
The Wonders of \csname...\endcsname

Amy Hendrickson
57 Longwood Avenue
Brookline, MA 02446
USA
amyh@texnology.com

http://www.texnology.com

Abstract

A surprisingly useful tool, \csname,\endcsname, offers many opportunities for
interesting and useful macros, especially when it is convenient to dynamically
generate a series of definitions.

Trivially a series of csname definitions may be used to produce endnotes, but
there are more interesting and complex constructions as well.

A second example shows how \csname may be used for on-line report gen-
eration, In this instance, we dynamically generate hyperlinked tabs for a custom
risk analyses of particular stocks chosen on-line by the client. We can use these
named tabs to build a hyperlinked TOC on the fly.

The final example shows how definitions made with \csname can be used to
send a set of definitions to an auxiliary file, where each new definition contains
the current page number in its name, and a number as its definition.

This allows the dynamic redefinition of the command for a particular page,
within the auxiliary file depending on whether the value of the new definition is
higher than the value of the previous definition for the same page.

When the auxiliary file is brought into the base .tex file the next time LATEX
is run on the document, it will include a series of unique macros, one for each
page in the document, defining the highest number given for that page. Since
the definition is made with \csname. . . \endcsname we can have the page number
contained in the name of the definition. This allows us to call the definition in
the running head of the LATEX document, using the current page number in the
\csname. . . \endcsname. We’ll see a practical use for this construct.

Code will be shown for each of these methods to dynamically generate macros
using \csname.

1 The Basics

The TeX primitive commands \csname,\endcsname
allow some useful macro constructs that wouldn’t
otherwise be possible. Here are some of its useful
characteristics.

1. We can use \csname to find out if a command
has been defined, since an undefined command
is equal to \relax. \csname allows us to test to
see if this is the case, and make choices based
on the result: \expandafter\ifx
\csname anycommand \endcsname\relax

<do this>\else<do that>\fi.

2. Unlike commands made with \def, commands
may be defined with \csname. . . \endcsname
that include non-letters in the name of the def-
inition (with the exception of %).

For example, this is a valid definition that
uses symbols and a number in its name:
\expandafter\def\csname $#2\endcsname{Hi!}.
It may be called using \csname,\endcsname,
\csname $#2\endcsname to produce: Hi!.

3. We can drop macro arguments in the form of a
parameter number into \csname...\endcsname.
In this example from LATEX code, \setcounter
tests the first argument to see if it is a counter
that has been defined with \newcounter;
if false, give error message; if true, globally set
the counter to be equal to the second argument.

\def\setcounter#1#2{\@ifundefined{c@#1}%

{\@nocounterr{#1}}%

{\global\csname c@#1\endcsname#2\relax}}

This has the effect of hiding some complexity
from the user, who only sees the name of the

TUGboat, Volume 0 (2012), No. 0 — Proceedings of the 2012 Annual Meeting 1001

Amy Hendrickson

counter and the number to which the counter
is set, i.e., \setcounter{page}{21}.

4. Here’s where things get interesting. We can ex-
pand commands within a definition name made
with \csname. . . \endcsname. This opens up
many complex possibilities. For a set of pos-
sibilities, we can include a counter in the name
of a new definition: \expandafter\def
\csname apple\the\applenum\endcsname{}

In this article we’ll see a number of ways we can use
\csname. . . \endcsname with counters.

1.1 Dynamic Macro Building

We can use a counter within \csname. . . \endcsname
to make a series of macros, a new one every time
the counter is advanced. We do this by including a
definition, made with \csname. . . \endcsname with
a counter in its name, within the body of another
definition. The outer definition advances a counter
every time it is used, producing a new and unique
macro every time it is called.

Using our previous example: \expandafter
\def\csname apple\the\applenum\endcsname

we can make a command that will make more com-
mands in this way:

\newcount\applenum

\def\applename#1{\global\advance\applenum by1

\expandafter\def\csname apple\the\applenum

\endcsname{#1}}

Now we can access the newly made inner csname
macro by using a loop, which advances a counter in
each iteration, and calls the csname macro using a
counter in the body of its name.

Here we call the newly made csname macros
with a loop that advances a counter. This example
tests to see if the command is defined, and if true,
gives it a number with \the\loopnum and calls the
command; else, ends the loop.

\newcount\loopnum

\loopnum=1

\loop\expandafter\ifx

\csname apple\the\loopnum\endcsname\relax

\else \the\loopnum.

\csname apple\the\loopnum\endcsname

\global\advance\loopnum by 1

\repeat

Used:

\applename{Macintosh}\applename{Gala}

Results:

1. Macintosh
2. Gala

This tool has surprisingly many uses. For our
first real world example: making endnotes.

2 Endnotes Example

In this example we want to change the definition of
footnote so that it produces endnotes rather than
footnotes. We do this by making an endnote defini-
tion that makes a new macro every time it is used.

We start by making a new counter to be used by
our endnotes, \endnum. In the \endnote macro we
advance the \endnum counter, then raise and print
the number in the text for our endnote number.

Next we make a construction with \csname that
builds a new definition, using the current state of the
\endnum counter. This new definition will save the
text of the endnote.

\newcount\endnum

\def\endnote#1{\global\advance\endnum by 1

$^{\the\endnum}$%

%%

%% Here we make the new definition using

%% \the\endnum in the definition name so that

%% each new definition is unique:

%%

\long\expandafter

\def\csname endnote\the\endnum\endcsname{%

\small\leftskip=12pt\relax\parindent=-12pt

\indent\hbox to12pt{\the\loopnum.\hfill}

%%

%% Here we save the text of the endnote:

#1

\strut\vskip2pt}}

Now we set footnote to be equal to endnote, so ev-
ery time \footnote is used, the command actually
called is \endnote: \let\footnote\endnote

To print the endnotes, we make a loop that ad-
vances a counter with every iteration. That counter
is used within the name of the definition made with
\csname. . . \endcsname. The loop continues until it
comes to an undefined endnote, thus cycling through
every defined endnote.

\newcount\loopnum

\def\printendnotes{\global\loopnum=1

%%

%% Test to see if any end notes have been

%% defined; If so, provide the title and

%% start loop; if not, do nothing.

%%

\expandafter\ifx

\csname endnote\the\loopnum\endcsname\relax

\else

\subsection*{Endnotes}\everypar{}

\vskip6pt

\small\leftskip=12pt

1002 TUGboat, Volume 0 (2012), No. 0 — Proceedings of the 2012 Annual Meeting

The Wonders of \csname...\endcsname

‘‘A day of dappled seaborne clouds.%

\footnote{Quotation from James Joyce’s

‘Portrait of the Artist as a Young Man’}

The phrase and the day and the scene

harmonised in a chord. Words. Was it

their colours? He allowed them to glow

and fade, hue after hue: sunrise gold, the

russet and green of apple orchards, azure

of waves, the greyfringed fleece of

clouds.\footnote{The Bloomsday

celebration in Dublin this year features a

concert of compositions honoring Joyce.}

\printendnotes

“A day of dappled seaborne clouds.1 The phrase
and the day and the scene harmonised in a chord.
Words. Was it their colours? He allowed them
to glow and fade, hue after hue: sunrise gold,
the russet and green of apple orchards, azure of
waves, the greyfringed fleece of clouds.2

Endnotes

1. Quotation from James Joyce’s ‘Portrait of the
Artist as a Young Man’

2. The Bloomsday celebration in Dublin this year
features a concert of compositions honoring Joyce.

Figure 1: Testing the Endnote Commands

%% Loop continues until it finds an

%% undefined endnote

%%

\loop\expandafter\ifx

\csname endnote\the\loopnum\endcsname\relax

\else

%% Print endnote

\csname endnote\the\loopnum\endcsname

\vskip2pt

%%

%% Reset: redefine current endnote to \relax

%% preventing this definition from being

%% used the next time \printendnotes is called.

%%

\global\expandafter

\let\csname endnote\the\loopnum\endcsname\relax

%%

\global\advance\loopnum by 1

\repeat

\fi

%% \fi ends test at beginning of this macro

%% to see if any endnotes have been defined.

}

3 Example: On-line Report Generation

A somewhat similar construction may be used to
make hyperlinked tabs for on-line report generation.

This set of macros is used to automate the nam-
ing of hypertargets so that we can hyperlink to them
on the first page of the report, using a csname con-
struction and a loop, and using Tikz for making the
hyperlinked tab.

The name and number of companies analyzed
is determined by the client who submits a request
online. Each company’s analysis will start on a ti-
tled new page. Part of the definition for the title of
the report includes this command: \maketab{#1}

\maketab takes a stock symbol as its argument,
and generates a hypertarget so that we can link to
it from the beginning of the report, in the equiva-
lent of the table of contents page, using the same
\codenum counter. Then it makes a new defini-
tion with \csname and the \codename counter in
its name, with the stock symbol as its definition,
and sends it to the .aux file.

\def\maketab#1{\global\advance\codenum by 1

\hypertarget{link\the\codenum}{}

\immediate\write\@auxout{\string\expandafter%

\string\gdef\string\csname\space

tab\the\codenum\string\endcsname{#1}}}

Once we have this in place we can use our loop
construction for the first, and possibly continuing,
pages to build the hyperlinked tabs. \gettabs uses
a loop to call the individual tabs, as long as there
is one defined. This can continue over a number of
pages if necessary.

\begin{multicols}{5}

\loopnum=1\gettabs

\end{multicols}

As you can see, \gettabs is where the work is
done. Here is how it is defined.

\def\gettabs{\loop

\expandafter\ifx

\csname tab\the\loopnum\endcsname\relax

\else

\vskip6pt\hbox to 1in{%

%%

%% \hyperlink takes two arguments;

%% the first the name of the hypertarget,

%% and the second, the text that will link

%% to the hypertarget when clicked:

\hyperlink{link\the\loopnum}

{\plaintab{\csname tab\the\loopnum\endcsname}

\hskip12pt}

\hfill}%% <== end \hbox started above

\global\advance\loopnum by 1

\repeat}

TUGboat, Volume 0 (2012), No. 0 — Proceedings of the 2012 Annual Meeting 1003

Amy Hendrickson

If you are interested in how to make the tab
with Tikz, here is the code:

\definecolor{dkblue}{cmyk}{.9,.53, .32, .2}

\def\plaintab#1{%

\hbox{\normalsize\sf

\begin{tikzpicture}

[rounded corners=3pt, inner sep=3pt]%

\node[rectangle,fill=dkblue]

{\Large\sf\color{white}

\vrule depth 3pt width 0pt height 15pt \relax

#1};

\end{tikzpicture}}}(Client) Report
Portfolio Analysis andModeling

Click on Tab to go to Analysis

..AAPL

..XOM

..FCX

..PFE

..MSFT

..QQQ

..GRMN

..CSCO

..ORCL

..XLK

..RIMM

..CAT

..XLI

..HAL

..SLW

..HON

..TZA

..DELL

..GM

..NDX

..ETFC

..QCOM

..MMR

..BP

..GOOG

..BIDU

..GS

..AMZN

..NEM

..XRT

..GDXJ

..EUO

..HPQ

..DJX

..T

..TLT

..NFLX

..WFC

..POT

..USO

..DIA

..GG

..NVDA

..KGC

..BBY

..JNJ

..XLE

..MU

..CMCSA

..AUY

..XOM

..FCX

..PFE

..MSFT

..QQQ

..GRMN

..CSCO

..ORCL

..XLK

..RIMM

..CAT

..XLI

..HAL

..SLW

..HON

..TZA

..DELL

..GM

..NDX

..ETFC

Symbols Continued on Next Page

Figure 2: One form of automated online report
generation, this is a draft version of customized
financial report. Each symbol automatically generated
and is hyperlinked to the appropriate page of the
report. The company analyzed depends on input
from the client; the symbols and their linking is done
through macros utilizing csname.

4 Example: Redefinition of macro within
the auxiliary file

Our final example shows a technique that might be
used to solve various problems. In this case, we
are using \csname to determine the highest level of
security classification on a particular page, so that
we can print the highest level on the top and bot-
tom of the page (Unclassified, Classified, Secret and

Top Secret). Every paragraph on the page will be
marked with one of these classification levels, in any
order. Figures and tables and their captions will be
marked as well.

This problem is difficult because we don’t know
initially the page number where each paragraph, ta-
ble or figure, will appear. In addition we don’t have
a way of determining which is the highest level for
any particular page.

There are many more complications to this gen-
eral problem. For instance, how do we pass infor-
mation on the level of a paragraph that has broken
over pages, so that the part of the paragraph on the
second page will contribute to the calculation of the
highest level on the second page? For the sake of
brevity, let’s consider only the general mechanism
here.

The solution

The solution comes from our convenient tool,
\csname, and its ability to use a counter in its name
to make a series of unique definitions.

To this we add the innovation of making further
definitions in the auxiliary file using a conditional to
determine whether the current classification number
is the highest for the current page number. Only if it
is the highest number will the pagenumber and the
classification level be defined so that the information
can later be accessed to be used in the running head
and foot for that particular page.

4.1 Setting up

We use a \write for every instance where a classi-
fiction level is written in the text with the command
\secmark. \write is only activated after the page
is made up, so we are sure that we will be using the
correct page number when we send the information
to the auxiliary file.

Since we will have many \write commands in
the .tex document, we will write to a new auxil-
iary file, \jobname.lev instead of using standard
LATEX auxiliary file, \jobname.aux. We name the
new write: \newwrite\collect

However, we won’t open the new auxiliary file
in the body of the .cls file, since we need to input
the current version of \jobname.lev and access the
commands found in it before opening a new file.

To do this we can redefine \document so that
when \begin{document} is used it will input the
current \jobname.lev and only then open the new
\jobname.lev to be populated with \csname com-
mands produced in the next LATEX run.

1004 TUGboat, Volume 0 (2012), No. 0 — Proceedings of the 2012 Annual Meeting

The Wonders of \csname...\endcsname

We can do this by saving the current version
of \document, and then redefine it to use its origi-
nal definition, plus inputting our auxiliary file, and
opening the new file:

\let\savedocument\document

\def\document{\savedocument

%% We temporarily open \jobname.lev:

\openin\@inputcheck\jobname.lev %

%% if end of file=\@inputcheck, no file exists

\ifeof\@inputcheck

%% if no file let users know they must

%% run LaTeX again:

\typeout{^^J^^J

!! Please run LaTeX again to get

correct classification levels^^J^^J}

\else

%% Since we know now that there Is a file

%% called \jobname.lev we input it and

we get the information from the last

%% LaTeX run:

\input \jobname.lev

\fi

%% And Now we can open the file where info

%% from the current LaTeX run can be saved:

\immediate\openout\collect=\jobname.lev

...

4.2 The counter to be used

The next item we need is a counter to use when
defining our \csname commands. Since we want a
command that has the current page number in its
name, we would be tempted to use the LATEX page
counter, \c@page.

However, in the case where the beginning of
the document is in roman, and the body of the doc-
ument is in arabic, we have the unfortunate result of
having multiple pages with the same page number.

So instead, we make a new counter, and call it
\superpage: \newcount\superpage.

We can use \shipout to advance this counter.
(\shipout is the TEX primitive that is called every
time a page is completed.) This gives us a number
that is continuous through the document.

\shipout will be used to print the classification
term on the top and bottom of the page. We use
\shipout to generalize this solution, so that this
system will work independently of any page style,
and its headers and footers.

Now we can add this redefinition of shipout to
our redefinition of \document. If the hyperref.sty
package has been used, we need to access \shipout
through the \AtBeginShipout command, so we test
to see if that command is available. If it is not de-
fined, we redefine \shipout directly. However, if
\AtBeginShipout is defined, we know that hyper-

ref.sty has been used, and we use \AtBeginShipout

to advance the counter and call the classification
commands to print the classification level at the top
and bottom of the page.

\newwrite\collect

\newcount\superpage

\let\savedocument\document

\def\document{\savedocument

\openin\@inputcheck\jobname.lev %

\ifeof\@inputcheck

\typeout{^^J^^J

!! Please run LaTeX again to get

correct classification levels^^J^^J}

\else

\input \jobname.lev

\fi

\immediate\openout\collect=\jobname.lev

%%

%% Now test to see if \usepackage{hyperref}

%% has been used:

\expandafter\ifx

\csname AtBeginShipout\endcsname\relax

%%

%% If hyperref has not been used do this:

%%

\let\saveshipout\shipout

\long\def\shipout\vbox##1{\saveshipout

\vbox{\global\advance\superpage by 1

\vbox to0pt{\vss\topofpage\vskip36pt}

##1\vbox to0pt{\vskip6pt\bottomofpage\vss}

}}

\else

%% hyperref is used, so we use \AtBeginShipout

%%

\AtBeginShipout{

\setbox\AtBeginShipoutBox=

\vbox{%% Counter advanced

\global\advance\superpage by 1

%% At top of page:

\vbox to0pt{\vss

\centerline{\classfont\makeclassification}

\vskip12pt}

%% Contents of typeset page:

\box\AtBeginShipoutBox

%% At bottom of page:

\vbox to0pt{%

\centerline{\classfont\makeclassification}

\vss}}}

%% Hyperref error prevention, avoids

%% confusion when secmark is used in a section

%% head and will be be found in a bookmark:

\pdfstringdefDisableCommands{%

\let\uppercase\relax

\let\secmark\secmarkletter}

\fi} %% end test to see if hyperref is used.

TUGboat, Volume 0 (2012), No. 0 — Proceedings of the 2012 Annual Meeting 1005

Amy Hendrickson

4.3 Doing the Writes, the Neat Part!

The \secmark macro works by sending a definition
for the classification level on a particular page to
\jobname.lev file, using a \write associating the
page number with the level given. The \write will
not be activated until the page is made up, so we are
guaranteed to have the correct page number sent to
the .lev file. This works as well for figure or table
floats, since \write will send out the information to
the .lev file only after the page is made up, and the
page where the floats will appear is determined.

The \write sends information to the auxiliary
file, \jobname.lev, including several conditional
tests. The command looks messy and verbose, when
the write is made, since we have to stop the expan-
sion of many commands by preceding each one with
\string, except for those commands that we want
to expand immediately, in this case, the super page
number:

\write\collect{%% ^^J makes a blank line

%% in the \jobname.lev file so that

%% it is easier to see where each test ends.

^^J^^J

%%

%% First test to see if this definition has

%% already been made; if not, do a gdef (global

%% def is necessary for a definition in an

%% auxiliary file that will be input to another

%% file) using csname and the superpage number

%% to define the highest level on that page;

%% If it has been defined, test to see if

%% previous number is lower than previous

%% definition; if so, redefine.

%%

\string\expandafter\string\ifx\string\csname%

\space LevelOnSuperPage\the\superpage

\string\endcsname\string\relax

\string\expandafter\string\gdef\string\csname

\space LevelOnSuperPage\the\superpage

\string\endcsname{#1}

\string\else

\string\ifnum \string\csname\space

LevelOnSuperPage\the\superpage\string\endcsname

\string<

#1

\string\expandafter\string\gdef\string\csname

\space LevelOnSuperPage\the\superpage

\string\endcsname{#1}

\string\fi\string\fi

^^J}%

. . . which makes more sense visually when we see
how the code looks by the time it is expanded and
appears in the \jobname.lev file. Here, the level
sent for page 5 is ‘2’.

\expandafter\ifx

\csname LevelOnSuperPage5\endcsname\relax

\expandafter\gdef

\csname LevelOnSuperPage5\endcsname{2}

\else\ifnum\csname LevelOnSuperPage5\endcsname<

2 \expandafter\gdef%

\csname LevelOnSuperPage5\endcsname{2}

\fi\fi

This process can be repeated as many times as need-
ed for each page, with only the highest number, de-
termined by each test, being used to define \csname

LevelOnSuperPage?\endcsname.

4.4 Using the Level Information

As we saw earlier, the \jobname.lev file will be in-
put with \begin{document}. This will bring in a
series of definitions, one for each page, that asso-
ciates a page number with a classification level. We
can use this information with every shipout, when
the macro \makeclassification will be called at
the top and bottom of the page. Here is its defini-
tion:

\def\makeclassification{%

\vbox{%

\baselineskip=12pt

%% Is there a definition for this page?

\expandafter\ifx

\csname LevelOnSuperPage\the\superpage

\endcsname\relax

%% if not:

\centerline{}

\else

%% if there is a definition:

\centerline{%

\ChangeNumIntoClassification{%

\expandafter\csname

LevelOnSuperPage\the\superpage

\endcsname}}\vskip3pt\fi}}

\ChangeNumIntoClassification, seen above, uses
the definition of \csname LevelOnSuperPage
\the\superpage\endcsname as its argument, which
will yield a number from 1 to 4. This allows us to
use \ifcase to trivially change that number into
the classification term:

\def\ChangeNumIntoClassification#1{%

\ifcase#1\or Unclassified \or Classified

\or Secret \or Top Secret

\else%

! Please Run LaTeX Again to Get the

Classification Level !

\fi}

1006 TUGboat, Volume 0 (2012), No. 0 — Proceedings of the 2012 Annual Meeting

The Wonders of \csname...\endcsname

5 Putting These Techniques to Use

Likely there are many more opportunities to use
these techniques, particularly with off label uses for
LATEX such as report generation, or building e-docu-
ments on the fly, and other web oriented macro writ-
ing projects. To summarize:

We can use \csname<counter>\endcsname to
generate a new and unique command every time an
outer command is used and the counter advanced.
For example, an \endnote command may be defined
that generates a new definition every time it is used.

A \csname. . . \endcsname definition with a
counter in its name can be used to generate a se-
ries of hypertext targets automatically.

In both of these cases, and in general, we can
use a loop, with an internal counter advanced each
time it is used, to access the new definitions.

We can stop the loop by testing to see if the
most recent \csname<counter>\endcsname combi-
nation has been defined. Using this method to stop
the looping has the advantage that we don’t need to
know in advance how many definitions were made;
we will cycle through all available definitions before
ending the loop.

Finally, we have the technique of sending infor-
mation to an auxiliary file with a \write and mak-
ing new \csname<counter>\endcsname definitions
in the body of the auxiliary file, based on the re-
sults of a conditional test. When the auxiliary file
is input into the root .tex file, we can then use the
resulting definition in a variety of ways.

These techniques add to our understanding of
the exceptional flexibility of Knuth’s TEX language.

∗ ∗ ∗
May your explorations in this territory prove

enjoyable and fruitful!

TUGboat, Volume 0 (2012), No. 0 — Proceedings of the 2012 Annual Meeting 1007

