
Bart Childs

LATEX source from word processors

Hennings’ CTAN survey is a good starting point
when considering projects implied by the title of
this article. I find it a fair view of most related
packages. He suggests having one of two goals:
converting the document structure or converting
the appearance. My goal is neither of these:
it is producing LATEX source that is clean and
therefore maintainable. This is in keeping with
Knuth’s original goals in producing TEX: graphic
excellence and a document convenient for archiving.
Structure and appearance are important but
neither of these in the word processor format are
as important as clean LATEX to me. My current
system is a hybrid. I use the common word
processor exchange format — Rich Text Format, the
OpenOffice Writer package and its Writer2LaTeX

application, and macros for the Emacs editor
written in Elisp. The test cases for this system are
books on rotordynamics, a CS/1 programming text,
a memoir on a friend’s life including significant text
fragments in the Czech language, and a novel that
includes three love triangles. Even the worst case
of significant mathematics formatting done in Word
Perfect is tractable (I did not say easy). The most
surprising problems are due to the limited skill of
the users of their word processors.

Bruno Delprat & Stepan Orevkov

MayaPS: Typing Maya hieroglyphics with (LA)TEX

We present a system for the hieroglyphical com-
position of ancient Maya texts, to be used for
their palaeography, the production of dictionaries,
epigraphical articles and textbooks. It is designed
on the base of TEX and PostScript using the Dvips
interface, and includes a set of Maya fonts.

The ancient Mayan writing system is very
particular: base writing signs attach each other
from all four sides (left, right, top, bottom), being
also rotated and rescaled and could not be produced
with usual TEX’s tools. For example, we can type:
\maya{li.AM2 u.TUN/CHU uj.UJ.ki death.KIMI/la} to
obtain the example shown in the preprint.

Peter Flynn

A university thesis class: Automation and its pitfalls

Despite the large collection of thesis classes avail-
able, there are always features that an institution
needs which can better be met by writing Yet
Another Thesis Class. There are also variations
in the quality and availability of documentation,
assumptions about preloaded packages, and the ease
(or otherwise) with which the author can modify
the layout.

In the case of UCC, the official requirements
were very simple, avoiding the tendency to over-
specify details found in some university formats.

The class was also required to be generally applica-
ble to any discipline, so only a minimum of packages
was needed (although this turned out to be more
than anticipated).

The major component was an attempt to
automate as much of the front matter as possible,
based on options to tokenize the discipline and
class of degree. This was done to avoid accidental
omissions, variations, and misspellings in the titling
(or even deliberate rewording); and to ensure that
the relevant compulsory components appeared in
the right place without the author having to do
anything.

The result has been piloted with 20–30 PhD
candidates for a year, and needs only a few final
changes before release. Two other institutions in
the state have already expressed an interest in
basing their own thesis classes on this one.

Federico Garcia

Documentation in TEXnicolor

My package colordoc builds on Frank Mittelbach’s
docstrip system of documentation, adding
some utilities to use color in the code: matching
delimiters ({ and }) are colored the same, just as
matching \if–\fi pairs. Commands are made red,
bold, and italics, when they are being \def ined,
just as variables when they are being declared
(\newcount, \newif, etc.). These tools have
certainly saved me a lot of time and trouble when
editing or trying to understand a code. In the
presentation I also describe the interesting general
lines of the workings of both doc and colordoc.

Federico Garcia

TEX and music

For some years I’ve been working on writing a
professional music typesetting system with TEX
(and METAFONT). In 2005 I even had a grant from
the TEX Development Fund that allowed me to do
a first model of the system. Since then the system
has evolved, and particularly between 2010 and now
I have actually developed a promising model.

This presentation does a little bit of history of
the main idea of the TEXmuse system, which as will
be seen is entirely inspired by the TEX ‘spirit’. This
touches on the potentially disastrous problems of
WYSIWYM for music typesetting; on what similarly
oriented systems have done (and not); and on
whether even in spite of these problems the project
is worth pursuing. The answer is in the affirmative,
mainly because of the more disastrous problems
of the alternative, i.e. commercial software. (In a
nutshell, those problems are that those programs
are not inspired by TEX’s spirit! In concrete,
there are some achievements of TEXmuse that
would change the life of any composer.) I also
demonstrate some pretty cool programming tricks



that I have found, both in TEX and in METAFONT,
that in my view speak to the beauty of the systems.
The talk does not require technical knowledge of
music or music typesetting.

Jim Hefferon & Michael Doob

Reaching for the stars with Asymptote

Asymptote is a stand-alone program that excels at
generating line art, and takes its inspiration from
Metafont and MetaPost. It is relatively recent, but
already quite capable. I’ll introduce some of its
features for a person who has never seen it at work.

Troy Henderson

User-friendly web utilities for generating LATEX
output and MetaPost graphics

There are several facets of the creation of LATEX
documents and MetaPost graphics that deter users
from initially trying both LATEX and MetaPost.
These include the basic structure of the source
files, the compilation of the source files, and the
conversion of the output to a desired format.
Furthermore, many TEX users wish to create
2D and 3D graphs of functions for inclusion into
their documents. Many of these graphs require
considerable amounts of source code to create
professional quality graphics, and this is yet another
deterrent for those who might otherwise consider
using MetaPost. This presentation will introduce
several free web utilities that aim to eliminate
each of these obstacles and describe the usage and
methods of these utilities.

Amy Hendrickson

The wonders of \csname

A surprisingly useful tool, \csname. . .\endcsname,
offers many opportunities for interesting and useful
macros, whenever it is convenient to dynamically
generate a series of definitions. When each defini-
tion contains a counter in its name, we can then
call the definition using a loop that advances a
counter, and then calling the definition using the
loop counter inside the \csname. . .\endcsname.

A trivial use is for endnotes. More interestingly,
csname definitions can be used to send a set
of definitions to the .aux file, where each new
definition contains the current page number in
its name, with a ‘security level’ number being
defined. This allows the dynamic redefinition of
the security level for a particular page, within
the .aux file depending on whether the new
number is higher or lower than the previous
number. This can be used to determine the highest
security level on any particular page. When
the .aux file is then input, we can access the
csname definition in a running head of the LATEX
document, calling \csname. . .\endcsname control
sequence and using the current page number within

\csname. . .\endcsname, to activate the definition of
the highest security level on that page, and use the
information to print the security level on top of the
page.

Another interesting use is for on-line report
generation, where a csname definition can be
used, for instance, to generate hyperlinks for
financial analyses of stocks, in a report that
compares hundreds of stocks, and then be able to
automatically build a hyperlinked table of contents,
using tabs built with TikZ.

Code and examples will be shown for each of
these methods and uses of dynamically generated
macros using \csname. . .\endcsname, and we’ll look
at some other ways this tool may be used as well.

Richard Koch

The MacTEX install package

MacTEX installs everything needed to run TEX
on a Macintosh with a single button click. I’ll
discuss the history of this package — Wendy’s
conspiratorial lunch and Jonathan Kew’s all night
coding session — modifications over the years, and
important changes in the 2012 version. I’ll discuss
the importance of installing an unmodified, vanilla
version of TEX Live, explain how we add extra
pieces so everything is automatically configured and
ready to go, and end with possible future changes.
The talk may contain completely unmotivated and
irrelevant additional comments.

David Latchman

Preparing your thesis in LATEX

The submission of a thesis or dissertation is the
culmination of many a graduate student’s career.
Given the time and effort toward research and
attaining their degrees, this can often be a stressful
time for many students. LATEX offers the advantage
of separating form from content and as the typical
university thesis class can take care of a university’s
formatting requirements thus makes a student’s life
easier — well, at least it is supposed to.

Unfortunately, some formatting ‘blends’ into the
content, thereby adding to the stress of an already
unpleasant task. But there is some light at the end
of the tunnel. With some preparation, typesetting a
thesis in LATEX can be relatively pain free. But it’s
not simply a matter of just knowing what packages
but how to use them and what is needed to use
them effectively. Topics covered will include the
typesetting of equations — both mathematical and
chemical — as well as the proper formatting of
tables and bibliographies.

Sherif Mansour & Hossam Fahmy

Experience with Arabic and LuaTEX

This is an experience report of an attempt to
include the AlQalam font for Arabic script within



LuaTEX. We describe the problems we faced trying
to figure out how to use a new right-to-left font
within LuaTEX. We also describe how to call
the many different shapes that are defined via
parameters in the original font. We also present
some ideas to modify the line breaking algorithm
of TEX to allow the use of different shapes for the
same character in order to justify the line. This is
still work in progress.

Frank Mittelbach

E-TEX: Guidelines for future TEX extensions,
revisited

Shortly after Don Knuth announced TEX 3.0 I gave
a paper analyzing TEX’s abilities as a typesetting
engine. The abstract back then said:

Now it is time, after ten years’ experience, to
step back and consider whether or not TEX 3.0
is an adequate answer to the typesetting require-
ments of the nineties.

Output produced by TEX has higher standards
than output generated automatically by most
other typesetting systems. Therefore, in this
paper we will focus on the quality standards set
by typographers for hand-typeset documents and
ask to what extent they are achieved by TEX.
Limitations of TEX’s algorithms are analyzed;
and missing features as well as new concepts are
outlined.

Now — two decades later — it is time to take
another look and see what has been achieved since
then, and perhaps more importantly, what can
be achieved now with computer power having
multiplied by a huge factor and last not least by the
arrival of a number of successors to TEX which have
lifted some of the limitations identified back then.

Bob Neveln & Bob Alps

Adapting ProofCheck to the author’s needs

ProofCheck is a system for writing and checking
mathematical proofs. Theorems and proofs are
contained in a plain TEX or LATEX document.
Parsing and proof checking are accomplished
through Python programs which read the source
file. Although the use of these programs has
never been restricted to any particular logical
or mathematical language, the work required to
actually implement an author’s choices in these
matters, especially in the logic, and to make the
necessary modifications of the supporting files has
been sufficiently laborious as to pose an obstacle
to the use of ProofCheck. This paper describes
updates to the system whose purpose is to alleviate
these labors to the extent possible so as to facilitate
the use of ProofCheck in a logical and linguistic
setting of the author’s choice.

Steve Peter

Metafont as a design tool

Well-written Metafont sources provide a font
designer with a nearly unparalleled tool to explore
variations on a typographic theme. Paired with
TEX in an advanced environment, the designer
can explore serif structure, bracketing, weight
variations and more in the context in which the
font will be used: real textual matter. I’m going
to ignore the production problems inherent to
Metafont (not to mention the various possible
solutions) to concentrate on the design aspects of
this amazing tool.

Norbert Preining

Typesetting with Kanji — Japanese typography

Japanese typography is very particular and de-
manding in several respects: four different writing
systems: Kanji, Hiragana, Katakana, Roman letters
mixed together; vertical and horizontal typesetting;
traditional grid layout versus mixture of writing sys-
tems. This all led to a spin-off TEX implementation
called “Publishing TEX” (pTEX) that can deal with
these specifics.

Until 2011 there was an independent distri-
bution of TEX for Japanese users, first based on
teTEX, later on TEX Live (ptetex, ptexlive). TEX
Live 2011 and 2012 introduced all of the necessary
tools and features and we hope that with TEX Live
2012 the need for a special setup for Japanese users
is past.

In this talk we give an overview of the spe-
cialities of Japanese typography, presenting the
difficulties met in modern texts. Continuing, we
present solution provided by TEX Live to some of
these problems, and discuss further development.

Norbert Preining

TEX Live 2012: Recent developments

TEX Live will be released in early summer 2012 and
brings a couple changes that have been in the works
for a long time: a “multi-updmap” that reads several
updmap.cfg files, and multi-repository support for
the TEX Live Manager tlmgr.

updmap is a program that generates the nec-
essary configuration files for dvips, dvipdfm(x),
pdftex, and pxdvi to display PostScript Type 1
fonts. It reads a configuration file that lists several
map files, and combines all the font definitions from
these map files. Until now local font maps had to
be integrated into this updmap.cfg file, and so could
easily be overwritten or otherwise be lost.

The new implementation has a long history.
The original Perl version was written by Fabrice
Popineau for Windows, later extended by Reinhard
Kotucha and Karl Berry and used starting last
year on all platforms supported by TEX Live. The



code has now been extended to deal with multiple
configuration files in a transparent way.

This allows a clear separation of updmap.cfg file
parts. One updmap.cfg file now can (but does not
have to) only provide information about the texmf

tree it resides in. In other words, fonts installed
into, for example, the TEXMFLOCAL tree can be
activated by an entry in the updmap.cfg file in this
tree.

We will discuss this new functionality and
provide usage examples and advise on transition
from the old system.

The other big change in TEX Live this year is
the extension of the TEX Live Manager with the
capacity of reading multiple repositories. In recent
years, a few alternative TEX Live repositories have
come into existence with a wide range of usage
patterns: distribution of local packages (Japanese
TEX related packages in tlptexlive, Korean TEX
User Group repository), TEX Live infrastructure
testing (in tlcritical), provision of development
and nonfree packages (in tlcontrib), etc.

Until now a user had to go through all desired
repositories one by one passing the necessary
parameters for each in turn. The new tlmgr

supports use of several sources at the same time.
The selection of packages appearing in multiple
repositories is done by “pinning” packages to a
repository.

We will present this new functionality, give
usage examples, and a guided tour through setting
up and using this new feature.

We will close with an overview on other changes
in TEX Live 2012.

Will Robertson & Frank Mittelbach

LATEX3: From local to global — a brief history and
recent developments

The original source code for LATEX3 dates to
the early 1990s. Key aspects of its development
occurred during that decade, but it was not until
the late 2000s that the project began delivering
code that was widely used by mainstream LATEX
users. What happened in this time? This talk will
discuss how LATEX3 development evolved over the
decades and how it reached a state of being used to
produce real users’ documents whether or not they
are actually aware of it. LATEX3 can be thought to
consist of separate ‘layers’, and the programming
layer known as expl3 is starting to be used to solve
problems in and write packages for LATEX2ε. Our
plans are not restricted to such ‘under-the-hood’
measures, however, and we have discussed layers
of LATEX3 that will have more visibility at the user
interface. Our talk will discuss these separate layers
and where our plans lead in the future, and will
conclude with a demonstration of what’s new in the
current code.

Will Robertson

The lineage and progeny of fontspec and unicode-math

My first LATEX package, fontspec, was written in
2004 before I knew how to program in LATEX and
in truth before I knew how to program at all. This
trial-by-fire introduced me to the lovely world of
TEX programming and after some time I ended
up writing a smattering of other works. (All the
while actually starting to learn what this whole
‘programming’ thing was all about, including how
to please and displease people who were just trying
to get work done, thank you very much.) Some
time later I foolishly tried ‘planning’ an ambitious
new package, unicode-math, that took significantly
longer to release. In the course of writing that
package I learned really just how little I actually
knew, and as a side-effect somehow ended up
helping to write code for the LATEX3 project. In
this talk I will talk about the motivation for writing
these two packages, discuss recent developments
with them, and finally touch on how LATEX3
influenced their development.

Herbert Schulz

Workshop: Introduction to TeXShop

A workshop introducing some of the more obscure
and less used features of TeXShop for users who
wish to become more proficient in its use to produce
LATEX documents.

Christina Thiele

Almost 30 years of using TEX

It’s not just TEX that’s gotten older and more sea-
soned . . . Reflections on changes in TeX and friends
as used in a small typesetting company: software
and hardware, of course, but also procedures and
skills, resources that went from zero to virtually
infinite, all of it interwoven with life and personal
change. It’s not earth-shaking news, but we’ve come
far enough that looking back yields some interesting
comparisons.

Didier Verna

Star TEX, the Next Generation

In 2010, I asked Donald Knuth why he chose to
design and implement TEX as a macro-expansion
system (as opposed to more traditional procedure
calls). His answer was that: 1) he wanted some-
thing relatively simple for his secretary who was not
a computer scientist; 2) the very limited computing
resources at that time practically mandated the use
of something much lighter than a true programming
language.

The first part of the answer left me with a slight
feeling of skepticism. It remains to be seen that
TEX is simple to use, and when or where it is, its
underlying implementation has hardly anything to
do with it.



The second part of the answer, on the other
hand, was both very convincing and arguably
now obsolete as well. Time has passed and the
situation today is very different from what it was
30 years ago. The available computing power has
grown exponentially, and so has our overall skills in
language design and implementation.

Several ideas on how to modernize TEX already
exist. Some have been actually implemented.
In this talk, I will present mine. Interestingly
enough, it seems to me that modernizing TEX can
start with grounding it in an old yet very modern
programming language: Common Lisp. I will
present the key features that make this language
particularly well suited to the task, emphasizing
on points such as extensibility, scriptability and
multi-paradigm programming. The presentation will
include reflections about the software engineering
aspects (internals), as well as about the surface
layer of TEX itself. Most notably, I will explore
the possibilities of providing a more consistent
syntax to the TEX API, while maintaining backward
compatibility with the existing code base.

Boris Veytsman

TEX and friends on a Pad

TEX on an Eee Pad is quite workable.

Boris Veytsman & Leyla Akhmadeeva

Towards evidence-based typography: First results

At the previous TUG meeting we reported experi-

mental design for checking whether the typographic
features of the text (fonts, page layout, justification,
etc.) influence the way readers comprehend and
remember the contents. Our study is intended
primarily for the designers of textbooks, where the
comprehension of the text is very important.

In this work we report the first results of
our study. It seems that despite the beliefs of
typographers, the text comprehension and the speed
of reading is not much influenced by typography.
These findings confirm the generalized ecological
hypothesis by Legge and Bigelow. It seems the
human brains are flexible enough to allow us to
read even badly designed pages.

We also discuss the role of TEX as a useful
tool to create various controlled page designs for
typographic study.

David Walden

My Boston: Some printing and publishing history

Boston, where I have lived for nearly 50 years,
has an important publishing and printing history.
Therefore, for TUG 2012 I have used various library
and other Boston resources to learn more about the
printing and publishing history of the city. This
presentation sketches what I have learned about
several eras of Boston printing and publishing:
1) Colonial period, 1630–1775; 2) Revolutionary
War (1775–1783) and transition; 3) Literary
culture of the mid-19th century; 4) Later 1800s to
mid-1900s; 5) Personal observations, 1964–present.


