
preliminary draft, July 21, 2014 11:58 preliminary draft, July 21, 2014 11:58

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 21, 2014 11:58 901

MacTeX Design Philosophy vs TeXShop
Design Philosophy

Richard Koch

I went to the Apple Developer Conference in
May, 2000. Developers at this conference were
supposed to receive the release version of OS X.
In the keynote address, Steve Jobs announced
that the new release would be renamed OS X
Public Beta with a price reduced from $130 to a
handling fee of $15. After the keynote, a knowl-
edgable friend translated : “OS X has been de-
layed by a year.”

As a sop to the audience, Apple held a software
raffle during this conference, the only time I’ve
heard of them doing so. Every developer got
something, but it soon transpired that almost
everybody got a schlocky piece of software on
a CD, shrink wrapped against a flimsy piece of
cardboard.

I was looking through this talk I agreed to give
and it isn’t very interesting. So I decided to
give each attendee of the TUG conference a free
piece of software.

The schlocky software Apple gave developers in
2000 was a forerunner of iTunes. This was be-
fore the iPod and all that. I, unfortunately, have
nothing up my sleeve.

1 The Global PrefPane and the
LocalTeX Pane

MacTeX installs a copy of TEX Live owned by
root in /usr/local/texlive. It also installs
a small data structure by Gerben Wierda and
Jérôme Laurens in /Library/TeX, describing
the distribution.These choices were somewhat
controversial and I once gave a TUG talk about
them. Now I’m happy.

Recall that each year’s TEX Live distribution
is in a folder named by date in /usr/local/

texlive, so for instance TEX Live 2014 is in

/usr/local/texlive/2014. This makes it pos-
sible to keep old distributions around, in case
a new distribution breaks a crucial class file.
We install a Preference Pane, shown below, for
Apple’s System Preferences, allowing users to
switch between distributions. A switch changes
all GUI apps to use the selected distribution and
also changes the command line so command line
programs use it.

Figure 1: Global PrefPane

The PrefPane we install selects one distribution
for all users and requires root access. I’m go-
ing to argue that we should have created a Lo-
cal PrefPane instead, so each user could choose
their own default TEX distribution and make
this selection without root access. That’s how
programs work on the Macintosh. Programs live
in /Applications where they are accessed by
all users of a given machine. But each user has
their own Preference settings for these applica-
tions, stored in ~/Library/Preferences. One
user’s default Word font might be Times Ro-
man, while another’s might be Helvetica Neue.

The LocalTeX PrefPane shown on the next page
is such a Pane. It can be installed locally for
one user or globally for all users, but it makes
independent choices for each user and does not
require a password. This Pane does not change
any link created by the Global Pref Pane or any
element of the TeXDist structure, so it can be
used together with the Global Pane, or when
the Global Pane is completely missing.

The first item in the distribution list is always
“Use Global Preference Pane.” Selecting this
item activates the Global Pane for the current

preliminary draft, July 21, 2014 11:58 preliminary draft, July 21, 2014 11:58

902 preliminary draft, July 21, 2014 11:58 TUGboat, Volume 0 (9999), No. 0

user. The next items are distributions with
TeXDist data structures, so an individual user
can select a different default than the one cho-
sen by the Global Pane.

Figure 2: Local Pref Pane

Scrolling down in the list of distributions in the
Pane, we see below that the LocalTeX pane
can also define and select distributions on ex-
ternal disks, or distributions installed in a user’s
home directory. Although MacTeX cannot in-
stall TEX in such locations, the TEX Live install
script from TUG can.

Figure 3: Local Pref Pane

Students may find this ability useful when they
use a University owned machine and don’t have
root access. They can easily install TEX Live
on a thumb drive, carry it with them, and have
access to TEX in all locations.

The LocalTeX pane only shows distributions
that are currently available. So if a thumb drive
is removed, its distribution is no longer listed in
the pane. Inserting the drive causes LocalTeX
to list it again.

The “Add Distribution” button is used to in-
form the LocalTeX pane of TEX distributions

without a TeXDist structure. It brings up a
panel shown below. The “Name” field can be
any desired name, since it will only appear in
the LocalTeX pane. The “Path to Distribu-
tion” and “Path to Binaries” fields can be filled
in by dragging appropriate locations to the di-
alog.

This data will only be accepted if the binary lo-
cation is not empty, and contains a binary with
at least one of the following names: tex, latex,
pdftex, pdflatex, luatex, lualatex, xetex, xela-
tex.

Figure 4: Local Pref Pane

The “Remove Distribution” button produces a
list of extra distributions which can be removed
one-by-one from those listed by the panel. Only
distributions without a TeXDist data structure
can be removed.

2 Installing and Configuring the
LocalTeX Pane

The LocalTeX Pane can be obtained at http://
pages.uoregon.edu/koch/LocalTeX.zip. In-
stalling the LocalTeX pane is easy. Find and
double click LocalTeX.prefPane. This brings
up a dialog offering to install the Pane for all
users or for only one user. Choose “only one
user” and the Pane is installed for the current
user without requiring a password. Or choose
“all users” and the Pane is installed for every-
one, but acts as a local pane for these users;
installing this way requires a password.

After the Pane is installed, push the button
”Configure for Local Pane” on the right. This

preliminary draft, July 21, 2014 11:58 preliminary draft, July 21, 2014 11:58

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 21, 2014 11:58 903

reconfigures TeXShop, TEX Live Utility, and
BibDesk to use the new Pane. It also recon-
figures shell for some users, namely users whose
home directory contains none of the three hid-
den files bash profile, bash login, and profile.

To return to the Global Pane and stop using
LocalTeX, push “Configure for Original Pane”
to reconfigure TeXShop, TEX Live Utility, and
BibDesk. Don’t do this if you are merely choos-
ing “Use Global Preference Pane” in the Local-
Pane.

3 How Does the Pane Work?

The LocalTeX pane creates three symbolic links
in ~/Library/TeX/LocalTeX:

• texbin→ binary directory of default distri-
bution

• texroot→ folder containing the default dis-
tribution

• texdist → texdist structure for the default
distribution, if such a structure exists

GUI applications should be configured to look
for TEX binaries in ~/Library/TeX/LocalTeX/

texbin rather than in /usr/texbin, the corre-
sponding link for the Global pane. This is done
automatically by the “Configure for LocalPane”
button for TeXShop, TEX Live Utility, and Bib-
Desk. LaTeXiT has a rather baroque preference
system which doesn’t permit setting its pres-
ences using the “defaults” command line tool,
but they can be reset by hand, as can the cor-
responding preference settings for other third
party applications. Many of these applications
require a full path rather than one containing a
tilde.

4 Other Advantages

Wierda and Laurens carefully selected the loca-
tion for the link /usr/texbin, arguing that Ap-
ple would probably not change or remove this
link. That reasoning turned out to be wrong,
and users who upgrade OS X often find that

they can no longer typeset even though their
TEX distribution remains, because the link has
been removed. The location ~/Library does
not present this problem because third party
programs use it and wholesale Apple changes
would create a nightmare.

Creating Preference Panes with root access re-
quires dealing with Apple’s security framework
and that tends to change over time. The Lo-
cal Pane is immune to security concerns. It
currently runs on Yosemite betas. It requires
Mountain Lion and above, since it uses Apple’s
newer ARC memory protection scheme.

5 Configuring Terminal

To finish installation of LocalTeX, add /Users/

koch/Library/TeX/LocalTeX/texbin to your
PATH before the item /usr/texbin. Here and
in the following paragraphs, replace “koch” with
your own login name.

If you use some other shell than the default
bash, you no doubt know what to do already.

Otherwise follow these instructions. By default,
modern versions of OS X use “bash” as a shall.
This shell reads bash profile when it starts up.
If this file does not exist, it reads bash login,
and if this file does not exist, it reads profile.
All three are hidden files, whose names start
with a period.

Many users have none of these files. In that
case, pushing the ”Configure for Local Pane”
button created a .bash profile file for you and
there is nothing more to do.

Otherwise, you need to edit the appropriate file.
In Terminal, type

cd

ls -a

to see a list of hidden files in your home di-
rectory. If you have .bash profile, edit that. If
not, but you have .bash login, edit that. Oth-
erwise edit .profile. Make the same edit in all

preliminary draft, July 21, 2014 11:58 preliminary draft, July 21, 2014 11:58

904 preliminary draft, July 21, 2014 11:58 TUGboat, Volume 0 (9999), No. 0

three cases. I’ll discuss the case when you have
.bash profile. In Terminal, type

cd

mv .bash_profile bash_profile

Then you have a visible file to edit. Open this
file with TeXShop. At the bottom, add the fol-
lowing two lines (the second and third lines be-
low should be on a single line with no space
between them).

Added by LocalTeX Preference Pane

export PATH="/Users/koch/Library/TeX/

LocalTeX/texbin":$PATH

and save the file. In Terminal type

cd

mv bash_profile .bash_profile

6 Removing Everything

If you install the LocalTeX Pane and decide that
you don’t want it, here is how to remove abso-
lutely every trace from your computer.

• Using the Local Pane, push the “Configure
for Original Pane” button to reconfigure
TeXShop, TEX Live Utility, and BibDesk.
If you reconfigured other apps, return them
to their original configuration.

• Move LocalTeX.prefPane from ~/Library

/PreferencePanes to the trash.

• Move the folder LocalTeX from ~/Library

/TeX to the trash.

• If your shell was automatically configured
for the new Pane, you will find a file named
.bash profile in your home directory con-
taining the following lines. Throw the file
in the trash.

Added by LocalTeX Preference Pane

export PATH="/Users/koch/Library/

TeX/LocalTeX/texbin":$PATH

Otherwise you edited one of bash profile,
bash login, or profile and added these lines.
Remove them from the appropriate file.

• Finally, the LocalTeX Pref Pane stores its
local data in the defaults system of OS X.
To remove this data, type the following in
Terminal (all three lines should be on a sin-
gle line with spaces replacing line feeds):

defaults remove

com.apple.systempreferences

localTeXExtrasData

7 LocalTeX and MacTeX

Will the LocalTeX preference pane be in a fu-
ture edition of MacTeX? No. A choice between
two Preference Panes would confuse most users,
and while it is easy to configure the shell auto-
matically for the global pane, this step requires
user intervention for the local pane.

8 MacTeX Design Philosophy

From now on I’ll give the promised talk. I work
on the Macintosh in a small pond in the big
TEX World. I wear two hats. I maintain Mac-
TeX, the TEX install package for the Mac pro-
duced once a year by TUG. I also write, with
collaborators, a GUI front end for TEX called
TeXShop.

MacTeX is a “one button” package installing
TEX , Ghostscript, and a few GUI applications.
It presents a familiar interface for Mac users,
asks no questions, and produces a completely
configured installation. The installer was writ-
ten by Jonathan Kew in an all night program-
ming session at the North Carolina TUG Con-
ference of 2005, and willed it to me at breakfast
the next day. I was bleary eyed, but Jonathan
was wide awake.

Jonathan’s package installed a TEX distribution
by Gerben Wierda, based on teTeX. But around
this time, Thomas Esser abandoned teTeX and
told his users to switch to TEX Live. Gerben
produced a new distribution loosely based on
TEX Live, which he announced at a TUG con-
ference in Marrakesh in November of 2006. But
at that same conference, he announced that he

preliminary draft, July 21, 2014 11:58 preliminary draft, July 21, 2014 11:58

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 21, 2014 11:58 905

would immediately end support for the new dis-
tribution. This left us in a quandary and for
several months it was unclear which distribution
we would install. I had been attending TUG
meetings since 2001, and in all that time, Karl
Berry never asked me “why don’t you Mac folks
use TEX Live?” I thought TEX Live was nerdy
and hard to install until I tried it and found
installation very easy. Since 2007, we install a
complete version of TEX Live.

Hence a “Design Philosophy for MacTeX.” Mac-
TeX installs a completely unmodified full ver-
sion of TEX Live on the Mac. It is exactly
the distribution used on Linux, Unix, and Win-
dows (for those not using MikTeX). We refuse
to reach into the distribution and make con-
figuration changes. When someone complains
“my Mac collaborators cannot typeset my code”
we get to respond vigorously “Sir, it is YOUR
fault because the Mac folks use standard TEX
Live!”

Collaboration is common in research. Kunth
worked very hard to make TEX produce the
same results on all platforms. We have a re-
sponsibility to make TEX platform-independent.
Open source forever!

(But a small voice: we are in Portland, Oregon,
the home of Textures. Barry Smith rewrote
the Pascal compiler for TEX , and then rewrote
TEX to produce absolutely precise synchroniza-
tion between source and output, and to support
direct use of Macintosh fonts. His code was
commercial, not open source. Textures users
remember it with great passion. Every philoso-
phy has a “yes, but ...”)

9 TeXShop Design Philosophy

Surprisingly, TeXShop has a very different de-
sign philosophy than the MacTeX design phi-
losophy. I’ll argue that a GUI front end to TEX
should rigorously follow the design standards of
the particular platform it supports and should
use the latest technology on that platform. This

is difficult to achieve if the app supports many
platforms.

To understand why, consider the following three
messages from the TEX on OS X mailing list:

From: Warren Nagourney:

I am using TeXshop 2.47 on a retina MBP

and have noticed a slight tendency for

the letters in the preview window to be

slightly slanted from time to time.

The slant is enough to make the text

appear italicized, which is annoying.

From: Giovanni Dore:

I think that this is not a problem of

TeXShop. I use Skim and sometimes

I have the same problem.

From: Victor Ivrii:

Try to check if the same distortion

appears in TeXWorks and Adobe Reader:

TeXShop and Skim are PDFKit based,

while TW is poppler based and

AR has an Adobe engine.

All three messages are from knowledgable peo-
ple active in the TEX on OS X list. As the third
message states, TeXShop and Skim use Apple’s
PDFKit to display pdf files, while Adobe Ac-
robat Reader has its own pdf rendering code,
and TeXWorks uses poppler to render pdf. And
indeed, TeXShop and Skim have a display prob-
lem but Acrobat Reader and TeXWorks don’t.

However, there is a missing ingredient here. The
author of the original message has an Apple
portable with a Retina Display. TeXShop and
Skim support the Retina display because they
were written with Apple’s Cocoa language. Ac-
robat Reader and TeXworks don’t support the
Retina display, so Apple runs them in “magnify
by two” mode. The real problem is a bug in
Apple’s Cocoa Retina code, subsequently fixed.
The bug also goes away if you turn off Retina
support in TeXShop and Skim.

If you select “Get Info” in the Finder with a
program selected, you get a panel of information

preliminary draft, July 21, 2014 11:58 preliminary draft, July 21, 2014 11:58

906 preliminary draft, July 21, 2014 11:58 TUGboat, Volume 0 (9999), No. 0

about the program. Below is part of that panel
for TeXShop on the top, and for Adobe Acrobat
Reader on the bottom, displayed on a Retina
machine.

The key difference is the option to open in Low
Resolution mode. This is selectable in TeXShop
but not in Reader. That means that TeXShop
by default supports the Retina display, while
Reader does not. In case of trouble, TeXShop
can be converted to a mode in which it writes
at normal resolution and the Mac magnifies by
two, while Reader always runs in this magnify
mode.

Figure 5: About TeXShop

Figure 6: About Adobe Reader

The Retina Display Portable was introduced in
June of 2012, but Adobe Reader and TeXWorks
still don’t support it two years later.

I had a very smart student who now works in the
Portland software industry, so I boasted that
TeXShop supported the Retina Display from
the start. But he was too smart, and without
skipping a beat he said ”yeah, and how many
lines of code did that take?” The answer is
zero.

There are many ways to write GUI apps on the
Mac: by supporting X11, by using Java, by us-
ing third party libraries, by using Carbon, and
by using Cocoa. If your app is written in Co-
coa, then it automatically supports the Retina
display. Otherwise not.

10 NeXT at Apple, 1997 - 2007

Many of you read the book about Steve Jobs
by Walter Isaacson. It is an interesting book,
but has been criticized for getting the story of
NeXT, and its role in Apple’s second act, wrong.
I agree, and here’s a short version of that story
from my perspective.

Apple bought NeXT in December of 1996, a sale
that was finalized in February of 1997. Each
May or June, Apple holds a Worldwide Devel-
oper Conference, WWDC. So in May of 1997,
Apple had to give developers its strategy for us-
ing the NeXT operating system.

At the conference, Apple said that old Macin-
tosh applications would continue to run in a sort
of purgatory called the Blue Box, but new ap-
plications needed to be written in Objective C
using NeXT’s class library, then called Open-
Step. Among commercial developers, the an-
nouncement went over like a lead balloon, and
Apple got no significant endorsement at the con-
ference. Apple’s respected head of developer re-
lations, Heidi Roizen, quit a few months later,
calling the strategy “crazy.”

So in 1998, Steve Jobs announced a completely
different strategy. He called this new model

preliminary draft, July 21, 2014 11:58 preliminary draft, July 21, 2014 11:58

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 21, 2014 11:58 907

“Carbon” because, he said, “Carbon is the ba-
sis of all life.” Carbon programs were writ-
ten in C and C++ using the old Macintosh
API, except that about 10% of the calls were
replaced by new equivalents because the orig-
inal calls wouldn’t work on a modern multi-
tasking operating system.This made it possible
to start with an old Macintosh program, find the
changed calls using an Apple-supplied script,
revise them, and release the code on OS X.
Apple immediately received endorsements from
Microsoft, Adobe, Wolfram Research, and oth-
ers, who stated that a whole new spirit of coop-
eration and realism was beginning to appear at
Apple.

At this conference, OpenStep was renamed “Co-
coa”, but its standing at Apple was precari-
ous. Some engineers said that new programs
should be written in Cocoa, while others pro-
claimed vehemently that Cocoa was only for
prototyping. At the 2000 developer conference
I attended, the Carbon sessions were hald in
the main auditorium packed with thousands of
developers, while the Cocoa sessions were in a
small church across the street, attended by 35
people who all seemed to know each other.

I attended WWDC regularly from 2003 to 2011,
and this pattern continued for several years.

In 2005, Apple switched to Intel processors. At
WWDC, they told developers that moving a
Cocoa app to Intel usually involved a 10 minute
recompile. Carbon apps, they estimated, could
be moved in a month.

In 2006 the developer conference was postponed
until August. At the conference, Apple gave
developers a preliminary copy of Leopard, the
next version of OS X, promising a release in
March of 2007. A key feature of this release
was full 64 bit support for all of Apple’s im-
portant API’s. Banners around the conference
asked developers to become “64 bit ready” and
a key slide of the keynote explained that “Leop-
ard has full 64 bit support for Carbon and Co-
coa.”

But by June of 2007, Leopard was still not out.
Why not? In January of that year, Apple an-
nounced the iPhone, and Apple engineers were
pulled from the Leopard team to finish the soft-
ware. But outside developers couldn’t program
the iPhone, so the 2007 conference was essen-
tially a repeat of the 2006 version, with a key-
note address using the same slides.

There was just one electric moment in 2007.
Unfortunately, I completely missed its signifi-
cance. When Jobs came to the slide promising
“full 64 bit support for Carbon and Cocoa”, the
slide had been changed to read “full 64 bit sup-
port for Cocoa.” Lots of developers noticed,
and they mobbed Apple engineers during the
lunch which followed the keynote. It rapidly be-
came clear that Carbon was deprecated. Apple
work on it had ceased.

So by 2007, Apple had the courage, and the
prowess, to kill Carbon and throw their support
totally behind Cocoa. Behind the scenes, they
knew that both the iPhone and the as yet unan-
nounced iPad could only be programmed in Co-
coa. From 2008 on, there have been no Car-
bon sessions at WWDC. Commercial develop-
ers were among the last to switch to Cocoa, and
some of their apps are still in Carbon.

During these turbulent times I was mostly obliv-
ious to the drama. TeXShop remained a 32 bit
app since I saw little reason to change.

But then TeXShop began crashing. I decided
that the solution was to update to the latest
Apple technologies. Shortly before Lion was
announced, I moved TeXShop to 64 bits, and
began planning to support garbage collection.
What I didn’t know was that dramatic changes
were being made at Apple, and my 64 bit con-
version was done just in the nick of time.

11 The Fragile Base Class Problem
and 64 Bits

An object is a self-contained collection of code
and date. Its data is referenced by variables

preliminary draft, July 21, 2014 11:58 preliminary draft, July 21, 2014 11:58

908 preliminary draft, July 21, 2014 11:58 TUGboat, Volume 0 (9999), No. 0

known as instance variables and its code defines
a series of methods or functions. According to a
common metaphor, an object oriented program
contains many objects , which talk to each other
through method calls, and act on these calls by
processing the data in their instance variables.
Cocoa programs are object oriented.

To see how this works in practice, consider the
Cocoa object called NSView. Each NSView cor-
responds to a rectangular portion of a particu-
lar window. The view has an instance variable
pointing to it’s window, a second instance vari-
able giving the coordinates of its rectangular re-
gion, and so forth. Among the methods defined
for an NSView are drawRect, which draws the
view on the screen.

When a developer uses NSView, the developer
defines a subclass of the view with a name like
myNSView. This subclass has all the instance
variables and methods of NSView, plus other
instance variables and methods added by the
programmer. But in addition, it can override
some of the original methods of NSView. For
instance, the drawRect command in NSView
doesn’t draw anything, but myNSView could
override drawRect so it draws the logo of this
conference. In this situation, we call NSView
the Base Class, defined in Cocoa, and we call
myNSView a subclass defined by the program-
mer.

The advantage of all this is that base classes
usually come already connected up. Cocoa calls
drawRect when the window first appears, when
a covering window is moved out of the way,
when a dialog box goes away, etc. Apple once
gave developers a teeshirt with the text “Don’t
call us; we’ll call you.” The slogan means that
the programmer’s myNSView doesn’t have to
worry about when to draw because Cocoa will
tell it when to draw. It just has to draw the
logo when called.

The takeaway is easy: a Cocoa program runs
cooperatively, with some tasks handled by the

base classes in Cocoa and other tasks handled
by subclasses defined by the programmer.

After object oriented programming appeared,
programmers began to dream of a time when
the system could be improved by just revis-
ing the base classes, without even recompiling
the programs. You could install Mavericks, and
suddenly say ”wow, Word never did that be-
fore!”

Unfortunately, a barrier stood in the way of
realizing this dream. The barrier was called
“the fragile base class problem”: when revis-
ing base classes, you are not allowed to add ex-
tra instance variables or extra methods to the
base class. This was a problem in objective C,
in C++, in Java, and elsewhere. The problem
wasn’t quite as bad in objective C as elsewhere,
because it had been designed so extra methods
in base classes are legal. But still: no extra
instance variables.

When Apple added 64 bit libraries in the Leop-
ard timeframe, they realized that they had a
once in a lifetime opportunity to fix this prob-
lem. Since there were no existing 64 bit appli-
cations, every 64 app would have to be com-
piled from scratch. So they took the opportu-
nity to make changes to objective C when run in
64 bits, including completely solving the fragile
base class problem. If your Macintosh runs in 64
bits, then the dream of improving everything by
revising the base classes can be realized.

Incidentally, they also made these changes in
the iPhone even though it ran in 32 bits. So
objective C on the iPhone, iPad, and 64 bit Mac
applications is a different beast than objective
C in 32 bit Mac applications.

After this change, Apple rapidly increased the
hardware requirements of its operating systems.
Snow Leopard required Intel processors, Lion
required 64 bit processors, and Mountain Lion
required machines running the kernel in 64 bits.
After that the policy changed: Mavericks and
Yosemite run on all machines that can run the
previous systems. I believe that the reason for

preliminary draft, July 21, 2014 11:58 preliminary draft, July 21, 2014 11:58

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 21, 2014 11:58 909

these policies is not that 64 bit programs run
faster, but instead that Apple can now use all
the extra added properties of objective C, in-
cluding adding instance variables and methods
to base classes.

12 Lion

Lion is the first Apple system to make real this
great dream of improving programs by revising
the base classes. Programs written in 64 bits
with Cocoa got crucial added functionality for
free, essentially without a recompile.

One of the standard requests for TeXShop was
that it remember window sizes and positions
when quit, and restore these windows automat-
ically when next restarted. To shame me into
working on this, users told me of other GUI’s
for TEX which already had the ability.

Imagine my surprise, then, when I discovered
that TeXShop on Lion got the requested ability
automatically for free.

An advantage of letting Apple do this is that
Apple had second thoughts and slightly modi-
fied the behavior in Mountain Lion and Maver-
icks. TeXShop inherited those changes for free.
For instance, it is now possible to turn the fea-
ture on or off in Apple’s System Preferences.
If windows are generally saved when quitting,
then holding down the option key changes the
Quit menu to “Quit and Close All Windows.”
If windows are not generally saved, hold the
option key while quitting to save the windows.
Finally, push the shift key when opening a pro-
gram if you don’t want to open old windows.
These tricks work in TeXShop and all other Co-
coa applications.

13 Automatic Saving

Saving window positions is something I could
have done myself if I weren’t lazy. But the
second Lion feature is something I would never
have tried on my own: automatic file saving.

Suppose you are using TeXShop in Lion, you
have several source files open and have made
changes in each. Suddenly you receive an emer-
gency call and quit TeXShop. You won’t re-
ceive pesky dialogs asking you to save each file;
instead TeXShop will immediately quit.

But the next time you open TeXShop, your edit
changes will be in all the source files.

But wait — there’s more. TeXShop doesn’t just
save when you quit. It saves every five min-
utes or so. If you live in a thunderstorm area
with frequent power outages, no need to worry.
When your computer starts up again, all that
source you added will reappear.

“Gulp. Every five minutes the computer saves
my 1000 page document?” Of course not. The
program only saves changes, and in five min-
utes how much source did you change? In ac-
tual practice you never notice the saving pro-
cess. There are no momentary glitches, no disk
activity, and with a modern solid state drive no
noise.

“Whoa. When I send a document to someone
else, are all those changes in the document? My
reference letter says ‘works like a dog’, but origi-
nally I wrote ‘even a dog wouldn’t be interested
in his line of research.’ ” Not-to-worry, files
only contain the latest version. That’s done be-
hind your back when you grab hold of a file
to transfer it somewhere, and you won’t no-
tice.

“But there are so many edge cases where this
scheme could go wrong.” I absolutely agree. In-
deed, I would never dare add automatic saving
to TeXShop myself, or monkey around in any
serious way with the file system. I dread get-
ting a letter from a user claiming my program
destroyed the only copy of his masterpiece. But
this is Apple making the change, with a thou-
sand engineers testing the code. Things slip
by them, but destroying documents isn’t some-
thing they’d take lightly.

preliminary draft, July 21, 2014 11:58 preliminary draft, July 21, 2014 11:58

910 preliminary draft, July 21, 2014 11:58 TUGboat, Volume 0 (9999), No. 0

Figure 7: Edit

Incidentally, there is still a “Save” button in
case you’ve solved a great problem and abso-
lutely want to write your discovery to disk.

“But wait. Suppose I delete some material, type
an experimental new sentence, and then decide
not to keep it. In the old system, I just don’t
save. But with automatic saving, the new stuff
I don’t want may be part of the document. Ter-
rible!”

No, it’s not. The top picture on this page shows
the document you are reading while it was being
edited. The top picture on the next page shows
the effect of selecting the menu Revert To →
Browse All Versions.

As you see, this gives a Time Machine view of
the document, and we can retreat to an earlier
version, or copy a portion of an earlier version
to the current document. Time Machine need
not be running to get this. Any application with
AutoSave activated gets it for free.

.

I’ll confess that I don’t use Time Machine be-
cause I don’t like the sound of a Disk Drive.
The new feature gives Time Machine for TEX
documents.

Apple has been refining the interface for Au-
toSave. It is intrusive on Lion, less intrustive
on Mountain Lion, and less still on Mavericks.
I couldn’t live without it. If your TEX GUI has
it, then it works the same as your other Mac
applications.

AutoSave makes many changes under the hood.
One of the most surprising is changes to pro-
gram menus. The most controversial is the loss
of a “Save As...” menu. I received many email
messages demanding that I put back this menu.
I replied that it was still present in my code,
and Apple removed it while running the pro-
gram. My correspondents found this explana-
tion incomprehensible.

preliminary draft, July 21, 2014 11:58 preliminary draft, July 21, 2014 11:58

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 21, 2014 11:58 911

Figure 8: Browse All Versions

The truth is that Apple automatically modi-
fies the program Save menu when AutoSave is
turned on. This is shown on the following page.
On the left is the File menu as defined in current
TeXShop source code. On the right is the ac-
tual menu as displayed in Mavericks. As can be
seen, the middle section of the menu has been
dramatically altered.

After one email exchange on “Save As”, I wrote
what I thought was a brilliant defense of Ap-
ple’s actions, telling my readers to “grow up and
go with the flow.” The next day another user
pointed out that “Save As...” had been restored
by Apple in Mountain Lion. Sure enough, if you
hold down the option key when accessing the
File menu, “Duplicate” changes to “Save As.”
Apparently the people on the mailing list were
also writing Apple.

.

The main point I’m trying to make here is that
for programmers who use Cocoa, the solution
of the Fragile Base Class Problem allows Apple
to make surprisingly many changes under the
surface.

After all this, you probably want me to come
clean. To implement Auto Save, how much code
did I actually write?

Apple’s NSDocument object contains a function
called autoSavesInPlace. This routine returns
NO. In TeXShop I override it to instead return
YES. That’s it. One line of code gives AutoSave
for free.

preliminary draft, July 21, 2014 11:58 preliminary draft, July 21, 2014 11:58

912 preliminary draft, July 21, 2014 11:58 TUGboat, Volume 0 (9999), No. 0

Figure 9: File Menu in Source Code

Incidentally, TeXShop’s adoption of AutoSave
has been popular. On the next page I show just
one of the accolades I’ve received after releasing
the Lion version.

Lots of collaborators help with TeXShop, pro-
viding features I haven’t mentioned. Today I
just wanted to show what is made possible by
adhering to Apple’s Cocoa standards.

TeXShop doesn’t adopt everything, of course.
It isn’t in the Apple Store because working in
a sandbox would limit its interaction with TEX
Live and third party programs. It doesn’t allow
you to store documents in the Cloud because
the Cloud is only available to applications in
the store. But when an addition makes sense,
it will be adopted.

So that’s the end of my talk.....

Figure 10: File Menu as Displayed by Mavericks

14 Automatic Reference Counting

But I hear one of you shouting me down.

“I couldn’t care less about the Retina Display or
Preserving Window Locations when Quitting,
and I Hate Auto Save. Back there five or six
pages, you mentioned “crashes”. Why don’t
you talk about TeXShop crashes?”

OK.

One problem with object oriented programming
is that a program can create hundreds of dif-
ferent objects as it runs. The program is sup-
posed to throw away objects after it is done with
them; if it doesn’t, then computer memory be-
comes clogged and the program becomes slug-
gish.

preliminary draft, July 21, 2014 11:58 preliminary draft, July 21, 2014 11:58

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 21, 2014 11:58 913

Figure 11: A Review

Objects can be passed around, so just because
one part of the program is done with an ob-
ject doesn’t mean that it isn’t used by someone
else. If an object is thrown away too soon, the
program will crash when another part of the
program tries to use the object.

There are three solutions. The first is to force
programmers to manually handle memory man-
agement. That is how TeXShop worked until
recently, and it is prone to errors that are hard
to find.

The second method is called “garbage collec-
tion.” Apple introduced it in Leopard, but it
didn’t work well on the iPhone.

Then as part of the enhancement of objective C,
Apple introduced Automatic Reference Count-
ing, or ARC, the third memory management
technique. In ARC, the compiler automatically
adds the code to handle memory management,
and the programmer can ignore it. Since ARC
does what a programmer would do managing
memory manually, some files in a program can
be compiled with ARC and some can be com-
piled without it.

.

This spring, I spent several weeks recompiling
TeXShop with ARC, gradually working through
the program file by file. The ARC code first ap-
peared in TeXShop 3.34 and makes the program
much more stable. A couple of remaining issues
are solved in TeXShop 3.38, released at this con-
ference, and this version ends the transition to
ARC.

Adding ARC is an example of extensive work
with no immediate gain; no interface changes
are visible. It is essential work if the program
is to survive for the long run.

