
TUG 2007 —program and information
Tuesday
July 17

9 am–5 pm track 1: LATEX workshop, Sue DeMeritt & Cheryl Ponchin
9 am track 2: MetaPost workshop, Hartmut Henkel

10:30–10:45 am break
10:45 am track 1 continues
10:45 am track 2a: Beamer & TikZ workshop, William Slough & Andrew Mertz
10:45 am track 2b: ConTEXt workshop, Hans Hagen

12:30–2 pm lunch
2 pm track 1 continues
2 pm track 2a continues
2 pm track 2b: Lua and LuaTEX, Roberto Ierusalimschy and Taco Hoekwater

3:30–3:45 pm break
5–7 pm registration & reception, at the Tula Community Center

Wednesday
July 18

8–9 am registration
8:30 am Karl Berry, TEX Users Group Welcome
8:35 am Peter Wilson, Herries Press keynote: Between then and now — A meandering memoir
9:30 am Barbara Beeton, AMS & TUG STIX fonts and Unicode
9:55 am Jonathan Kew, SIL SIL font projects

10:15 am break
10:30 am Dick Koch, Univ. of Oregon Multiple TEX distribution support in MacTEX
11:05 am Jim Hefferon, St. Michael’s College CTAN package sourcing
11:45 am Jonathan Kew X

E

TEX Live
12:20 pm Morten Høegholm, DTU LATEX3 project update

12:45 pm lunch
1:45 pm Klaus Höppner, DANTE e.V. & TUG Typesetting tables with LATEX
2:25 pm David Allen, Univ. of Kentucky Three-dimensional graphics in LATEX
3:05 pm Morten Høegholm The breqn package: revised and revised
3:45 pm break
4:00 pm Ari Stern, Caltech Incorporating LATEX text with LATEXiT
4:20 pm Leonard Rosenthol, Adobe Systems Everything you wanted to know about PDF but were afraid to ask

5 pm q&a
Thursday
July 19

8:30 am Robert Burgess, Cornell Univ. CrossTEX: A modern bibliography management tool
9:10 am Andrew Mertz & William Slough,

Eastern Illinois University
Programming with PerlTEX

9:50 am Chris Rowley, Open University Vistas for TEX
10:30 am break
10:45 am Paul Topping, Design Science MathType 6’s TEX input for MS Word and Wikipedia
11:25 am William Hammond, SUNY Albany Dual presentation with math from one source
12:05 am Barry MacKichan, MacKichan Inc. Design decisions for a structured front end to LATEX

12:45 pm lunch
1:45 pm Don DeLand, Integre From TEX to XML: The legacy of techexplorer and the

future of math on the Web

2:25 pm Eitan Gurari, Ohio State Univ. LATEX conversion into normalized forms and speech
3:05 pm Paulo Ney de Souza, UC Berkeley Long-time preservation strategies for TEX-sourced content
3:45 pm break

4 pm q&a, TUG meeting
7 pm banquet (at the Aztec Center)

Friday
July 20

8:30 am Roberto Ierusalimschy, PUC-RIO About Lua
9:30 am Hans Hagen, Pragma ADE Introduction to the LuaTEX project
9:30 am Taco Hoekwater, Elvenkind BV The Lua TEX interface: Extra tables and callbacks

10:30 am break
10:45 am Hans Hagen LuaTEX attributes
11:25 am Idris Hamid, Colorado State Univ. Arabic script typography
12:05 pm Hans Hagen Zapfinfo as torture test

12:45 pm lunch
1:45 pm Nelson Beebe, Univ. of Utah Extending TEX and METAFONT with floating-point arithmetic
2:25 pm Taco Hoekwater MPLib: Turning MetaPost into a reusable component
3:05 pm Hans Hagen ConTEXt MkIV

3:45 pm break
4 pm Idris Hamid Critical editions

4:40 pm panel
≈ 5 pm end

Conference logistics

This information (and more) is online at http://tug.org/tug2007/sdsu.html.
The conference location is the Cuicacalli Hall building of San Diego State University, San Diego,
California; the talks and workshops will take place in the Cuicacalli Seminar Room (first floor).
Here is the address: San Diego State University — Cuicacalli Residence Hall

5150 E Campus Drive / San Diego, CA 92115 / USA.
The dormitory accomodations are the third floor of an adjoining building, Tacuba Residence Hall.
Every participant, whether staying in the Tacuba Residence Hall or off-campus, must sign in
upon arrival at Cuicacalli Hall front desk where you will receive a meal card (breakfast and lunch
for overnighters, lunch only for commuters), a parking permit if needed, and Internet access
information ($10/week). The Cuicacalli Hall front desk phone number is 619-594-2622.
If you are driving, park in nearby Parking Garage #3; get permit at the front desk.
If arriving by trolley, exit at the SDSU stop, take the elevator to the ground floor, cross over the
pedestrian bridge, turn left. The bridge ends at Tepeyac Hall. Walk a bit east, next building is
Cuicacalli Hall, enter at main entrance.
The initial registration and reception is on Tuesday, 17 July, 5 pm to 7 pm at the Tula Community
Center (near the other buildings). Snacks and nonalcoholic beverages will be served. Please check
in at the registration table, pick up your name tag, conference booklet and other items. If you’re
not able to attend the reception, you can register the next morning from 8 am–8:30 am outside the
conference room.
A swimming pool and volleyball court are located in the central quad area of the residence
halls. Other recreational facilities such as basketball courts, weight room, bowling alley, etc., are
available in the Aztec Recreation Center: see http://arc.sdsu.edu/membership/index.php.
Near the top of the page is a link to a guest pass. Click on it, fill it out and print it. This entitles
you to one free workout. Beyond that, workouts are $10 or $12 for 24 hours (the rate is may go
up, we’re not sure). You need to have ID with you to purchase the daily pass, and most likely to
use the guest pass.

MacOS X meeting

At Tuesday lunch there will be gathering of those interested in TEX on Mac OS X. It may continue in
the afternoon after the Beamer+TikZ workshop, time and interest permitting.

TUG members meeting

After the regular session on Thursday, we will hold a TUG user group meeting for anyone interested.
Several TUG board members will be present at the conference: Barbara Beeton, Karl Berry, Jon
Breitenbucher, Sue DeMeritt, Steve Grathwohl, Jim Hefferon, Klaus Höppner, and Cheryl Ponchin, as
well as TUG’s executive director, Robin Laakso. We will welcome Dick Koch to the board, and report
on TUG’s current status and future outlook.
We invite discussion of any TUG-related business at this time: ideas for outreach to additional
communities, additional initiatives to undertake, existing projects to support, or any other user
group-related topics.

Banquet & soapbox

The conference banquet will be held in the Aztec Center (on the SDSU campus near the conference
building) at 7 pm on Thursday, July 19. We will have a few door prizes at the banquet (as usual). If
you haven’t signed up for the banquet, it’s not too late. Please just let us (email office@tug.org).
Thanks to Peter Flynn for suggesting a 66–99 second soapbox at the banquet, where anyone can
speak for a minimum of 66 seconds and a maximum of 99 seconds on a TEX-related topic:

You can report a success, gripe about a problem, lament a failure, share an insight, ask a question,
or explain a solution.
No intros, no questions, no hacking on earlier speakers; just you, the mike, and the audience . . .

. . . well, and a moderator with a timer who will cut you off when your 99 seconds are up.
No slides, overheads, whiteboards, blackboards, flipcharts, chalk, markers, or other props.
Come prepared or make it up on the spur of the moment—no experience necessary.

TUG 2007 j 2

Between then and now — A meandering
memoir
Peter Wilson
I was asked to talk about something interesting —
perhaps how I came to develop the memoir class.
Following this suggestion the first part is about how
I became involved with LATEX and friends and why
the memoir class. To me all this is not particularly
interesting as it falls into the personal ‘been there,
done that’ category. What I find more interesting
is how the written word has been presented. The
second part briefly describes this, starting four
millenia ago with Cuneiform and, with a few stops
along the way, ending at recent times.

STIX fonts and Unicode
Barbara Beeton
The goal of the STIX project is to provide fonts
usable with other existing tools to make it possible
to communicate mathematics and similar technical
material in a natural way on the World Wide
Web. This has involved two major efforts:
enlarging Unicode to recognize the symbols of
the mathematical language, and creating the fonts
necessary to convert encoded texts into readable
images.

This ten-year effort is finally resulting
in fonts that can actually be used for the
intended purpose.

Support for multiple TEX distributions in
i-Installer and MacTEX
Dick Koch
We discuss a data structure by Gerben Wierda and
Jérôme Laurens which makes it easy to use multiple
TEX distributions on Mac OSX.

CTAN package sourcing
Jim Hefferon
I have some experimental software to improve
the way in which packages are added to the
Comprehensive TEX Archive Network (CTAN).

X ETEX Live
Jonathan Kew
With the release of TEX Live 2007, X ETEX has
“come of age” and entered the mainstream of the
TEX world. The X ETEX engine, which provides
built-in Unicode and OpenType support, is now a
standard part of a TEX Live installation, and thus
is readily available to any user who installs this
distribution.

This presentation will show how users can take
advantage of X ETEX to easily use additional fonts
in TEX or LATEX documents, with no complex
installation or setup procedures. It will also show

how non-Latin scripts such as Chinese, Arabic,
Devanagari, and many others can be typeset just
as easily as English, thanks to full Unicode support
throughout the system.

In addition, some of the newest developments
in X ETEX (beyond the TEX Live 2007 release)
will be discussed and demonstrated. These
include support for the Graphite rendering
technology for complex scripts; extensions that
can simplify Chinese/Japanese character spacing
and mixed-script typesetting; and more complete
Unicode math support.

Typesetting tables with LATEX
Klaus Höppner

From a LATEXoligist’s point of view, LATEX is a
perfect tool to typeset nearly everything in a
beautiful manner. Without any doubt, LATEX may
typeset tables, but it is easy to produce bad tables
with ugly lines and text touching the lines. This
talk is intended to introduce how to typeset tables
with LATEX on a beginners’ level, mentioning some
typographic aspects, showing some packages that
help the author in formatting tables and then
telling how to typeset tables with page breaks.

Three-dimensional graphics in LATEX
David Allen

PSTricks and its add-ons allow production of
some three dimensional graphics. Two other
programs, Asymptote and Sketch, implement
graphic languages. This presentation gives a
brief introduction to each of these programs and
examples of their use.

The breqn package: revised and revived
Morten Høegholm

The breqn package facilitates automatic
linebreaking of displayed equations. Originally
developed by the late Michael Downes of the
American Mathematical Society, it is now
being restructured completely as part of a
thesis project.

Incorporating LATEX text into graphics and
presentations with LATEXiT
Ari Stern

It is often a challenge to combine text created
in LATEX with content from other software, such
as graphics and presentation software, while
maintaining a consistent typographical style.
(For instance, text labels in mathematical figures
often do not match the surrounding text.) This
demo will show how this can be done easily using
LATEXiT, a free utility for Mac OS X included with
the MacTEXdistribution. Examples will include 2D

TUG 2007 j 3

and 3D mathematical figures in Adobe Illustrator,
as well as presentations using Apple Keynote.

CrossTEX: A modern bibliography
management tool
Robert Burgess
CrossTEX is a new bibliography management
tool that aims to render bibliographies less
error-prone, databases easier to maintain, and
documents easier to cite. It is based on an
object-oriented data model that minimizes
redundant information in bibliographic databases.
It enables works to be cited not through syntactic
object keys but through semantic information
that uniquely identifies the work. It also supports
customization and automation to a much
greater extent in order to avoid errors, typos,
and inconsistencies in bibliographies, while
providing users with fine-grained control over the
typesetting of references and citations. Other
features include support for new object types,
such as urls and patents, that have become
common in citations, direct generation of HTML

documents, easy programmability using a
well-known language, and extensive databases of
published works. It is backwards-compatible with
existing BIBTEXdatabases, and, overall, builds on
BIBTEX’s strengths while fundamentally fixing the
problems that lead to errors in BIBTEX-formatted
documents.

Programming with PerlTEX
Andrew Mertz, William Slough
PerlTEX couples two well-known worlds — the Perl
programming language and the LATEX typesetting
system. The resulting system provides users with
a way to augment LATEX macros with Perl code,
thereby adding programming capabilities to LATEX
that would otherwise be difficult to express. In
this paper, we provide a brief tutorial on Perl
and illustrate the use of PerlTEX with a variety
of examples. Although Perl may perhaps be best
known for its string manipulation capabilities, we
will demonstrate how PerlTEX indirectly provides
support for “programming” graphics through the
use of additional packages such as TikZ.

MathType 6.0’s TEX input for MS Word and
Wikipedia
Paul Topping
MathType is well-known for its point-and-click user
interface for editing math. However, some users
feel more comfortable typing math using TEX, so in
MathType 6.0 we have added a TEX input mode.
This provides the user with the best of both worlds:
TEX for initial entry, point-and-click and drag
and drop for easy editing and manipulation. Since

MathType can save equations in several graphics
formats and objects, it provides a direct path from
TEX to Microsoft Word, PowerPoint, and virtually
any document or application. Since many blogs
and wikis accept a variant of TEX math syntax
and expose it in their web pages, we are now able
to support both authoring and reuse of equations
in these environments. In particular, MathType
users can now copy equations out of the thousands
of Wikipedia pages containing equations for use in
educational and research authoring. In addition,
MathType users can create equations and paste
them directly into new Wikipedia content.

Dual presentation with math from one source
using GELLMU
William Hammond

A contemporary author writing an article for “dual
presentation” has in mind both the classical printed
presentation of an article and the modern web form
of an article based on HTML.

There are two main approaches for achieving
dual presentation that are relevant to the TEX
community.
— Write a LATEX article, and use a program that

translates to HTML.
— Write an article in a suitable XML document

type, such as DocBook or TEI, and use standard
software for generating LATEX and HTML.
Both methods present challenges to authors who

have been accustomed to using LATEX.
Since mid-2002 the second-generation form of

HTML that supports mathematical content has
been supported by the two most widely deployed
web browsers, but not many articles seem to have
appeared on the web in this form so far. The most
likely reason is difficulty of production.

This talk will address the use of “generalized
LATEX” to produce dual content from a single
LATEX-like source. This method combines the
reliability of XML document transformation with
many of the conveniences available when writing
LATEX markup.

From TEX to XML: The legacy of techexplorer
and the future of math on the Web
Don DeLand

In 1997, IBM Research first released techexplorer,
a browser plugin for rendering TEX markup
directly within browsers. Since Integre took over
techexplorer development in 2003 there have been
relatively few advances in browser technology, but
tremendous developments in collaboration tools
and other web-based applications. This talk gives
a brief history of the techexplorer project and
explains why its development has shifted away
from TEX to its current focus on native XML/

TUG 2007 j 4

MathML authoring. Although delivering math in
web browsers continues to be a frustrating process,
“Web 2.0” holds substantial promise for a new
generation of web-based applications that support
mathematics.

LATEX conversion into normalized forms
and speech
Eitan M. Gurari
LATEX is an authoring language designed for
producing documents through native TEX
compilers. During the years different applications
have been developed to accept LATEX input through
engines programmed from scratch. Those engines
are restricted in power to subsets of LATEX features.
The first part the presentation will demonstrate
how TEX4ht can be used to translate general
LATEX constructs into restricted dialects of
LATEX recognizable by such engines. The jsMath
dialect for LATEX rendering through JavaScript
(http://www.math.union.edu/ dpvc/jsmath/) will
be employed for a target.

T.V. Raman introduced in 1994 his AsTeR
program for automatically rendering technical
documents into audio. His pioneering work
assumed a LATEX subset for an input. Current
recommendations for speech browsers address
XML documents abiding to the SSML and CSS

specifications (http://www.w3c.org). The
second part of the presentation will exhibit
TEX4ht translations of LATEX into speech through
XML-based documents.

Long-time preservation strategies for
TEX-sourced content
Paulo Ney de Souza
The amount of published material in the world has
grown exponentially since Gutenberg’s invention,
with a rate of doubling every 7 1/2 years right now.
Electronic publishing will only increase this rate,
posing new challenges for the long-time preservation
of records and usability for the future.

TEX has changed us into our own typists and
even graphics designers sometimes, but at the
same time has provided the best strategy for
preservation of scientific content we have. This
talk will examine some of these strategies and how
MSP — a non-profit scientific publisher — has used it
to improve usability of journals over time.

About Lua
Roberto Ierusalimschy
Lua is an embeddable scripting language that
aims for simplicity, small size, portability, and
performance. Unlike most other scripting languages,
Lua has a strong focus on embeddability, favoring a
development style where parts of an application are

written in a “hard” language (such as C or C++)
and parts are written in Lua. Currently Lua is used
in a vast range of applications, being regarded as
the leading scripting language in the game industry.

In this talk I will give an overview of the
language, covering not only the technical aspects of
the language but also its origins back in 1993, its
evolution, and its current status.

The Lua TEX interface: extra tables
and callbacks
Taco Hoekwater

Besides adding Lua as a scripting language to
LuaTEX, we are also opening up the internals of
TEX.

There are two sides to that: on the front side,
we allow Lua code to inspect (and sometimes even
change) what is going on inside TEX proper, via the
addition of TEX-related tables. On the back side,
there is an interface defined that allows Lua code to
literally replace the compiled-in behaviour of TEX.
It is actually possible to overload certain section of
TEX-the-program completely.

This talk will give a wide overview of what is
already possible as well as what is not yet possible,
but already planned for the future.

LuaTEX Attributes: The new kid on the block
Hans Hagen

When you switch fonts in TEX grouping keeps
changes to another font local to the group. But
there is more than fonts. Most macro packages
provide color support and in ConTEXt we also
support some PDF related features like outlines
and hidden invisible ink. These features all share
a common problem: we need to keep track of their
state in the page stream and across pages and
splitting content also takes some care. A maybe less
obvious example are hyperlinks, which are natively
supported by pdfTEX (although ConTEXt does it
slightly differently).

In order to make such features easier (and more
robust) to implement luaTEX provides attributes.
These behave like fonts but are by design indifferent
of what they represent. They travel with the nodes
(each node can have attributes) and it’s up to the
macro package to make sure that the intended
behaviour takes place. For this Lua code is used in
combination with processing node lists, either by
using callbacks or by postprocessing boxes.

In this talk I will explain what attributes are,
and how they can be of use to macro writers.

TUG 2007 j 5

Zapfino: Hermann’s torture test for TEX
Hans Hagen
The next couple of years TEXies have to explore
the new landscape of OpenType fonts. Most of the
implementation details will be hidden beyond user
interfaces of macro packages. However this does not
hide the potential mess that users can invoke when
they start enabling or disabling features related to
fonts.

Thanks to the Oriental TEX project Taco can
spend substantial time on coding luaTEX which
in turn means that I have lots of testing and
protyping on my plate. We also spend much time
on discussing the interfaces and extensions to the
program and due to this as well as realistic testing
luaTEX develops rapidly. However, in order to fulfill
the requirements of the Oriental TEX project we
need to be able to typeset high quality Arab. Since
I’m more familiar with Latin and since I had the
Zapfino Pro handwriting font waiting for me in
OpenType format I decided to use that font as
benchmark for advanced node processing in luaTEX.
It proved to be a worthy contender. In the process
we were able to optimize node support in luaTEX
and it also triggered reimplementing the OpenType
tables (from FontForge format 1 to format 2).

In this presentation I will discuss how we deal
with advanced features that are part of OpenType
fonts like Zapfino. I will also explain how such
features are implemented in Lua and TEX code.

Extending TEX and METAFONT with
floating-point arithmetic
Nelson Beebe
This paper examines how TEX and METAFONT

handle numbers, and the historical reasons for
the design of their arithmetic. It briefly surveys
historical and current computer arithmetic, and
suggests how TEX and METAFONT could enjoy a
more flexible computational system without loss
of their important and distinguishing feature of
platform-independent results for typesetting, and
for font design.

This work is based on current progress
in standardization of computer arithmetic,
on proposals for extending the C and C++
programming languages, and on the development
by the current author of a large portable numerical
function library that significantly enhances the
computational environments of more than a half

dozen widely-used programming languages, and
could do so as well for many scripting languages.

MPLib: Turning MetaPost into a reusable
component
Taco Hoekwater
Currently, MetaPost can only be used as a
stand-alone program: it is not possible to combine
your application with a library offering MetaPost
drawing facilities. Likewise, it is not feasible to
write a system service to create graphics, because
the burden of restarting the executable each time
makes such a system horribly inefficient.

The MPlib project aims to convert MetaPost’s
functionality into a form that will allow these
things to happen. The goal is to create a reusable
component that is fully re-entrant, has an extra
layer for the configuration of input and output
handling, and has error handling strategies that can
be controlled by the user.

The project is funded by the joint TEX User
Groups worldwide.

ConTEXt MkIV: luaTEX hits the road
Hans Hagen
In ConTEXt dealing with different backends has
never complicated the system because driver
dependent features are isolated rather well and use
a driver independent layer. Different frontends are
supported by conditional sections in the code which
are dealt with at format generation time. When
X ETEX came around, frontend issues became more
noticeable and with luaTEX we can safely say that
we’re dealing with a new kind of TEX (although it is
still downward compatible with pdfTEX).

In order to use luaTEX to its full power, i.e.
go beyond what pdfTEX provides, one needs to
extend of even rewrite substantial parts of macro
packages. As we develop luaTEX, Taco and I do
lots of tests and we use ConTEXt as a testbed. In
the process large parts of this macro package are
replaced and the related version is tagged MkIV
(its precedecessor has tag MkII). When luaTEX has
become stable we will rewrite parts of ConTEXt
even more drastically but the current state already
gives a good impression of the impact that luaTEX
will have on writing macros.

In this talk I will discuss what impact luaTEX
has on the current releases of ConTEXt, and what
the consequences will be for its future.

TUG 2007 j 6

LATEX class — Cheryl Ponchin, Sue DeMeritt

Contents

1 Table of Contents 1
You may need to add extra information 1

Adding to Contents 1

2 Make an Index 1

3 Sections 1
3.1 Subsections . 1

IV This is a Roman Numbered Section 1
IV.0.1 Subsubsections 2

5 Theorems, Lemmas, etc. 2

6 Tables and Figures 2

7 Itemizing 3

8 Graphics 4

9 Footnotes 4

10 Math 4
10.1 Displayed Math . 4

11 Special Commands 5

12 Macro Writing 5

13 Bibliographies 6

14 Labeling and Referencing 6

15 Marking the Margin of a Paragraph 6

16 Text in Columns 7

Appendix 9

i

Beamer and TikZ Workshop

Andrew Mertz
aemertz@eiu.edu

William Slough
waslough@eiu.edu

For this workshop, we will introduce LATEX users to two packages: beamer and TikZ.
Although these packages can be used separately, they are a natural combination.

The beamer package provides flexible and powerful environments which can be used to
create PDF-based documents suitable for presentations. The TikZ package provides flexible
and relatively simple ways to specify graphics within LATEX documents. Unlike mouse-
driven graphics programs, TikZ uses a coordinate system and a language-based approach,
somewhat akin to the picture environment of LATEX.

In this workshop, we provide examples and hands-on exercises which span a wide spec-
trum of use, including basic slides, use of themes, colors, production of handouts, use of
dynamic effects, animations, and various graphic primitives. Participants wishing to com-
plete the hands-on exercises should bring a computer to the workshop.

1

Outline of Beamer and TikZ Workshop

1. Introduction and motivation

2. Using the beamer package: fundamental level

(a) Basic layout and processing of a beamer document

(b) Anatomy of a frame

(c) Adding content to a frame

(d) Verbatim text and fragility

3. Exercises with beamer: round 1

4. Using the TikZ package: fundamental level

(a) The tikzpicture environment

(b) Points

(c) Paths

(d) Coordinates

(e) Drawing primitives: rectangles, circles, arcs, ellipses, curves

5. Exercises with TikZ: round 1

6. Using the beamer package: advanced level

(a) Adding color to frames

(b) Fonts and themes

(c) Multiple columns

(d) Incremental frame content

(e) Use of overlays

(f) Handouts

(g) Animations

7. Exercises with beamer: round 2

8. Using the TikZ package: advanced level

(a) Nodes

(b) Loops

(c) Transformations: rotation, scaling, shifting

(d) Clipping

(e) Scope

(f) Plotting

9. Exercises with TikZ: round 2

10. Free-form explorations with beamer and TikZ

11. Conclusions, questions and wrap-up

2

Between Then and Now — A Meandering Memoir

Peter Wilson
Herries Press
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries dot press (at) earthlink dot net

Abstract

I was asked to talk about something interesting— perhaps how I came to develop
the memoir class. Following this suggestion the first part is about how I became
involved with LATEX and friends and why the memoir class. To me all this is not
particularly interesting as it falls into the personal ‘been there, done that’ cate-
gory. What I find more interesting is how the written word has been presented.
The second part briefly describes this, starting four millenia ago with Cuneiform
and, with a few stops along the way, ending at recent times.

memoir, n. a fiction designed to flatter the
subject and impress the reader.

With apologies to Ambrose Bierce

We are the inheritors of an ancient tradition,
one that goes back for more than four thousand
years. It has taken me a long time to start to appre-
ciate it, and had it not been for LATEX I never would
have realised that it was there.

1 Neophyte

In 1973 I had to submit six bound copies of my the-
sis — one for my supervisor, another for the exter-
nal examiner, the third for the University library, a
fourth for myself, and two spare in case something
untoward happened.1 A very kind secretary typed
it for me, one original and five carbon copies. I had
to insert all the mathematics by hand (see Figure 1,
original size 71/2 by 10 inches), and in the last car-
bon copy that was about all that was legible.

Round about 1980 I came across a computer
program called RUNOFF that would do a reasonable
job of printing technical reports, provided you didn’t
mind adding in any mathematics by hand and you
could overlook the fact that all we had was a dot
matrix printer with too few dots.

Relief came in 1985 when I was introduced to
LATEX; no more hand insertions, justified text, differ-
ent fonts, a professional look, and no looking back.

I used it for all my internal company reports
and paper submission to journals — this was before
we could ship documents around electronically so in

1 It did. The binder bound one copy with some pages
upside down and others back to front!

Herries Collection

Figure 1: Page from PhD thesis, 1973

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1001

Peter Wilson

revision 8, 1/02 (PRW)

E-mail:
Facsimile:
Telephone:

Address:
Project Leader:

E-mail:
Facsimile:
Telephone:

Address:
Project Editor:

COMMENTS TO READER:

KEYWORDS:

ABSTRACT:

COPYRIGHT NOTICE
This ISO document is a Final Draft International Standard and is copyright protected by ISO. Except as
permitted under the applicable laws of the user’s country, neither this ISO draft nor any extract from it
may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
photocopying, recording, or otherwise, without prior written permission being secured.
Requests for permission to reproduce should be addressed to ISO at the address below or ISO’s member
body in the country of the requester:

ISO copyright office
Case postale 56. CH-1211 Geneva 20

Tel. +41 22 749 01 11
Fax +41 22 734 01 79

E-mail copyright@iso.ch
Reproduction for sales purposes for any of the above-mentioned documents may be subject to royalty
payments or a licensing agreement.
Violators may be prosecuted.

ISO/FDIS 10303-11
Product data representation and exchange: description methods: The EXPRESS
Language Reference Manual

Supersedes ISO TC 184/SC4/ N

ISO TC 184/SC4/ N Date:WG11 210 2003/07/21

WG11 152

This document contains the definition of the EXPRESS lexical information modelling language,
together with the definition of the EXPRESS-G iconic language which is a subset of EXPRESS.

EXPRESS, EXPRESS-G, Information modelling

This document has been reviewed using the internal review checklist (see WG11N206), the project
leader checklist (see WG11N207), and the convenor checklist (see WG11N208), and is ready for
this ballot cycle. Resolutions of the following SEDS reports have been included in this document:
SEDS 683, SEDS 685, SEDS 766, and SEDS 786.

Phil Spiby
73 Columbia Avenue
Sutton-in-Ashfield
Nottinghamshire
NG17 2GZ
United Kingdom

+44 1623 443049
+44 1623 522940

Phil.Spiby@eurostep.com

Jochen Haenisch
EPM Technology AS
Grenseveien 107
PO Box 6629 Etterstad
N-0607 Oslo
Norway

+47 23 17 17 00
+47 23 17 17 01

jh@epmtech.jotne.com

Herries Collection

Figure 2: Cover sheet for ISO/FDIS 10303-11:2003

some sense it didn’t matter what you used to create
them as they would either be copied or retyped.

I became involved in the development of the
International Standard 10303 Industrial automation
systems and integration—Product data representa-
tion and exchange, commonly known as STEP, both
as the editor and as a technical contributor. ISO
had strict rules about the layout of the typewrit-
ten documents we would be submitting, which they
would then retype for their publishing system, mer-
rily adding typos as they went along. We managed
to persuade them to take camera-ready copy so they
could eliminate the typo introducing stage. We used
LATEX, of course, as it produced high quality out-
put and, further, it was non-proprietry and we were
working in a non-proprietry area.

The draft standard grew to about 2000 pages
before we were allowed to split it up into parts to be
published separately. Some part editors, for what-
ever reason, started to use wordprocessors instead
of LATEX. In the meantime I had developed a class
for ISO standards in general, and ISO 10303 in par-
ticular.

Figure 2 shows the cover sheet for the part of
the standard defining the express and express-g
information modeling languages. The cover sheet

ISO/FDIS 10303-11:2003(E)

male female

INTEGER

STRING

2,5 dateperson

hair type

*sc person

1

(DER) age

nickname

last name

first name

birth date

hairchildren S[0:?]

(INV) parents S[0:2]

wife
(INV) husband S [0:1]

Figure D.1 – Complete entity level diagram of the example in J.1 on page 241
(Page 1 of 2)

2,5 (1) date INTEGER
A [1:3]

Figure D.2 – Complete entity level diagram of the example in J.1 on page 241
(Page 2 of 2)

D.2.1 Symbol for simple data types

The symbol for an EXPRESS simple data type is a rectangular solid box with a double vertical
line at the right end of the box. The name of the data type is enclosed within the box, as shown
in Figure D.3.

D.2.1.1 Symbols for generalized data types

The symbol for the EXPRESS generic entity data type is the same as for EXPRESS simple
data types. The name of the data type is enclosed within the box as shown in figure D.4.

NUMBER INTEGER REAL

BOOLEAN LOGICAL STRING

BINARY

Figure D.3 – Symbols for EXPRESS simple data types

186 c©ISO 2003 — All rights reserved

Herries Collection

Figure 3: Page 186 from ISO/FDIS 10303-11:2003

was implemented using the picture environment
and all that an author had to do was use a few
macros for the text — rather like for the \maketitle
command. Also as part of my work on STEP I de-
veloped the MetaPost expressg package for drawing
BLA (box, line, annotation) diagrams like the ones
in Figure 3.

I eventually moved to the National Institute
of Standards and Technology (NIST) in Maryland
where the secretariat for STEP was based (Kem-
merer, 1999). Someone up the management chain
decided that the whole thing should be maintained
as SGML documents (or portions thereof) in a data-
base. As they were one of the major supporters of
using wordprocessors I was surprised that they chose
LATEX as the publishing system and I spent a con-
siderable time writing a LATEX to SGML translator,
and vice-versa. Unfortunately ISO kept changing
their formatting requirements, LATEX authors kept
introducing their own macros, the SGML team kept
changing their DTD, and the wordprocessor users
were going to be involved at some indefinite date in
the future. The experience made me really appre-
ciative of Eitan Gurari’s TeX4ht (Gurari, 2007). I
left before any document made it through the sys-
tem, which I think has died the death it deserved.

1002 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Between Then and Now — A Meandering Memoir

The Memoir Class
for

Configurable Typesetting
User Guide
Peter Wilson

THP
The Herries Press

Herries Collection

Figure 4: Title page of the memoir class user manual

Some of the documents had got up to 1200 pages
which caused enormous difficulties to the poor souls
who had to use ‘the’ wordprocessor.

This led me on to the development of my LATEX
memoir class. I didn’t want to be bitten by the ISO
experience again, so I felt that a class that would let
me change the document formatting easily without
having to delve into its innards would be very useful.
I had written a few packages that helped in format-
ting bits and pieces and decided to incorporate them
into the class. Then there were other packages that
I quite often used and integrating those, or their
functionality, seemed reasonable, thus ensuring that
they would all work well together. Then, like Topsy,
it ‘just growed’. Now it encompasses the function-
ality of more than 30 popular packages.

Putting everything together got me started on
wondering how a document should be put together.
This led to a long trail. One portion was trying to
get a better idea about the typographer’s craft. And
as typographers deal with letter forms that led me
to the history of the alphabet and the story of the
letter forms that we use now.

2 Early Writing

Writing was invented in ancient Mesopotamia, an
area which roughly corresponds to modern day Iraq.

Herries Collection

Figure 5: Sumerian cuneiform tablet, circa 2112–2004
bc

The earliest recorded writings are by the Sumerians
from around 3300 bc, who used pointed sticks or
reeds or to impress marks into wet clay tablets that
were subsequently dried. The result is what we call
Cuneiform.2 We are still in the business of recording
writing.

As the city states arose and society became
more complex writing was necessary to help the bu-
reaucrats and merchants keep track of things and so
that tax collectors and others could go about their
business in a fair manner.

Figure 5 shows a replica of a Sumerian cuneiform
tablet dating back to between 2112 and 2004 bc,
from the Third Dynasty of Ur, about the time of
the Biblical Abraham. The original is 11/4 by 11/4
by 3/8 inches. The scribes would write on the front
and the back of a tablet, and sometimes on the sides
as well.

Cuneiform writing was adopted by the Babylo-
nians even though their language was not like Sume-
rian, and Figure 6 shows a replica of a Babylonian
tablet and its clay envelope, from about 1790 bc.
The tablet is 11/2 by 13/4 by 1/2 inches.

The package is a receipt for an amount of grain
sufficient for one man for 6 months. The same text is
on the outside of the clay envelope as on the tablet;

2 From the Latin cuneus meaning wedge.

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1003

Peter Wilson

Herries Collection

Figure 6: Babylonian cuneiform tablet and envelope,
circa 1790 bc

if there was doubt about the external message then
the envelope could be broken and the external and
internal messages compared.

Writing evolved from that needed for simple
record keeping to, for instance, be able to write peo-
ple’s names or to record the majestic deeds of the
ruler. The earliest literary tablets containing parts
of the Epic of Gilgamesh, which is by far the world’s
oldest epic, date back to about 2100 bc. The Gil-
gamesh story has been pieced together from thou-
sands of pieces of broken cuneiform tablets (George,
2000). Figure 7 shows a replica of one of the many
tablets found by Sir Austen Henry Layard in 1850–
53 in the ruins of King Ashurbanipal’s library at
Ninevah which was destroyed in 612 bc. This partic-
ular one contains much of what is called ‘Tablet 11’
of the Epic which includes the best preserved story
of a Deluge3 or Flood, well pre-dating the Biblical
version which was written around the 9th century
bc.

The tablet, which is 53/4 by 53/4 by 11/4inches,
was first translated in 1872 by George Smith work-
ing at the British Museum. Wallis Budge (Budge,
1925) described the event like this:

Smith took the tablet and began to read over
the lines which Ready [the conservator who
had cleaned the tablet] had brought to light;
and when he saw that they contained the por-
tion of the legend he had hoped to find there,
he said “I am the first man to read that after
two thousand years of oblivion”. Setting the
tablet on the table, he jumped up and rushed
about the room in great excitement, and, to
the astonishment of those present, began to
undress himself!

3 There is evidence that the catastrophe occurred around
7500 bc when the Black Sea’s water level rose by 400 feet
during the course of about a year (Ryan and Pitman, 2000).

Herries Collection

Figure 7: Epic of Gilgamesh (tablet 11), circa 650 bc

Herries Collection

Figure 8: Gezer Calendar, circa 925 bc

1004 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Between Then and Now — A Meandering Memoir

Figure 8 shows a replica of a soft piece of lime-
stone rock from around 925 bc. This was found in
1908 by R.A.S. Macalister at Tell el-Jazari (the his-
toric city of Gezer) about 20 miles NW of Jerusalem.
The tablet is 3 by 41/2 by 5/8 inches. The text is
written right to left in what some say is in a Proto-
Hebrew script while others (Healey, 1990, p. 30)
say it is in the Phoenician4 script. It is a calen-
dar of agricultural tasks and seasons. The tablet’s
inscription is:

zwERYPsAwERY

SqLwERY‘R

tSPAX‘ERY

MR‘SRXqERY

LKwRXqERY

RMzwERY

XqERY

YBA

In the following transliteration I have added
inter-word spaces that are not in the original. Also,
the first two lines on the tablet contain the first three
lines of the calendrical information.

z wh. ry ps’ wh. ry
šql wh. ry ‘r
ťsp ’s. ‘ h. ry

mr‘̌s rs.q h. ry
lkw rs.q h. ry

rmz wh. ry
s.q h. ry

yb’

And a translation is:

Two months are [olive] harvest,
Two months are planting [grain],
Two months are late planting;
One month is hoeing up flax,
One month is harvest of barley,
One month is harvest and feasting;
Two months are vine tending,
One month is summer fruit.

It is signed in the bottom lefthand corner with the
name ‘Abijah’.

3 Manuscripts

Our modern alphabets date back to around 1600
bc, and in particular to the Phoenician script and
alphabet. By various routes this spread out from

4 To me it looks remarkably like Phoenician.

Herries Collection

Figure 9: Leaf from a copy of the Bhagavad Gita, Kash-
mir, circa 1800

the Middle East, changing as time went on to ac-
commodate different languages (Wilson, 2005).

Throughout the ages scribes have always taken
great care in the appearance of their work, especially
with religious works.

Figure 9 is a leaf from a Kashmiri copy of the
Bhagavad Gita. The original is 51/2 by 31/4 inches
overall in a black Devanagari script surrounded by
a yellow, red and blue border, on burnished paper.
It dates to the late 18th or early 19th century. The
Bhagavad Gita (The Song of the Lord) is a poem
forming part of the Hindu epic, the Mahabharata
which dates back to the first millenium bc, consist-
ing of an eve of battle dialogue between the warrior
prince Arjuna and Lord Krishna (in the person of
his charioteer).

Figure 10 shows a leaf from a copy of Delail
al-Khayrat — the book of Blessings on the Prophet
composed by Muhammad ibn Sulayman al-Jazuli
(d. 1465). The original of the leaf is 411/16 by 75/8
inches. It was written about 1690 by Mohammed
Azeem for Nawab Sadullah Khan who was the Prime
Minister of the Moghul emperor Shah Jehan—the
builder of the Taj Mahal. The Arabic text is black
with an interlinear Persian translation in red and a
commentary in the margins around the main text.
The border is in gold and a light blue.

Figure 11 is a leaf from an Indian copy of the
Koran. The original is 43/4 by 711/16 inches overall.
The Arabic script is in black ink surrounded by a
main border, 31/8 by 53/8 inches, in gold and blue.
The interlinear decoration is in gold leaf.

Arabic texts are famous for their calligraphy
but there are other cultures as well where calligra-
phy is an esteemed art. Figure 12 is number 66
from the series of Japanese woodblock prints Ogura

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1005

Peter Wilson

Herries Collection

Figure 10: Leaf from a copy of Delail al-Khayrat Ara-
bic/Persian, circa 1690

Herries Collection

Figure 11: Leaf from a Koran, India

Herries Collection

Figure 12: Ogura Imitation of 100 Poets no. 66, by
Hiroshige, circa1846

Imitation of 100 Poets illustrating a famous anthol-
ogy of 100 poems by 100 poets that was assem-
bled by the poet Fujiwara no Teiko in 1235. The
woodblock print publisher Iba-ya Sensburō commis-
sioned three artists — Kuniyoshi, Hiroshige and Ku-
nisada — to produce the prints in the series which
were published between 1845 and 1847. This one
by Hiroshige illustrates a poem by Daisōjō Gyōson
(1055–1136). The poem reads:

Morotomi ni
Aware to omoe
Yamazakura
Hana yori hoka ni
Shiru hito mo nashi

Let us, each for each
Pitying, hold tender thought,
Mountain cherry flower!
Other than thee, lonely flower,
There is none I know as
friend.

The main illustration shows a contemplative
Kuganosoke (the hero of the play Imoseyama) out-
side a pavilion on the bank of a river. The title of
the series is at the top right in large kanji charac-
ters and at the top left is a description of the main
illustration in smaller kanji. The lozenge contains a
portrait of the poet and the poem itself in a highly
calligraphic style. The original is in the standard
oban size of approximately 91/2 by 14 inches. To

1006 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Between Then and Now — A Meandering Memoir

Herries Collection

Figure 13: Page from the Domesday Book, England
1086

Herries Collection

Figure 14: Domesday Book (enlarged), England 1086

print it there would have been one carved wood-
block for each colour in the picture, with the pic-
ture being gradually built up one colour at a time.
Registration between the individual blocks and with
the paper is critical. Even seemingly simple pictures
could require ten or more blocks.

Coming closer to home, European books were
mainly written in Latin. Literacy was essentially
confined to the Church, the Papal See and monas-
teries in particular, and to clerks in noble courts.

Herries Collection

Figure 15: Book of Hours, France, circa 1445

Most works that have survived were religious in na-
ture but rulers required administrative records of
all kinds. One of the most famous is the Domesday
Book that William the Conqueror (circa 1028–1087)
ordered to be compiled in 1086. It is a survey of
the newly conquered England, from Yorkshire to the
South Coast, arranged by county, and listing all the
landowners and the worth and taxes paid on their
properties (Hinde, 1985). Figure 13 shows one page
from the book that starts with information about
Glastonbury in the County of Somerset. The text
is in Latin, in two columns of 44 lines each, written
in a Carolingian minuscule script. An enlarged view
of the top of the left column is shown in Figure 14.
Some headings are in red, but the text is not without
errors.

Many beautiful manuscripts were written by
scribes in monasteries, some for use by the Church
and others for rich patrons. Many of the latter are
elaborately decorated and illuminated.

Figure 15 is a leaf (verso) from a Benedictine
Book of Hours produced in France around 1445.
The original vellum leaf is 53/4 by 8 inches. The
Latin text, 3 by 41/4 inches, is in the Gothic Tex-
tura Quadrata bookhand in a light brown ink. The
versal initials are in liquid gold on grounds of red
and blue with white tracery. The paragraph end-
ings use the same style.

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1007

Peter Wilson

Herries Collection

Figure 16: Book of Hours, France, circa 1450

A more decorative example is shown in Fig-
ure 16 which is a leaf from a Book of Hours pro-
duced in France, perhaps at Rheims, around 1450 or
maybe a little later. The original vellum leaf is 33/4
by 55/8 inches. The Latin text, 21/2 by 27/8 inches,
is in the Gothic Textura Quadrata bookhand in a
dark brown ink. The versals are in liquid gold with
additional decoration in red and blue. The floriated
decoration uses green as well as the other colours.

In a different vein, and a different script, Fig-
ure 17 is a page from Antonio Pigafetta’s account
of Magellan’s circumnavigation (1519–1522), beau-
tifully written in a humanist bookhand. There are
four surviving manuscripts, one in the Venetian di-
alect of Italian, and three in French. Pigafetta prob-
ably completed his work in 1524 and it would then
have been copied out by professional scribes. The
manuscript now at the Bernicke Library at Yale Uni-
versity consists of 103 vellum leaves, measuring 71/2
by 111/4 inches, with 27 lines to a page (Pigafetta,
1969). The page in the illustration shows the end of
chapter XVIII, a summary (in red) of the next chap-
ter, and the title and first four lines of chapter XIX.

Herries Collection

Figure 17: Magellan’s Voyage Around the World, 1524

The marginal notes, in red and blue, are a summary
of the corresponding paragraphs in the main text.

4 Printed books

In the West, printing using moveable type was in-
vented by Johannes Gutenberg around 1440–1450,
although the earliest printed book known is a 9th
century Chinese woodblock printing of the Diamond
Sutra. Gutenberg had to experiment to determine
the formula for a suitable ink and also to discover
a good metal alloy for the type itself. He came up
with lead to which he added antimony for strength
and hardness and tin for toughness.5

In order to be successful in the market, Guten-
berg had to produce books that equaled those pro-
duced by the scribes, except that they did not neces-
sarily have to be decorated so lavishly. The scribes,
though, used many ligatures and other techniques
to try and have non-ragged text blocks. To compete
with them Gutenberg’s font for his 42-line Bible,

5 This is still the basis for type today; Monotype casting
machines use lead with 15–24% antimony and 6–12% tin.

1008 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Between Then and Now — A Meandering Memoir

published around 1455, consisted of some 290 char-
acters though all the text is in Latin which requires
a basic character set of only forty letters — twenty
lowercase letters and twenty caps — and some punc-
tuation marks (Thorpe, 1999).

The 42-line Bible is set in two columns of 42
lines each. It is believed that about 135 copies were
printed on paper and 40 on vellum. The page size
was 12 by 161/2 inches and it is estimated that more
than five thousand calfskins were required for the
vellum copies.

The Nuremberg Chronicle was published in 1493
in Nuremberg and was the first book to combine
text with illustrations that illuminated the words
(instead of using randomly selected woodblock en-
gravings that happened to be at hand). As was usual
then the book did not have a title page: Latin schol-
ars call it the Liber Chronicarum and in German it
is called Die Schedelsche Weltronik after its author
Hartmann Schedel. The book was printed and pub-
lished by Anton Keberger with a print run of about
1500 Latin copies and 900 German ones. Around
400 Latin and 300 German copies have survived.

There are 1809 woodcut illustrations printed
from 645 originals, so many were used multiple times,
usually portraits. For example a single woodcut was
used to represent Alcuin, Cato, Dante, Paris and
Plutarch on different pages. The woodcuts were cre-
ated by Michael Wolgemut and Hans Pleydenwurff,
with perhaps one or two by Albrect Dürer who was
apprenticed to Wolgemut at the time.

The pages are large, 12 by 171/2 inches. Views
of cities were printed as a double spread. Spaces
were left in the text for the woodcuts; in the more
luxury volumes the woodcuts were hand coloured.

The Chronicle divides the history of the world
into seven ages:

1. Creation to the Deluge
2. ends with the birth of Abraham
3. ends with the reign of King David
4. ends with the Babylonian captivity
5. ends with the Incarnations of Jesus
6. from the birth of Christ to the end of the world
7. the age of the Anti-Christ
8. the Last Judgement

Beloit College has an extensive web site (http://
www.beloit.edu/~nurember) devoted to their copy
of the Nuremberg Chronicle which has coloured il-
lustrations.

Figure 18 is Folio CLII (verso) from the Nurem-
berg Chronicle. At the bottom is half of a double
spread picture of Salzburg (the other half is on the
recto of Folio CLIII).

Herries Collection

Figure 18: Nuremberg Chronicle (1493): Folio CLIIv

Herries Collection

Figure 19: Nuremberg Chronicle (1493): Folio CXLVI-
IIr

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1009

Peter Wilson

Figure 19 is Folio CXLVIII (recto) from the
Nuremberg Chronicle. The hand coloured pictures
are of various ecclesiastical personages and at the
lower right a queen (Radegudis regina fracie) and a
doctor (Gregorius magnus doctor). The original for
this picture is 12 by 151/2 inches (over the years 2
inches have disappeared from the lower margin).

Books had, of course, been made and sold long
before Gutenberg. In London, for example, the pub-
lishing trade was regulated by the Guild of Station-
ers which was incorporated in 1403. At that time
stationers were either booksellers who sold manu-
scripts that they had copied; or illuminators who il-
lustrated and decorated manuscripts; or bookbinders
who bound manuscripts. Stationers would also sell
the materials that they used. Unless you were a
member of the Guild you could do none of these
things.

Following Gutenberg, printing rapidly spread
out over much of Europe. In England, for exam-
ple, Caxton set up his shop in 1476, Theoderic Rood
was printing in Oxford between 1478 and 1485, and
John Sieberch in Cambridge in 1520. The Station-
ers Guild received a royal charter in 1557 and was
responsible for regulating the printing industry over
all the country, which meant that they had a monop-
oly on book production— once a member asserted
ownership of a text (or ‘copy’) no other member
could publish it. This is the origin of the term ‘copy-
right’.

In Germany books were usually printed in a
gothic type but the rest of Europe moved to types
based on the humanist tradition that had been main-
tained in Italy.

Figure 20 is the title page of a reprint of Chruso-
thriambos or The Triumphs of Golde by Anthony
Mundy, published in 1611. The original is 6 by 9
inches. The pageant Chruso-thriambos was writ-
ten and produced at the request and charge of the
Worshipful Company of Goldsmiths in honour of Sir
James Pemberton, a goldsmith, the newly elected
Lord Mayor of London. Page 8 (numbered 26 in the
book containing the reprint) from the body is shown
in Figure 21.

Ambroise Paré (1510–1590) served as the of-
ficial royal surgeon for kings Henry II, Francis II,
Charles IX and Henry III of France, and did much
to advance medical procedures, particularly surgery.
A page from the first English translation of his ma-
jor work, by Thomas Johnson and printed in 1634
by Th. Cotes and R. Young, is shown in Figure 22.
The original is 8 by 121/2 inches and is set using
an Oldstyle type, possibly Garamond. Paré’s major
contributions included the abandonment of boiling

Herries Collection

Figure 20: Chruso-thriambos: Title page, 1611

oil for the treatment of gunshot wounds in favour of
egg yolk, oil of roses and turpentine which worked
far better. He also introduced the use of ligatures in-
stead of cauterisation during amputations, and was
especially adept at devising ingenious and efficient
artificial limbs and new surgical instruments. All in
all he seems to have been afflicted with a great deal
of commonsense.

A book, Eygentliche Beschreibung Aller ände
auff Erden about 16th century trades, was published
in Frankfurt in 1568 which included several wood-
cuts from drawings by Jost Amman. Figure 23 is
one of these showing a printing shop. The two men
in the background are setting type, taking the char-
acters from the type cases in front of them. The men
in the foreground are operating the printing press.
The one on the left is removing a sheet of paper
that has just been printed and the one on the right
is using two circular pads to ink the type for the
next sheet. A fresh sheet of paper will replace the
one being removed. The flap at the left, with the
cutouts, will be folded down to hold the paper in
place, then the assembly folded over to lie on top of
the type. The final assembly is slid into the press,

1010 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Between Then and Now — A Meandering Memoir

Herries Collection

Figure 21: Chruso-thriambos: page 8, 1611

the lever pulled to press the paper onto the type,
the assembly slid out from the press and the printed
page removed.

Figure 24 is another of the woodcuts, this time
showing a book bindery. In the background there is
a sewing frame with a book and the man is sewing
the sheets together. In the foreground there is a
book in a lying press at the left and at the right
the man is trimming the edges of the pages in a
sewn book, which is in another lying press, before
the covers will be put on. In those days books were
often sold without covers so that clients could select
the kind they wanted.

Little changed in the manufacture of books un-
til the middle of the 19th century when some of the
processes began to be mechanized (Chappell and
Bringhurst, 1999). Figure 25 is is a reconstructed
18th century print shop in Williamsburg, Virgina,
2007. James Mosley, who for 42 years was the Li-
brarian at the St Bride Printing Library in London,
said that it was ‘the most perfect and accurate work-
ing reconstruction of an 18th-century office’ that he
had ever seen (Mosley, 2003). The paper holder is at
the left, the type in the center and the press itself, a

Herries Collection

Figure 22: Page from the first English translation of
Ambroise Paré’s works, 1634

so-called English Common Press, at the right. The
man is preparing to ink the type.

Also at Williamsburg is a reconstructed 18th
century bindery, shown in Figure 26. Two sewing
frames are in the foreground and a large standing
press is in the semi-background.

In the days of the American Colonies, printing
was not encouraged. Sir William Berkeley, who was
the governer of Viginia for 1642 to 1652 and again
from 1660 to 1677, spoke for many officials when he
said,

But, I thank God, there are no free schools
nor printing, and I hope we shall not have
these for hundreds of years; for learning has
brought disobedience, and heresy, and sects
into the world, and printing has divulged
them, and libels against the best government.
God keep us from both.

However, using type bought from England, such
as those of William Caslon (1692–1766), printing
became a thriving business. Figure 27 is Caslon’s
first specimen sheet, originally printed in 1734. The

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1011

Peter Wilson

Herries Collection

Figure 23: 16th century printing shop

original is 151/2 by 20 1/2 inches. As well as the ex-
pected roman, italic, and blackletter, the specimens
include fonts for the Saxon, Gothick, Coptic, Arme-
nian, Syriac, Samaritan, Arabic, Hebrew (both with
and without points), and Greek alphabets. The ro-
man ranges in size from Cannon to Pearl although
examples of 6- and 8-line Pica are also shown; the ex-
otics mostly come in a single size although there are
three sizes of Greek. There are also several printers
ornaments.

Nowadays, the size of a font is expressed in
points but originally names were used. The more
common sizes are given in Table 1.

Caslon’s type was used in Philadelphia by John
Dunlap for the first printing of The Declaration of
Inpependence in 1776. A more prosaic example of
the kind of work done by Colonial printers is Fig-
ure 28 showing the title page of Every Man his own
Doctor: or, The Poor Planter’s Physician as printed
in Williamsburg by William Parks in 1736. This
edition is hand set with Caslon Oldstyle Type. The
original is 5 by 71/2 inches. The binding of such
publications was very easy as the sheets were sim-
ply sewn together along the lines of Japanese stab
bindings, but not so attractively.

Herries Collection

Figure 24: 16th century book bindery

Herries Collection

Figure 25: Reconstructed 18th century print shop
(Williamsburg 2007)

1012 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Between Then and Now — A Meandering Memoir

Herries Collection

Figure 26: Reconstructed 18th century bindery
(Williamsburg 2007)

Herries Collection

Figure 27: Specimen sheet of Caslon types, 1734

Table 1: Traditional font size designations

Points Name

4 Diamond
5 Pearl
6 Nonpareil
7 Minion
8 Brevier
9 Bourgois

10 Long Primer
11 Small Pica
12 Pica
14 English
18 Great Primer
24 Double (or Two Line) Pica
28 Double (or Two Line) English
36 Double (or Two Line) Great Primer
48 French Canon (or Four Line Pica)
60 Five Line Pica
72 Six line Pica
96 Eight Line Pica

The book was very popular; two editions were
printed by William Parks, and Benjamin Franklin
printed three editions between 1734 and 1737. The
reprinted version notes that ‘The Directions in the
Book “were not designed for such as are in the Con-
dition to Purchase more learned Advice” but mainly
for the Services of the Poor’. The Directions mainly
seemed aimed at making the patient so uncomfort-
able that it was better to be well than ill. The
recommended treatments for almost everything ex-
cept physical injuries seemed to involve the letting
of copious amounts of blood accompanied by po-
tions aimed at purging anything the patient may
have eaten or drunk over the previous couple of days.

Like Caslon, John Baskerville (1706–1775) came
from the Birmingham area in England. He printed
his first book, Virgil’s Georgics, in 1757. Not only
did he design his type but he also improved on the
printing press of the day and experimented with
the formula for ink to produce one that was blacker
and more uniform, and also dried quicker which im-
proved the overall efficiency of the printing process.
A page from his 1761 edition of The Plays and Po-
ems of William Congreve is shown in Figure 29; the
original is 53/4 by 87/8 inches. He invented, and used,
a new kind of paper called wove rather than the nor-
mal laid paper. His type had greater contrast be-
tween the thick and thin strokes than Caslon’s and
was more open. His work was not much appreciated
in his native England as it was felt to be too bril-
liant, or bright, thus hurting the eyes. However he

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1013

Peter Wilson

Herries Collection

Figure 28: Title page of Every Man his own Doctor,
Williamsburg, Va, 1736

had a major influence on continental type designers
such as Fournier, Didot and Bodoni.

John Johnson (1777–1848) produced an exhaus-
tive survey of typography and printing in his two
volume, 1300 page Typographia, or the Printers’ In-
structor published in 1824. The work was produced
in four sizes, the largest being royal octavo (61/8 by
97/8 inches) and the smallest, as shown in Figure 29,
being thirty-twomo (31/4 by 47/8 inches) (Wulling,
1967). The latter is not easy to read because of the
small size of the print, from 8pt down to 4pt, but
it must have been infinitely more difficult to type-
set and proof read the half a million words in the
two volumes. The title pages alone, one of which
is shown in Figure 31, were built up using over a
thousand flowers and rules.

Many nineteenth century printers seem to have
felt the need to show off their collection of fonts, of-
ten choosing a book’s title page as the ideal place
for this. Johnson’s title page is an amazing piece
of printing, but most certainly is not at all repre-
sentative of the general style. Figure 32 is the title
page from Affectionate Advice to Apprentices, writ-

Herries Collection

Figure 29: Page from Baskerville’s edition of The Plays
and Poems of William Congreve, 1761

ten in 1827 by the Rector of St. Swithin’s at Lon-
don Stone, for the then Lord Mayor of London. It
was distributed widely to many of the young peo-
ple learning their crafts within the City.6 This copy
was reprinted in 1903. The original size is 43/4 by 7
inches. The Victorian lifestyle comes through very
clearly: work, obey, learn, and pray. There is no
mention of having fun but plenty of advice about
avoiding sinful pleasures like going to the theatre to
see a play. There is one telling remark, though.

Our Creator, in great mercy to working peo-
ple, has commanded every seventh day to be
kept to the end of the world as a day of holy
rest. If God had not appointed this rest, mas-
ters would never in the first instance have
thought of giving it to their workpeople.

William Morris, one of the founders of the Arts
and Crafts movement, disliked the erosion of crafts-
manship by machines, and in 1891 he established

6 The Worshipful Company of Goldsmiths, chartered in
1327, still presents it to those seeking to become Freemen of
the Company; other Livery Companies may do so as well.

1014 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Between Then and Now — A Meandering Memoir

Herries Collection

Figure 30: Page from John Johnson’s Typographia,
1824

the Kelmscott Press to produce hand made books
of the highest quality.

Among others, he produced what is known as
the Kelmscott Chaucer, his best known book, con-
sisting of Chaucer’s Canterbury Tales and all his
other works — a total of 31 altogether— which in-
clude The Romaunt of the Rose, Troilus and Cres-
sida and A Treatise on the Astrolobe. Although
Morris designed the type (Chaucer) and the borders
and the decorative initials, 87 woodcuts by Edward
Burne-Jones were used as well. The book was pub-
lished as a limited edition in 1896. There were 425
copies on paper, forty-eight of which were bound in
pigskin by Thomas Cobden-Sanderson of the Doves
Bindery (later the Doves Press). There were also
thirteen copies on vellum. As the pages are 113/8 by
165/8 inches it is not a book for light reading.

Figure 33 is the opening page of the Prologue
to Chaucer’s Canterbury Tales from a facsimile of
the Kelmscott Chaucer. The facsimile is ‘slightly
reduced in size’ where the pages are only 85/8 by
127/8 inches and weighs 61/2 lbs (3 kg).

Morris believed that the factors in bookmaking
were all interdependent, that is, the type, paper,

Herries Collection

Figure 31: Title page of John Johnson’s Typographia,
1824

ink, imposition and impression all had to be con-
sidered together. He also declared that a double
spread must always be considered as a whole unit,
as demonstrated in Figure 34. Although it has been
said (Chappell and Bringhurst, 1999, p. 226) that
his style has ‘an abundance of thickets and under-
growth’, he started people considering a book as a
work of art not as simply words on pages, and was
instrumental in initiating the move away from the
excesses of the Victorian printers.

5 Almost today

The traditions that started to be established in the
16th century are still seen today. Although books
are not so lavishly decorated as some from the early
days of printing, in general they have calmed down
from the freneticism that occurred during the 19th
century.

Manuscripts tended to emphasise the capital
letter at the start of a paragraph (see Figures 15

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1015

Peter Wilson

Herries Collection

Figure 32: Affectionate Advice to Apprentices, 1827

and 16), and especially at the start of a major piece
of the text as in Figure 17. Versals are still used,
as shown in Figure 35 which is the opening page of
The Centaur Types (Rogers, 1949), but much more
rarely than in medieval times. Bruce Rogers (1870–
1957) is said to be the ‘most accomplished book
designer that America has yet produced’ (Lawson,
1990, p. 62). He was also the designer of the Cen-
taur type which ‘has been one of the widely praised
roman types of out time’ (ibid, p.72). Rogers de-
scribed how he came to design Centaur in The Cen-
taur Types, which, of course, is set in Centaur and
it also includes exact size reproductions of the en-
graver’s patterns. The original size is 61/4 by 91/2
inches.

The Nuremberg Chronicle, as in Figure 19, put
woodcuts into cutouts in the text. The same idea
can be seen in Figure 36 which shows page 3 from
Hammer and Hand by Raymond Lister with draw-
ings by Richard Bawden (Lister, 1969). The book
is a long essay on the ironwork of Cambridge, prin-
cipally the colleges’ wrought iron gates. It was the
Cambridge University Printer’s Christmas book for

Herries Collection

Figure 33: Opening page of the Kelmscott Chaucer’s
Prologue, 1896

Herries Collection

Figure 34: Double spread from the Kelmscott Chaucer,
1896

1016 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Between Then and Now — A Meandering Memoir

Herries Collection

Figure 35: The Centaur Types (1949)

Herries Collection

Figure 36: Hammer and Hand (1969)

Herries Collection

Figure 37: A Stickful of Nonpareil: page 19 (1956)

1969. The original page size is 93/4 by 83/8, and
unusually it is printed on beige paper.

Another element in the design of the Nurem-
berg Chronicle is putting full width illustrations at
the top of a page or, as in Figure 18, at the bottom.
Figure 37 shows page 19 from A Stickful of Non-
pareil by George Scurfield and illustrated by Edward
Ardizzone (Scurfield, 1956). It was the Cambridge
University Printer’s Christmas book for 1956. The
original is 61/2 by 9 inches. ‘Nonpareil’ is an old
printers name for a particular size (6pt) of type, and
the book consists of recollections of working at the
Cambridge University Press around the end of the
nineteenth century. The illustration shows a part
of the composing room which is not all that differ-
ent from the composing area in Jost Amman’s 16th
century view (Figure 23).

There are, of course, the inevitable changes,
both in fashion and, more significantly, in technol-
ogy. For example, the Cambridge University Press
used metal types when it was founded in 1584 and
since then all was set by hand until a Monotype
composing machine was introduced in 1913 (Black,
1988). Computer-aided phototypesetting and litho-
graphic printing were introduced in the early 1970s.

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1017

Peter Wilson

Herries Collection

Figure 38: Type metal medallion, 1987

Duane Bibby (EuroTEX 2003)

Figure 39: The TEX print shop, 2003

Finally, after four centuries, the last vestiges of the
traditional techniques vanished in 1987 when the
types that remained in use were finally melted down
and cast into commemorative medallions, shown in
Figure 38.

On the other hand, Duane Bibby’s drawing for
the EuroTEX 2003 Conference (Figure 39) shows
that the spirit of the tradition lives on.

References

Black, M. H. Cambridge University Press
1584–1984. Cambridge University Press, 1988.

Budge, E. A. Wallis. The Rise and Progress of
Assyriology. London, 1925.

Chappell, Warren and R. Bringhurst. A Short
History of the Printed Word. Hartley & Marks,
1999.

George, Andrew. The Epic of Gilgamesh. Penguin
Classics, 2000.

Gurari, Eitan. “TeX4ht: LaTeX and TeX for
Hypertext”. 2007. Available from http:
//www.cse.ohio-state.edu/~gurari/TeX4ht.

Healey, John F. The Early Alphabet. Reading the
Past. University of California Press, 1990.

Hinde, Thomas, editor. The Domesday Book:
England’s Heritage, Then and Now. Guild
Publishing London, 1985.

Kemmerer, Sharon J., editor. STEP: The
Grand Experience. Number 939 in Special
Publications. National Institute of Standards
and Technology, 1999.

Lawson, Alexander. Anatomy of a Typeface. David
R. Godine, 1990.

Lister, Raymond. Hammer and Hand: An essay
on the Ironwork of Cambridge. Cambridge
University Printer, 1969. Drawings by Richard
Bawden.

Mosley, James. “The American Printing
History Association 2003 Individual Award:
Acceptance Remarks”. 2003. (http://www.
printinghistory.org/htm/misc/awards/
2003-james-mosley.htm).

Pigafetta, Antonio. Magellan’s Voyage: A
Narrative Account of the First Circumnavigation.
Yale University Press, 1969. In two volumes.
Translated and edited by R. A. Skelton from
the manuscript in the Beinecke Rare Book and
Manuscript Library of Yale University.

Rogers, Bruce. The Centaur Types. October House,
1949.

Ryan, William and W. Pitman. Noah’s Flood: The
New Scientific Discoveries About the Event that
Changed History. Touchstone, 2000.

Scurfield, George. A Stickful of Nonpareil.
Cambridge University Printer, 1956. Illustrated
by Edward Ardizzone.

Thorpe, James. The Gutenberg Bible: Landmark in
Learning. Huntington Library, 1999.

Wilson, Peter. “The Alphabet Tree”. TUGboat
26(3), 199–214, 2005.

Wulling, Emerson G. J. Johnson, Typ. Sumac
Press, La Crosse, Wisconsin, 1967.

1018 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

The STIX Project— From Unicode to Fonts

Barbara Beeton
American Mathematical Society
201 Charles Street
Providence, RI 02904-2294
USA
bnb at ams.org

Abstract

The goal of the STIX project is to provide fonts usable with other existing tools
to make it possible to communicate mathematics and similar technical material
in a natural way on the World Wide Web. This has involved two major efforts:
enlarging Unicode to recognize the symbols of the mathematical language, and
creating the fonts necessary to convert encoded texts into readable images.

This ten-year effort is finally resulting in fonts that can actually be used for
the intended purpose.

1 Introduction: What is Unicode?

According to the Unicode manual, the original goal
of the effort was “to unify the many hundreds of con-
flicting ways to encode characters, replacing them
with a single, universal standard.”

Unicode is thus an encoding system capable of
representing all the world’s languages in a way that
will enable any person to interact with a computer
in his own language. Nearly all modern computer
operating systems are based on Unicode.

The three principal components of Unicode are
the character, the block and the plane. A character
is the smallest unit, carrying a semantic value. A
character may represent a letter, a digit, or some
other symbol or function.

A block consists of 256 characters — the num-
ber of characters that can be addressed by eight bi-
nary digits, addressed as 00–FF. A plane is com-
posed of 256 blocks, for a total of 65 536 characters;
there are 16 planes.

The first plane, Plane 0, is referred to as the
Basic Multilingual Plane (BMP); if a piece of soft-
ware claims to support Unicode, it should be able
to access every character in the BMP.

Characters are assigned to blocks with the most
heavily used given the lowest addresses; assignments
are made in half-block (128-byte) chunks.

The first half of block 00 is the basic character
set known as ASCII (the formal name is “C0 Con-
trols and Basic Latin”). This contains the upper-
and lowercase Latin alphabet, ten digits, various
punctuation marks, and a number of control func-
tions; it is the set of characters found on most com-
puter keyboards. The second half of block 00 is

known “Latin 1”, and includes many accented let-
ters found in western European languages, as well
as additional punctuation marks and control char-
acters.

The next few blocks contain:

• the Greek and Cyrillic alphabets;
• a collection of diacritics to be used to compose

accented letters not accommodated by Latin 1;
• Hebrew;
• Arabic;
• the scripts for many of the languages of India

and southeast Asia.

Each script is allotted a half or full block as needed.
Blocks from 10 to 1F accommodate more lan-

guage scripts, including extensions for Latin and
Greek. Except for very basic symbols such as plus
(+) or asterisk (*), non-language characters aren’t
included until blocks beginning at 20.

2 Who is responsible for Unicode, and how
do things get added?

Unicode was developed and is maintained by the
Unicode Technical Committee (UTC) an arm of the
Unicode Consortium. Members of the consortium
include most computer hardware manufacturers and
software vendors. To align Unicode with ISO 10646,
the standard on which hardware and software are
actually based, the UTC works closely with the stan-
dardization subcommittee for coded character sets
of the International Organization for Standardiza-
tion.

The UTC members are individuals with various
areas of expertise. Most have a strong background in

TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting 1001

Barbara Beeton

computer software. Many are skilled as well in lan-
guages and linguistic-related areas. However, there
are very few practicing physical scientists.

If something isn’t in Unicode, there is a stan-
dard proposal form. This asks for a number of items:
• the repertoire of characters being requested, in-

cluding character names;
• the context in which the proposed characters

are used;
• references to authoritative published sources

where the characters have been used;
• relationships the proposed characters bear to

characters already encoded;
• contact information for the supplier of a com-

puterized font to be used in printing the stan-
dard;
• names and addresses of contacts within national

or user organizations.
The on-line description of the proposal review pro-
cess warns that
• international standardization requires a signifi-

cant effort on the part of the submitter;
• it frequently takes years to move from an initial

proposal to final standardization;
• submitters should be prepared to become in-

volved in the process.
In the case of the STIX proposal, all these warnings
were true, in spades.

3 Initial conditions

In 1997, when the STIX project began, Unicode was
at version 2.0. It contained several blocks of interest
for mathematics:
• combining diacritics (first half of block 03 for

text; the last three 16-cell columns of block 20
for diacritics used with symbols)
• Greek (last half of block 03)
• arrows (last half of block 21)
• mathematical operators (block 22)
• miscellaneous technical (first half of block 23)
• geometric shapes (last half of block 25)

None of these blocks was entirely full at that time.

4 Character 6= glyph

Unicode encodes characters. Each character has a
designated, well defined meaning. It appears in the
Unicode charts as a representative glyph, or image.
However, since the purpose of Unicode is to convey
meaning, the shape of the glyph may vary. To take
a trivial example, in text, an “A” has the same code
whether it is upright Roman, italic (A), bold (A),

or sans serif (A). Similarly, an accented “é” can be
represented either by one code or by a combination
of the letter “e” and the combining diacritic “´”.

This is not true for math notation, however.
The same letter in different styles (italic, script,
Fraktur, bold, . . .) means different things. This is il-
lustrated by the Hamiltonian equation from physics:

H =
∫
dτ(εE2 + µH2)

In 1997, at the beginning of the STIX project, there
was no way to unambiguously identify the script H.
Based only on the encoding, it was indistinguishable
from the H on the right side of the equation:

H =
∫
dτ(εE2 + µH2)

Something more was needed; early proposals by
UTC members recommended markup (e.g., font
changes), such as provided by XML or MathML.
However, it was realized that a physicist might wish
to search for this entity in a corpus or database, and
searching would be much more reliable if it could be
done using an unambiguous code.

The UTC solution was to incorporate a sub-
stantial set of mathematical alphanumerics, about
1,000 characters. These variations on the Latin and
Greek alphabets fill four complete blocks (U+1D40–
U+1D7F) in Plane 1. Placement outside the BMP

was meant to discourage casual users from using
these special alphabets for things such as wedding
invitations, where stylistic markup is more appro-
priate.

Another facet of the character/glyph dichotomy
is the use in math notation of different-sized opera-
tors in text vs. display environments — the size used
in text is generally smaller; compare

∑∞
i=0 xi and

∞∑
i=0

xi .

The sum symbol is just a single character in Uni-
code. Delimiters (parentheses, brackets, etc.) are
also considered to be single characters, but they
must be provided in many sizes, including segments
suitable for piecing together to span multiple lines.

Unicode takes the position that such substitu-
tions are the responsibility of the application.

5 Requesting additions to Unicode

In addition to the approximately 1,000 mathemati-
cal alphanumerics already mentioned, the STIX col-
lection identified roughly 1,000 non-alphanumeric
symbols that couldn’t be found in Unicode version 2.
These were assigned provisional identifiers in the
Unicode Private Use Area (PUA) in order to keep

1002 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

The STIX Project — From Unicode to Fonts

track of them. IDs were assigned in order of acces-
sion, rather than by shape, usage, or other rational
system.

Because of the large number of characters be-
ing requested, the UTC invited a representative of
STIX to present the proposal in person at a regular
UTC meeting, to answer questions directly, rather
than carrying on an extensive paper and e-mail in-
terchange. The fact that the proposal was backed
by five professional societies and a technical pub-
lisher, based on actual experience in their publica-
tions, the usual requirement for extensive examples
was probably lessened. This did not mean that there
was no requirement to justify every symbol; it did,
however, allow symbols to be considered in groups
rather than individually — if one member of a co-
herent symbol group (e.g., arrows with a triple stem
pointing in several directions) was accepted, the rest
of the group was accepted as well.

As noted earlier, Unicode assigns characters in
blocks, preferably of groups with some inherent rela-
tionships. The UTC experts, acting on usage infor-
mation provided with the proposed characters, clas-
sified them into groups that corresponded to the ex-
isting symbol blocks: operators, arrows, geometrics,
and so forth. Then began the process of shoehorning
them into the code space. First, the gaps in existing
blocks were filled with appropriate items. Next, the
number of characters in each category was tallied,
and new blocks of appropriate sizes assigned. The
bulk of the math additions first appeared (on line) in
Unicode version 3.2, with the first paper publication
in version 4.0.

As of Unicode version 5.0, these new blocks
have been added:
• miscellaneous mathematical symbols A

(U+2700–U+27EF)
• supplemental arrows A (U+27F0–U+27FF)
• supplemental arrows B (U+2900–U+297F)
• miscellaneous mathematical symbols B

(U+2980–U+29FF)
• supplemental mathematical operators

(U+2A00–U+2AFF)
• miscellaneous symbols and arrows

(U+2B00–U+2BFF)
Not all of these blocks are filled yet, but space has
been left where experience has shown growth is likely
to occur.

One other key feature was adopted: a variation
selector — a one-character code (U+FE00 for math
symbols) identifying the preceding character as hav-
ing the same meaning, but an alternate shape which
cannot be composed from a base character plus a

combining diacritic. An example is the relation 	
(U+2269) vs. � (U+2269,U+FE00). The use of the
variation selector is very tightly controlled; all char-
acters using it must be accepted explicitly by the
UTC. Other shape variations must be indicated by
markup and recognized by the application software.

Some important decisions were made during the
course of this exercise that should make future sub-
missions progress more smoothly.

First and foremost, it was accepted that math-
ematics is a language, and that symbols used in this
context are as essential as the letter “e” is to En-
glish. Another “given” is that math notation is
open-ended — mathematicians and other scientists
will continue to invent and adopt new symbols, so
the job isn’t done, and may never be.

Just within the past few months, a mathemati-
cian from Morocco has submitted documentation of
mathematical notation in Arabic — it is a mirror im-
age of what we see in European language contexts.
This generated a flurry of activity in the UTC to
adopt a rational collection of right-to-left symbols
to complement the basically left-to-right symbols al-
ready present. The new material will appear in Uni-
code version 5.1.

6 What wasn’t accepted, and why not?

In spite of the generally high level of acceptance
of characters proposed by STIX, the UTC rejected
some symbols. The reason for most rejections was
that they weren’t “math”. Symbols used by other
disciplines (astronomy, meteorology) were not con-
sidered to be relevant to the STIX request; it was
suggested that an organization involved in those dis-
ciplines should make a separate submission, at which
time it would be considered on its own merits.

Some symbols were rejected because they were
easily constructed as compounds of existing char-
acters and combining diacritics; this includes any
negated relations that hadn’t already been encoded.

For some symbols, in particular ones that were
identified after the initial proposal, the available
documentation was deemed insufficient for accep-
tance. However, when a suitable in-context pub-
lished example is found, acceptance of these strag-
glers is very likely.

Finally, some items in the STIX collection aren’t
considered independent symbols; they are partial
glyphs used for constructing larger symbols such as
multi-line parentheses or braces, or extenders for ar-
rows. These weren’t even submitted to the UTC

since they fall into the area that is the responsibil-
ity of application software.

TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting 1003

Barbara Beeton

7 Okay, Unicodes have been assigned; how
can we print them?

Assignment of Unicodes, while necessary, is not suf-
ficient for use of these symbols in electronic or paper
communication. It is also necessary to be able to
generate images that can be understood by some-
one trying to read them. Here is where fonts come
in.

A popular font for typesetting of math is Times
Roman or one of its variants. This font, originally
designed for newspaper use, is compact (a lot of
material can be squeezed onto a page), and is leg-
ible at small sizes. Its adoption for technical ma-
terial means that a large number of symbols have
been designed to be compatible. Times Roman was
the overwhelming choice of the STIX organizations
as the base font around which the new STIX fonts
would be created.

There are some very specific design criteria for
a font intended for math:
• Each letter must be unambiguously recogniz-

able in isolation; for Times, this means that
a substitute must be provided for the italic v,
since the usual Times shape is too easily con-
fused with the Greek letter nu ν.
• Hairlines must be thick enough to keep shapes

from breaking up in sub- and superscripts, and
to withstand multiple photocopy runs.
• Normal weight must be readily distinguishable

from bold.
• An alphabet intended for use as symbols need

not be usable for continuous text; in fact, it is
often desirable for a math alphabet to look a
bit peculiar if used for text.
Implementation of the STIX glyphs was con-

tracted out. The working list was a database in
order of provisional ID; assignment of new Unicodes
was still in the future. Glyphs were implemented
in blocks, which were returned to the STIX Techni-
cal Review Committee for comments; any problem
glyphs were returned to the contractor for repair.

The random ordering of the glyphs in the work-
ing list meant that glyphs intended to be used to-
gether, or supposed to be the same shape or weight,
often weren’t designed in the same batches, and
weren’t available for review at the same time. This
meant that a final design review would be essential.

The random ordering also meant that the fonts
couldn’t yet be used for anything practical. Among
other things, it was necessary to have a well de-
fined naming scheme. Because the fonts were de-
livered in Adobe Type 1 form, it was decided to
assign glyph names according to the Adobe guide-

lines. Except for a relatively small core of glyphs —
essentially those representing the ASCII and Latin 1
blocks and some additional punctuation — the rec-
ommended form of a name was based on the Uni-
code, with extensions to indicate compounding or
size and shape variations. This name begins with
either “uni” or “U” for glyphs corresponding to char-
acters in Unicode Plane 0 or Plane 1 respectively, or
with “stix” for (the fewer than 256) glyphs with no
corresponding Unicode.

8 Bookkeeping, bookkeeping

In order to keep track of what was happening, mas-
ter tables or databases were maintained in several
places. Tim Ingoldsby (of AIP, the overall project
manager) started with the same database as used
by the font contractor. To this he added, as phases
were delivered, information about what glyphs were
delivered in which phase, and the font and position
in the font where each was located.

I maintained a list based on the original collec-
tion information, sorted by Unicode or provisional
ID. This initially included sources, the names by
which the sources refer to each glyph, the number
of instances required (for weight, posture, size, etc.),
and a glyph description. As new information be-
came available, or was defined, it was added to the
table:

• newly assigned Unicodes, with cross-references
to and from the provisional ID;

• Type 1 glyph names;

• “TEX names”, since several of the STIX organi-
zations use that typesetting system;

• MathML entity names.

When delivery of the glyphs was nearing com-
pletion, Tim reprocessed my list, merged the dif-
ferences into his database, and produced a file for
checking. In this process we identified items that
had been overlooked, and made a final list for com-
pletion of the deliveries.

That left only a few tasks:

• design review;

• shape and content corrections;

• packaging and user documentation;

• beta testing;

• (LA)TEX support;

• final coordination of MathML entity names.

As of today (May 21, 2007), we are nearly ready to
release the fonts for beta test.

1004 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

The STIX Project — From Unicode to Fonts

9 The design review

One more rearrangement was necessary — organiz-
ing the glyphs into groups that reflected shape cat-
egories, irrespective of identifier value. Since alpha-
bets are ordered logically within Unicode, they had
already been reviewed and corrected, and it was not
necessary to look at them again. The other cate-
gories included
• diacritics;
• punctuation;
• geometric shapes (circles, squares, diamonds

and lozenges, triangles, other polygons);
• arrows;
• relations (equals, greater/less, sub/supersets,

others);
• binary operators (cups/caps, and/or,

plus/times, other);
• large operators (integrals, other);
• delimiters and fences;
• other shapes.

Within each category, glyphs were arranged by sim-
ilarity of shape and size. Making sure that every-
thing was accounted for involved one more sweep
through the entire STIX master table. This turned
up some residual errors, which were corrected so
that the permanent documentation would be accu-
rate.

For each group of symbols, proof sheets were
generated, reviewed, and comments forwarded to
the font specialist making the corrections. No cat-
egory was accepted the first time around, but most
required no more than two cycles for approval.

10 The future

We expect that a few more problems will be iden-
tified during beta testing, but in general, we be-
lieve that our efforts have resulted in a collection of
fonts that will make it possible to represent nearly
all mathematical expression both on paper and on
computer screens. How this is actually done does
depend on application developers, but since support
of Unicode beyond just Plane 0 is beginning to be
viewed as necessary by browser distributors, we are
optimistic.

As we mentioned earlier, mathematical nota-
tion is open-ended. The mechanism for adding this
notation to Unicode is now in place. The only ques-
tion open is, how will new glyphs become part of
these fonts. Presumably the STIX organizations will
address that question after they’ve all had a well de-
served rest.

TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting 1005

TUGboat, Volume 0 (2060), No. 0 1001

Support for Multiple TEX Distributions in
i-Installer and MacTeX

Richard Koch

Abstract

We discuss a data structure by Gerben Wierda and
Jérôme Laurens which makes it easy to use multiple
TEX distributions on Mac OS X.

1 A Confession

The wonderful data structure described below was
designed by Gerben Wierda and Jérôme Laurens
and implemented first in Gerben’s i-Installer pack-
age for gwTeX and then later in the various Mac-
TeX install packages I maintain. When I learned the
details of the design, I was repulsed by its complex-
ity, and began opposing it with increasingly vitriolic
emails. Then one day, an email from Jérôme led to a
religious conversion on my part. The data structure
now seems natural, and the Gods have condemned
me to give this talk as punishment for my vitriol.

2 The Problem

TEX GUI applications on the Macintosh, like (my
program) TeXShop, LaTeXiT, iTeXMac, BibDesk,
and others, call command line programs to type-
set. A year ago, the standard Mac TEX distribution
was teTeX as packaged by Gerben Wierda. There-
fore these GUI applications were configured to point
to that distribution, and so the applications worked
right out of the box without any configuration.

But in May of 2006, Thomas Esser announced
the end of support for teTeX. This led to a mad
scramble in the TEX world — some users switched to
the full unmodified TeX Live and others continued
to rely on teTeX. At the International TUG meet-
ing in Marrakesh held in November, 2006, Gerben
introduced a new distribution named gwTeX based
on TeX Live. But alarmingly, he also announced
the end of email support for his distribution, and
modified i-Installer so the first dialog which appears
says Unsupported Software in bold letters, fol-
lowed by a paragraph of text which begins “I regret
having to inform you that i-Installer is unsupported
software as of Jan 1, 2007.” Gerben continues to
maintain gwTeX, which has a substantial following,
and “unsupported” seems to mean merely that he
has adopted Donald Knuth’s policy of not reading
email. But his message puts new users into panic
mode.

Meanwhile, the Macintosh Working Group in
TUG produced three one-button install packages for
TEX, all based on TeX Live and differing mainly in

size. These packages are available at www.tug.org/
mactex. The first of these, BasicTeX, is a 39.7 MB
package for users with slow download connections; it
installs a surprisingly useful subset of TeXLive 2007.
The second, gwTeX, is a 321 MB package which in-
stalls gwTeX; users can use i-Installer to maintain
this distribution. The third, TeXLive-2007, is a 619
MB package which installs the complete 2007 ver-
sion of TeX Live.

There are also distributions based on teTeX in
Fink and in MacPorts.

All of these distributions install in different lo-
cations, so installing one does not overwrite the oth-
ers. For example, BasicTeX is a subset of TeX Live
2007, but installing TeX Live 2007 creates a com-
pletely separate installation rather than upgrading
the BasicTeX installation.

This proliferation of distributions confuses new
users. In early June, a physics graduate student at
the University of Oregon called me after switching
from Windows to a Mac. He set aside a Saturday
to install software. From the web he learned about
the MacTeX full TeX Live distribution and installed
it. Then his lab partners told him to get scientific
applications with Fink, so he installed Fink. Fink
asked him which programs to install, so he said “give
me everything.” After that, friends suggested learn-
ing TEX by starting with LyX, so he installed that.
The LyX installer told him that it needed to put
style files in /usr/local/gwTeX, so he searched the
internet and found gwTeX. In the course of a single
afternoon, he had managed to install three complete
TEX distributions on his portable. Everything went
smoothly until a Fink web page explained how to re-
configure TeXShop for teTeX, and he couldn’t figure
out how he had obtained teTeX or what it was.

3 The Solution

I’ll get to the new data structure in a minute, but
first let me tell you what Jérôme Laurens wrote in
email which led to my religious conversion. Jérôme
told me he had a preference pane for Apple’s System
Preferences which would list available TEX distribu-
tions and allow users to switch from one to another.

Jérôme’s pane lists distributions installed on a
machine. The active distribution is marked in this
list. Click on another distribution to make it active.
This action automatically switches the PATH and
MANPATH variables so Terminal and other shells
use the correct binaries and man pages. It auto-
matically reconfigures all GUI programs to use the
appropriate distribution. For example, TeXShop,
LaTeXiT, iTeXMac, and BibDesk switch instantly
to the new distribution. You can open a source

1002 TUGboat, Volume 0 (2060), No. 0

file, typeset, switch distributions with the pane, and
typeset again with the new distribution, all without
restarting the GUI program or even reloading the
file.

All of the GUI programs I’ve listed are config-
ured by default to use the new data structure, so
they all work right out of the box without any con-
figuration.

Here is the preference pane:

Do you remember our physics student? I told
him “TeXShop is already configured; don’t do any-
thing. Go to System Preferences, open the TeX Dis-
tribution pane, and you’ll see a list of your three
distributions. Switch to the one you want to use.”
Magical, huh?

Jérôme’s panel is automatically installed by i-
Installer when it installs gwTeX, and by all three
MacTeX distributions. So of course the preference
pane recognizes these distributions. But it also rec-
ognizes legacy distributions written before the pane
existed: Fink’s teTeX, MacPort’s teTeX, Gerben’s
old teTeX, TeX Live 2004, TeX Live 2005, and – well,
there wasn’t any TeX Live 2006.

4 Another Problem Solved

Developers want the newest versions of computer
software. But many TEX users don’t think that way.
I’ve often heard variants of ‘I’m in the middle of two
book projects and five papers with coauthors; don’t
talk to me about upgrading TEX.” To some extent,
interest in upgrading depends on the component of
TEX being used; ConTeXt and XeTeX are undergo-
ing rapid development and users of these programs
upgrade regularly, while users of LaTeX and pdfTeX
are more likely to desire stability over change.

The TeX Live distribution is upgraded once a
year and each upgrade is installed in a different loca-
tion. So TeX Live users can safely upgrade, knowing
that it is easy to return to their older distribution.
Nevertheless, I’m willing to bet that a very large
percentage of TUG members put the TeX Collec-
tion DVD aside when it arrives because they are in
the middle of a project – and then never retrieve the
disk and upgrade.

The problem is that retreating to the old dis-
tribution is not foolproof. It is all too easy to re-
configure the GUI front end and leave the PATH
in Terminal unchanged. Months later such a user
might reconfigure TEX with a Terminal command,
only to discover that the change didn’t “take” in the
GUI program. This is a difficult bug to diagnose.

But Jérôme’s panel completely solves the prob-
lem. Users can retreat to the old distribution with a
single panel click and be assured that all programs
are configured correctly. Consequently, I’m hoping
that Mac users get in the habit of upgrading as soon
as the new TUG DVD arrives.

5 Some History

When Thomas Esser made his announcement, there
was barely a ripple in the Mac world because “Ger-
ben will take care of it.” But when Gerben an-
nounced end of support, there was an explosion of
concern; several messages on the TeX on Mac OS
X mailing list asked “is this the end of TEX on the
Mac?”

At that point, several people began experiment-
ing with TeX Live. I am one of them. It is com-
mon knowledge that TeX Live is difficult to install;
its install script asks obscure questions like “does

TUGboat, Volume 0 (2060), No. 0 1003

you compiler use BSD calling conventions.” Mind
you, nobody ever told me about this difficulty, but
I somehow knew. And as confirmation, I often talk
to Karl Berry, who maintains the install script, at
meetings and he never once asked “why don’t you
Mac guys use TeX Live?”

But anyway, I dug up an old TUG DVD and
ran the script. Gosh. No obscure questions. Very
few questions at all, and then poof TeX Live was
installed and it ran like a charm.

So I have a complaint about Karl: excessive
modesty. Let me push this complaint by quoting
a similar complaint about the inventor of the the-
ory of electricity and magnetism. Freeman Dyson’s
great essay Missed Opportunities, Bulletin of the
AMS, 1972, is about situations where mathemati-
cians would have made faster progress is they had
paid attention to the physicists. The first case he
discusses is Maxwell’s theory of electricity and mag-
netism. Dyson begins by quoting Maxwell himself,
who said in a lecture “According to a theory of elec-
tricity which is making great progress in Germany,
two electrical particles act on one another directly
at a distance, but with a force which, according to
Weber, depends on their relative velocity, and ac-
cording to a theory developed by Riemann, Lorenz,
and Neumann, acts not instantaneously, but after
a time depending on the distance. The power with
which this theory explains every kind of electrical
phenomena must be studied in order to be appre-
ciated. Another theory of electricity which I prefer
...” and then described his own theory.

Dyson writes “It is difficult to read Maxwell’s
address without being infuriated by his excessive
modesty, which led him to refer to his epoch-making
discovery of nine years earlier as only ‘Another the-
ory of electricity which I prefer.’ How different is his
style from that of Newton, who wrote at the begin-
ning of the third book of his Principia ‘It remains
that, from the same principles, I now demonstrate
the frame of the System of the World.’ ”

That’s my complain about Karl. But to go back
to the story –

The three MacTeX install packages mentioned
earlier contain unmodified TeX Live installations.
In particular, the MacTeX package TeXLive-2007
package installs the full TeX Live exactly as it would
appear if installed directly with the TeX Live script.
However, there are several reasons that Mac users
should install using the MacTeX packages. First, the
packages modify PATH and MANPATH, whereas
the TeX Live install script asks users to do this
themselves. MacTeX modifies these variables ex-
actly as Gerben does from i-Installer and as required

by the TEX distribution data structure, so the Mac-
TeX method is compatible with both gwTeX and
this structure.

In addition, the MacTeX packages automati-
cally configure paper size, while the TeX Live scripts
ask users to do this manually.

Finally, the MacTeX packages install Jérôme’s
preference pane and the associated data structures,
while the TeX Live script knows nothing about these
features.

6 A Small Suggestion

When I made MacTeX packages for TeX Live, I ran
into a small problem. TeXShop and the other GUI
programs no longer worked out of the box; they had
to be configured first. To make this easy, I stole
an idea from TeX Live and created a symbolic link
/usr/local/texprograms pointing to the binary di-
rectory of the installed distribution. The idea was
that GUI programs would have to be configured just
once to use this link, and all installation packages
on the Mac would set the link during installation.
I wrote Gerben and casually asked him to support
this link in i-Installer.

7 and Gerben Runs With It

Instead of making this change, Gerben began to look
at the problem from a larger perspective. There are
many things that a GUI application might like to
know about the active TEX distribution. Certainly
it will want to know where the binaries are. But each
TEX distribution contains a lot of documentation,
and the GUI app might well like to find and display
that documentation. Perhaps the GUI app wants to
display man pages too. And recall the LyX installer,
which wanted to install style files in the distribution;
it needed to know the location of the distribution’s
main texmf tree.

Gerben proposed a data structure which would
organize and locate all of this information and more.

Let’s return to the simple issue of binary loca-
tion. The trouble is that each distribution handles
this in a slightly different way. In gwTeX, there are
two binary directories, one for Intel binaries and one
for PowerPC binaries. The intel directory is i386-
apple-darwin-current and the powerpc directory is
powerpc-apple-darwin-current. TeX Live works sim-
ilarly, but the binary directories are named differ-
ently: i386-darwin and the powerpc-darwin. Fink
contains universal binaries which work with both
processors, located in /sw/bin. A GUI app might
want to find the binary directory for the processor
of the machine on which it is running; this GUI app

1004 TUGboat, Volume 0 (2060), No. 0

shouldn’t have to know these various naming con-
ventions to do its job.

Once we get this far, the basic idea of Gerban
and Jérôme’s data structure will be clear. For each
distribution, they create a small folder of symbolic
links pointing to actual locations in the distribution.
The names chosen for these links are common for all
distributions rather than names used by a particu-
lar distribution. Thus a GUI app need only know
the common names assigned by Gerban and Jérôme
rather than the actual names chosen by a distribu-
tion. In addition, there is a link named DefaultTeX
pointing to the folder of symbolic links for the active
distribution.

Here is how this works in practice. In the folder
for each distribution there is a subfolder named Pro-
grams and inside that folder are two symbolic links
named i386 and powerpc. These point to the ac-
tual directories containing the i386 binaries and the
powerpc binaries for that distribution. Putting this
altogether, a GUI program running on an Intel pro-
cessor will find the binaries for the currently ac-
tive distribution in DefaultTeX/Programs/i386. If
the active TEX is TeX Live 2007, this will yield
/usr/local/texlive/2007/bin/i386-darwin. It will be
/sw/bin for Fink’s teTeX. That is the simple idea
in a nutshell. In this explanation I have left out a
few details, so the paths to the links aren’t exactly
these.

Incidentally, the path to binaries for the active
TEX using the architecture of the current machine is
of such importance that Gerben and Jérôme provide
a shortcut. They create a link /usr/texbin which
points to DefaultTeX/Programs/i386 on Intel ma-
chines and DefaultTeX/Programs/powerpc on Pow-
erPC machines. Thus GUI apps can use /usr/texbin
as a path to TEX binaries. All of the standard GUI
apps on Mac OS X already use this as their default
path. That is why they run right out of the box.

When the structure is installed by i-Installer or
MacTeX, a technical description of the structure is
installed in /Library/TeX/Distributions. So it isn’t
necessary for me to give full details here. Let me say
just a little more to indicate the range of possibilities
opened up by the structure. The folder of links for
a particular distribution contains subfolders named
Doc, Info, Man, Root, AllTexmf, and others. Doc
contains symbolic links to actual folders in the dis-
tribution containing documentation; the number of
such links varies with distribution. For instance, for
TeX Live 2007 the links are called texmf-dist-doc,
texmf-doc, texmf-doc-doc, and texmf-var-doc. Thus
a GUI application could point to DefaultTeX/Doc

and discover the entire documentation tree for the
active distribution.

Info contains links to the various info files; Man
contains links to the various man pages, and Root
contains a link to the folder containing the entire
distribution. AllTexmf contains links to the var-
ious texmf trees of the distribution; for example,
the TeX Live 2007 AllTexmf contains links named
texmf, texmf-dist, texmf-doc, texmf-local, and then
texmf-var.

The Macintosh file system has a folder named
/Library containing various Apple and Third Party
data files which apply system wide. The TEX distri-
bution data structure is installed in /Library/TeX,
where TeX is a subfolder created by i-Installer or
MacTeX. At the moment this folder only contains
information about the TEX distribution data, but I
understand that some developers are eyeing it for
other uses. So I don’t recommend throwing it away
cavalierly. The actual distribution symbolic links
are in folders in /Library/TeX/Distributions. There
will be one such folder for each distribution installed
on the machine, together with folders for legacy dis-
tributions even if those aren’t installed.

It is not necessary to clean up the symbolic links
in the data structure if the corresponding distribu-
tion is thrown away, because Jérôme Laurens’ pref-
erence pane is smart and only shows distributions
when the data structure points to something con-
crete. Thus, for instance, it is quite legal to entirely
remove TeX Live 2007 using the command

sudo rm -R /usr/local/texlive/2007

even though this will leave a stranded data structure
behind. The data structure itself is tiny.

I have now explained all of the key ideas. The
structure and preference pane are quite simple, but I
use them virtually every day. Because of this struc-
ture,

• GUI apps work right out of the box
• TEX can safely be upgraded because is trivial

to revert back if necessary
• GUI TEX applications may display documenta-

tion in the future

8 But Give Us the Dirt

You may be saying “Look, I really don’t care about
the data structure. I don’t even use a Mac. I’m here
because I want to hear about the vitriolic email.” If
so, this is the section for you.

Let me say from the start that the disagree-
ments I’m going to describe are in the past — there
was a battle, Gerben and Jérôme were right and I
was wrong. But for your amusement –

TUGboat, Volume 0 (2060), No. 0 1005

When Gerben first designed the data structure,
there was no hint of a preference pane. I didn’t ex-
actly know how users would switch the default dis-
tribution, but it looked like they were expected to
directly open /Library/TeX/Distributions and ma-
nipulate the folders and data inside it. This made
it urgent that this location contain straightforward
data.

At first the design was simple, but then it took
an unexpected turn. On the Macintosh, it is possible
to trick the Finder so that it displays a folder as just
another file. The program XCode, which developers
use to write applications, saves projects in this way;
each saved project appears to be a simple file, but
if you hold down the control key while clicking on
the file name, a menu will appear offering to open
up the file and display its contents.

For some reason that I still do not understand,
Gerben and Jérôme decided that the folders in /Li-
brary/TeX/Distributions should be such magic fold-
ers. To make this happen, they added an exten-
sion ”.texdist” to each folder name, put a subfolder
named “Contents” in the folder, and then put the
various symbolic links inside this Contents folder.
The curious consequence is that as long as no appli-
cation claims to understand .texdist, these will ap-
pear as ordinary folders. But as soon as an applica-
tion – any application – says that it can edit .texdist
files, all of those folders get icons supplied by the ap-
plication and become files which a casual user can-
not open. This behavior became the central point
of the email controversy, and I’ll return to it at the
end of this article. But first, let me sketch some of
the remaining design complexities.

The magic folder scheme required that the link
DefaultTeX become instead a folder containing a
link named Contents pointing to the Contents folder
of the active distribution. Since this was rather con-
fusing for a casual user, this DefaultTeX folder was
made invisible by adding an initial dot to its name.
Additional folders which I will not describe here
were also made invisible, so a developer attempting
to decipher /Library/TeX/Distributions will face a
daunting task unless they read the documentation.
It is not enough to write DefaultTeX/Programs/i386
to get to the binary directory of the currently active
TEX distribution. Instead, the correct path is

.DefaultTeX/Contents/Programs/i386

and since the data is in /Library/TeX/Distributions,
this is really

/Library/TeX/Distributions/
.DefaultTeX/Contents/Programs/i386

In particular, /usr/texbin is a symbolic link to
this location. But there is a final complication. Ger-
ben was worried that users would install TEX on a
second hard disk. In that case, absolute paths would
point to the primary disk rather than this second
disk, so /usr/texbin really needs to be a symbolic
link to
../Library/TeX/Distributions/
.DefaultTeX/Contents/Programs/i386

and most of the other symbolic links must also be-
come relative. For example, the symbolic link for
Programs/i386 in TeXLive-2007 is actually
../../../../../../../usr/local/
texlive/2007/bin/i386-darwin

Around this point, I realized that I could no
longer explain the data structure in a few sentences
and became alarmed. I have never met Gerben or
Jérôme or most of my other collaborators, but Ger-
ben and I have been in email contact for years —
really since the start of OS X — and all of this
email has been pleasant or better. As I realized the
baroque nature of the developing data, I began com-
plaining.

In growing frustration, I wrote a few people who
weren’t involved in the design and must have won-
dered what the heck I was talking about. One of
those folks was Jonathan Kew, and here’s what I
wrote him, titling the email “Kvetch”:

I shouldn’t be writing you, but I need
someone to "kvetch" to and I don’t want
to pollute the mailing lists. I have just
seen Gerben’s final "link" design. I think
it is a mess. Am I supposed to support
the design in MacTeX?

BACKGROUND:

Gerben will end support of his packages
in January, so we face the possibility of
dealing with multiple TeX distributions on
the Mac.

With multiple packages, we need an
easy way to configure GUI applications.
A couple of weeks ago I introduced MacTeX
packages for three distributions and had
each package set a symbolic link
/usr/local/texprograms. When I asked
Gerben to set /usr/local/texprograms in
i-Installer packages, he decided to design
a more complete solution. Fair enough.
Here is his ingenious idea:

1006 TUGboat, Volume 0 (2060), No. 0

Gerben proposes that each distribution
set a "link directory" in
/Library/TeX/Distributions. This
directory would be a very small
collection of standard links for the
distribution. There needs to be a way
to select the "active" distribution. and
Gerben proposes creating an extra file
alled "Default" which is just a link to
the active distribution. I support this
design.

KVETCH:

But when it came time to implement
these changes, Gerben lost all sense
of proportion. For reasons I don’t
understand (related to bundles,
but why these small link directories
need to be bundles is beyond me) he uses
TeXLive2005.texdist/Contents/... instead
of TeXLive2005/... Even worse,

(and etc.; let me skip to the end)

Am I expected to support this baroque
design in MacTeX? When I make a package
for TeX Live, should I use Gerben’s
TeXLive-2005, or just give up and make my
own. Am I taking this too personally? Do I
need to get a life?

Jonathan is a very intelligent fellow. He didn’t
answer this email.

9 I Fight and Come To My Senses

In the days after this email, I gradually realized
that everything in the design, while complicated, im-
proved the user experience except the decision to use
those strange magic folders. What program was in-
tended to claim .texdist and come to possess those
folders? The documentation didn’t say, but I had
my suspicions. Probably a rival front end!

I wrote impassioned email arguing that the data
structure ought to be front end neutral, but got no
response. Then I had an inspiration. By adding a
single line to the TeXShop code, I got it to claim
.texdist. Suddenly all those folders changed to files
with TeXShop’s icon. Victory!

Except that I didn’t want to claim those folders;
no front end should do that. I wrote a final email
saying “here’s what I did, and clearly it makes no
sense. Why can’t you see this?”

At that point, a magical thing happened. I had
been getting email from Gerben, but nothing from
Jérôme. Now Jérôme managed to get in contact by
an indirect route and it turned out that the Uni-
versity of Oregon mail system had been rejecting
his email. Jérôme agreed that front ends shouldn’t
claim .texdist, and instead had written a small ap-
plication which claimed those files. When one of the
files was opened in this small application, the appli-
cation called the TEX distribution preference pane
to select that distribution.

So in a single email, I learned that users could
avoid /Library/TeX/Distributions, that the magic
folders were benign, and that a preference pane ex-
isted which met Apple’s high standards for simplic-
ity and usability. It was an exciting day.

� Richard Koch
2740 Washington St
Eugene, Oregon
USA
koch@math.uoregon.edu

http://uoregon.edu/~koch/

preliminary draft, June 29, 2007 11:29 preliminary draft, June 29, 2007 11:29

TUGboat, Volume 0 (2060), No. 0 preliminary draft, June 29, 2007 11:29 1001

CTAN Package Sourcing

Jim Hefferon
ftpmaint@tug.ctan.org

I have some experimental software to improve the
way in which packages are added to the Compre-
hensive TEX Archive Network (CTAN).

1 Now

CTAN is run at three different sites, one in Ger-
many, one in Britain, and one in the US. “Run”
means that any adding, deleting, or moving of files
happens at one of these three. Custom software,
written by Rainer Schöpf, ensures that a change at
one is reflected at the other two quickly, within fif-
teen minutes. (The other hundred CTAN mirrors go
at a different pace, usually syncing nightly.)

New or updated material can reach CTAN in
three ways. Most often it is uploaded through a web
form. However, some authors use FTP uploads and
some packages are mirrored over from their home
site. I will focus on the web uploads.

In the present system, receipt of a web upload
triggers an email to the CTAN maintainer’s mail-
ing list. On reading that, the maintainer at the site
that received the material will handle the upload.
This means unpacking the .zip or .tar.gz bun-
dle in which the package was sent, examining the
resulting files, and checking details such as license
and placement. It means emailing the author and
the other maintainers. It may mean asking for some
adjustments such as adding a README file, or some
more technical work such as changing text file line
endings. After that, the maintainer places the ma-
terial into the archive at their machine and triggers
mirroring by the other two core sites, and so ulti-
mately by the additional mirrors.

But placing a package’s files into the archive
does not end its processing. For one thing, infor-
mation about the package such as description and
license — the package’s metadata — needs to go into
the Catalogue (this is done by Robin Fairbairns). Fi-
nally, distributions such as MiKTEX and TEX Live
repackage the material to meet the TEX Directory
Standard (TDS) and deliver this to end users.

Here are some worries about the current pro-
cess. (1) Package’s authors cannot directly edit the
metadata, so that must be done by the maintainers.
(2) There are delays: one example is that package
metadata often gets into the database only after the
files are in the archive so there is a period where the
description does not match the package, and another
example is that the web pages for the archive at
http://www.ctan.org/tex-archive are often only

regenerated nightly so information about new ma-
terials is not current. (3) To be a core maintainer
a person needs to run a server and there are people
who could help with the archive but who oughtn’t
be administering a system that is exposed to the
Internet (this includes me). (4) The package gets
installed by the maintainer whose site happened to
receive the upload, so if that person is unavailable
then there is a delay. (5) At the time the package
is put in the archive and announced, that package
should be easy for end users to get into their distri-
bution tree.

Before describing the proposed upload process,
let me first counterbalance the prior paragraph by
noting a strength of the current process. At an
archive such as SourceForge, where package authors
are responsible for what is put out to the public,
many authors do not do a good job. The fact that
CTAN’s maintainers are involved in all installations
ensures that packages meet some standards. That is,
the current process is a wide-mouthed funnel, catch-
ing submissions and narrowing them to a reasonably
uniform offering.

2 Developments

Users groups, notably Dante, have sponsored very
helpful discussions of CTAN issues. In response, I
have been working on software that is now being
tested. Some people have expressed interest and the
outline below will explain its current state.

If you are not keen on CTAN internals then
probably the most interesting feature is also the
most experimental: the attempt to provide instal-
lable bundles. The TEX Live team has a script to
bring most packages from the CTAN tree over to a
TEX Directory Standard layout, that is, over to a
format that could be dropped by an end user into
an existing installation. My software wraps that to
make available the TDS-ready material as a bun-
dle <package id>.tds.zip at the same time that
the bundle’s source is put up. Users can drop this
.tds.zip file right into their distribution, without
much need for installation instructions. (This does
not integrate with any package manager but it does
allow users to easily place desired material.)

I will explain the software by walking through
the steps that a typical package takes to get from
author to archive.

1. The author puts the package into a .zip or
.tar.gz bundle. They point their browser to
the upload page.

There, they choose from two upload forms.
The simple one, the default, asks only for name,

preliminary draft, June 29, 2007 11:29 preliminary draft, June 29, 2007 11:29

1002 preliminary draft, June 29, 2007 11:29 TUGboat, Volume 0 (2060), No. 0

license, and description. The complex form al-
lows the author to enter obscure attributes such
as package home page.

If this is an update of an existing package
then the form comes up with the metadata now
in the database, and the author just makes any
changes. Also, the author is asked separately
for additional information such as any handling
instructions (now, the description and handling
information all goes in one box).

2. The system accepts the uploaded package and
metadata. It places the metadata in the data-
base, in a pool of not-yet-processed uploads. It
emails a list of people who can install uploads,
called here “editors.”

3. The uploaded bundle is unpacked to a file tree
by a program that runs periodically. This pro-
gram also does some processing of the unpacked
files. For example, it ensures that text file line
endings are the same throughout the archive.

4. One of the editors sees the email notification
and logs into a web site listing the pool. They
click on a form to claim responsibility for this
package.

5. This editor examines, possibly edits, and then
approves the metadata left by the contributor.
(Requiring that metadata be approved ensures
that the descriptions meet some standard of
comprehensibility, and also keeps us out of the
password business while reassuring authors that
people they don’t know cannot change the pack-
age’s description.)

The editor can read, add, delete, or rename
files. For instance, they can add a README file
if one is not already there.

The system will warn the editor of some prob-
lems, for instance if the metadata says that a
documentation file exists but there is not one
in the upload, or if installing a package update
will leave the archive with dangling links.

6. The uploader may have included a .tds.zip
bundle. If so, the editor can see its contents and
compare with what TEX Live now has for this
package. The editor can also push a button to
make a new .tds.zip, using TEX Live’s script.
If the package is suitable then it can be queued
for placement into the TEX Live repository.

7. The editor then pushes a button to install the
package.

That puts the source files to the archive, say
at /macros/latex/contrib/<package id>. In-
stallation is done using the metadata, so the
database and the archive tree are consistent as

to the location, whether a .zip file exists of
the directory contents, etc. The system places
the files using CTAN’s current custom script,
ensuring that these web-based installations are
consistent with command-line installations.

The installation system also tends the data-
base: it updates the metadata and the search-
able documentation.

If the package now contains a TDS bundle
then the system places it in /install/macros/
latex/contrib/<package id>.tds.zip.

8. The system sends an email to the editors list,
informing people that the upload was handled
and also for possible forwarding to the CTAN

announcement mailing list.
9. If a .tds.zip bundle was queued for transmis-

sion to the TEX Live repository then it gets sent
at some later time. (One advantage of using a
queue over having it happen at the same time
as the install is in case of problems getting to
the TEX Live site.)
Material that comes in via FTP goes through

the same process, starting at step 3. (The editor
can associate existing metadata with the upload).

3 To do

Not every feature of the experimental system is de-
scribed above (for instance, there is a way to send
changes to the metadata alone). And, because it
is experimental, probably some of what is described
will get changed. In particular, while the TDS fea-
ture appears promising, it is quite experimental.

So the upload process still faces a fair num-
ber of hurdles, both technical and nontechnical. For
one thing, where the current system is like a wide-
mouthed funnel, the process described above has not
been subject to any real-world testing for the same
property. However, all the features described above
exist, are now being developed and tested, and seem
to solve at least some of the problems with the cur-
rent package process.

4 Acknowledgement

I thank Karl Berry for helping me with the TEX Live
material.

2007 Adobe Systems Incorporated. All Rights Reserved.

PDF Overview
Everything you wanted to know about
PDF, but were afraid to ask!

Leonard Rosenthol
PDF Standards Evangelist
Adobe Systems, Inc.

2007 Adobe Systems Incorporated. All Rights Reserved.

PDF - Portable Document Format

 File format designed speci!cally for electronic distribution of “!nal form
documents”

 Created by Adobe in 1992-1993, as part of their Acrobat product.

 PDF is an open public format with specs available from Adobe at
<http://partners.adobe.com/public/developer/en/pdf/PDFReference17.pdf>

 Coming soon as an ISO Standard (ISO 32000)!!

2007 Adobe Systems Incorporated. All Rights Reserved.

PDF - What’s in there?

 PostScript/Adobe imaging model
 Text & graphics in a device & resolution independent manner

 Bitmap Images

 Prepress Features (trapping, bleed, etc.)

 Navigation Tools (Bookmarks, Hyperlinks, etc.)

 Annotations
 Text notes, “MarkUp”, Movies, Sounds

 Forms

 Security & Authentication

 And more…

2007 Adobe Systems Incorporated. All Rights Reserved.

PDF - What’s NOT in there?

 PDF is NOT Postscript!
 Transparency

 Non-printable elements (hyperlinks, etc.)

 Interactive elements (multimedia, 3D, forms)

 Modern compression technology (JBIG2, JPEG2000)

 Color Management

 No programming language constructs

 Strict !le structure allowing for random access

 Presence of font metrics for viewing !delity

 A PDF !le can not be directly interpreted by a PS interpreter, though
conversion of PDF page descriptions to PS is simpli!ed.

2007 Adobe Systems Incorporated. All Rights Reserved.

PDF Document Layout

 Header
 Speci!es PDF version

 Body
 Sequence of objects

 XREF
 Where to !nd each object

 Trailer
 Tells where to !nd XREF

2007 Adobe Systems Incorporated. All Rights Reserved.

Properties of PDF

 Adobe Imaging Model

 Portability

 Compression/Encryption

 Font Independence

 Random Access

 Incremental Update

 Extensibility

2007 Adobe Systems Incorporated. All Rights Reserved.

Adobe Imaging Model

 Same model as Postscript, where a page is drawn by “placing paint” on a
selected area
 “!gures” can be letter shapes, regions de!ned by lines and curves or sampled images

 Paint can be any color (speci!ed in variable color spaces)

 Figures can be clipped to any other !gure/shape

 Figures are “overlaid” on each other, in the order they exist in the page description.

 Plus Transparency/Opacity (PDF 1.4)

2007 Adobe Systems Incorporated. All Rights Reserved.

Portability

 PDF !les are binary, all 8 bits can be used - though support for 7 bit !les
exists
 ASCII-85 when needing to encode to 7 bits

 Single document format regardless of platform

 Non-Roman language support via standard encodings as well as Unicode

2007 Adobe Systems Incorporated. All Rights Reserved.

Compression/Encryption

 Support for a number of industry standard algorithms
 JPEG (for color & grayscale images)

 CCITT Group 3 & 4, and RLE for monochrome images

 LZW & Flate (ZIP) for text, graphics, etc.

 JBIG2, JPEG2000

 RC4

 40 bits (4.0)

 56 bits (4.0.5)

 128 bits (5.0 and later)

 RSA Public Key Cryptography – Digital Signatures

 AES (7.0)

2007 Adobe Systems Incorporated. All Rights Reserved.

Font Independence

 Use of Font Descriptors
 Name, character metrics (width, height, etc.)

 Support for font embedding
 full & subset embedding

 To ensure correct display on all platforms and PDF viewers, you should
embed.
 Adobe Acrobat, however, provides font substitution facilities.

2007 Adobe Systems Incorporated. All Rights Reserved.

Random Access

 Cross reference table maintains lists of pages, objects on a page, etc.

 XRef is stored at the end of the document, allowing for single pass creation
and ease of location
 Except in the case of linearized documents designed for byte-serving (ie. dynamic serving

via the web)

2007 Adobe Systems Incorporated. All Rights Reserved.

Incremental Update

 Modi!cations are written to the end of the !le, leaving the
original data intact

 A new xref table is written containing the new/modi!ed data,
and a link back to the old xref.

 Since original data is still present, support for multiple undos
across save boundaries can be supported.
 However Acrobat only provides a UI for this feature when Digital

Signatures are used.

2007 Adobe Systems Incorporated. All Rights Reserved.

Extensibility

 As seen by the features added to PDF since 1.0, you can see that new
features can easily be added to PDF w/o breaking backwards compatibility.

 A viewer will simply ignore an object that it doesn’t understand.

2007 Adobe Systems Incorporated. All Rights Reserved.

Adobe Imaging Model

2007 Adobe Systems Incorporated. All Rights Reserved.

Page “Layout”

 Page Boxes
 MediaBox is the physical size of the page

 CropBox is the visible size of the page

 BleedBox, TrimBox & ArtBox for prepress

 Content
 All “marks” on a page are collectively referred to

as content.

 Content can only be placed on a canvas, which is
de!ned as a “Page”.

 User Space
 A coordinate system that stays the same

regardless of the output device

 The Current Transformation Matrix (CTM)
speci!es the transformation from user space to
device space

 Default user space is 72 units per inch (aka “a
point”) with the origin at bottom left

PDF 1.0-> 1.5: 1/72 of an inch == 14,400 units == 200 inches.

PDF 1.6 & later: 15,000,000 inches == 1,250,000 feet = ~236.74 miles.

2007 Adobe Systems Incorporated. All Rights Reserved.

Color Spaces

 PDF Supports 11 color spaces
 3 device dependant

 DeviceGray, DeviceRGB & DeviceCMYK

 4 device independent

 CalGray, CalRGB, Lab & ICCBased

 4 special

 Indexed

 Pattern

 Tiling & Smooth Shading

 Separation (aka Spot colors)

 DeviceN

 NChannel (PDF 1.6) is a backwards compatible
extension of DeviceN to enable richer and more
accurate handling of color blending with dot gain and
mixing hints

2007 Adobe Systems Incorporated. All Rights Reserved.

Transparency

 Simple alpha channel on all objects
 Separate !ll vs. stroke opacity for vector/text

 Images support a separate “alpha mask”

 Blending Modes
 Specify how the blending of colors should take place between objects

 Same choices as in Photoshop/Illustrator

 Normal, Darken, Dodge, Burn, etc.

 Blending Groups
 Allows multiple objects to be grouped together and their blending settings applied to the group as a

whole

 Similar to layers in Photoshop

2007 Adobe Systems Incorporated. All Rights Reserved.

Graphic Objects

 Paths
 Arbitrary shape made of straight lines, rectangles, and cubic curves.

 May intersect itself and may have disconnected sections and holes.

 Filled, stroked, and/or a clipping path.

 Text
 One or more character strings

 Filled, stroked, and/or a clipping path

 Raster Image
 “bitmap” using a speci!ed color model

 May be rendered with a hard or soft mask

 Form XObjects
 Reusable elements

 Postscript language fragments

2007 Adobe Systems Incorporated. All Rights Reserved.

Fonts

 The following types of fonts are supported
 TrueType

 Type 1

 Type 3

 Type 0 (Composite Font)

 CIDFontType0 (Type 1)

 CIDFontType2 (TrueType)

 OpenType (PDF 1.6)

 There are 14 fonts that USED TO BE “built-in”, including the Courier, Helvetica and
Times families, Symbol & ITC Zapf Dingbats.
 However, embedding them is still a good idea!

2007 Adobe Systems Incorporated. All Rights Reserved.

Font Embedding

 Two types of embedding restrictions
 Technical

 Fonts in TrueType or OpenType format contain a "ag word (in the OS/2 table) that
speci!es whether embedding is allowed and if so what kind (installable, view & print,
view, print & edit).

 Legal

 Fonts, like software programs, will include an End User License Agreement (EULA) that
stipulates the uses that the creator permits the licensee/user. These may include the
ability to embed, and if so, for what purposes.

2007 Adobe Systems Incorporated. All Rights Reserved.

Form XObject

 A form XObject is kind of like a “PICT” or WMF/EMF.
 It’s a named self-contained description of text, graphics or sample images that can be

drawn more than once on a single page, or on multiple pages.

 Useful for things like company logos, imposition, etc.

2007 Adobe Systems Incorporated. All Rights Reserved.

Postscript Fragments

 Pieces of raw postscript that are ignored for screen render and MAY be included in
any Postscript printing stream.
 Can be used for device-speci!c features

 Output tray
 Duplexing

 Not all PDF viewers will process these, and even those that do, o#er choices to ignore them.
 Acrobat 6 and later default “Enable Passthrough Postscript when Printing” to OFF

 Just say NO!

2007 Adobe Systems Incorporated. All Rights Reserved.

Optional Content

 Goal: Allow document content to be selectively viewed or hidden

 Called “Layers" in Acrobat UI

 Can apply to viewing, printing, exporting, etc.

 Graphical content can be declared as optional
 e.g. Language, Zoom, Export, Print, View, User

 When opened in Acrobat 5 (or printed), ALL layers/content are visible!

 Has NOTHING to do with rendering order!

2007 Adobe Systems Incorporated. All Rights Reserved.

Prepress

 Transfer functions
 Used to adjust color between an output device and the human eye

 Halftones
 Used to approximate continuous-tone colors on a device with limited discrete colors

 Trapping
 Used to address physical misalignment of plates on a high end printing device

 Separations
 Composite - Standard PDF where a page refers to all colors that are used on it

 Separated - PDF where each page of the documents represents the areas for a speci!c color/plate.

 OPI - Open Prepress Interface
 Standard for providing low resolution “proxies” in a document that will be substituted at print time with

the original (hi-res) versions.

 Images

 Form XObjects

2007 Adobe Systems Incorporated. All Rights Reserved.

What else you got?

2007 Adobe Systems Incorporated. All Rights Reserved.

Metadata

 Document Info
 Simple set of de!ned “keys”

 Ability to add additional keys

 Simple strings

 In PDF 1.4, any object can now have a block of XML metadata associated
with it.
 Uses an RDF-based grammar called XMP

 Can include both standard and user-extended elements

2007 Adobe Systems Incorporated. All Rights Reserved.

User Properties
aka Object-level Metadata

 Introduced in Acrobat 7/PDF 1.6

 Enables selected groupings of content elements to have an associated set of
data
 Uses Marked Content within the stream

 Uses Structure elements for the data

 Consists of name/value pairs

2007 Adobe Systems Incorporated. All Rights Reserved.

Destinations and Actions

 A particular view of a document
 Page to be displayed

 Portion of the page to be displayed

 Magni!cation (zoom) factor to use

 Can either be explicit or named
 GoTo [1 /Fit]

 GoTo [/MyName]

 /MyName [1 /Fit]

 These are things that can be attached
to certain objects/events in a
document

 Open & Close doc, close doc

 Enter & Leave page

 Mouse enter/leave/down/up

 Bookmarks, annotations, form elements, etc

 They come in a few types:
 GoTo, GoToR(emote), GoToE(mbedded)

 URI (web link)

 Launch

 Sound, Movie

 JavaScript

 And more…

2007 Adobe Systems Incorporated. All Rights Reserved.

JavaScript

 Based on Netscape’s “SpiderMonkey”
 Version 1.5

 ECMAScript compliant

 Includes all standard objects

 Date, RegEx, Math, etc.

 Based around a di#erent Document Object Model (DOM) than present in browsers
 App, doc, !eld, annot, etc.

 Sandboxed
 No access to !le system, network, user info

 Not all commands are available in all versions

 Reader vs. Full

 Not all commands available from all places

 Console, menu, !eld, batch, etc.

 No integration with external/browser JS
 But can be called FROM applications via COM or Apple events.

 NOTE: Acrobat/Reader 7.0.5 (for Windows) now supports this ability!

2007 Adobe Systems Incorporated. All Rights Reserved.

Bookmarks

 Also called the “Outline Tree”

 Hierarchical List of destinations or actions through which the user can
navigate.

2007 Adobe Systems Incorporated. All Rights Reserved.

Transitions

 The visual transition between pages of a PDF can be speci!ed for use in
presentations
 Split, Blinds, Box, Wipe, Dissolve, Glitter

 PDF 1.5 adds another dozen varieties

 You can also specify a duration for how long the transition should last

 Using OCG’s, it is also possible to achieve “inter-page” transitions, such as
the PowerPoint “fade in” or “typewriter” e#ects.

2007 Adobe Systems Incorporated. All Rights Reserved.

Annotations

 Text Notes
 “Mark Up”

 Underline, strikeout, highlight
 Circle, Rect, Pen/Scribble
 Callout, Dimensioning

 Hypertext Links
 Inter-document, intra-document
 URI’s (web links)

 Stamps
 File Attachments

 Multimedia
 AVI, MPEG, QT, Real, WMP, etc.

 Sounds

 3D

2007 Adobe Systems Incorporated. All Rights Reserved.

Embedded Files & Packages

 You can embed an entire !le (or any type!) inside a PDF document
 Useful for having a single !le that contains everything related.
 A Launch command, for example, might reference the embedded doc rather than an external reference.

 Embedded PDFs can refer to one another and o#er “interdocument links” (PDF 1.6)
 JavaScript can also interact with the embedded documents for data exchange

 Some !le types may end up like a “roach motel” (what goes in, never comes out
 Black (“bad”) & White (“safe”) Lists of !le types
 Stored in Registry. No UI in Acrobat for editing

 PDF Packages/Collections (1.7)
 Extension to Embedded Files

 Provides a cleaner UI on accessing the embedded content

 Enables “spreadsheet view” of associated metadata

2007 Adobe Systems Incorporated. All Rights Reserved.

AcroForms

 A PDF !le may contain AT MOST ONE AcroForm,
though that form may contain any number of
!elds located on any page.

 You can also dynamically import/export sets of
!elds from the !le

 There a number of prede!ned !eld types
 Button (checkbox/radio/push)

 Text

 Choice (popup, combo or list)

 Fields can be typed (integer, string, boolean) and
marked read-only.

 Fields can be “calculated”, such that a JavaScript
will be autoexecuted when a “related” !eld is
modi!ed.

 Form data can be “submitted” via either FDF
(Forms Data Format), XFDF (an XML grammar) or
via an HTTP get or post.

2007 Adobe Systems Incorporated. All Rights Reserved.

XFA – XML Forms

 Introduced with PDF 1.5

 Created by Adobe LiveCycle Designer (Acrobat 7 Pro/Win)

 New and improved architecture for forms based around XML & industry standards

 Supports a variety of cool new features for PDF forms
 Dynamic/Resizable forms

 Automatic integration with databases & web services

 Calendars for date !elds

 Digital Signatures on speci!c !elds (not yet)

 Etc.

2007 Adobe Systems Incorporated. All Rights Reserved.

Structured/Tagged PDF

 Introduced as part of the AcroSpider/Web Capture project (Acrobat 4).

 Allows for storing information about the logical structure of a document
along side the layout.
 An XML-like approach to marking sections of a PDF to provide for text re"ow, data

extraction, etc.

 Improved searching & indexing type operations

 Enables high !delity export of PDFs to other formats (eg. Word/RTF)

2007 Adobe Systems Incorporated. All Rights Reserved.

Security & Digital Signatures

 Digital Rights Management (DRM)
 Disallow Copy, Print, etc.

 Low Resolution printing

 Password protection

 Ability to use X.509 compatible signatures that can then be applied to a document.
 PKCS1

 PKCS7 (with or without a CA)

 PKCS12

 MSCAPI/Windows Certi!cate

 Verisign

 TimeStamping (PDF 1.6)
 Compatible with PKCS7 & RFC 3161

 Revocation (PDF 1.6)
 Certi!cate Revocation Lists (CRLs) – RFC 3280

 Online Certi!cate Status Protocol (OCSP) – RFC 2560

2007 Adobe Systems Incorporated. All Rights Reserved.

Certi!ed Documents

 Digitally Signed
 Invisible/blind signature

 Speci!es (limited) Digital Rights
 “recommend not required”

 Speci!es set of objects (byte range) that are covered by the certi!cation
 So that some things (eg. form !elds) can be modi!ed w/o breaking certi!cation

 NO ENCRYPTION!

2007 Adobe Systems Incorporated. All Rights Reserved.

Q & A

MathType 6.0’s TEX input for MS Word and Wikipedia

Paul Topping
Design Science, Inc.
140 Pine Ave.
Long Beach, CA
USA
pault@dessci.com

http://www.dessci.com

Abstract

MathType is well-known for its point-and-click user interface for editing math.
However, some users feel more comfortable typing math using TEX, so in
MathType 6.0 we have added a TEX input mode. This provides the user with
the best of both worlds: TEX for initial entry, point-and-click and drag and drop
for easy editing and manipulation. Since MathType can save equations in several
graphics formats and objects, it provides a direct path from TEX to Microsoft
Word, PowerPoint, and virtually any document or application. Since many blogs
and wikis accept a variant of TEX math syntax and expose it in their web pages,
we are now able to support both authoring and reuse of equations in these en-
vironments. In particular, MathType users can now copy equations out of the
thousands of Wikipedia pages containing equations for use in educational and
research authoring. In addition, MathType users can create equations and paste
them directly into new Wikipedia content.

1 Introduction

Throughout MathType’s 20-year history, it has al-
ways been firmly in the point-and-click camp of equa-
tion editing. Because a trimmed-down version has
shipped with Microsoft Office since 1991, it has been
used to type a lot of math. Of course, TEX remains
popular and is heavily used in some scientific com-
munities. Once a person’s hands ”know” TEX, it
is hard for them to imagine typing math any other
way. And, because TEX is free and easy to integrate
into web servers as an equation image generator,
many blog and wiki applications support it. Unfor-
tunately, many people that don’t know TEX struggle
with authoring math in these environments. With
MathType 6.0, we tried to bridge both of these gaps,
bringing TEX input to MathType and allowing peo-
ple that don’t know TEX to more easily work with
wikis and blogs. Since Wikipedia is so popular and
contains many equations authored in TeX, we have
made working with its equations especially easy.

2 Typing TEX in a MathType window

Typing equations using TEX and LATEX math syntax
in MathType is very easy. At any point in building
up an equation, the user can type text starting with
any one of these TEXmode starting characters: $
ˆ (see Figure 1). TEX language will appear in dark

grey as opposed to the normal black of converted
math. Hit Enter and the TEX language is converted
into normal MathType equation content (see Fig-
ure 2). Any errors appear in red. Corrections can
be made using MathType’s normal point-and-click
editing facilities, or the conversion can be undone
to allow corrections to be made in the original TEX.
TEX can also be pasted into MathType via the clip-
board.

Figure 1: User types some TEX

3 Copying equations out of Wikipedia

Wikipedia, the popular online encyclopedia, con-
tains thousands of pages with equations represented
in both HTML and as images. The math is authored

Preprint: Proceedings of the 2060 Annual Meeting June 22, 2007 23:35 1001

Paul Topping

Figure 2: After typing ENTER

using the Texvc subset of TEX markup with some ex-
tensions in LATEX and AMSLATEX. If simple enough,
TEX input is converted to HTML markup. Oth-
erwise, an image is generated with the TEX input
stored in the image’s ALT attribute. When an equa-
tion is copied from the web page onto the Windows
clipboard, the math notation is made available to
MathType where it is converted to MathType’s own
equation representation. This works with Internet
Explorer, Firefox, and any browser that supports
Microsoft’s HTML clipboard format (see Figures 3
and 4). A stack of HTML and/or TEX equations
can be copied in a single operation. We have also
added a Texvc output translator allowing equations
to be created in MathType, or copied from equa-
tions in Microsoft Word documents, and pasted into
Wikipedia pages.

Figure 3: User copies from Wikipedia’s Trignometry
page, http://en.wikipedia.org/wiki/Trignometry.

4 Implementation

MathType’s translation process involves two sepa-
rate translators working together, one for HTML

math and one for TEX. The translators are writ-
ten in a home-grown, rule-based language named
Sevilla after the Spanish Restaurant on the lower

Figure 4: After pasting into MathType.

floors of Design Science’s Long Beach, California of-
fices. Since the translation is defined using rules in
text files, the existing translators can be customized
and entire new translators may be created.

5 Current status

As of this writing, MathType 6.0 for Windows is in
beta with release expected in July, 2007. The same
technology will also be brought into a future Macin-
tosh version. In the future, we expect to be looking
at creating smooth interfaces between MathType
and other web-based math environments.

1002 June 22, 2007 23:35 Preprint: Proceedings of the 2060 Annual Meeting

Dual Presentation with Math from One Source

using GELLMU

Preliminary Version of Talk for

the TUG Meeting in San Diego, July 2007

William F. Hammond

Department of Mathematics & Statistics
University at Albany

Albany, New York 12222 (USA)
Email: hammond@math.albany.edu

Web: http://www.albany.edu/~hammond/

1 Introduction

A contemporary author writing an article for “dual presentation” has in mind both the classical
printed presentation of an article and the modern web form of an article based on HTML.

There are two main approaches for achieving dual presentation that are relevant to the TEX
community.1

• Write a LATEX article, and use a program that translates to HTML.

• Write an article in a suitable XML document type, such as DocBook or TEI, and use
standard software for generating LATEX and HTML.

Both methods present challenges to authors who have been accustomed to using LATEX.

Since mid-2002 the second-generation form of HTML that supports mathematical content has
been supported by the two most widely deployed web browsers, but not many articles seem to
have appeared on the web in this form so far. The most likely reason is difficulty of production.

This talk will address the use of “generalized LATEX” to produce dual content from a single
LATEX-like source. This method combines the reliability of XML document transformation
with many of the conveniences available when writing LATEX markup.

2 Writing Source Markup

Here’s the source for a relatively simple example.
1Texinfo, the language of the GNU Documentation System, also provides a route for dual presentation of

articles without mathematical markup.

The following identity may be regarded as a formulation of the
Weierstrass product for the Gamma function.
\[\int {0}^{\infty} t^x e^{-t} \frac{dt}{t} \int:

= \frac{1}{x}
\prod {k=1}^{\infty}
\frac{\bal{1 + \frac{1}{k}}^x}{\bal{1 + \frac{x}{k}}}

\prod: \]
Understanding the derivation of this identity is reasonable for
a bright student of first year undergraduate calculus in the
United States.

It compiles to this:

The following identity may be regarded as a formulation of the Weierstrass product for
the Gamma function. ∫ ∞

0

txe−t dt

t
=

1
x

∞∏
k=1

(
1 + 1

k

)x(
1 + x

k

)
Understanding the derivation of this identity is reasonable for a bright student of first
year undergraduate calculus in the United States.

The markup looks like LATEX. In fact, except for the use of the zone closers \int: and \prod:,
it would be LATEX. I call it generalized LATEX.

Aside from the zone closers, which are required for GELLMU, there are a few other things
to notice. Most of these have to do with the fact that, as part of the overall system design,
markup semantics are independent of the command vocabulary. Thus, for example:

1. Command arguments must be explicitly braced.

2. Braces for the argument of a superscript or subscript may be omitted only if the argument
is a single character.

3. The semi-colon at the end of a command name (such as \latex; above) indicates that
the command does not introduce content. Often this type of semi-colon may be omitted,
and, beyond that for most purposes \foo; may be regarded as shorthand for \foo{}.

4. The command vocabulary differs somewhat from that of LATEX.

3 Another Example

There follows a GELLMU version of an example posted to the UseNet newsgroup sci.math.research
on 29 October 2002, message id: <apmpvnbpb1.repost@nef.ens.fr>2, by David Madore of
ENS for the purpose of comparing TEX markup to MathML.

In a letter to Godfrey Harold Hardy, Sr
¯
ı̄n
¯
ivāsa Rāmān

¯
ujan

¯
Aiyaṅkār asserts that

1

1 + e−2π
√

5

1+ e−4π
√

5

1+ e−6π
√

5
...

=


√

5

1 + 5

√
53/4

(√
5−1
2

)5/2

− 1

−
√

5 + 1
2

 e2π/
√

5

2URI: http://groups.google.com/group/sci.math.research/msg/3bebf506912cf426

2

The markup for this:

\macro{\=}{\ovbar}
\macro{\.}{\ovdot}
\newcommand{\b}[1]{\unbar{#1}}
There follows a \abbr{GELLMU} version of an example posted to the
UseNet newsgroup \quostr{sci.math.research} on 29 October 2002, message id:
\href{http://groups.google.com/group/sci.math.research/msg/3bebf506912cf426}{
\quostr{<apmpvn\$bpb\$1.repost@nef.ens.fr>}}, by David
Madore of ENS for the purpose of comparing \tex; markup to
\abbr{MathML}.

\begin{quotation}
In a letter to Godfrey Harold Hardy, S\b{r}\={\i}\b{n}iv\={a}sa
R\={a}m\={a}\b{n}uja\b{n} Aiya\.{n}k\={a}r asserts that
\[
\frac{1
}{1+\frac{e^{-2\pi\sqrt{5}}
}{1+\frac{e^{-4\pi\sqrt{5}}
}{1+\frac{e^{-6\pi\sqrt{5}}
}{\ldots}}}}
=
\bal{\frac{\sqrt{5}
}{
1+\sqrt[5]{5^{3/4}\bal{\frac{\sqrt{5}-1}{2}}^{5/2}-1}}
-\frac{\sqrt{5}+1}{2}}
e^{2\pi/\sqrt{5}}
\]
\end{quotation}

Note the use of \bal{ ... } instead of the LATEX usage \left(... \right). GELLMU
has various balancers of this type and will eventually have more. This is related not only
to the fact that the markup is simply a “front” for an SGML document type but also to its
notion of sound mathematical semantics. The processor for XHTML+MathML output will
not tolerate unbalanced balancing characters in a math zone except as provided through these
balancers and also through the list generator

\vect[...]{...}{...} ... {...} .

The kinds of weak enforcement of mathematical semantics represented by such balancing pro-
visions and by the requirement for explicit ending of sum, int, and prod containers is prelude
to future optional incorporation of stronger mathematical semantics in the markup.

Madore is correct in suggesting that one doesn’t want to look at the MathML markup for this,
but the rendering by Firefox, somewhat enlarged, is captured in this screenshot:

3

4 The Importance of XHTML+MathML

There are several reasons why it is important to have articles and course materials with math-
ematical content online in modern HTML, i.e., XHTML+MathML.

4.1 Public relations for Mathematics

• To a young person XHTML+MathML represents “math on the web”.

• It fits the paradigm of web browsing.

• It’s more flexible and more convenient for online reading than PDF — doubly so by
comparison with double-column online PDF.

• The journals are disappearing from our libraries.

4.2 Special Needs

• It’s great for proof reading. (Enlarge and shorten the lines.)

• Articles presented in XHTML+MathML comply with web accessibility guidelines. (PDF
with math does not.)

• Large print editions at no cost.

The small gamma bit presented earlier may easily be made to look like this in Firefox (a
screenshot):

4

5 Compiling an Article

5.1 Acquiring the Software

GELLMU is based on cross-platform free software licensed under the GNU GPL. Its package
is available from CTAN ([2]) and from the GELLMU web site ([6]). The package requires a
number of other cross-platform free software packages including GNU Emacs, Perl, and some
standard items of SGML/XML software, chiefly Open SP.

Linux: The required packages are generally part of a full GNU/Linux distribution. The
package should be installed in /usr/local/gellmu and symlinks to driver scripts should be
made from a suitable place in one’s command path.

MacOS-X and other Unix variants: The only difference from GNU/Linux is that some of
the supporting packages may need to be acquired and installed.

MS Windows: The best strategy is to acquire and install a full Cygwin3 distribution. Then
proceed as with Linux.

5.2 Procedure

Let’s package the preceding markup segment as an article. Because it is GELLMU, not LATEX,
it begins with \documenttype rather than with \documentclass.

\documenttype{article}
\title{}
\begin{document}

3URI: http://www.cygwin.com/

5

The following identity may be regarded as a formulation of the
Weierstrass product for the Gamma function.
\[\int {0}^{\infty} t^x e^{-t} \frac{dt}{t} \int:

= \frac{1}{x}
\prod {k=1}^{\infty}
\frac{\bal{1 + \frac{1}{k}}^x}{\bal{1 + \frac{x}{k}}}

\prod: \]
Understanding the derivation of this identity is reasonable for
a bright student of first year undergraduate calculus in the
United States.

\end{document}

Beyond early-stage syntatic processing the system requires that there be a title in the preamble
of every article. An empty title is allowed.

Text normally must be in paragraphs. (There are exceptions.) Therefore, the blank line after
\begin{document} is essential.

It is sometimes said about LATEX that a blank line ends a paragraph. However, in GELLMU
a blank line begins a paragraph.

We place this article text in a file named gammabit.glm, with ".glm" the canonical suffix for a
GELLMU source file, enter the command

mmkg gammabit

and prepare to read the scroll4. At the end when all goes well there are the following outputs:

• XHTML+MathML – the best online version5

• PDF – for widely distributable print6

• DVI – for TEXies7

• classical HTML – for challenged browsing8

Additionally one might note that some level of rendering based on cascading style sheets (CSS)
is possible for the author-level XML9.

In order to understand the scroll one needs to understand the system design.

6 System Components

Regular GELLMU is a system assembled from modular components. Each step along the way
produces an intermediate stage output that has its own sense and that, when things go wrong,
provides opportunity both for diagnosis and intervention.

4URI: gammabit.out
5URI: gammabit.xhtml
6URI: gammabit.pdf
7URI: gammabit.dvi
8URI: gammabit.html
9URI: gammabit.xml

6

Here’s the flow chart:

What I call the “side door” is the second row entry showing the possibility of translation
from source languages other than the markup of regular GELLMU into the author-level XML
documenttype corresponding to the source markup of regular GELLMU.

One will note from the scroll10 that SGML/XML validation is done at several stages. This
validation can be important for catching the author’s mistakes. When there are error messages,
it is possible and important to consult the scroll’s last message regarding the stage of processing.
Note in this regard that the translation from elaborated XML to XHTML+MathML takes
place in 3 stages that are not shown on the chart but that may be seen in the example scroll.

10URI: gammabit.out

7

7 Further Information

Much more information may be found in the User Guide ([3]), the GELLMU Manual ([4]),
and the GELLMU web site, http://www.albany.edu/~hammond/gellmu/. A link to an online
version of this preliminary document should be available at the GELLMU web site by July 6.

References

[1] William F. Hammond, “GELLMU: A Bridge for Authors from LATEX to XML”, TUG-
Boat: The Communications of the TEX Users Group, vol. 22 (2001), pp. 204–207; also
available online at http://www.tug.org/TUGboat/Contents/contents22-3.html.

[2] GELLMU at CTAN:
http://www.tex.ac.uk/tex-archive/help/Catalogue/entries/gellmu.html

[3] William F. Hammond, “Introductory User’s Guide to Regular GELLMU”, http://www.
albany.edu/~hammond/gellmu/igl/userdoc.xhtml (PDF11).

[4] William F. Hammond, “The GELLMU Manual”, http://www.albany.edu/~hammond/
gellmu/glman/glman.xhtml (PDF12).

[5] “New York Journal of Mathematics Articles in Mathematically-Capable HTML”13;
demonstration versions of past articles from The New York Journal of Mathematics
ported from classical LATEX using GELLMU.

[6] The GELLMU web:
http://www.albany.edu/~hammond/gellmu/

11URI: http://www.albany.edu/˜hammond/gellmu/igl/userdoc.pdf
12URI: http://www.albany.edu/˜hammond/gellmu/glman/glman.pdf
13URI: http://math.albany.edu/demos/nyj/

8

Design Decisions for a Structured Front End to
LATEX Documents

Barry MacKichan
MacKichan Soware, Inc.

July 19, 2007

1 Logical design
Scientific WorkPlace and Scientific Word are word processors that have been designed
from the start to handle mathematics gracefully. eir design philosophy is descended
from Brian Reid’s Scribe,1 which emphasized the separation of content from form and
was also an inspiration for LATEX.2 is logical design philosophy holds that the author of
a document should concern him- or herself with the content of the document, and with
identifying the role that each bit of text plays, such as a header, a footnote, or a quote. e
details of formatting should be ignored by the author, and handled instead by a predefined
(or custom) style specification.

ere are several very compelling reasons for the separation of content from form.

• e expertise of the author is in the content; the expertise of the publisher is in the
presentation.

• Worrying and fussing about the presentation is wasted effort when done by the
author, since the publisher will impose its own formatting on the paper.

• Applying format algorithmically is the easiest way to assure consistency of presen-
tation.

• When a document is re-purposed it can be reformatted automatically for its new
purpose. is can happen when a document is put on theWeb in addition to being
published, or even when the author sends the document to a new publisher.

e most powerful typesetting programs tend to be programming languages them-
selves. e two most prominent examples are PostScript and TEX. Although these are
extremely powerful, they are not always simple, and they do not separate content from
form. Consequently, there is a migration on this plot from the top to the bottom, and
from the le to the right.

1Brian K. Reid, ”Scribe: A Document Specification Language and its Compiler,” Ph.D. Dissertation,
Carnegie-Mellon University, Pittsburgh, PA, Oct. 1980.

2Leslie Lamport, LATEX: a document preparation system, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, 1989

1

Procedural

Declarative

St
ru

ct
ur

ed

U
ns

tru
ct

ur
ed

TeX

PostScript

PDF

LaTeX

us, PostScript is a powerful programming language, but it was later supplemented
by PDF, which is not a programming language, but contains declarations of where indi-
vidual characters are placed. PDF is not structured, but Adobe has been adding a struc-
tural overlay. LATEX is quite structured, but it still contains visible signs of the underlying
programmability of TEX, so I haven’t quite placed it at the bottom of the plot. e pat-
tern is that power and flexibility generally get supplemented or replaced in some circum-
stances with structured and declarative alternatives.

e original design philosophy for Scientific WorkPlace and Scientific Word was to
make visual word processors that live at the bottom right of the diagram, and produce
their output by generating LATEX using one of over a hundred typesetting styles. is is
the optimal solution for publishing, at least when we support a publisher’s style, or when
a publisher’s style uses the same tags as one of the standard LATEX document types.

2 Enter the customer
Although this philosophy works very well for publishing, many of our customers want
to have greater control over the appearance of their documents. e truth is that not all
mathematical documents are written for publication in a journal. e author might want
to post a document on theWeb or to send out preprints, or to prepare reports that will not
be published, or to prepare handouts for students. e cold hard truth is that programs
like Microso Word – despite its intellectual roots being also in Scribe – have over the

2

years encouraged users to fiddle and futz with formatting. e experts may all agree that
the result is ugly, but the customer is the one who pays our salaries.

In the past, Scientific Word users had a hard time if they wanted to change or add to
a style. e advice of our tech support staff has been:

• You don’t want to do that

• You shouldn’t do that

• You can use package X to do that

• You can rewrite the style file

We no longer give the first two responses, and our users are not going to be able to use
the fourth bit of advice. Due to the large number of useful packages, we now encourage
users to start with a standard LATEX document type and to use packages. is works, but it
is not themost elegant way to solve the problem, since you shouldn’t have to write options
for the geometry package in order to change a margin.

We also allow the user to enter snippets of raw TEX or LATEX code in what we call
a “TEX button” (which is how we enter “TEX” and “LATEX”) but this runs counter to the
design philosophy, and can’t address problems when a user wants to change, for example,
how list items are generated (since the code to be added would be in the middle of code
we have generated).

3 A statement of the problem
is discussion now allows a statement of the problem we are solving.

1. We want an internal form for our documents that is both rich and extensible, and
a rendering engine that is rich enough to render a LATEX document and which is
extensible.

2. Wewant to convert a LATEXdocument to our internal form in away that is extensible
and preferably uses standard, well-documented tools, and in particular does not
require access to our source code.

3. We want to convert our internal form to LATEX in a way that is extensible and uses
standard tools, and does not require access to our source code.

Part of the motivation for not needing access to our source code is that extending
these operations will be easier for us if it is not necessary to change and re-build C++
code in order to support a new tag or to change the behavior of a standard tag. e
other part of the motivation is that if the tools are standard and well-documented, then
advanced users can make their own changes.

3

3.1 Internal form of a document
Scientific Word has an internal form that is not LATEX but looks superficially like LATEX,
and we have an adequate rendering engine for it. However, it is not extensible – that is, to
extend it means rewriting C++ code and extending the rendering engine. To avoid this
problem, to get the extensibility we need, we choose an internal form that is rich enough
and extensible (and it must also be declarative and structured). e obvious candidate (at
least in this century) is XML.We are basing future versions of our soware on theMozilla
Gecko rendering engine for HTML and XML. Tags can be introduced at will, and CSS
(Cascading Style Sheets) are used to determine how these tags appear on the screen.

Some of the features of Gecko that are very useful to us are:

• e rendering engine is open-source under a license that allows us to extend it if
necessary.

• e rendering engine is rich and powerful (the program user-interface is in fact a
Gecko document).

• XML is a standard that is easily converted to and from LATEX.

• A powerful scripting language is integrated into Gecko.

• A technology (XBL – XML Binding Language) allows attaching behavior to (new)
XML tags.

• A system of broadcasters and observers simplifies coordinating the behaviors of
objects.

• Support for infinite undo and redo is built into the document-modifying functions.

3.2 Conversion from LATEX
Scientific Word does not process TEX or LATEX files with TEX. It simply determines the
structure of the file by recognizing tags such as \section and \subsection. In the past, it
has caused problemswhen users define their ownmacros: we did not recognize them and
loaded the macro invocation as a TEX button. Beginning with version 5.5 (two years ago)
we now run a version of the TEXmacro processor, and we evaluate macros defined by the
user, but we do not evaluate macros defined in LATEX or any of the standard packages. e
result should be a document that contains only the standard macros, and which can be
read by Scientific Word.

We continue with this same approach in our new architecture, except that the defini-
tions of the standard LATEXmacros converts them to XML.e resulting files are compli-
cated, but most of the complication is in some utility macros that make the final macros
quite easy to understand. Some sample code from one of these files is:

\def\out@begin@abstract{%
\msitag{^^0a}\msiopentag{abstract}{<abstract>}
}
\def\out@end@abstract{%

4

\msitag{^^0a}\msiclosetag{abstract}{</abstract>}
}

is is all that is required to convert the abstract environment to XML.

3.3 Conversion to LATEX
econversion to LATEX is done usingXSLT (XML Stylesheet Language Transformations).
As the name implies, XSLT was designed as part of a method of applying styles to XML
objects, which sometimes requiresmaking some transformations or re-ordering theXML
elements. It has evolved into a powerful standalone transformation language for XML
documents. It can be used to transformXML into XML, or XML into text, which includes
TEX.

Here is the XSLT rule that generates the abstract environment:

<xsl:template match=”abstract”>
\begin{abstract}
<xsl:apply-templates/>

\end{abstract}
</xsl:template>

WhenXSLT finds the<abstract> tag, it generates \begin{abstract}, ap-
plieswhatever rules are needed for the content of the tag, and generates\end{abstract}
when it gets to the end of theabstract node. e tagmay have attributes, whichmight
affect the TEX generated, and the rules can depend on the context of the tag.

e point here is that it is relatively easy to add support for new tags, or to change
the TEX that gets produced by a tag. In older versions of our products, these operations
took place in compiled code, but now they are controlled by text files that can be replaced
or modified without rewriting or recompiling C++ code. It is now feasible to support
different flavors of TEX for Math Reviews, or to support something like Context.

e next section addresses the question of how you can tailor the on-screen presen-
tation of a tag.

4 Some examples

4.1 Displaying ‘LATEX’ on screen
is is a brief discussion of how you can display a new tag, such as <latex/> on the
screen. is is done by using XBL. We’ll skip lightly over the details.

In a CSS file there is a line that tells Gecko that special rules apply to this tag:

latex {
-moz-binding: url(”resource://app/res/xbl/latex.xml#latex”);

}

In the file latex.xml, there is a section that says how to display the tag:

5

<xbl:content>
<sw:invis><xbl:children/></sw:invis>
<sw:latex2>L<sw:latexa>A</sw:latexa><sw:latext>T</sw:latext>
<sw:latexe>E</sw:latexe>X</sw:latex2>

</xbl:content>

Each letter in LATEX (almost) is in a separate tag, which allows us to change the style
for each letter. Here is the style rule for the ‘A’ (the tag latexa):

latexa {
font-size: smaller;
position: relative;
bottom: .15em;
left: -0.20em;

}

is rule shrinks the ‘A’ and moves it up and le. A style rule for the latex2 rule
changes the letter spacing to squeeze them together a bit. e final result on the screen
is:

Actually, what appears in the internal format is<latex>LaTeX</latex>. e
content of the tag (‘LaTeX’) is thrown away, except when the XML document is viewed by
some other browser, such as Internet Explorer, or even Firefox. Internet Explorer, when
it sees the -moz-binding statement in the CSS file will ignore it completely. Firefox
will understand it, but will be unable to find the latex.xml file, which is internal to
our program. As a result, they will ignore the latex tag and will simply display the
contents. us, the above displayed on Firefox will appear as:

Of course, the LATEXgenerated by this tag, nomatter what its content, will be\LaTeX.

4.2 Spaces
LATEX provides a wide choice of spaces, both horizontal and vertical. It is possible to make
them visible by selecting amenu item “Show Invisibles.”is is accomplished in the same
way as the above example, with special CSS rules to apply in the case when “Show Invis-
ibles” is on.

5 User interface enhancements
enext two items are not particularly related to the new architecture for ScientificWord;
rather, they can be looked on as one solution to the problemof converting a rich keyword-
value interface to a friendlier (to the novice) dialog-based interface. e result ismarginally

6

less powerful, but still allows the advanced user to get access to almost all the features of
the keyword-value interface.

e dialog shown is for selecting OpenType fonts. Before the user gets to this point,
he will be warned that if he proceeds, his document will have to be compiled with X ETEX
and therefore will not be completely portable. Here is the dialog:

is allows the user to pick the threemain fonts: themain (roman) font, the sans serif
font, and the monospaced font. He can also choose other fonts and give them names. We
have artlpara tag for right-to-le text, and this uses thertl font, for which the user
has chosen Narkisim.

ere are many font attributes, and many are not supported for many fonts, so we
have chosen only two for access by checkboxes: old-style numerals and swash italics.
Other attributes are accessible, but only by falling back on the keyword-value interface
and clicking on the “Go native” link.

7

e first line in the “Go native” box was provided automatically since the user had
clicked on “Old style nums” and “Swash”. euser added the next line to use theMinionPro-
Bold font as his bold Roman font rather than the default Semibold. is interface allows
almost complete access to the power of the Fontspec package but gives more casual users
the ability to choose basic fonts easily.

Another dialog interface to package options is the page layout dialog:

Here the user is adjusting the lemargin by pressing or holding the up or down arrow
key in the le margin width field.

8

6 Conclusion
ScientificWorkPlace and ScientificWord are designed tomake it easy for authors to write
a beautiful LATEX document with skills they already have. To keep its simplicity from
becoming a limitation, we have to provide ways for more advanced users to override the
default decisions that Scientific Word makes. is paper has covered a few of the new
technologies we are using to make a more modular system, with the interconnections
provided by stable and well-documented standards in a way that we, or a knowledgeable
user, can easily customize. We expect this new platform to allow us to be more nimble
than before in responding to the changing needs of our customers, and to serve as a solid
base for the next ten years of development.

9

1

LuaTEX going beta

by Hans Hagen & Taco Hoekwater

This is Chapter XI from ConTEXt, from MkII to MkIV, a document that describes our
explorations, experiments and decisions made while we develop LuaTEX.

introduction

We’re closing in on the day that we will go beta with LuaTEX (end of July 2007). By now we
have a rather good picture of its potential and to what extend LuaTEX will solve some of
our persistent problems. Let’s first summarize our reasons for and objectives with LuaTEX.

• The world has moved from 8 bits to 32 bits and more, and this is quite noticeable
in the arena of fonts. Although Type1 fonts could host more than 256 glyphs, the
associated technology was limited to 256. The advent of OpenType fonts will make
it easier to support multiple languages at the same time without the need to switch
fonts at awkward times.

• At the same time Unicode is replacing 8 bit based encoding vectors and code pages
(input regimes). The most popular and rather efficient utf8 encoding has become a
de factor standard in document encoding and interchange.

• Although we can do real neat tricks with TEX, given some nasty programming, we are
touching the limits of its possibilities. In order for it to survive we need to extend the
engine but not at the cost of base compatibility.

• Coding solutions in a macro language is fine, but sometimes you long to a more
procedural approach. Manipulating text, handling io, interfacing . . . the technology
moves on and we need to move along too.

Hence LuaTEX: a merge of the mainstream traditional TEX engines, stripped from broken
or incomplete features and opened up to an embedded Lua scripting engine.

We will describe the impact of this new engine by starting from its core components
reflected in the specific Lua interface libraries. Missing here is embedded support for
MetaPost, because it’s not yet there (apart from the fact that we use Lua to convert
MetaPost graphics into TEX). Also missing is the interfacing to the pdf backend, which is
also on the agenda for later. Special extensions, for instance those dealing with runtime
statistics are also not discussed. Since we use ConTEXt as testbed, we will refer to the
LuaTEX aware version of this macro package, MkIV, but most conclusions are rather
generic.

2

tex internals

In order to manipulate TEX’s data structures, we need access to all those registers. Already
early in the development, dimension and counters were accessible and when token and
node interfaces were implemented, those registers also were interfaced.

Those who read the previous chapters will have noticed that we hardly discussed this
option. The reason is that we didn’t yet needed that access much in order to implement
font support and list processing. After all, most of the data that we need to access and
manipulate is not in the registers at all. Information meant for Lua can be stored in Lua

data structures. In fact, the basic call

\directlua 0 {some lua code}

has shown to be a pretty good starting point and the fact that one can print back to the
TEX engine overcomes the need to store results in shared variables.

\def\valueofpi{\directlua0{tex.sprint(math.pi()}}

The number of such direct calls is not that large anyway. More often a call to Lua will be
initiated by a callback, i.e. a hook into the TEX machinery.

What will be the impact of access on ConTEXt MkIV? This is yet hard to tell. In a later stage
of the development, when parts of the TEX machinery will be rewritten in order to get rid
of the current global nature of many variables, we will gain more control and access to
TEX’s internals. Core functionality will be isolated, can be extended and/or overloaded
and at that moment access to internals is much more needed. But certainly that will be
beyond the current registers and variables.

callbacks

These are the spine of LuaTEX: here both worlds communicate with each other. A callback
is a place in the TEX kernel where some information is passed to Lua and some result is
returned that is then used along the road. The reference manual mentions them all and
we will not repeat them here. Interesting is that in MkIV most of them are used and for
tasks that are rather natural to their place and function.

callback.register("tex_wants_to_do_this",
function but_use_lua_to_do_it_instead(a,b,c)

-- do whatever you like with a, b and c
return a, b, c

end
)

3

The impact of callbacks on MkIV is big. It provides us a way to solve persistent problems
or reimplement existing solutions in more convenient ways. Because we tested realistic
functionality on real (moderately complex) documents using a pretty large macro pack-
age, we can safely conclude that callbacks are quite efficient. Stepwise Lua kicks in in
order to:

• influence the input medium so that it provides a sequence of utf characters
• manipulate the stream of characters that will be turned into a list of tokens
• convert the list of tokens into another list of tokens
• enhance the list of nodes that will be turned into a typeset paragraph
• tweak the mechanisms that come into play when lines are constructed
• finalize the result that will end up in the output medium

Interesting is that manipulating tokens is less useful than it may look at first sight. This has
to do with the fact that it’s (mostly) an expanded stream and at that time we’ve lost some
information or need to do quite some coding in order to analyze the information and act
upon it.

Will ConTEXt users see any of this? Chances are small that they will, although we will
provide hooks so that they can add special code themselves. Users activating a callback
has some danger, since it may overload already existing functionality. Chaining function-
ality in a callback also has drawbacks, if only that one may be confronted with already
processed results and/or may destroy this result in unpredictable ways. So, as with most
low level TEX features, ConTEXt users will work with more abstract interfaces.

in- and output

In MkIV we will no longer use the kpse library directly. Instead we use a reimplementation
in Lua that not only is more efficient, but also more powerful: it can read from zip files,
use protocols, be more clever in searching, reencodes the input streams when needed,
etc. The impact on MkIV is large. Most TEX code that deals with input reencoding has
gone away and is replaced by Lua code.

Although it is not directly related with reading from the input medium, in that stage we
also replaced verbatim handling code. Such (often messy) catcode related situations are
now handled more flexible, thanks to fast catcode table switching (a new LuaTEX feature)
and features like syntax highlighting can be made more neat.

Buffers, a quite old but frequently used feature of ConTEXt, are now kept in memory
instead of files. This speeds up runs. Auxiliary data, aka multi--pass information, will no
longer be stored in TEX files but in Lua files. In ConTEXt we have one such auxiliary file
and in MkII this file is selectively filtered, but in MkIV we will be less careful with memory
and load all that data once. Such speed improvements compensate the fact that LuaTEX

4

is somewhat slower than it’s ancestor pdfTEX. (Actually, the fact that LuaTEX is a bit slower
that pdfTEX is mostly due to the fact that it has Aleph code on board.)

Users often wonder why there are so many temporary files, but these mostly relate to
MetaPost support. These will go away once we have MetaPost as a library.

In a similar way support for xml will be enriched. We already have experimental loaders,
filters and other code, and integration is on the agenda. Since ConTEXt uses xml for some
sub systems, this may have some impact.

Other io related improvements involve debugging, error handling and logging. We can
pop up helpers and debug screens (MkIV can produce xhtml output and then launch
a browser). Users can choose more verbose logging of io and ask for log data to be
formatted in xml. These parts need some additional work, because in the end we will
also reimplement and extend TEX’s error handling.

Another consequence of this will be that we will be able to package TEX more conve-
niently. We can put all the files that are needed into a zip file so that we only need to ship
that zip file and a binary.

font readers

Handling OpenType involves more that just loading yet another font format. Of course
loading an OpenType file is a necessity but we need to do more. Such fonts come with
features. Features can involve replacing one representation of a character by another
one of combining sequences into other sequences and finaly resolving them to one or
more glyphs.

Given the numerous options we will have to spend quite some time on extending ConTEXt

with new features. Instead of defining more and more font instances (the traditional TEX

way of doing things) we will will provides feature switching. In the end this will make the
often confusing font mechanisms less complex for the user to understand. Instead of for
instance loading an extra font (set) that provides old style numerals, we will decouple
this completely from fonts and provide it as yet another property of a piece of text. The
good news is that much of the most important machinery is alresady in place (ligature
building and such). Here we also have to decide what we let TEX do and what we do by
processing node lists. For instance kerning and ligature building can either be done by
TEX or by Lua. Given the fact that TEX does some juggling with character kerning while
determining hyphenation points, we can as well disable TEX’s kerning and let Lua handle
it. Thereby TEX only has to deal with paragraph building. (After all, we need to leave TEX

some core functionality to deal with.)

Another everlasting burden on macro writers and users is dealing with character repre-
sentations missing from a font. Of course, since we use named glyphs in ConTEXt MkII

5

already much of this can be hidden, but in MkIV we can create virtual fonts on the fly and
keep thinking in terms of characters and glyphs instead of dealing with boxes and other
structures that don’t go well with for instance hyphenating words.

This brings us to hyphenation, historically bound to fonts in traditional TEX. This depen-
dency will go away. In MkII we already ship utf8 based patterns fore some time and
these can be conveniently used in MkIV too. We experimented with using hyphenated
word lists and this looks promising. You may expect more advanced ways of dealing with
words, hyphenation and paragraph building in the near future. When we presented the
first version of LuaTEX a few years ago, we only had the basic \directlua call available
and could do a bit of string manipulation on the input. A fancy demo was to color wrongly
spelled words. Now we can do that more robustly on the node lists.

Loading and preparing fonts for usage in LuaTEX or actually MkIV because this depends
on the macro package takes some runtime. For this reason we introduces caching into
MkIV: data that is used frequently is written to a cache and converted to Lua bytecode.
Loading the converted files is incredibly fast. Of course there is aprice to pay: disk space,
but that comes cheap these days. Also, it may as well be compensated by the fact that
we can kick out many redundant files from the core TEX distributions (metric files for
instance).

tokens handlers

Do we need to handle tokens? So far in experimental MkIV code we only used these
hooks to demonstrate what TEX does with your characters. For a while we also con-
structed token lists when we wanted to inject \pdfliteral code in node lists, but
that became obsolete when automatic string to token conversion was introduced in the
node conversion code. Now we inject literal whatsit nodes. It may be worth noticing
that playing with token lists gave us some good insight in bottlenecks because quite some
small table allocation and garbage collections goes on.

nodes and attributes

These are the most promissing new features. In itself, nodes are not new, nor are
attributes. In some sense when we use primitives like \hbox, \vskip, \lastpenalty
the result is a node, but we can only control and inspect their properties within hard
coded bounds. We cannot really look into boxes, and the last penalty may be obscured
by a whatsit (a mark, a special, a write, etc.). Attributes could be fakes with marks and
macro bases stacks of states. Native attributes are more powerful and each node can
cary a truckload of them.

With LuaTEX, out of a sudden we can look into TEX’s internals and manipulate them.
Although I don’t claim to be a real expert on these internals, even after over a decade

6

of TEX programming, I’m sometimes surprised what I found there. When we are playing
with these interfaces, we often run into situations where we need to add much print
statements to the Lua code in order to find out what TEX is returning. It all has to do with
the way TEX collects information and when it decides to act. In regular TEX much goes
unnoticed, but when one has for instance a callback that deals with page building there
are many places where this gets called and some of these places need special treatment.

Undoubtely this will have a huge impact on ConTEXt MkIV. Instead of parsing an input
stream, we can now manipulate node lists in order to achieve (slight) inter--character
spacing which is often needed in sectioning titles. The nice thing about this new approach
is that we no longer have interference from characters that need multiple tokens (input
characters) in order to be constructed, which complicates parsing (needed to split glyphs
in MkII).

Signaling where to letterspace is done with the mentioned attributes. There can be many
of them and they behave like fonts: they obey grouping, travel with the nodes and are
therefore insensitive for box and page splitting. They can be set at the TEX end but needs
to be handled at the Lua side. One may wonder what kind of macro packages would be
around when TEX has attributes right from its start.

In MkII letterspacing is handled by parsing the input and injecting skips. Another ap-
proach would be to use a font where each character has more kerns or space around it (a
virtual font can do that). But that would not only demand knowledge of what fonts need
that that treatment, but also many more fonts and generating them is no fun for users. In
pdfTEX there is a letterspace feature, where virtual fonts are generated on the fly, and with
such an approach one has to compensate for the first and last character in a line, in order
to get rid of the left- and rightmost added space (being part of the glyph). The solution
where nodes are manipulated does put that burden upon the user.

Another example of node processing is adding specific kerns around some punctuation
symbols, as is custom in French. You don’t want to know what it takes to do that
in traditional TEX, but if I mention the fact that colons become active characters you
can imagine the nightmare. Hours of hacking and maybe even days of dealing with
mechanisms that make these active colons workable in places where colons are used for
non text are now even more wasted time if you consider that it takes a few lines of code
in MkIV. Currently we let ConTEXt support both good old TEX (represented by pdfTEX),
X ETEX (a Unicode and OpenType aware variant) and LuaTEX by shared and dedicated MkII

and MkIV code.

Vertical spacing can be a pain. Okay, currently MkII has a rather sophisticated way to deal
with vertical spacing in ways that give documents a consistent look and feel, but every
now and then we run into border cases that cannot be dealt with simply because we
cannot look back in time. This is needed because TEX adds content to the main vertical
list and then it’s gone from our view. Take for instance section titles. We don’t want them

7

dangling at the bottom of a page. But at the same time we want itemized lists to look
well, i.e. keep items together in some situations. Graphics that follow a section title pose
similar problems. Adding penalties helps but these may come too late, or even worse,
they may obscure previous skips which then cannot be dealt with by successive skips.
To simplify the problem: take a skip of 12pt, followed by a penalty, followed by another
skip of 24pt. In ConTEXt this has to become a penalty followed by one skip of 24pt.

Dealing with this in the page builder is rather easy. Ok, due to the way TEX adds content
to the page stream, we need to collect, treat and flush, but currently this works all right.
In ConTEXt MkIV we will have skips with three additional properties: priority over other
skips, penalties, and a category (think of: ignore, force, replace, add).

When we experimented with this kind of things we quickly decided that additional
experiments with grid snapping also made sense. These mechanisms are among the
more complex ones on ConTEXt. A simple snap feature took a few lines of Lua code and
hooking it into MkIV was not that complex either. Eventually we will reimplement all
vertical spacing and grid snapping code of MkII in Lua. Because one of ConTEXt column
mechanism is grid aware, we may as well adath that and/or implement an additional
mechanism.

A side effect of being able to do this in LuaTEX is that the code taken from pdfTEX is cleaned
up: all (recently added) static kerning code is removed (inter--character spacing, pre-
and post character kerning, experimental code that can fix the heights and depths of
lines, etc.). The core engine will only deal with dynamic features, like hz and protruding.

So, the impact on MkIV of nodes and attributes is pretty big! Horizontal spacing isues,
vertical spacing, grid snapping are just a few of the things we will reimplement. Other
things are line numbering, multiple content streams with synchronization, both are
already present in MkII but we can do a better job in MkIV.

generic code

In the previous text MkIV was mentioned often, but some of the features are rather generic
in nature. So, how generic can interfaces be implemented? When the MkIV code has
matured, much of the Lua and glue--to--TEX code will be generic in nature. Eventually
ConTEXt will become a top layer on what we internally call MetaTEX, a collection of kernel
modules that one can use to build specialized macro packages. To some extent MetaTEX

can be for LuaTEX what plain is for TEX. But if and how fast this will be reality depends on
the amount of time that we (and other members of the ConTEXt development team) can
allocate to this.

Zapfing fonts 1

I Zapfing fonts

features

In previous chapters we’ve seen support for OpenType features creep into LuaTEX and
ConTEXt MkIV. However, it may not have been clear that so far we were just feeding
the traditional TEX machinery with the right data: ligatures and kerns. Here we will
show what so called features can do for you. Not much Lua code will be shown, if only
because relatively complex code is needed to handle this kind of trickery with acceptable
performance.

In order to support features in their full glory more is needed than TEX’s ligature and kern
mechanisms: we need to manipulate the node list. As a result, we have now a second
mechanism built into MkIV and users can choose what method they like most. The first
method, called base, is less powerful and less complete than the one named node.
Eventually ConTEXt will use the node method by default.

There are two variants of features: substitutions and positioning. Here we concentrate
on substitutions of which there are several. Positioning is for instance used for specialized
kerning as needed in for instance typesetting Arab.

One character representation can be replaced by one or more fixed alternatives or alter-
natives chosen from a list of alternatives (substitutions or alternates). Multiple characters
can be replaces by one character (substitutions, alternates or a ligature). The replace-
ments can depend on preceding and/or following glyphs in which case we say that the
replacement is driven by rules. Rules can deal with single glyphs, combinations of glyphs,
classes (defined in the font) of glyphs and/or ranges of glyphs.

Because the available documentation of OpenType is rather minimalistic and because
most fonts are relatively simple, you can imagine that figuring out how to implement
support for fonts with advanced features is not entirely trivial and involves some trial and
error. What also complicate things is that features can interfere. Yet another complicating
factor is that in the order of applying a rule may obscure a later rule. Such fonts don’t
ship with manuals and examples of correct output are not part of the buy.

We like testing LuaTEX’s open type support with Palatino Regular and Palatino Sans and
good old Type1 support with Optima Nova. So it makes sense to test advanced features
with Zapfino Pro. This font has many features, which happen to be implemented by
Adam Twardoch, a well known font expert and familiar with the TEX community. We had
the feeling that when LuaTEX can support Zapfino Pro, designed by Hermann Zapf and
enhanced by Adam, we have reached a crucial point in the development.

2 Zapfing fonts

The first thing that you will observe when using this font is that the files are larger than
normal, especially the cached versions in MkIV. This made me extend some of the
serialization code that we use for caching font data so that it could handle huge tables
better but at the cost of some speed. Once we could handle the data conveniently and
as a side effect look into the font data with an editor, it became clear that implementing
for the calt and clig features would take a bit of coding.

example

Before some details will be discussed, we will show two of the test texts that ConTEXt

users normally use when testing layouts or new features, a quote from E.R. Tufte and one
from Hermann Zapf. The TEX code shows how features are set in ConTEXt.

\definefontfeature
[zapfino]
[language=nld,script=latn,mode=node,
calt=yes,clig=yes,liga=yes,rlig=yes,tlig=yes]

\definefont
[Zapfino]
[ZapfinoExtraLTPro*zapfino at 24pt]
[line=40pt]

\Zapfino
\input tufte \par

Zapfing fonts 3

You don’t even have to look too closely in order to notice that characters are represented
by different glyphs, depending on the context in which they appear.

\definefontsynonym
[Zapfino]
[ZapfinoExtraLTPro]
[features=zapfino]
\definedfont
[Zapfino at 24pt]
\setupinterlinespace
[line=40pt]
\input zapf \par

4 Zapfing fonts

obeying rules

When we were testing node based feature support, the only way to check this was to
identify the rules that lead to certain glyphs. The more unique glyphs are good candidates
for this. For instance

• there is s special glyph representing
• in the input stream this is the character sequence c/o
• so there most be a rule that tells us that this sequence becomes that ligature

As said, in this case, the replacement glyph is supposed to be a ligature and indeed there
is such a ligature: c_slash_o. Of course, this replacement will only take place when
the sequence is surrounded by spaces.

However, when testing this, we were not looking at this rule but at the (randomly chosen)
rule that was meant to intercept the alternative h.2 followed by z.4. Interesting was that
this resolved to a ligature indeed, but the shape associated with this ligature was an h,
which is not right. Actually, a few more of such rules turned out to be wrong. It took a bit
of an effort to reach this conclusion because of the mentioned interferences of features
and rules. At that time, the rule entry (in raw LuaTEX table format) looks as follows:

[44] = {
["format"] = "coverage",
["rules"] = {

[1] = {
["coverage"] = {

["ncovers"] = {
[1] = "h.2",
[2] = "z.4",

}
},
["lookups"] = {

[1] = {
["lookup_tag"] = "L084",
["seq"] = 0,

}
}

}
}
["script_lang_index"] = 1,
["tag"] = "calt",
["type"] = "chainsub"

}

Zapfing fonts 5

Instead of reinventing the wheel, we used the FontForge libraries for reading the OpenType

font files. Therefore the LuaTEX table is resembling the internal FontForge data structures.
Currently we show the version 1 format.

Here ncovers means that wen the current character has shape (h.2) and the next one is
(z.4) (a sequence) then we need to apply the lookup internally tagged L084. Such a rule

can be more extensive, for instance instead of h.2 one can have a list of characters, and
there can be bcovers and fcovers as well, which means that preceding or following
character need to be taken into account.

When this rule matches, it resolves to a specification like:

[6] = {
["flags"] = 0,
["lig"] = {

["char"] = "h",
["components"] = "h.2 z.4",

},
["script_lang_index"] = 65535,
["tag"] = "L084",
["type"] = "ligature",

}

Here tag and script_lang_index are kind of special and are part of an private feature
system, i.e. they make up the cross reference between rules and glyphs. Watch how the
components don’t match the character, which is even more peculiar when we realize
that these are the initials of the author of the font. It took a couple of Skype sessions and
mails before we came to the conclusion that this was probably a glitch in the font. So,
what to do when a font has bugs like this? Should one disable the feature? That would be
a pitty because a font like Zapfino depends on it. On the other hand, given the number
of rules and given the fact that there are different rule sets for some languages, you can
imagine that making up the rules and checking them is not trivial.

We should realize that Zapfino is an extraordinary case, because it used the OpenType

features extensively. We can also be sure that the problems will be fixed once they
are known, if only because Adam Twardoch (who did the job) has exceptionally high
standards but it may take a while before the fix reached the user (who then has to update
his or her font). As said, it also takes some effort to run into the situation described here
so the likelihood of running into this rule is small. This also brings to our attention the fact
that fonts can now contain bugs and updating them makes sense but can break existing
documents. Since such fonts are copyrighted and not available on line, font vendors
need to find ways to communicate these fixes to their customers.

6 Zapfing fonts

Can we add some additional checks for problems like this? For a while I thought that it
was possible by assuming that ligatures have names like h.2_z.4 but alas, sequences of
glyphs are mapped onto ligatures using mappings like the following:

three fraction four.2 threequarters
three fraction four threequarters
d r d_r
e period e_period
f i fi
f l fl
f f i f_f_i
f t f_t

Some ligature have no _ in their names and there are also some inconsistencies, compare
the fl and f_f_i. Here font history is painfully reflected in inconsistency and no solution
can be found here.

So, in order to get rid of this problem, MkIV implements a method to ignore certain rules
but then, this only makes sense if one knows how the rules are tagged internally. So, in
practice this is no solution. However, you can imagine that at some point ConTEXt ships
with a database of fixes that are applied to known fonts with certain version numbers.

We also found out that the font table that we used was not good enough for our purpose
because the exact order in what rules have to be applies was not available. Then we
noticed that in the meantime FontForge had moved on to version 2 and after consulting
the author we quickly came to the conclusion that it made sense to use the updated
representation.

In version 2 the snippet with the previously mentioned rule looks as follows:

["ks_latn_l_66_c_19"]={
["format"]="coverage",
["rules"]={
[1]={
["coverage"]={
["current"]={
[1]="h.2",
[2]="z.4",

}
},
["lookups"]={
[1]={
["lookup"]="ls_l_84",
["seq"]=0,

Zapfing fonts 7

}
}

}
},
["type"]="chainsub",

},

The main rule table is now indexed by name which is possible because the order of rules
is specified somewhere else. The key ncovers has been replaced by current. As long
as LuaTEX is in beta stage, we have the freedom to change such labels as some of them
are rather FontForge specific.

This rule is mentioned in a feature specification table. Here specific features are associ-
ated with languages and scripts. This is just one of the entries concerning calt. You can
imagine that it took a while to figure out how best to deal with this, but eventually the
MkIV code could do the trick. The cryptic names are replacements for pointers in the
FontForge datastructure. In order to be able to use FontForge for font development and
analysis, the decision was made to stick closely to its idiom.

["gsub"]={
...
[67]={
["features"]={
[1]={
["scripts"]={
[1]={
["langs"]={
[1]="AFK ",
[2]="DEU ",
[3]="NLD ",
[4]="ROM ",
[5]="TRK ",
[6]="dflt",

},
["script"]="latn",

}
},
["tag"]="calt",

}
},
["name"]="ks_latn_l_66",
["subtables"]={
[1]={

8 Zapfing fonts

["name"]="ks_latn_l_66_c_0",
},
...
[20]={
["name"]="ks_latn_l_66_c_19",

},
...

},
["type"]="gsub_context_chain",

},

practice

The few snapshots of the font table probably don’t make much sense if you haven’t seen
the whole table. Well, it certainly helps to see the whole picture, but we’re talking of a
14 MB file (1.5 MB bytecode). When resolving ligatures, we can follow a straightforward
approach:

• walk over the nodelist and at each character (glyph node) call a function
• this function inspects the character and takes a look at the following ones
• when a ligature is identified, the sequence of nodes is replaced

Substitutions are not much different but there we look at just one character. However,
contextual substitutions (and ligatures) are more complex. Here we need to loop over a
list of rules (dependent on script and language) and this involves a sequence as well as
preceding and following characters. When we have a hit, the sequence will be replaced
by another one, determined by a lookup in the character table. Since this is a rather
time consuming operation, especially because many surrounding characters need to be
taken into account, you can imagine that we need a bit of trickery to get an acceptable
performance. Fortunately Lua is pretty fast when it comes down to manipulating strings
and tables, so we can prepare some handy datastructures in advance.

When testing the implementation of features one need to be aware of the fact that
some appearance are also implemented using the regular ligature mechanisms. Take the
following definitions:

\definefontfeature
[none]
[language=dflt,script=latn,mode=node,liga=no]

\definefontfeature
[calt]
[language=dflt,script=latn,mode=node,liga=no,calt=yes]

\definefontfeature

Zapfing fonts 9

[clig]
[language=dflt,script=latn,mode=node,liga=no,clig=yes]

\definefontfeature
[dlig]
[language=dflt,script=latn,mode=node,liga=no,dlig=yes]

\definefontfeature
[liga]
[language=dflt,script=latn,mode=node]

This gives:

none

calt

clig

dlig

liga

Here are Adam’s recommendations with regards to the dlig feature: The dlig feature
is supposed to by use only upon user’s discretion, usually on single runs, words or even
pairs. It makes little sense to enable dlig for an entire sentence or paragraph. That’s
how the OpenType specification envisions it.

When testing features it helps to use words that look similar so next we will show some
examples that used. When we look at these examples, we need to understand that
when a specific character representation is analyzed, the rules can take preceding and
following characters into account. The rules take characters as well as their shapes, or
more precisely: one of their shapes since Zapfino has many variants, into account. Since
different rules are used for languages (okay, this is limited to only a subset of languages
that use the latin script) not only shapes but also the way words are constructed are taken
into account. Designing te rules is definitely non trivial.

When testing the implementation we ran into cases where the initial t showed up wrong,
for instance in the the Dutch word troef. Because space can be part of the rules, we
need to handle the cases where words end and start and boxes are then kind of special.

troef troef troef troeftroef troef \par
\ruledhbox{troef troef troef troeftroef troef} \par
\ruledhbox{troef 123} \par
\ruledhbox{troef} \ruledhbox{troef } \ruledhbox{ troef} \ruledhbox
{ troef } \par

10 Zapfing fonts

Unfortunately, this does not work well with punctuation, which is less prominent in the
rules than space. In our favourite test quote of Tufte, we have lots of comma’s and there
it shows up:

review review review, review \par
itemize, review \par
itemize, review, \par

Of course we can decide to extend the rule base at runtime and this may well happen
when we experiment more with this font.

The next one was one of our first test lines, Watch the initial and the Zapfino ligature.

Welcome to Zapfino

For a while there was a bug in the rule handler that resulted in the variant of the y that
has a very large descender. Incidentally the word synthesize is also a good test case
for the the pattern which gets special treatment because there is a ligature available.

synopsize versus synthesize versus
synthase versus sympathy versus synonym

Zapfing fonts 11

Here are some examples that use the g, d and f in several places.

eggen groet ogen hagen \par
dieren druiven onder aard donder modder \par
fiets effe flater triest troef \par

Let’s see how well Hermann has taken care of the h’s representations. There are quite
some variants of the lowercase one:

h
h.2
h.3
h.4
h.5
h.init
h.sups
h.sc
orn.73

How about the uppercase variant, as used in his name:

M Mr Mr. H He Her Herm Herma Herman Hermann Z Za Zap Zapf \par
Mr. Hermann Zapf

Of course we have to test another famous name:

D Do Don Dona Donal Donald K Kn Knu Knut Knuth \par
Don Knuth Donald Knuth Donald E. Knuth DEK \par
Prof. Dr. Donald E. Knuth \par

12 Zapfing fonts

Unfortunately the Lua and TEX logo’s don’t come out that well:

L Lu Lua l lu lua t te tex TeX luatex luaTeX LuaTeX

This font has quite some ornaments and there is an ornm feature that can be applied.
We’re still not sure about its usage, but when one keys in text in lowercase, hermann
comes out as follows:

As said in the beginning, dirty implementation details will be kept away from the reader.
Also, you should not be surprised if the current code had some bugs or does some things
wrong. Also, if spacing looks a bit weird to you, keep in mind that we’re still in the middle
of sorting things out.

Hans Hagen & Taco Hoekwater voorjaar 2007 1

The MPlib project
MetaPost as a reusable component
As you probably know, MetaPost development has
restarted approximately two years ago. After a period
of investigating user demands, it has now become
obvious that MetaPost is showing its age.

The problems lie not so much in the actual drawing
language that is used, but in the 1980s metafont legacy
that is very noticable in the way the program interacts
with the user and in how it deals with the computing
environment in general.

Some of the big user-side problems that resurface
on a regular basis are:

The model used for the handling of external labels
is outdated.

Running a per-file preprocessor to create the
labels was already problematic before, but it is get-
ting worse now that both TEX and Troff are moving
away from their traditional output formats.
All number handling is based on fractions of a 32-
bit integer.

User input often hits one of the many bound-
aries that are a result of that. For instance, no
numbers can be any larger than 16384, and there
is a noticeable lack of precision in the intersection-
point calculations.
MetaPost cannot be used as a system-level service.

In fact, MetaPost cannot even be used as a
system-wide library, because the many global vari-
ables make it non-shareable.
Lack of 3-D support.

Even technical drawings that are nominally con-
sidered to be two-dimensional, like the ones in
highschool math and physics books, often need to
handle projections of 3-D objects to a plane.

Much of the needed development to fix these issues
can be done in the normal course of events, because
the needed extensions or changes to the program are
isolated to a small section of the source code (this is for
instance true for 3-D projection support), or because
the needed changes are so well understood that it is
trivial to make many changes (this is true for upgrading
the 32-bit internal calculus).

But the handling of labels and the lack of system
integration require massive changes to the source code

as well as to the build system, and therefore it was very
unlikely that this would ever get done without extra
incentives: a significant amount of time and effort that
has to be dedicated to those particular problems.

An estimate of the needed programming hours to
turn MetaPost into a modern, re-entrant system library
with a modern form of inter-process communication
was created:

Converting from the use of hunderds of global
variables into a data structure that is passed on
from one function to another

200

Adding a unified redirection layer for the input
and output, allowing files as well as buffers to
be used

100

Designing and implementing a new subsystem
for label typesetting

150

Adding an interface for configurable default error
responses

50

Total 500

If writing documentation is included in that esti-
mate, it makes for six months of full-time (40 hours a
week) programming, time that simply could be alloted
within anybody’s free hours in any way. It was clear
to us that, to get these tasks done within a reasonable
time frame, at least some of the work would have to
be done during office hours. And that requires money.

So, a funding proposal was written and at the Dante
2007 meeting Hans proposed this new project for
funding. Dante immediately stepped in for 50% of
the requested amount (6.000 euro) and within a week
other user groups joined in as well: TUGIndia (1000
euro), TUG (1500 euro), NTG (2000 euro) and CSTug
(1000 euro). Currently 500 euro is still missing, but we
are confident that this gap wil be bridged or overcome.

Work will start in the autumn of this year, and it is
our current estimate that the project will be complete
by the summer of 2008. The actual programming will
be carried out by Taco. Hans Hagen will lead the
project, and Bogusław Jackowski will be in charge of
quality control.

Hans Hagen & Taco Hoekwater

20% conference discount

George Grätzer, University of Manitoba, Winnipeg, MB, Canada

“Grätzer’s book is a solution.” - European Mathematical Society Newsletter

For close to two decades, Math into LaTeX has been the standard introduction and complete reference for
writing articles and books containing mathematical formulas. In this fourth edition, the reader is provided
with important updates on articles and books. An important new topic is discussed: transparencies
(computer projections).

Key features of More Math Into LaTeX, 4th Edition:
- Installation instructions for PC and Mac users
- An example-based, visual approach and a gentle introduction with the Short Course
- A detailed exposition of multiline math formulas with a Visual Guide
- A unified approach to TeX, LaTeX, and the AMS enhancements
- A quick introduction to creating presentations with computer projections

From earlier reviews of Math into LaTeX:

“There are several LaTeX guides, but this one wins hands down for the elegance of its approach and
breadth of coverage.” - Amazon.com Best of 2000, Editor’s choice

“A novice reader will be able to learn the most essential features of LaTeX sufficient to begin typesetting
papers within a few hours of time… An experienced TeX user, on the other hand, will find a systematic
and detailed discussion of LaTeX features.”
 - Report on Mathematical Physics

“A very helpful and useful tool for all scientists and engineers.”
 - Review of Astronomical Tools

2007 Approx. 652 pp., 44 illus.
Softcover

� Price: $ 49.95
� Discount price: $ 39.96
ISBN: 978-0-387-32289-6

Mars rover breadboard for ESA’s ExoMars mission 2013, built by

vH&S with industry team (the flowers won’t be there then).

vH&S
SPACE • RESEARCH • INDUSTRY

Happily using pdfTEX, MetaPost, & tools in our space projects.

Study reports · Technical notes · Letters · Advertisements · Shipping documents · Progress reports · PA/QA plans · Code listings ·
Quotations · Minutes of meetings · Posters · User manuals · Bills · Certificates of conformance · Acceptance data packages · Lists of

waivers · Red-tag item tracking records · Age-sensitive item records · Final presentations · Detailed design reports · Test matrices

· Conceptual design reports · Thermal test reports · Calibration data records · Requirements documents · Declared materials lists

· Functional diagrams · Viewgraphs and handouts · Open issues · Failure mode, effects, and criticality analyses · MGSE user

manuals · Physical properties reports · Test plans · Document

lists · Approvals to ship · Project plans · Bench checkout pro-

cedures · Qualification status lists · Non-conformance reports

· Top level drawings · Interface control documents · Connec-

tor mating records · Executive summaries · Experiment user

manuals · EGSE user manuals · Instrument configuration lists

· Software configuration status lists · Structural test reports ·
Schedules · Lists of non-conformance reports · Declared compo-

nents lists · EMC test reports · Patent applications · Lists of

engineering change requests · Contract change notices · Payload

test specification input · Transport, handling, and installation

procedures · Electrical interfaces verification reports · Declared

processes lists · Functional test reports · Vibration test reports

· Metrology reports. . .

von Hoerner & Sulger GmbH
Schlossplatz 8, D-68723 Schwetzingen
http://www.vh-s.de

MacKichan
S O F T W A R E , I N C .

LATEX

LATEX

LATEX

ISBN: 0-321-50892-0

The LATEX Graphics Companion has long been the most

comprehensive guide to making illustrations in LATEX

documents. This completely revised and expanded

edition includes the latest developments in LATEX

graphics. The authors describe the most widely used

packages and provide hundreds of solutions to the most

commonly encountered LATEX illustration problems.

For more information, visit:
www.awprofessional.com/title/0321508920

Michel Goossens, Frank Mittelbach,
Sebastian Rahtz, Denis Roegel, and Herbert Voss

Available at fine bookstores everywhere.

The LATEX
Graphics

Companion
Second Edition

commonly encountered
Thoroughly

Revised!

The LATEX
Graphics

Companion
Second Edition

Do you need on-site training for LATEX?

Contact Cheryl Ponchin at

cponchin@comcast.net

Training will be customized for your company needs.

Any level, from Beginning to Advanced.

Π Π

Carleton Production Centre
HUMANITIES TYPESETTING

Specialising in Linguistics
Since 1991

613-823-3630 • 15 Wiltshire Circle
Nepean, Ont., Canada • K2J 4K9

qqqqqqqqqqqqqqqqqqqqqqqqqqqq

New MathType6 for Windows
• Create equations by typing TeX and insert them into Microsoft Word,

PowerPoint, Wikipedia pages, and 1000's of other applications.

• Save equations as GIF images for blogs and wikis.

• Wikipedia and other wikis contain many equations that can be copied

into MathType, and then into other applications and document types.

Download a free, 30-day evaluation — www.dessci.com

MathType,“The best thing for writing equations since chalk!” and “How Science Communicates” are trademarks of Design Science. All other company and product names are trademarks and/or registered trademarks of their respective owners.

MathType™

The best thing for writing equations since chalk!™

Design Science, Inc. 140 Pine Avenue, Long Beach, CA 90802, USA Toll-free: 800-827-0685 or 562-432-2920, Fax: 562-432-2857, Email: sales@dessci.com

