraction faster.

As mentioned earlier, best practice for release
names is to append the release date to the package
or class name, but the 〈external file〉 argument also
allows other naming schemes.

You may have wondered why you have to make
a declaration for the current release, given that later
on there will be a \Provides... declaration that
also contains a date and a version string and thus
could signal the end of the release declaration section.
The reason is as follows: if you want to give your

TUG 2018 j 20

preliminary draft, March 26, 2018 14:20 preliminary draft, March 26, 2018 14:20

TUGboat, Volume 0 (9999), No. 0 preliminary draft, March 26, 2018 14:20 ? 5

current release a name, then it is best practice to
to make that name something simple like v4 (and
keep it that way) even though your current package
is technically already at v4.2c and is listed that way
in the \ProvidesPackage declaration. For the same
reason (given that not every minor change will be
provided as a separate version to which people can
roll back), the 〈date〉 in \DeclareCurrentRelease
reflects when that major release was first introduced.
Thus, after a while that date may well be earlier
than the current package date.

5.1 Early adopters

For one or two years after the introduction of this
new method, there is a danger that people with older
installations will pick up an individual package from,
say, ctan that contains release declarations with
which their kernel (from 2017 or earlier) is unable to
cope. It may therefore be a good idea for developers
to additionally add the following lines at the top
of packages or classes when using the new rollback
feature:
\providecommand\DeclareRelease[3]{}
\providecommand\DeclareCurrentRelease[2]{}

This way the declarations will be bypassed in case
the kernel doesn’t know how to deal with them.

As an alternative one could add a statement
that requires a minimal kernel version, i.e.,:
\NeedsTeXFormat{LaTeX2e}[2018-04-01]

so that users get a clear error message that they need
to update their installation if they want to use the
current file.

5.2 New major release in beta

If you are working on a new major release of your
package or class, you may want to get it out into the
open so that people can try it and provide feedback.
In that case current release is still the official release
that should be selected by default and the “beta”
version should only be selected if explicitly requested.
To achieve that you could add
\DeclareRelease{beta}{}{〈external-file〉}
before
\DeclareCurrentRelease{}{〈some-date〉}
so that testers can explicitly access your new version
by asking for it via
\usepackage[〈options〉]{〈package〉}[=beta]
while everyone loading the package without the extra
optional argument would get the current release.

5.3 Two major releases in use

One special scenario for which this method is only
partially suitable is the case where we have two

major releases that are in continuing parallel use
and that are both under active maintenance (i.e.,
receive bug fixes and other updates once in a while).
In that case it is necessary to make one version the
primary release and allow the other (and its updates)
to be accessed only via names: a date rollback can
obviously only work for one line of development.

For example, if both v4 and v5 of package foo are
in use and you consider v5 as being the go-forward
version (even though you are still fixing bugs in the
v4 code), then you can deploy a strategy as in the
following example:

% last v4 only release:
\DeclareRelease{}{2017-06-23}

{foo-2017-06-23.sty}
% first v5 release:
\DeclareRelease{}{2017-08-01}

{foo-2017-08-01.sty}
% patch to v4 after v5 got introduced:
\DeclareRelease{v4.1}{}

{foo-v4-2017-09-20.sty}
% patch to v5:
\DeclareRelease{}{2017-08-25}

{foo-2017-08-25.sty}
% another patch to v4:
\DeclarelRelease{v4.2}{}

{foo-v4-2017-10-01.sty}
% nick name for the latest v4 if you
% want users a simple access via a name:
\DeclareRelease{v4}{}

{foo-v4-2017-10-01.sty}

% current v5 with further patches:
\DeclareCurrentRelease{v5}{2018-01-01}

This way users can use \usepackage{foo}[=v4] to
get the latest v4 release or use the more detailed
release names such as [v4.1]. Of course, this means
that if package foo was requested in version v4 (or
one of its sub-releases) it will not change even if there
is is a general rollback request via latexrelease.

Normally, this should be just fine, but if you
really require automatic date rollback functionality
on both major versions, because the two are really
equal in rank, then you are essentially saying they
are independent works with some common root. In
that case you should give them two separate names,
e.g., call the older version foo-v4 when you introduce
version 5 of foo and from that point on manage the
history independently.5

5 While in rare cases this might be the best approach, try
to avoid it as long term management will be problematical,
to say the least.

TUG 2018 j 21

preliminary draft, March 26, 2018 14:20 preliminary draft, March 26, 2018 14:20

? 6 preliminary draft, March 26, 2018 14:20 TUGboat, Volume 0 (9999), No. 0

5.4 Fine grained control (if needed)

As mentioned earlier, the interface is deliberately
designed to be simple and easy to use. As a price,
each rollback point is (by default) a separate file. The
idea behind this is that there is not much point in
managing each and every small change as a rollback
point, but only those that possibly alter the behavior
of a package within the document so that, when
processing older documents, it is important to be
able to get back to an earlier state.

However, if you find yourself in a situation where
you have many rollback files with only minor differ-
ences, and you consider this unsatisfactory, then here
is one other command at your disposal that you can
use to combine several files into a single file. Within a
file corresponding to a \DeclareRelease declaration
you can use
\IfTargetDateBefore{〈date〉}

{〈before-date-code〉}{〈after-or-at-date-code〉}
This must be used after the release selection section
(if present) and has the following effect: If the user
requested, say, [=2017-06-01] then the mechanism
first selects the file that is supposed to be current on
that date, i.e., the release that was introduced on that
date or is the last one that was introduced before that
date. Now, if in this file we have a statement like the
above, then the 〈date〉 is compared to 2017-06-01
and depending on the outcome either 〈before-date-
code〉 or 〈after-or-at-date-code〉 is executed.

This way a single external file can hold rollback
information for several patches on distinct dates, but
of course, the burden is then on the developer to add
the appropriate declarations, which is a little more
work than just copying and renaming files.

The alternative is to use \IncludeInRelease
and \EndIncludeInRelease. The latexrelease pack-
age documentation [1] gives some advice on how to
apply those commands.

5.5 Using l3build for source management

If you use l3build [2] for managing your sources,
then it is necessary to ensure that the files for the old
releases are copied into the distribution. To support
this, the default configuration for l3build specifies
sourcefiles = {"*.dtx", ".ins",

"*-????-??-??.sty"}
i.e., all .dtx and .ins files, together with all .sty
files matching the naming convention suggested in
this article, are automatically included in the build.

If you prefer a different naming convention you
have to adjust this setting in the build.lua file of
your project. Otherwise you are ready to go without
any adjustments.

6 Command summary

6.1 Document interface

For a global rollback of kernel and packages, use
\RequirePackage[〈target-date〉]{latexrelease}
at the beginning of your document.

To request a rollback for a single package or
class, use the second optional argument with the
date preceded by an equal sign, i.e.,
\documentclass[〈options〉]{〈class〉}[=〈date〉]
\usepackage [〈options〉]{〈package〉}[=〈date〉]

6.2 Package and class interface

To declare an old or special release, use
\DeclareRelease

{〈name〉}{〈date〉}{〈external-file〉}
Leave the 〈name〉 argument empty if rollback should
be only via dates. Leave the 〈date〉 empty if this
special release should be accessible only via its name.

Always finish this release selection section with
a declaration for the current release:
\DeclareCurrentRelease{〈name〉}{〈date〉}
In this declaration you must provide a 〈date〉 but the
〈name〉 can be left empty (which is the usual case).

Within a release file (but after the release selec-
tion section), you can specify conditional code to be
selected based on a requested rollback date by using:
\IfTargetDateBefore{〈date〉}

{〈before-date-code〉}{〈after-or-at-date-code〉}

References

[1] The LATEX Team. The latexrelease pack-
age, April 2015. Available at https://www.
latex-project.org/help/documentation.

[2] The LATEX Team. The l3build package —
Checking and building packages, March 2018. The
file l3build.pdf should be part of your installa-
tion. Run “ ‘texdoc l3build” to find it.

� Frank Mittelbach
https://www.latex-project.org

TUG 2018 j 22

