
Liberate TEX:
Progress on Building a New
TEX-Language Interpreter

Doug McKenna
Mathemaesthetics, Inc.

Boulder, Colorado

TUG — 2014

The TEX Ecosystem Seems Fractured and Forked

I There’s TEX

I . . . or ε-TEX

I . . . or pdfTEX

I . . . or pdfLATEX

I . . . or LATEX or plain TEX or ConTEXt (multiple formats)

I . . . or LATEX3 or X ETEXor pdfX ETEX

I . . . or LuaTEX

I . . . or Omega (dead) or . . .

I . . . or T1 encodings or OpenType vs. TFM or . . .

It’s complex, messy, confusing. Can it be unified? Simplified?

Not without a complete re-write of the core TEX engine.

Philip K. Dick’s The Minority Report

A “precog” in Philip K. Dick’s short story The Minority Report is a
human with a special ESP power. From Wikipedia:

“The precogs sit in a room that is perpetually in half-darkness,
constantly talking nonsense to themselves that is incoherent
until it is analyzed by a computer and converted into
predictions of the future. This information is assembled by
the computer into the form of symbols before being transcribed
onto conventional punch cards that are ejected into various
coded slots. . . . [P]recogs are kept in rigid position by metal
bands, clamps and wiring, that keep them attached to special
high-backed chairs. Their physical needs are taken care of
automatically.”

TEX’s Source is Like a Software Precog

Replace predictions of the future in the foregoing quote with
high-quality automated typesetting. The engine’s source code

I Is focused on, and fabulously accomplished at, one thing

I Depended upon by an important segment of society

I But in other respects, almost decrepit, foreign, useless

I Lives in rigid stasis, writ in literate stone, topically changed

I Is protected by and strapped in a WEB, intubated with tangled
shell scripts, barely alive except by the grace of Web2C
life-support software, nursed by makefile minions, attended by
wizards, and—once in a blue moon—a Grand Wizard

I Like a prehistoric software insect, frozen in amber and time

I Is not a normal piece of modern, living, adaptable software.

I “Being literature” and “being software” have different goals

Rewriting TEX from Scratch — JSBox (for now)

TEX’s source code is what it is: a large set of interconnected
algorithms and data structures, relieved of as much redundancy in
time and space as possible. It is a platonic creature of its time and
its author. Leave it be, but let’s liberate its algorithms and services:

I JSBox is a personal project started in 2009 . . . and ongoing

I JSBox is not TEX: JSBox is a TEX-language engine

I Automated translation of TEX’s source code doesn’t suffice

I Being upwardly compatible with existing TEX code is hard

I JSBox wastes some space and time: inherent redundancies
reduce code fragility and enhance adaptability

I As simple, understandable, usable, portable as possible

I Tries to solve problems that TEX’s source code, its greater
ecosystem, and its users (including me) suffer from

TEX’s #1 Problem — It Is a Program

Solution:

I JSBox is a library for a client program to use

I The library instantiates one or more TEX language interpreter
“object”s in the memory space of its client program

I Each interpreter can be client- or job-configurable at
run-time: TEX82, ε-TEX, X ETEX, JSBox, or other feature levels

I The client program mediates between each interpreter and
both the system and the user

I JSBox is 100% system-agnostic: the client performs all
system-related services, memory allocation, file I/O, etc.

I Client monitors, suppresses, simulates, or otherwise manages
all I/O or memory allocation; interpreters are “sandbox-able”

I Interpreter exists independent of whether a job is done or not

#2 — TEX Is Written in WEB/Pascal

Solution:

I JSBox is written in pedal-to-the-metal, portable C

I Compilable for ILP32 and LP64 architectures (ILP64 soon)

I No dependencies on any other software or libraries

I About 100,000 lines of code, half of it comment(ary)

I Does not use literate programming tools (CWEB, etc.)

I Instead, literate commenting using literac conventions

I Currently implemented as one C file, two header files

I Build time for edit-compile-link-run testing is a few seconds

I Client programs can be written in C, C++, Objective-C,
Python, Swift, etc.; whatever can link to and call a C function.

#3 — Formats

I Dumped formats are an unnecessary optimization, due to
Problem #1

I They are modes that harm users, and complicate tech support

I The language itself should require/permit a document to
declare the format it relies on, just like packages

I %!TEX TS-program = pdflatex

or similar is an ugly, band-aid comment hack

I Design seems based on 1970s-era core dump hack
(see, e.g., Adventure game state restoration on a PDP-20)

I Formats should not incorporate precompiled language
hyphenation databases, which should be job- or locale-based

#3 — Formats

Solution:

I JSBox compiles plain.tex in .008 second (at 2.8GHz)

I And it reads and compiles LATEX’s 12000 lines of pure TEX
code (with over 30 TFM metric files) in .06 second

I A job as an object is divorced from the language interpreter’s
existence and initialization level

I As an interpreter initialization level, a format need only be
read once (under the hood—the document doesn’t care)

I When a job is done, interpreter state should return to its
pre-job state; i.e., format definitions are still there

I Namespaces for formats seem a much better solution

I JSBox will avoid implementing \dump unless proven necessary

#4 — 8-bit Character Codes

I JSBox internally traffics in full 21-bit Unicode code points

I TEX algorithms, data structures re-implemented for Unicode

I Input can be a mixed stream of 1-, 2-, or 4-byte integers,
client-supplied from memory (a text buffer) or from a file

I Input can be UTF-8 (it’s a transport format, not an encoding)

I Client can use fast, native file system calls

I After conversion to internal Unicode, the first 256 8-bit code
points can be mapped to any other 21-bit Unicode code points

I Mappings are client- or job-configurable at run-time

I All strings internally stored as UTF-8

I All output in human-readable text is UTF-8

I Client has final say and can convert UTF-8 to anything else

#5 — Too Few Character Categories

Unicode supports over 1,000,000 characters (code points)

I JSBox (very generously) allocates 8 bits for CatCodes
(syntactic character categories)

I First 16 are, of course, the usual TEX syntactic code values

I All 240 others, with one exception (16 ?), are reserved

I No current TEX code assigns CatCode values above 15

I Therefore, new CatCodes can be upwardly compatible

I And gated by run-time feature level

I New values must be agreed-upon by entire TEX community

#6 — No Namespaces

Solution:

I CatCode 16: namespace separator character

I For instance, a ’.’, a ’@’, or any Unicode code point

I JSBox’s scanner recognizes namespace separater characters as
a means of drilling down into nested namespaces to resolve
macro names and deliver a single token to higher levels of
interpretation

I For example,
\plain.obeylines

or \latex.fancyvrb.VerbatimFootnotes
etc.

I Unresolved forward or circular references are handled on the fly

#6 — No Namespaces

I Namespaces can be named and created using, e.g.,
\namespacedef\mydict

I Pushed onto or popped from scanner’s current context stack:
\beginnamespace\mydict
. . .
\endnamespace

I Like font names—invoke the name to push and make current:
\latex
\verb"foo"
\endnamespace
\verb"foo" % \verb no longer resolvable

Questions remain: What belongs to a namespace? Active
characters? Upper/lowercase mappings? CatCode definitions?

#7 — Pages Converted/Shipped Too Soon

TEX converts each page (as it becomes full) to DVI or PDF, then
ships it, so as to recycle precious memory.

But memory is a lot more plentiful 30 years later.

This also works against two- or multi-page optimizations.

Solution:

I JSBox logically ships each page, with all Output nodes
executed

I But can also keep all final “shipped” page data structures,
with \specials retained, in memory

I Page data structures not recycled until next job begins

I Any (random) page is later exportable to client as needed

I DVI and PDF steps can be skipped to export directly to client

I Client then draws into a scrolling view (an eBook reader)

#8 — Tracing Interpreter Execution

TEX only traces about 75% of what it’s doing.
But all hidden state creates invariably confusing modes.

I At least 1/3 of the code in JSBox is devoted to full tracing

I No generic tracing; primitives trace themselves

I Indented execution contexts; lines are assumed arbitrarily long

I Indentation for subordinate lines of tracing information

I Vertical whitespace between classes of log file output

I Commands that are interrupted (to recursively expand or
collect arguments, by an error message) are marked as such
and re-trace themselves when done

I Alignment stages when constructing tables are traced

I Conditional tests shown more clearly

I File positions where files are not found can be traced.

Other Debugging Aids

I Ability to trace exactly one invocation of one macro

I Character data presented in multiple value formats

I Original names and types when restoring group context values

I Better skip glue origination labeling

I Many design decisions made with log searchability in mind

I For example, all box nodes given unique (per job) IDs

I Integral \showfont OpenType or TFM font metric dumps

I JSBox \debugger primitive enables TEX source to create a
breakpoint in interpreter’s execution loop

I Data structure examination with IDE debugger now possible

#9 — Error Reporting

TEX’s error messages are hard to understand, formatted in a way
that violates the user’s view of the world, two-level, and sometimes
unnecessarily confusing.

Solution:

I No generic error reporters (e.g., misleading \badness error)

I All error messages in JSBox have been completely rewritten

I All errors provide as much information as possible up front; no
“failure-to-communicate” secondary reports

I Token being executed, from a compiled token list, or from file,
is highlighted on a line user will recognize

I Structured error/warning messages can be packaged for
client’s GUI use outside of log file

I Optional compatibility warnings for run-time feature levels

#10 — No Integral OpenType Fonts

Solution:

I JSBox parses OpenType font metrics, tables, features, and
whatever else is needed to measure glyphs (very fast, too)

I ’maxp’, ’head’, ’name’, ’cmap’, ’hhea’, ’O/2’ ’htmx’ ’post’,
’GPOS’, ’GSUB’, ’kern’, ’TeX ’, ’MATH’ tables

I Font data structures designed to be union of TFM and
OpenType information

I Subroutines to handle, e.g., ligatures or extensions, can be
made font-type-specific, within one job

I Many sub-problems left to solve; X ETEX primitives to
incorporate; font feature support; etc.

#11 — Hyphenation Databases

I U.S. English database is pre-compiled into JSBox

I Hyphenation data should not be part of a format,
pre-compiled or not; usually locale-dependent

I Nor job- nor interpreter-specific

I Multiple languages in one job are not very common

I Databases should be dynamically loaded by library as needed,
and shared among instantiated interpreters

I With interpreter- or job-specific overrides/updates as needed

I JSBox keeps separate “tries” for separate language codes

I Some time-optimization for tries, but (currently) not space

I Therefore . . . no artificial limit on number of languages

#12 — Fixed-Point Dynamic Range

TEX uses an artificially halved fixed-point arithmetic dynamic
range, so that any two scaled integers can be added without
worrying about overflow. But multiple sums can still overflow, with
wraparound garbage results.

Solution:

I All fixed-point measures in JSBox are 32-bit [16:16] format

I When recompiled for ILP64 architecture, [48:16] format

I No hacks that use fixed-point bits as special flag values

I Calculations check for overflow or boundary conditions,
including most-negative twos-complement number

I Overflows don’t wrap; they saturate to most positive, or most
negative, fixed-point number

I Box content summations in the average case need no overflow
checking, but are checked again in the exceptionally large case

Current State of JSBox

I JSBox functionally conforms with Knuth’s "trip.tex" test

I All measurements the same, all data structures “the same”

I Does not produce the same log file, so a diff won’t work

I http://www.mathemaesthetics.com/JSBox/triplog.pdf

I This 200+ page log file shows what “trip.tex” does

I But . . . JSBox is not yet ready for prime-time

I Need to get it to typeset my own LATEX documents first

I Need to understand what kpathsea does, and how to avoid
the messes it enables

I Some remaining ε-TEX primitives are still unimplemented

I Plenty of OpenType layout work to do

I Giant balance between simplicity and generality

“Congratulations on a massive achievement” — Don Knuth

http://www.mathemaesthetics.com/JSBox/triplog.pdf

Demo

	TeX's Ecosystem Seems Fractured and Forked
	Philip K. Dick's The Minority Report
	TeX's Source is Like a Software Precog
	Rewriting TeX from Scratch — JSBox (for now)
	TeX's #1 Problem — It Is a Program
	#2 — TeX Is Written in WEB/Pascal
	#3 — Formats
	#3 — Formats
	#4 — 8-bit Character Codes
	#5 — Too Few Character Categories
	#6 — No Namespaces
	#6 — No Namespaces
	#7 — Pages Converted/Shipped Too Soon
	#8 — Tracing Interpreter Execution
	Other Debugging Aids
	#9 — Error Reporting
	#10 — No Integral OpenType Fonts
	#11 — Hyphenation Databases
	#12 — Fixed-Point Dynamic Range
	Current State of JSBox
	Demo

