A web-based TEX previewer: the ecstasy and the agony

Michael Doob

Department of Mathematics

The University of Manitoba

Winnipeg, Manitoba, Canada R3N 2T2
mdoob@ccu.umanitoba.ca

Abstract

The appeal of a web-based combined TEX editor and previewer is instantaneous.
It allows not only the easy testing of snippets of code, the writing of short ab-
stracts and even of short papers, but also allows sharing of the results over the
web. Unfortunately, even a benign program like TEX presents serious security

risks, and care must be used when exposing such an application.
This presentation includes a web-based viewer of the type just described. It

will be used to:

e Illustrate how remarkably easy it is, using tools readily available, to con-

struct a previewer,

e give examples of potential security problems, and

e indicate some solutions to these problems.

The context of this talk is a LAMP (Linux, Apache, MySQL, PHP) envi-
ronment, but the basic ideas can be applied to any of the common operating

systems.

1 Ecstasy

The appeal of a web-based TEX previewer is imme-
diate. There are many possible reasons for this. We
start with some of the them.

1.1 Motivation
1.1.1 Remote Access

We at the Publications Office of the Canadian Math-
ematical Society receive papers accepted for publi-
cation (sometimes called a sow’s ear) in many differ-
ent levels of quality of TEX. They must all be made
to conform to our publication standards (sometimes
called a silk purse), and significant manpower is used
for this purpose. We have a number of editors who
work both at our office and at home. There is no
problem putting TEX on a home computer. We have
our own style file, and that can be put on the home
computers too (although it does change from time
to time). However, there is a significant problem
with our fonts. We have a number of proprietary
(Adobe) fonts, and the license restricts their distri-
bution. The TFM files are no problem and can be
put on the home computers; the only problem is
with the previewing since that uses the proprietary
information. Hence a web page previewer with a
one-button upload of the TEX file followed by run-

TUGboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting

ning IXTEX with our class file and then displaying
the resulting pages is just what we need.

1.1.2 Abstract Submissions

The Canadian Mathematical Society has semiannual
meetings in June and December. There are several
hundred abstracts for each meeting which need to
be in KTEX format compatible with the style of our
proceedings. Our traditional method was to allow
presenters to submit their (purported) KTEX files
by email. Changing these sows’ ears into silk purses
uses significant resources. With a web page the au-
thor can edit the IXTEX file until it works properly
with our style file.

We now provide a window into which the ab-
stract may be loaded. It can be run though the
appropriate version of I/ TEX and, if needed, can be
further edited and rerun within the same window.
This transfers the editing efforts from our person-
nel to the author. There is, of course, a resulting
decrease in quality due to author inability to use
KTEX optimally. The abstracts are ephemeral (they
are used for the one meeting only), and so this is an
acceptable cost.

1.1.3 Snippet Testing

Sometime it’s desirable to try out a new definition
that may take a few tries to get it right. If the web

1001

Michael Doob

server is on a local machine, the turnaround time
is instantaneous. It’s easy to incrementally improve
the code until it is perfect.

Similarly, it is useful to use the picture envi-
ronment incrementally to create figures that will be
usable with any implementation of KXTEX.

If you subscribe to texhax <texhax@tug.org>,
then lots of little problems that arise from that list
can be checked and/or debugged on the spot.

1.1.4 Because We Can

The improvements in the speed of software applica-
tions used with web browsers over the past few years
have been breathtaking. We have long been able to
run TEX on a local machine and view the output
immediately on a previewer. It is interesting that
we can replicate that experience using a reasonable
web connection.

1.2 LAMP Implementation
1.2.1 Environment

Our environment used for this application is some-
times called LAMP: the Linux operating system, the
Apache web server, the MySQL database manage-
ment system (unused in this application) and PHP
(sometimes the “P” is Perl or Python; indeed, either
could be used instead of PHP). No extra modules
are used with Apache, and no additional packages
are loaded into PHP.

1.2.2 Desired Elements

The minimum implementation would allow input
(an input window using direct typing, cut-and-paste
or file upload) as well as output that is dependent on
the success or failure of the TEX job. It’s also easy
to have only file uploads and to display (portions of)
the log file.

Additionally, it’s also possible to preload TEX
input or specific packages. For example, it could be
more convenient to have the material in the input
window inserted between the lines:

\documentclass{article}
\begin{document}

\end{document}

Similarly, it’s also easy to preload either document
classes of packages using pulldown menus. Examples
are given in the documentation.

1.2.3 Browser Peculiarities

Ideally simple output should be rendered identically
by different browsers. This ideal, unfortunately, is
not met. For example, the output from rerunning

1002

TEX should reflect the content in the current input
window. In fact, there is an html metacommand for
exactly this purpose:

<META HTTP-EQUIV="CACHE-CONTROL"
CONTENT="NO-CACHE">

Alas, some browsers will ignore this command, but
these shortcomings can be overcome in a LAMP en-
vironment. It’s always possible to generate unique
names with each call to TEXto avoid the cache prob-
lem. It’s also possible to use freely available software
to generate graphics (png, jpg, pdf or svg) whose
renderings will be (more or less) browser indepen-
dent.

2 Agony

As can be seen in the accompanying documenta-
tion, it’s easy to set up a web-based TEX previewer
within a LAMP environment. Alas, as with any web
application that may be accessed widely, there are
certain concerns and possible exploits that must be
addressed. At first blush, TEX is pretty robust and
locks out the most dangerous threats. For exam-
ple, there are no system calls available. Nonetheless,
there are precautions that must be taken.

2.1 Need to know

Clearly, the more widespread the audience is for
a web application, the less is the information that
should be disclosed about the the operating environ-
ment. There are two options: control the access to
the web pages or control the amount of information
disclosed. In a LAMP environment this is easy.

It is a standard configuration command for the
Apache server to restrict access to some (or even all)
directories to clients with specific internet addresses,
so the access, if desired, may be localized.

On the other hand, the log file, even when there
is only one line of input, will reveal information
about the operating system:

This is TeX, Version 3.14159 (Web2C 7.4.5)
/usr/share/texmf/tex/latex/base/sizel0.clo

Loading more packages and fonts generates similar
messages concerning the versions running and the
structure of the file system. These may and should
be filtered out when the log file is requested. This
same is true for error messages.

2.2 Denial of Service

Denial of Service (DOS) attacks are designed to uti-
lize all of the resources available on a particular com-
puter and thus deny access by others. There are
several methods by which this may be done.

TUGboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting

A web-based TEX previewer: the ecstasy and the agony

2.2.1 CPU hogging

Consider what happens with the following KTEX in-
put:

\newcounter{cnt}

\loop
\thecnt\newpage \stepcounter{cnt}
\ifnum \value{cnt}<10000

\repeat

This produces a 10,000 page document with one in-
teger (actually two if you include the page number)
on each page. Suppose the \stepcounter{cnt} is
left out. Then the loop is infinite, and TEX happily
runs until it reaches its memory limit and then halts.
Now suppose that \thecnt\newpage is also omitted.
Then no memory is used, and TEX will run indefi-
nitely using up any cpu resources available. There
are two solutions for this:

e Any standard implementations of Linux comes
with the pam (pluggable authentication mod-
ule) software. This module uses a file called
limits.conf to control, among other things,
the amount of cpu time any process can use.

e For operating systems without pam there is a
program called cpulimit which may be used
to control the percentage of available cpu re-
sources that may be allocated to a given pro-
cess.

2.2.2 Disk hogging
Now consider the following IXTEX input:

\newcounter{cnt}

\loop
\leavevmode\newpage \stepcounter{cnt}
\ifnum \value{cnt}<10000

\repeat

This produces a 10,000 page document with only the
page numbers on each page (of course, the use of
\pagestyle{empty} will make the page completely
blank). If we delete the \stepcounter{cnt} from
the input, then TEX runs indefinitely using no mem-
ory, but the dvi file will (apparently) grow without
limit.

This problem is easy to address. The file men-
tioned above, limits.conf, can also control disk
usage. Alternatively, disk quotas, turned off by de-
fault, may be enabled.

2.2.3 Server hogging

Any web application is subject to attack through the
server. A distributed DOS attack, that is, one from
a botnet of clients is really impossible to stop. Even
with web pages, the mouse clicks can be spoofed, so

TUGboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting

it is important to keep the web applications isolated
from the rest of the computer environment.

2.3 Isolation

Putting any application on the web, as we have seen,
has inherent dangers. While these can not be elimi-
nated, they can be somewhat mitigated by isolating
the web application, inasmuch as possible, from the
rest of the computer environment. There are three
possible approaches.

2.3.1 Chroot Jail

The chroot command is available on all UNIX im-
plementations. All the software (binaries and li-
braries) needed for the application are put on one
directory, and the chroot command then limits the
operating system access to that directory (and its
subdirectories) only. We say that the operating sys-
tem is in chroot jail. This makes the rest of the
computer environment safe even if the application
is broken.

2.3.2 Software isolation of the Operating
System

It is now fairly easy to set up virtual computers
within a UNIX environment. It’s possible to take a
snapshot of the original setup, and then refresh the
installation regularly. This means that any damage
can be instantly repaired.

2.3.3 Hardware isolation of the Operating
System

The most extreme measure is to put the application
on its own platform. This is in effect running the
web application as an embedded device. Since a web
browser can be run headless, the costs are actually
quite modest. It is possible, for example, to set up a
mini-ITX board with an enclose, RAM and storage
for less than $200.

3 Documentation

Finally, we want the actual PHP code that imple-
ments the web-based previewer. This is included
in the attached TEX file. Running the file through
ITEX prints the documentation along with instruc-
tions for extracting the PHP code.

1003

