
Prep
rin

t

There is no end: Omega and Zapfino
Of the making of books, there is no end.—The Prophet Muhammad

William F. Adams

ATLIS Graphics
75 Utley Drive, Suite, 110
Camp Hill, PA 17011
email: willadams@aol.com

Abstract

The future of type is OpenType (Adobe and Microsoft’s successor to Apple’s
“Royal” font technology which was licensed to Microsoft as TrueType), Unicode,
and other extensions of TrueType and the Type 1 font format such as ATSUI

(Apple Typographic System for Unicode Information).
Fortunately, for Unicode in TeX there is Omega which coupled with the other

strengths of TeX can be sufficient to take advantage of new technologies without
explicit support with the proper (or improper) techniques.

This paper will be an explanation and exploration of this, looking at a specific
font and format (the .dfont ATSUI-enabled version of Zapfino), arguably very
nearly a worst-case scenario, and how it can be dissassembled into individual
glyphs and seamlessly stitched back together as an Omega Virtual Font with a
matching Omega Translation Process to automatically insert ligatures and swash
and variant forms using ASCII markup in an otherwise ordinary .tex source file
which can then be used in a pre-press ready workflow.

Introduction

Mac OS X derives from Nextstep, gaining support for Mac Resource /Suitcase fonts and PC truetype fonts,
but losing support for Unix .pfa Next style .font bundles.

Mac OS X provides many of its system fonts in the new .dfont format, which while a straightforward
storing of a Mac-style TrueType font in the file proper (the datafork in Mac parlance) instead of the resource
fork as was done with Mac OS 9 and earlier is not equivalent to a PC format TrueType font stored in a
.ttf file. Although there are programs which can open and parse fonts stored in a .dfont now (Pfaedit1

is a notable example), my interpretation of Apple’s licensing agreement leads me to believe that any such
parsing or conversion would not be allowed by that license.

However, having purchased Mac OS X and its $10,000 worth of fonts, one cannot help but wish to use
them. Although Zapfino works well in “Cocoa” programs in Mac OS X such as TextEdit.app, its special
features such as ligatures are enabled by “Apple Advanced Typography” (AAT) which is unfortunately
not supported by the more traditional “Carbon” Macintosh applications in which class at this writing all
mainstream graphic design applications are.2

This is unfortunately quite limiting, either one must limit oneself to Cocoa applications, or in appli-
cations such as InDesign, make use of its Glyph palette to insert alternates and ligatures by repetitive
pointing-and-clicking. Since there is no TEX variant which can access system fonts on Mac OS X as of this
writing,3 one must develop a work-around which allows one to access arbitrary fonts from within TEX and
to simulate the capabilities of OpenType or Apple Advanced Typography. The large character sets of fonts
such as Apple Chancery or Zapfino make accessing characters in 8-bit blocks untenable, so Omega is an
obvious choice. This serves two purposes, first, it makes the typeface, Zapfino by Prof. Hermann Zapf

1 Renamed to FontForge, this wonderful program is available from http://pfaedit.sourceforge.net.
2 Since then, the opensource drawing program Cenon has been released for Mac OS X as well as OPENSTEP 4.2 and

GNUstep. It is available from http://www.cenon.info.
3 Jonathan Kew has since released XeTeX, a successor to his TeX/GX program for Apple’s QuickDraw/GX which runs on

Mac OS X making AAT fonts accessible. It is available from http://scripts.sil.org/xetex.

Preprints for the 24th Annual Meeting, Waikoloa, Hawai‘i 1001

http://pfaedit.sourceforge.net
http://www.cenon.info
http://scripts.sil.org/xetex

Prep
rin

t

William F. Adams

available for use in TEX by way of Omega, second, it provides an encoding scheme and mechanism to access
arbitrary ligatures and alternates.

This then begs the question of how does one install a font into a program (system) which doesn’t
have direct support for that font format or its capabilities? The solution is blindingly simple in retrospect,
consider what the system does support (PostScript by way of dvips and the \special mechanism) and where
that intersects with the capabilities of systems which can use the font to its fullest (Encapsulated PostScript
File graphics). The solution then is to load all of the characters of a font into a file so that they may then
each be output as individual .eps files, stitch said files together as a virtual font and then rely on dvips
to put everything back together. Zapfino however, has so many characters (1,417 in the version bundled
with Mac OS X 10.2 “Jaguar”4) that Omega, with its support for Unicode which provides for large character
sets is needed. Omega also affords the Omega Translation Process (OTP), which is far more efficient at
enabling long ligatures than the standard TEX or PostScript mechanisms. Fortunately, odvips supports the
aforementioned special mechanism as well.

Although font metric information is probably not protectable, there is no reasonable method at present
to access the data stored within the Zapfino font file which wouldn’t run afoul of Apple’s license which
forbids decompilation or other modification. Presumably a program using the nsText object could access
such data on a per character basis and write that out in a useful format, but I’m a graphic design, not
computer science major, so a copy of the .afm files provided by Volker Schaa (he had received a copy of the
original Linotype Zapfino CD-ROM from Prof. Zapf as a gift) was used as a beginning point. These files were
converted into standard .tfm files using afm2tfm and thence to .pl files using tftopl. The file for the font
Zapfino One served as the basis for zapfino.ovp the base font file. The utility ovp2ovf was then used to
create ovf and ofm files for Omega to use. The files are stored in ∼/texmf/fonts/ovp, ∼/texmf/fonts/ovf
and ∼/texmf/fonts/ofm respectively.

Before testing could begin in earnest, it was necessary to have the letterforms themselves accessible to
output. This was done by using Adobe InDesign to typeset an ‘Adobe Tagged Text’ file which enumerated
all of the characters in Zapfino. First, a single character was set in the font Zapfino in InDesign at 72 points
size with 96 points leading and then exported (File | Export. . . select ‘Adobe InDesign Tagged Text’ in the
‘Formats’ pop-up), yielding a file with the following line needed for our purposes:

<cTypeface:><cSize:><cLeading:><cFont:><cHang:><pHyphenationLadderLimit:><pHyphenation:>

<pHyphenationZone:><pTabRuler:><ParaStyle:><pHyphenationLadderLimit:0><pHyphenation:0>

<pHyphenationZone:0.000000><pTabRuler:

28.000000\,Left\,.\,0\,\;56.000000\,Left\,.\,0\,\;84.000000\,Left\,.\,0\,\;112.000000\,Left\,.

\,0\,\;140.000000\,Left\,.\,0\,\;168.000000\,Left\,.\,0\,\;196.000000\,Left\,.\,0\,

\;216.000000\,Left\,.\,0\,\;224.000000\,Left\,.\,0\,\;252.000000\,Left\,.\,0\,\;280.000000\,

Left\,.\,0\,\;308.000000\,Left\,.\,0\,\;336.000000\,Left\,.\,0\,\;>

<cTypeface:Regular><cSize:72.000000><cLeading:96.000000><cFont:Zapfino>

<cHang:Baseline>A<0xFFFD><cTypeface:><cSize:><cLeading:><cFont:><cHang:>

<cSpecialGlyph:><cTypeface:Regular><cSize:72.000000><cLeading:96.000000>

<cFont:Zapfino><cHang:Baseline><cNextXChars:Page>

(The exported character was “A” —there is some additional text above and below said line, but it need
merely be preserved in its entirety for later use.) After a little study and experimentation, it was found that
the placed character could be replaced with ‘<cSpecialGlyph:####>’ where #### was a number ranging
from 1 (the first character, “A” shown in the Unicode glyph palette in in Mac OS X) to 1417 (the last
character, the open Apple symbol), so an Excel file was created with 1,417 rows and three columns. The
first column was everything before the “A” endlessly repeated, with ‘<cSpecialGlyph:’ added. The second
column incremented the current line number starting from 1. The third column closed out the line, adding
in a ‘>’ to close the cSpecialGlyph directive. This was exported as text and replaced the line shown above
in the ‘Adobe InDesign Tagged Text’ file which was then saved.

Next, a template file was created, (File | New | Document. . . the ‘Facing Pages’ checkbox cleared, and
the one for ‘Master Text Frame’ was checked, the ‘Page Size’ set to ‘Letter’, ‘Orientation’ to ‘Landscape’,
‘Margins’ and ‘Columns’ were left at their default) as shown in Figure 1. After clicking “OK” and getting a

4 Since this writing, Linotype has released Zapfino Extra OpenType which provides even more characters, most notably
small caps, and Forte which provides five additional weights. The technique here should also work with this new version. More
information on Zapfino Extra is available from http://www.linotype.com/1897/linotypezapfinoextra-folder.html.

1002 Preprints for the 24th Annual Meeting, Waikoloa, Hawai‘i

~/texmf/fonts/ovp
~/texmf/fonts/ovf
~/texmf/fonts/ofm
http://www.linotype.com/1897/linotypezapfinoextra-folder.html

Prep
rin

t

There is no end: Omega and Zapfino

new document the “A-Master” page icon in the “Pages” palette (Window | Pages) is double-clicked to allow
editing of the master text frame. The master text frame is then selected and set to the coordinates X: 43p6,
Y: 31p6, W: 39p0 and H: 33p0 using the “Transform” palette (Window | Transform) as shown in Figure 2.
The main document is then returned to by double-clicking on Page 1 in the ‘Pages’ palette. Clicking with
the ‘Text’ tool in the text block, one then chooses File | Place. . . and navigates to the ‘Adobe InDesign
Tagged Text’ file created above and places it in the document so that it auto-flows to create 1,417 pages
with one character per page (click on the ‘Master Text Frame’ while holding down the <Shift> key). The
file is then saved as Zapfino-chars in a convenient location.

Figure 1: Adobe InDesign ‘New Document’ Dialog Figure 2: Adobe InDesign ‘Transform’ Palette

Once one has a document with all of the desired characters, it is then a matter of exporting each page
as a .eps. Fortunately, Adobe InDesign affords a menu option specifically for this, File | Export. . . which
includes direct support for the .eps format. Choosing “EPS” in the Formats pop-up menu takes one to a
dialogue box where one can select various settings. For the initial font the settings used were: ‘PostScript’:
Level 2, ‘Color’: Gray, ‘Preview’: None, ‘Embed Fonts’: Subset, ‘Data Format’: ASCII. InDesign is able to
subset fonts in such a way that individual subsetted fonts may be recombined seamlessly within a PostScript
file or .pdf without any of the encoding conflicts sometimes seen in fonts subsetted by Adobe Acrobat or
other programs. The ‘Data Format’ must be set to ASCII, since (o)dvips cannot handle a binary encoded
.eps file created in this fashion. The files are exported to ~/Library/texmf/fonts/eps/Apple/Zapfino
for later usage.

Then the .pl file for Zapfino-One was used as a basis for the initial zapfino.ovp Omega Virtual
Font Property List. Notable settings which were necessary included setting the font’s natural optical size
(DESIGNSIZE R 24). This technique is size-specific, and a different font must be made for each size which
one wishes to typeset at. See the “Peace” below for an example of a work-around of this limitation.

With the character outlines now available, it is possible to place them within the virtual font using the
special mechanism in odvips. Where each character has an entry like:

(MAP
(SETCHAR O 353)
)

This is replaced with something like:

(MAP
(PUSH)
(MOVELEFT R 1.129)
(MOVEDOWN R 1.724)
(SPECIAL PSfile=Zapfino-chars_277.eps

hscale=13.28 vscale=13.28)
(POP)
(MOVERIGHT R .543)
)

(the above is taken from the entry for “IJ”). First the current position is stored (PUSH), then an adjustment
is made for the offset of the character origin on the .eps file (MOVELEFT) and (MOVEDOWN), the character is

Preprints for the 24th Annual Meeting, Waikoloa, Hawai‘i 1003

Prep
rin

t

William F. Adams

placed (SPECIAL PSfile=Zapfino-chars_277.eps, scaled hscale and vscale, then the previous position
is restored (POP) and the position advanced to match the CHARWD (MOVERIGHT R .543) (where .543 is the
width of the “IJ” character).

With all of this done, one can begin testing the font so as to check the metrics of the characters. A
number of the characters in Zapfino were re-drawn between the original Type 1 format and the version
Apple bundled with Jaguar, so this step could not be skipped. How to space and test a new typeface design,
is well documented in several excellent references, most notably Stephen Moye’s Fontographer: Type by
Design and Walter Tracy’s Letters of Credit, both of which are highly recommended to the aspiring type
designer (or installer). In short, one sets various “standards” and other characters between them, adjusting
the most common and easily spaced characters (“n” and “o”) first, working toward those which are more
difficult and assigning predetermined sidebearings to similar characters (so “m” gets the same sidebearings
as “n”). Often when designing a new typeface, the initial attempt to set the sidebearings will result in a
determination that certain characters must be re-drawn. Naturally that was not at issue here, and with the
data gleaned from the .afm files, the metrics quickly reached a usable state. Much hastened in this case
since the left sidebearings are preserved in the consistent placing of the characters on the page in the source
file, so only the right sidebearings needed to be checked or adjusted.

With the base character set available, next the ligatures and alternates needed to be provided for.
Initially, Apple’s options for Zapfino were somewhat limited as is evidenced by TextEdit.app (see Figure 3).
WorldText.app, née GX/Write exposed all of the capabilities encoded within the font however, (see Figure 4)
and Apple has since expanded the nsText object to fully support Zapfino’s myriad of capabilities.5 Although
one may make various menu selections, or select characters from a Unicode “Character Palette” in Cocoa
apps, or the Glyph palette in Adobe InDesign and other Adobe graphics applications, these options are not
readily available in a text-stream composition-oriented tool like TeX.

Although OpenType and AAT are able to access characters by name, instead of directly with a number,
TeX and its variants (with the exception of the new XeTeX) require a number in an encoding vector for
any given character. Toward this end, an encoding scheme was worked up to allow arbitrary ligatures of up
to three characters in length, and to accomodate up to 32 variants for any given (unaccented character).
While that last number may seem overkill, the OpenType specification provides for up to 20 variations of
a character in its salt tag.6 Having 16 bits available with Omega, the available bits were split into three
sets, an initial set 6 bits long and two successive sets 5 bits long. The first set is long enough to encompass
basic Latin capitals and miniscule (lowercase) letters as well as the numerals 0 through 9, with two bits left
over. One of these was used as a “swash” bit, while the other remains available for use. The second and
third sets encompass lowercase letters.

With all characters assigned to slots it was then possible to create an Omega Translation Process (OTP)
to replace characters with their appropriate ligatures:

input: 1;

output: 2;

states: VERBATIM;

expressions:

‘0’‘0’ => "{\zapfinoexpert " @"035A"}";

‘1’‘s’‘t’ => "{\zapfinoexpert " @"0653"}";

...

‘C’‘i’‘e’ => "{\zapfinoexpert " @"3504"}";

‘C’‘o’‘.’ => "{\zapfinoexpert " @"35DA"}";

‘D’‘r’‘.’ => "{\zapfinoexpert " @"3A3A"}";

‘E’‘s’‘q’‘.’ => "{\zapfinoexpert " @"3E50"}";

...

‘g’‘g’ => "{\zapfinoexpert " @"ACDA"}";

...

‘t’‘t’ => "{\zapfinoexpert " @"E27A"}";

‘t’‘z’ => "{\zapfinoexpert " @"E33A"}";

‘u’‘z’ => "{\zapfinoexpert " @"E73A"}";

‘w’‘n’ => "{\zapfinoexpert " @"EDBA"}";

The Omega documentation7 explains OTPs in detail. Each line in an OTP to handle a particular case is
fairly straightforward. First the characters to be replaced are identified, (the => indicates a replacement is
being made) then a verbatim sequence of replacement commands is given within quotes, with a character’s

5 See “Panther’s Major Text Services Upgrade” http://www.codepoetry.net/archives/2003/10/24/panthers major text

services upgrade.php
6 See Tag: ’salt’ http://partners.adobe.com/asn/tech/type/opentype/appendices/features pt.jsp
7 Draft documentation for the Omega system (John Plaice and Yannis Haralambous, 7 March 1998 available from http:

//www.loria.fr/services/tex/moteurs/omega7mar1998.pdf,
cf. the Omega homepage at http://omega.cse.unsw.edu.au/omega/omega.jsp

1004 Preprints for the 24th Annual Meeting, Waikoloa, Hawai‘i

http://www.codepoetry.net/archives/2003/10/24/panthers_major_text_services_upgrade.php
http://www.codepoetry.net/archives/2003/10/24/panthers_major_text_services_upgrade.php
http://partners.adobe.com/asn/tech/type/opentype/appendices/features_pt.jsp
http://www.loria.fr/services/tex/moteurs/omega7mar1998.pdf
http://www.loria.fr/services/tex/moteurs/omega7mar1998.pdf
http://omega.cse.unsw.edu.au/omega/omega.jsp

Prep
rin

t

There is no end: Omega and Zapfino

Figure 3: TextEdit.app options for Zapfino in
Mac OS X 10.2 were rather minimalistic

Figure 4: WorldText.app, provided in Apple’s
Developer Tools Samples folder provides access to
all of Zapfino’s capabilities

encoding being provided in an “escaped” fashion outside of the quotes (hence, ^^^^035a is " @"035A").
This was saved in a file lat2zapf.otp and processed with the command

otp2ocp lat2zapf.otp lat2zapf

and the files moved to \localtexmf\omega\otp and \localtexmf\omega\ocp respectively.
It was then possible to test the font for the first time with a file like:

\font\zapfino=Zapfino at 24pt

\font\zapfinoexpert=Zapfino-expert at 24pt

\ocp\zapfOCP=lat2zapf

\ocplist\zapfOCPlist=%

\addbeforeocplist 1 \zapfOCP

\nullocplist

\nopagenumbers

\overfullrule 0pt

\zapfino\pushocplist \zapfOCPlist

00 1st 2nd 3rd 4th 5th

6th 7th 8th 9th 10th

Cie. Co. Dr. Esq. Ht. Jr. Ltd. McSullivan

Mlle. Mme. Mr. Mrs. Ms. No. 9 Sig. Sr.

Sra. Srta. St. Thorn

dicot draw presage fez type. affianced

effect fit fluent aft egg isthmus out

Zapf phone happy Arial art mesh spell

mass stay the matte spritz uzo own

\vfill\eject\bye

which shows all of the ligatures, as well as points out that perhaps using old-style figures as the default
wasn’t such a great idea, well at least not if one intends to use the “0th” ordinal ligature.

Once the basic sidebearings of the font were set and the ligatures “wired up,” the interplay of specific
letterpairs needs to be addressed— the graphical interface which Mac OS X provides for Zapfino provides
some hints on this, most notably, “Avoid d collisions.” The standard, forward slanting lowercase d in Zapfino
collides with the preceding character quite often, especially when preceded by a capital letter. While one
may be tempted to merely set the second style of d described in the font file, or Linotype’s Adobe Type 1
version of Zapfino as d.2, (Apple went this route when updating Zapfino for Mac OS X 10.3) this brings to
light an excellent chance to add some “chaos” to the typeface and pick different character versions. The
overall intent is to create a system which will make use of all possible characters in some circumstance, and
a collection of test files which will test all such circumstances.

So instead a listing of all possible digraphs (letterpairs) in the English language was created (drawing
from Webster’s Dictionary, The Complete Works of Shakespeare and The King James Bible — NeXT users
will recognize the choice of references as those bundled with NeXTstep or readily available as texts for

Preprints for the 24th Annual Meeting, Waikoloa, Hawai‘i 1005

Prep
rin

t

William F. Adams

NeXT’s Digital Librarian program), so that it was possible to determine that only Id, Nd, Ud, Wd, and Yd
needed to be considered for the capitals, (saving by not creating entries for Fd, Hd, Jd, Kd, Td, Vd, Xd, and
Zd which do not occur in the English language sample set used). The following lines in the OTP prevent
such collisions by replacing the normal d with the d.2 alternate.

‘I’‘d’ => "I{\zapfinoexpert " @"FC62"}";
‘N’‘d’ => "N{\zapfinoexpert " @"FC62"}";
‘U’‘d’ => "U{\zapfinoexpert " @"FC62"}";
‘W’‘d’ => "W{\zapfinoexpert " @"FC62"}";
‘Y’‘d’ => "Y{\zapfinoexpert " @"FC62"}";

With the obvious change taken care of, more subtle changes were then considered. Working from
the most frequently occurring letters to the rarer ones, a file for each letter, containing a word for each
letterpair extant in the sample texts was typeset in the font Zapfino and then examined carefully for awkward
interactions. When one was found, a test file was typeset with a basic macro to set the word with all possible
variations for a given letter:

\def\testa#1#2#3{{#1}{#2}{#3}\par% a
{#1}{\zapfinoexpert ^^^^fc02}{#3}\par%
{#1}{\zapfinoexpert ^^^^fc03}{#3}\par%
{#1}{\zapfinoexpert ^^^^fc04}{#3}\par%
{#1}{\zapfinoexpert ^^^^fc05}{#3}\par%
{#1}{\zapfinoexpert ^^^^fc06}{#3}\par}

allowing the selection of the best choice. The pair nf and a number of other pairs ending in f did not work
well because the f in Zapfino One does not connect to the character before it, so a number of lines similar
to the following were added to the OTP to handle such cases:

‘n’‘f’ => "n{\zapfinoexpert " @"FCA4"}";

Examining that file will show the reader which character pairs were felt to require adjustment. For the most
part, replacing one character or the other (occasionally both) with an alternate provided an æsthetically
pleasing combination, though a few uncommon pairs (gj, Kz) did not yield such.

Zapfino’s many lowercase ligatures required that the list of digraphs be extended to encompass the
trigraphs and tetragraphs which encompass these lettersets in addition to the digraphs mentioned above.
For each such letter or ligature there is a file, (e.g., di-.txt) which encompasses the extant lettersets
including said letter or ligature’s letters with the hyphen indicating the location of the letters being checked
for, so that file ranges from “Diagram” through “dizzy.” Since the di and dr ligatures do not reach as far
to the left, most such letterpairs were acceptable. A notable exception is “ldr” and “ldi” which were set to
make use of the alternate character d.4.

Zapfino is so narrow, however, with such a low x-height, and such large ascenders, that it is actually
possible for the ascender on a d to collide with a character two characters before it as in, “led.” Thus a set
of test files encompassing all characters with ascenders followed by any letter, followed by a “d” was created.
Unfortunately, it is also possible for a “d” at the beginning of a word to clash with the previous word if it
ends with a descender. Suggestions for dealing with this situation would be welcome.

Doubled characters require special attention if there is no ligature for them, requiring that one check
to determine which letter versions look attractive together.

After all such files were typeset and examined twice (once to establish the initial replacements, a second
time to check for interactions between the replacements and characters which follow or precede them) it was
possible to begin using Zapfino in Omega.

Swash markup and packaging

I’m planning on having the setup be as straightforward as possible —hopefully I can manage to create a
LaTeX package so that it’ll be just a matter of

\usepackage{omegazapfino}
...
\ZapfinoText{This would be typeset in Zapfino w/ contextual ligatures.}
\ZapfinoRebus{This would have ornaments/pictures for words like (-(duck)-) and (-(pen)-)}

1006 Preprints for the 24th Annual Meeting, Waikoloa, Hawai‘i

Prep
rin

t

There is no end: Omega and Zapfino

I still need to work up a markup scheme for accessing arbitrary alternates and swashes though.
I’ve pretty much decided on the paren hyphen paren scheme for marking rebus text. That way one

could turn it off for proofing by searching / replacing (-(w/ (~(, though I guess w/ a LaTeX package the
correct thing to do would be to have it honour the “draft” option in the documentclass if present and set
text then.

For swashes I was thinking something along the lines of:
----a (that’d be the first level)
+----a (second)
++----a (third)
+++----a (fourth)
\----a (an upward swash)
/----a (a downward swash)

and reversing everything for forms appropriate to the ends of words — does that sound okay?
That way I could run checks (moving the em- and en-dashes to the end of the OTP) to remove them

when they were added for letterforms which lacked such. Now that still leaves the matter of alternates in the
middle of words... perhaps the paren–hyphen–paren option would work for that? Hmm, co(-(g)-)ent—
is that too ugly?

co(--(g)--)ent
co(---(g)---)ent

That’s not so bad, is it? Then again, Zapfino has up to eight variations for some letters. . . so counting all
those hyphens might get kind of tedious.

Peace

The first such use was to set a holiday card modelled on Jeanyee Wong’s famous polyglot card for UNICEF.8

After this was initially set, it was announced on Usenet and various mailing lists related to TeX or typography.
Jef Tombeur and Apostolos Syropoulos were kind enough to provide translations for French and Greek
respectively (though since Zapfino doesn’t contain a full Greek alphabet the latter was provided typeset in
the Kerkis font), and a revised version was made available as a part of the TEX Showcase.9 In preparation
for this paper, a second announcement and request for translations was made, with many people providing
translations and commentary (I had neglected to mention the text, “Peace on earth, good will toward men”
as being the latter part of the verse Luke 2:14 from The King James Bible, so in addition to straightforward
transcriptions from various Bibles, I also received a number of personal interpretations) resulting in an
expansion of the card to three pages, almost a dozen languages (Greek has been temporarily ommitted) and
twenty names. Once typeset as a three page .pdf the first and last pages which were not filled completely
were cropped, then each page was exported as a .eps and imposed in Macromedia FreeHand where each
was scaled appropriately to fit nicely on a tabloid or A3 sheet which could then be folded twice to make a
gatefold card. This affords the illusion of having three different sizes of Zapfino available, despite only one
font at a fixed size (24 pt.) having been made.

And Pictures Too

In addition to alternates and ligatures, Zapfino also has a number of ornaments available. Oddly, although
Helvetica seems to have a “Rebus” option in Mac OS X 10.3 “Panther,” this does not seem to have been
implemented for Zapfino, reducing one to point-and-click to access them from a glyph palette of some sort.

8 Exhibit 214. UNICEF Christmas Card. Jeanyee Wong. 1962. Two Thousand Years of Calligraphy: A Three-part
exhibition organized by the Baltimore Museum of Art, the Peabody Institute Library and the Walters Art Gallery, June 6–July
18, 1965, A Comprehensive Catalog: Baltimore, Maryland, 1965.

9 http://www.tug.org/texshowcase

Preprints for the 24th Annual Meeting, Waikoloa, Hawai‘i 1007

http://www.tug.org/texshowcase

Prep
rin

t

William F. Adams

�
Figure 5: Zapfino ligature ornament

Peace on Ear�
Good Wi
 Toward Men

Figure 6: Peace on Earth card front page

1008 Preprints for the 24th Annual Meeting, Waikoloa, Hawai‘i

Prep
rin

t

There is no end: Omega and Zapfino

Paix sur terre
Bonne entente entre t+t� et t+s

F�ede auf Erden
und den Menschen ein Wohl3fa7en
In terra pax
hominibus bonæ voluntat�

Vrede op aarde
aan de mensen van goede wil

Frede op ierde
ûnder minsken fen it wolbehagen

F�d på jorden,
ti
 männ�korna eG goG behag

Rauha MaaAa
Ja Ihm�i7ä Hyvä Tahto
Pace in terra
agli uomini ? buona volontà

Paz en la tierra
a los hombr� de buena voluntad

Paz na terra
entre os homens de boa vontad5

Fred til menn�ker
med Guds velbehag!

Figure 7: Peace on Earth interior

Preprints for the 24th Annual Meeting, Waikoloa, Hawai‘i 1009

Prep
rin

t

William F. Adams

�� card was typ�et

using � Omega va�ant of Donald Knu�’s TEX sy&em

created by Yann� Haralamb+s and John Plaice

in � typeface.created by Prof. Hermann Za1

wi� David Sie3l and Gino Le5

It � mode7ed on Jean-Yee Wong’s

fam+s polyglot card for UNICEF.

�e French translation was provided by Jef Tombeur,

� tra?tional German, also used for Händel’s MeAiah, by David Ka&rup,

� Latin by DK , Bruno Vo�in and JohnECh�ney-Y+ng

� Dutch by Henk GianoGen, � Frysian by Gerben Wierda,

� Swe?H by FreIik Wa7enberg,

� Finn�h by Pekka Sorjonen,

� Italian by GiuseKe BiloGa,

� Span�h by Jor3 de Buen U.

� Portugu�e by Jor3 N. R. Vilhena,

and � Dan�h by Mogens Lemvig Hansen.

Translations for o�er languages w+ld be gratefu7y received.

Created by Wi7iam F. Adams for � TEX Showcas5

Figure 8: Peace on Earth card back page, greatly enlarged

1010 Preprints for the 24th Annual Meeting, Waikoloa, Hawai‘i

	Introduction
	Swash markup and packaging
	Peace
	And Pictures Too

