
— 1 —

Practical TEX 2005— program and information

Tuesday
June 14

courses 9 am–4:30 pm
Peter Flynn Practical TEX on the Web
Steve Peter Introduction to ConTEXt
Cheryl Ponchin Beginning and Intermediate LATEX

8–9 am registration
10:30 am break
12:30 pm lunch (until 1:30 pm)

3 pm break
5–7 pm registration & reception

Wednesday
June 15

8–9 am registration
9 am Karl Berry, TEX Users Group Welcome

9:15 am Nelson Beebe, University of Utah keynote address: The design of TEX and METAFONT:
A retrospective

10:15 am break
10:30 am Peter Flom, NDRI A true beginner looks at LATEX

11 am Anita Schwartz, University of Delaware The art of LATEX problem solving
11:45 am Peter Flynn, Silmaril Consultants LATEX on the web

12:30 pm lunch
1:30 pm David Ignat, IAEA Word to LATEX for a large, multi-author scientific paper

2 pm Steve Grathwohl, Duke University Press ConTEXt: Better living through setups
2:30 pm Ronald Fehd, CDC Indexing, MakeIndex, and SAS

3 pm break
3:15 pm Andrew Mertz & William Slough,

Eastern Illinois University
Beamer by example

4 pm q &a moderator: Lance Carnes
4:30 pm Birds of a Feather (see following page)

Thursday
June 16

9 am Eitan Gurari, Ohio State University MathML via TEX4ht and other tools
9:45 am John Burt, Brandeis University Typesetting critical editions of poetry with poemscol

10:30 am break
10:45 am Joseph Hogg, Los Angeles TEX takes a walk on the green side
11:30 am Klaus Höppner, DANTE e.V. & TUG Strategies for including graphics in LATEX documents

12:30 pm lunch
1:30 pm Tristan Miller, DFKI HA-Prosper: Producing beautiful slides with LATEX
2:15 pm David Allen, University of Kentucky Dynamic presentations using TEXpower and PSTricks

3 pm break
3:15 pm Jonathan Kew, SIL International An introduction to XeTEX

4 pm q &a moderator: Anita Schwartz
4:30 pm TUG members meeting
7:30 pm banquet (see following page)

Friday
June 17

9 am Tristan Miller Biblet: A portable BIBTEX bibliography style for
generating highly customizable XHTML

9:45 am Volker R.W. Schaa, DANTE e.V. XML workflows and the EuroTEX 2005 proceedings
10:30 am break
10:45 am Hans Hagen, Pragma ADE & NTG TEX and XML

11:30 am Steve Peter TEX font installation and usage

12:30 pm lunch
1:30 pm Mirko Janc, INFORMS LATEX and PitStop: Unusual but powerful alliance
2:15 pm Kaveh Bazargan, River Valley Tech. A graphical user interface for TEX

3 pm break
3:15 pm panel: Digital Publishing moderator: Steve Grathwohl; Kaveh Bazargan,

Nelson Beebe, Lance Carnes, Peter Flynn,
Hans Hagen, Mirko Janc.

≈ 4 pm end

— 2 —

Conference logistics

All conference events (except the banquet) take place at the Friday Center for Continuing Education.
A floor plan is included below.

Registration is in Hall R, Tuesday morning 8–9 am, Tuesday evening 5 pm–5:30 pm, and Wednes-
day morning 8:30 am–9 am. Please come and pick up your name tag, conference information, and
other goodies at one of these times if possible. Otherwise, see Robin Laakso.
The reception is in Magnolia Lounge, Tuesday evening 5 pm–7 pm. It’s an informal affair where
you’ll have a chance to nibble on Friday Center delicacies, get to know your fellow conference
attendees, ask questions about what’s coming up, brainstorm BOF ideas, and the like.
Lunches will be served in the Trillium dining room.
Breaks will be served in the Center Atrium. Food and beverages will also be available in the
Atrium from 7:30 am–11 am each morning, and 1:30 pm–4:30 pm each afternoon (beverages from
1:30–4:30 and snacks from 2 pm–4 pm). Break food and beverages in the Atrium are shared with
other conferences in the Friday Center, so feel free to help yourself to food and drink any time
during these hours, regardless of TUG’s scheduled breaks.
The display area is in the Center Atrium.
The main conference sessions are in Sunflower. After hours use: We can use Sunflower up to 7 pm,
but must vacate promptly at 7.
The classes on Tuesday will be held in Sunflower, Azalea A, and Azalea B.
General wireless Internet access is available throughout the Friday Center. Also, the Center has
four e-mail stations located in the Atrium.
Free parking is available on the south side of the Friday Center; the second entrance on Friday
Center Drive. No permit is required.
Higher Grounds, a gift and book store managed by UNC Student Stores in conjunction with the
Friday Center, is located just off the Atrium. Snacks, sundries, UNC gifts, and books are available.

DOGWOOD REDBUD

A A

A A

A

B B

B B

B

 SUNFLOWER

SYCAMORE

WINTERGREEN

BELLFLOWER MOUNTAIN LAUREL

WINDFLOWER

MAGNOLIA
LOUNGE

WILLOW
LOUNGE

WINTERGREEN

TRILLIUM
(DINING)

 SW

 SE

 NW

CENTER ATRIUM SOUTH ATRIUM NORTH ATRIUM

GRUMMAN
AUDITORIUM

Hall South

Hall R

Hall D

A B

Hall North

 NE

 AZALEA

— 3 —

Birds of a Feather

At this meeting we are reviving a long-standing tradition at TUG conferences, “Birds of a Feather”
(BOF) meetings. The idea is to gather in informal groups to discuss a particular issue or topic(s).
This will start Wednesday after the q&a.
One BOF session will be for Mac OS X and TEX, and will take place in the main conference meeting
room (Sunflower), since some remote participants are expected and thus there is extra setup to deal
with. Other sessions can take place in the lounge, office, outside, or anywhere desirable.
Other BOF suggestions so far include ‘TEX in educational environments’ and ‘Resources for TEX
beginners’. A list of these and any other suggestions we receive will be posted at the registration
table along with signup sheets. If you would like to suggest additional topics at the conference, please
let Robin Laakso know and we’ll add them to the list.

TUG members meeting

After the q& a on Thursday, we will hold a meeting for TUG members, and anyone else interested.
Several TUG board members will be present at the conference: Karl Berry, Steve Grathwohl, Klaus
Höppner, Steve Peter, and Cheryl Ponchin, as well as TUG’s executive director, Robin Laakso. We
will report on TUG’s current status and future outlook.
More importantly, we invite discussion of any TUG-related business at this time: ideas for outreach to
additional communities, ideas for additional initiatives TUG might undertake, existing projects which
TUG might support, or anything else. Hope to see you there.

Banquet

At 7:30 pm Thursday, the conference will hold a banquet at the Aurora restaurant (1350 Raleigh
Road, Chapel Hill, phone number 919-942-2400), one of the top Italian restaurants in the Triangle
area for many years.
Directions: If you’re driving from the Marriott, take a left on Hwy 54, go two stop lights, and take a
left at Friendly Forest Golf Course Road. Aurora Restaurant is a free standing building at the corner
of Hwy 54 and Friendly Forest Golf Course Road.
If you’re walking from the Marriott, take the pathway adjacent to Hwy 54, on the same side of 54 as
the Marriott, until you reach the restaurant. It’s about 10-minute walk.
Coming from other locations, please check Aurora’s on-line directions at
http://www.aurorarestaurant.com/directions.html.

— 4 —

Dynamic presentations using TEXpower
and PSTricks
David Allen

A typical presentation consists of displaying a se-
quence of slides (a metaphor for screens) in a pre-
determined order. This presentation is to demon-
strate methods for preparing dynamic presentations
in the following contexts:
1. Rather than showing a set of slides in pre-de-

termined order, one may select the slides and
their order after the presentation starts. This
would likely be in response to questions from
the audience.

2. If the discussion gets deep, it may be useful to
visit a website or execute an external program.

3. A math professor might want to show a multi-
line derivation one line at a time to focus atten-
tion to the current point of discussion.

4. An engineer might want to show a graphic de-
picting the assembling of a device one part at a
time.

The LATEX packages used in this endeavor and their
URLs follow.

Items 1. and 2. are implemented using the hy-
perref package, http://www.ctan.org/tex-archive/
macros/latex/contrib/hyperref. Extensive facili-
ties for navigation within a document, between doc-
uments, and with the web are provided by hyperref.

Items 3. and 4. are implemented using the
TEXpower package, http://texpower.sourceforge.
net. TEXpower is a LATEX package providing incre-
mental display and special effects similar to those
found in Microsoft PowerPoint.

Item 4. assumes there are graphics to be dis-
played, and my examples use graphics produced by
the PSTricks package, http://www.pstricks.de.
PSTricks provides a user friendly front end to the
PostScript programming language. It is a generic
TEX package providing expansive computational
graphics capabilities. These are the most novel
examples.

A graphical user interface for TEX
Kaveh Bazargan

I will demonstrate a graphical user interface that
simplifies using global controls in TEX. The soft-
ware development environment I have used is Rev-
olution (http://www.runrev.com). This is a suc-
cessor to Apple’s HyperCard, which is now unfor-
tunately obsolete. One advantage of Revolution is
that it is cross-platform, while HyperCard only ran
on the Apple Macintosh.

The general idea is that the parameters and
variables in TEX (or LATEX or any other variant)
are presented as interactive controls such as scroll-
bars and pop-up buttons in Revolution. As the user
makes changes using these controls, the results are

immediately written to a configuration file and the
main TEX file is run and preview updated.

I will give a brief introduction to Revolution,
and then demonstrate the TEX GUI.

Typesetting critical editions of poetry with
poemscol
John Burt
The poemscol package provides macros for LATEX
for setting collections of poetry. It provides the
structures required to produce a critical edition
of the kind specified by the Modern Language
Association’s Committee on Scholarly Editions,
providing line numbering, endnote sections for
textual variants (both substantives and accidentals),
emendations, and explanatory notes, and an index
of titles and first lines. It provides running headers
of the form “Emendations to pp. xx–yy” for the
endnotes sections. It provides strutures for different
kinds of poetic text. It automatically marks every
occasion where a stanza break falls on a page break.
Aids for preparing parallel-text (as for instance
editions with facing-page translations) editions are
under development.

Indexing, MakeIndex, and SAS
Ronald Fehd
LATEX provides the fancyvrb package which is very
useful in preparing a document which provides an
overview of use of artificial-language programs used
in data processing. This paper examines the theory
of indexing and the LATEX MakeIndex package. The
author provides two SAS programs which read all
programs in a project directory and then write an
index of intra- and inter-program references.

LATEX on the Web
Peter Flynn
Between TEX users, distributing documents via the
Internet (whether Web, email, or other facility) is
easy because the types of files are known (.tex,
.dvi) and they are easily reprocessed. Making qual-
ity typesetting available to others as single files is
equally easy using PostScript or PDF. However,
PostScript files can be huge, and they require a
reader which few outside the graphic arts field have
installed (although it’s simple to do and freely avail-
able). PDF browsers are also readily available, as is
HTML-style hyperlinking, but there are other lim-
itations, including file sizes (especially with graph-
ics), the lack of inward addressability, and the non-
free nature of the file format itself.

Large or complex documents benefit from being
split into chunks for serving, and from being served
fast and light with HTML or XML and CSS. But
HTML editors are notorious for their lack of struc-
ture and typographic or document-management fa-
cilities, and LATEX users are accustomed to having

— 5 —

these features at their disposal. Conversion from
LATEX to HTML is widely available, but unavoid-
ably suffers from inherent the mismatch between
feature-sets, and from the inherent reprogramma-
bility of LATEX. Authoring in XML, with conversion
both to HTML/CSS and to PDF-via-LATEX is one
option, but has its own drawbacks in the learning
curve and the early quality of some software.

This paper presents some techniques for use in
authoring in LATEX which can be used to minimize
the conversion problems where a document is to be
converted to HTML for serving to the Web, while
continuing to produce the quality of typesetting for
PS/PDF that we have become accustomed to.

MathML via TEX4ht and other tools
Eitan Gurari
The support provided by graphical browsers for the
HTML standard was a major ingredient in devel-
oping the Internet into a popular media for archiv-
ing and distributing general content. Two recent
advancements suggest a similar bright future for
mathematical content expressed through the Math-
ML standard. The Mozilla Firefox browser, re-
leased last November, now offers native support for
MathML. Also, the MathPlayer version 2 plug-in for
MS Internet Explorer, which is easily installed and
was released a year ago, is now capable of serving
general MathML files.

This presentation will provide insight into how
TEX4ht produces MathML from LATEX sources, and
will consider issues involved in creating MathML

with TEX4ht and other tools.

TEX takes a walk on the green side
Joseph Hogg
This talk describes three projects using various fea-
tures of LATEX and TEX for non-profit and commer-
cial projects.
1. TEX takes a walk on the green side
The booklet “A Botanical Tour of the Los Ange-
les Zoo and Botanical Gardens” was typeset using
LATEX. This 36-page booklet plus cover, describes a
self-guided tour of the LA Zoo’s botanical collection
and includes a bloom calendar. The text was writ-
ten by two docents, one of whom also created the
botanical illustrations.

Using the report document class, the booklet
features a table of contents with an integrated ta-
ble of figures, drop caps, text-wrapping around fig-
ures, chapter quotes and an index with botanical
and common names cross-referenced. Several pack-
ages were used to accomplish these effects: picins,
quotchap, makeindx, lettrine and caption being the
major ones.

This project was done on a Windows 2000 sys-
tem using the WinEdt editor. The discussion will

include sources of information, system platform,
experimentation and workarounds for problems
that came up during the project. The booklet was
printed by a commercial printer from a pdf file gen-
erated by LATEX.
2. TEX Meets a Maned Wolf at the

Los Angeles Zoo
LATEX was used to create a leaflet describing the
maned wolf, a handsome canid from South Amer-
ica. This leaflet was given to Zoo patrons during
Wolf Awareness Week in October 2004. The leaflet
document type was downloaded from TUG and the
leaflet was created on a Macintosh system, then
printed on a OKI C5150n color LED printer.
3. TEX Surveys the Local Real Estate Market
LATEX was used to typeset a 20-page booklet
describing residential real estate values for the
year 2004 in the Los Feliz, Silver Lake and Echo
Park neighborhoods of Los Angeles. The article
document class was used for text and photos and
the PSTricks package was used for tables and
box-and-whisker plots. A pdf file was generated and
the booklet’s pages imposed using Acro Software’s
CutePDF. The booklet was printed on an OKI

C5150n color LED printer. PSTricks is an enjoyable
package to use and I also typeset a card that can is
used to send a short note to a client and present a
business card.

LATEX and PitStop: Unusual but
powerful alliance
Mirko Janc
I will share some experiences in preparing art files
for inclusion in LATEX in the production cycle in
our Institute. We publish 11 scholarly journals in
Operations Research using LATEX with a special
font setup (presented at the TUG 2003 conference
in Hawaii).

Powerful LATEX math typesetting capabilities
coupled with PitStop, a commercial Acrobat plug-
in, enable easy relabeling of figures with most com-
plex math. Unlike other methods, exact positioning
and scaling is a breeze. This same method we also
use for updating colored covers where color issues
are at stake, so the underlying PDF template can be
properly preserved.

Some other related “tricks” to get clean art
ready for proper inclusion in LATEX will also be
discussed.

An introduction to XeTEX
Jonathan Kew
Professor Donald Knuth’s TEX is a typesetting sys-
tem with a wide user community, and a range of
supporting packages and enhancements available for
many types of publishing work. However, it dates
back to the 1980s and is tightly wedded to 8-bit

— 6 —

character data and custom-encoded fonts, making
it difficult to configure TEX for many complex-script
languages.

This paper will introduce XeTEX, a system that
extends TEX with direct support for modern Open-
Type and AAT fonts and the Unicode character
set. This makes it possible to typeset almost any
script and language with the same power and flex-
ibility as TEX has traditionally offered in the 8-bit,
simple-script world of European languages. XeTEX
(currently available on Mac OS X, but possibly on
other platforms in the future) integrates the TEX
formatting engine with technologies from both the
host operating system (Apple Type Services, Core-
Graphics, QuickTime) and auxiliary libraries (ICU,
TECkit), to provide a simple yet powerful system
for multilingual and multiscript typesetting.

The most significant extensions XeTEX provides
are its native support for the Unicode character set,
replacing the myriad of 8-bit encodings tradition-
ally used in TEX with a single standard for both
input text encoding and font access; and an ex-
tended \font command that provides direct access
by name to all the fonts installed in the user’s com-
puter. It also provides a mechanism to access many
of the advanced layout features of modern fonts.

Additional features that will also be discussed
include built-in support for a wide variety of graphic
file formats, and an extended line-breaking mecha-
nism that supports Asian languages such as Chinese
or Thai that are written without word spaces.

Finally, we look briefly at some user-contributed
packages that help integrate the features of
XeTEX with the established LATEX system. Will
Robertson’s fontspec.sty provides a simple,
consistent user interface in LATEX for loading both
AAT and OpenType fonts, and accessing virtually
all of the advanced features these fonts offer; Ross
Moore’s xunicode.sty is a package that allows
legacy LATEX documents to be typeset using native
OS X fonts without converting the input text
entirely to Unicode, by supporting traditional TEX
input conventions for accents and other ‘special’
(non-ASCII) characters.

Beamer by example
Andrew Mertz and William Slough

There are a variety of LATEX classes which can be
used to produce “overhead slides” for presentations.
One of these, beamer, provides flexible and powerful
environments which can be used to create slides and
PDF-based documents suitable for presentations.
Although the class is extensively documented,
first-time users may prefer learning about this class
using a collection of graduated examples. The
examples presented here cover a wide spectrum of
use, from the simplest static slides to those with
dynamic effects.

Biblet: A portable BIBTEX bibliography style
for generating highly customizable XHTML
Tristan Miller

We present Biblet, a set of BIBTEX bibliography
styles (bst) which generate XHTML from BIBTEX
databases. Unlike other BIBTEX to XML/HTML

converters, Biblet is written entirely in the native
BIBTEX style language and therefore works “out of
the box” on any system that runs BIBTEX. Features
include automatic conversion of LATEX symbols to
HTMLor Unicode entities; customizable graphical
hyperlinks to PostScript, PDF, DVI, LATEX, and
HTML resources; support for nonstandard but
common fields such as day, isbn, and abstract;
hideable text blocks; and output of the original
BIBTEX entry for sharing citations. Biblet’s highly
structured XHTML output means that bibliography
appearance to can be drastically altered simply by
specifying a Cascading Style Sheet (CSS), or easily
postprocessed with third-party XML, HTML, or
text processing tools. We compare and contrast
Biblet to other common converters, describe basic
usage of Biblet, give examples of how to produce
custom-formatted bibliographies, and provide a
basic overview of Biblet internals for those wishing
to modify the style file itself.

TEX font installation and usage
Steve Peter

This talk is designed to be a near-comprehensive
roadmap of installing and using fonts with TEX
(with the exception of bitmapped fonts). We will
start with the basics of TEX font handling (TFMs,
etc.), along with a discussion of the major font
technologies (PostScript, TrueType, and OpenType)
and virtual fonts. Then we move to NFSS and
fontinst, followed by TEXfont and ConTEXt
typescripts. Time permitting, we will configure
an expert font, complete with fi, fl, ff, ffi, and ffl
ligatures, suitable for professional typesetting.

The art of LATEX problem solving
Anita Schwartz

Have you ever been stuck using LATEX? What does
this really mean to you? “Stuck” may be anything
from solving some esoteric error message while
LATEXing to trying to find a solution to a specific,
not so obvious, formatting issue. There is a huge
TEX community with a plethora of information
where many problems have been solved by a
highly knowledgeable group of volunteers. This
presentation will attempt to lead you in the right
direction to make the most out of the resources
available during your LATEX adventure. I will
attempt to explain common errors and provide
solutions with LATEX and other variations such as
pdfLATEX.

— 7 — beebe.pdf

Keynote Address: The design of TEX and METAFONT: A retrospective

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233

Salt Lake City, UT 84112-0090
USA
WWW URL: http://www.math.utah.edu/~beebe

Telephone: +1 801 581 5254
FAX: +1 801 581 4148
Internet: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org

Abstract

This article looks back at the design of TEX and METAFONT, and analyzes how they
were affected by architectures, operating systems, programming languages, and
resource limits of the computing world at the time of their creation by a remark-
able programmer and human being, Donald E. Knuth. This paper is dedicated
to him, with deep gratitude for the continued inspiration and learning that I’ve
received from his software, his writing, and our occasional personal encounters
over the last 25+ years.

1 Contents

1 Contents 1001

2 Introduction 1001

3 Computers and people 1002

4 The DEC PDP-10 1002

5 Resource limits 1004

6 Choosing a programming language 1005

7 Switching programming languages 1006

8 Switching languages, again 1008

9 Wrapping up 1009

2 Introduction

More than a quarter century has elapsed since Don-
ald Knuth took his sabbatical year of 1977–78 at
Stanford University to tackle the problem of improv-
ing the quality of computer-based typesetting of his
famous book series, The Art of Computer Program-
ming [26, 27, 28, 29, 30, 31].

When the first volume appeared in 1968, most
typesetting was still done by the hot lead process,
and expert human typographers with decades of ex-
perience handled line breaking, page breaking, and
page layout. By the mid 1970s, proprietary compu-

ter-based analog typesetters had entered the market,
and in the view of Donald Knuth, had seriously de-
graded quality. When the first page proofs of part of
the second edition of Volume 2 arrived, he was so
disappointed that he wrote [35, p. 5]:

I didn’t know what to do. I had spent 15 years
writing those books, but if they were going to
look awful I didn’t want to write any more.
How could I be proud of such a product?

A few months later, he learned of some new devices
that used digital techniques to create letter images,
and the close connection to the 0’s and 1’s of com-
puter science led him to think about how he himself
might design systems to place characters on a page,
and draw the individual characters as a matrix of
black and white dots. The sabbatical-year project
produced working prototypes of two software pro-
grams for that purpose that were described in the
book TEX and METAFONT: New Directions in Typeset-
ting [32].

The rest is of course history .. . the digital type-
setting project lasted about a decade, produced sev-
eral more books [36, 37, 38, 39, 40, 34, 35], Ph.D.
degrees for Frank Liang [44], John Hobby [16],
Michael Plass [48], Lynn Ruggles [49], and Ignacio
Zaballa Salelles [57], and had spinoffs in the com-
mercial document-formatting industry and in the
first laser printers. TEX, and the LATEX system built
on top of it [9, 10, 11, 42, 43, 45], became the stan-
dard markup and typesetting system in the computer

TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting 1001

— 8 — beebe.pdf

Nelson H. F. Beebe

science, mathematics, and physics communities, and
has been widely used in many other fields.

The purpose of this article is to look back at TEX
and METAFONT and examine how they were shaped
by the attitudes and computing environment of the
time.

3 Computers and people

Now that computers are widely available through-
out much of the developed world, and when embed-
ded systems are counted, are more numerous than
humans, it is probably difficult for younger people to
imagine a world without computers readily at hand.
Yet not so long ago, this was not the case.

Until the desktop computers of the 1980s, a
‘computer’ usually meant a large expensive box, at
least as long as an automobile, residing in a climate-
controlled machine room with raised flooring, and
fed electricity by power cables as thick as your wrist.
At many universities, these systems had their own
buildings, or at least entire building floors, called
Computer Centers. The hardware usually cost hun-
dreds of thousands to millions of dollars (where ac-
cording to the US Consumer Price Index, a million
dollars in 1968 is roughly the same as five million in
2000), and required a full-time professional staff of
managers, systems programmers, and operators.

At most computer installations, the costs were
passed on to users in the form of charges, such as
the US$1500 per hour for CPU time and US$0.50 to
open a file that I suffered with as a graduate student
earning US$1.50 per hour. At my site, there weren’t
any disk storage charges, because it was forbidden
to store files on disk: they had to reside either on
punched cards, or magnetic tape. A couple of years
ago, I came across a bill from the early 1980s for a
200MB disk: the device was the size of a washing
machine, and cost US$15,000. Today, that amount
of storage is about fifty thousand times cheaper.

I have cited these costs to show that, until desk-
top computers became widespread, it was people
who worked for computers, not the reverse. When
a two-hour run cost as much as your year’s salary,
you had to spend a lot of time thinking about your
programs, instead of just running them to see if they
worked.

When I came to Utah in 1978, the College of Sci-
ence that I joined had just purchased a DECSYSTEM

20, a medium-sized timesharing computer based on
the DEC PDP-10 processor, and the Department of
Computer Science bought one too on the same or-
der. Ours ultimately cost about $750,000, and sup-
plied many of the computing needs of the College
of Science for more than a dozen years, often sup-

porting 50–100 interactive login sessions. Its total
physical memory was just over three megabytes, but
we called it three quarters of a megaword. Although
computer time was still a chargeable item, we man-
aged to recover costs by getting each Department
to contribute a yearly portion of the expenses as a
flat fee, so most individual users didn’t worry about
computer charges.

4 The DEC PDP-10

The PDP-10 ran at least eight or nine different op-
erating systems:

• BBN TENEX,

• Compuserve 4S72,

• DEC TOPS-10 (sometimes jokingly called
BOTTOMS-10 by TOPS-20 users),

• DEC TOPS-20 (a modified TENEX affection-
ately called TWENEX by some users),

• MIT ITS (Incompatible Time Sharing System),

• Stanford WAITS (Westcoast Alternative to
ITS),

• Tymshare AUGUST, a modified TOPS-10, and

• Tymshare TYMCOM-X, and on the smaller
DECSYSTEM 20/20 model, TYMCOM-XX.

Although the operating systems differed, it was usu-
ally possible to move source-code programs among
them with few if any changes, and some binaries
compiled on TOPS-10 in 1975 still run just fine on
TOPS-20 today.

Our machines at Utah both used TOPS-20, but
Donald Knuth’s work on TEX and METAFONT was
done on WAITS. That system was a research op-
erating system, with frequent changes that resulted
in bugs, causing many crashes and much downtime.
Don told me earlier this year that the O/S was aptly
named, since he wrote much of the draft of the
TEXbook while he was waiting in the Computer Cen-
ter for WAITS to come back up.

For about a decade, PDP-10 computers formed
the backbone of the Arpanet, which began with
just five nodes, at the University of California cam-
puses at Berkeley, Los Angeles, and Santa Barbara,
plus SRI (Stanford Research Institute) and Utah,
and later evolved into the world-wide Internet [13,
p. 48]. PDP-10 machines were adopted by major
computer science departments, and hosted or con-
tributed to many important developments, including
at least these:

• Bob Metcalf’s Ethernet [Xerox PARC, Intel, and
DEC];

• Vinton Cerf’s and Robert Kahn’s development of
the Transmission Control Protocol and the Inter-
net Protocol (TCP/IP);

1002 TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting

— 9 — beebe.pdf

Keynote Address: The design of TEX and METAFONT: A retrospective

• the MACSYMA [MIT], REDUCE [Utah] and
MAPLE [Waterloo] symbolic-algebra languages;

• several dialects of LISP, including MACLISP

[MIT] and PSL (Portable Standard Lisp)
[Utah];

• the systems-programming language BLISS

[DEC and Carnegie-Mellon University (CMU)];

• the shell-scripting language PCL (Program-
mable Command Language) [DEC and CMU];

• the SAIL (Stanford Artificial Intelligence Lan-
guage) Algol-family programming language in
which TEX and METAFONT were first imple-
mented;

• an excellent compiler for PASCAL [Hamburg/
Rutgers/Sandia], the language in which TEX
and METAFONT were next implemented;

• Brian Reid’s document-formatting and biblio-
graphic system, SCRIBE [CMU], that heavily in-
fluenced the design of LATEX and BIBTEX;

• Richard Stallman’s extensible and customizable
text editor, EMACS [MIT];

• Jay Lepreau’s port, PCC20 [Utah], of Steve
Johnson’s Portable C Compiler, PCC [Bell Labs];

• Kok Chen’s and Ken Harrenstien’s KCC20 native
C compiler [SRI];

• Ralph Gorin’s SPELL, one of the first sophisti-
cated interactive spelling checkers [Stanford];

• Mark Crispin’s mail client, MM, still one of the
best around [Stanford];

• Frank da Cruz’s transport- and platform-inde-
pendent interactive and scriptable communica-
tions software KERMIT [Columbia].

The PDP-10 and its operating systems is men-
tioned in about 170 of the now nearly 4000 Request

for Comments (RFC) documents that informally de-
fine the protocols and behavior of the Internet.

The PDP-10 had compilers for ALGOL 60, BA-
SIC, BLISS, C, COBOL 74, FORTH, FORTRAN 66, FOR-
TRAN 77, LISP, PASCAL, SAIL, and SNOBOL, plus
three assemblers called MACRO, MIDAS, and FAIL
(fast one-pass assembler). A lot of programming
was done in assembly code, including most of the
operating systems. Indeed, the abstract of the FAIL
manual [56] notes:

Although FAIL uses substantially more main
memory than MACRO-10, it assembles typ-
ical programs about five times faster. FAIL
assembles the entire Stanford time-sharing
operating system (two million characters) in
less than four minutes of CPU time on a KA-
10 processor.

The KA-10 was one of the early PDP-10 models, so
such performance was quite impressive. The high-
level BLISS language might have been preferred for
such work, but it was comparatively expensive to li-
cense, and few sites had it. Anyway, Ralph Gorin’s
book on assembly language and systems program-
ming [12] provided an outstanding resource for pro-
grammers.

Document formatting was provided by RUNOFF

which shared a common ancestor ROFF with UNIX

TROFF. Later, SCRIBE became available, but required
an annual license fee, and ran only on the PDP-10,
so it too had limited availability, and I refused to use
it for that reason.

The PDP-10 had 36-bit words, with five seven-
bit ASCII characters stored in each word. This left
one bit, the low-order one, left over. It was normally
zero, but when set to one, indicated that the preced-
ing five characters were a line number that some edi-
tors used, and compilers could report in diagnostics.

Although seven-bit ASCII was the usual PDP-
10 text representation, the hardware instruction set
had general byte pointer instructions that could ref-
erence bytes of any size from 1 to 36 bits, and the
KCC20 compiler provided easy access to them in C.
For interfacing with 32-bit UNIX and VMS systems,
8-bit bytes were used, with four bits wasted at the
low end of each word.

The PDP-10 filesystems recorded the byte count
and byte size for every file, so in principle, text-
processing software at least could have handled both
7-bit and 8-bit byte sizes. Indeed, Mark Crispin pro-
posed that Unicode could be nicely handled in 9-bit
UTF-9 and 18-bit UTF-18 encodings [6]. Alas, most
PDP-10 systems were retired before this generality
could be widely implemented.

One convenient feature of the PDP-10 operat-
ing systems was the ability to define directory search
paths as values of logical names. For example, in
TOPS-20, the command

@define TEXINPUTS: TEXINPUTS:,

ps:<jones.tex.inputs>

would add a user’s personal subdirectory to the end
of the system-wide definition of the search path. A
subsequent reference to texinputs:myfile.tex was
all that it took to locate the file in the search path.

Since the directory search was handled inside
the operating system, it was trivially available to all
programs, no matter what language they were writ-
ten in, unlike other operating systems where such
searching has to be implemented by each program
that requires it.

TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting 1003

— 10 — beebe.pdf

Nelson H. F. Beebe

In addition, a manager could readily change the
system-wide definition by a single privileged com-
mand:

$^Edefine TEXINPUTS: ps:<tex.inputs>,

ps:<tex.new>

The new definition was immediately available to all
users, including those who had included the name
TEXINPUTS: in their own search paths.

The great convenience of this facility encour-
aged those who ported TEX and METAFONT to pro-
vide something similar. Today, users of the TEXLive
distributions are familiar with the kpathsea library,
which provides an even more powerful mechanism
for path searching.

The original PDP-10 instruction set had an 18-
bit address field, giving a memory space of 218

=

262 144 words, or about 1.25MB. Later designs ex-
tended the address space to 30 bits (5GB), but only
23 were ever implemented in DEC hardware, giving
a practical limit of 40MB. That was still much more
than most customers could afford in 1984 when the
PDP-10 product line was terminated, and VAX VMS
became the DEC flagship architecture and operating
system.

DEC had products based on the KA-10, KI-10,
and KL-10 versions of the PDP-10 processor. Later,
other companies produced competing systems that
ran one or more of the existing operating systems:
Foonly (F1, F2, and F3), Systems Concepts (SC-
40), Xerox PARC (MAXC) [8], and XKL Systems
Corporation (TD-1, TOED-1, and TOAD-1). Some
of these implemented up to 27 address bits (128MW,
or 576MB). XKL even made a major porting effort of
GNU and UNIX utilities, and got the X11 WINDOW

SYSTEM running. Ultimately, none enjoyed contin-
ued commercial success.

The PDP-10 lives on among hobbyists, thanks
to Ken Harrenstien’s superb KLH10 simulator [15]
with full 30-bit addressing, and the vendor’s gen-
erosity in providing the operating system, compil-
ers, and utilities for noncommercial use. On a fast
modern desktop workstation, TOPS-20 runs several
times faster than the original hardware ever did. It
has been fun revisiting this environment that was
such a leap forward from its predecessors, and I now
generally have a TOPS-20 window or two open on
my UNIX workstation.

5 Resource limits

The limited memory of the PDP-10 forced many
economizations in the design of TEX and META-
FONT. Although PASCAL has new() and dispose()

functions for allocating and freeing memory, imple-

Table 1: TEX table sizes on TOPS-20 in 1984 and
in TEXLive on UNIX in 2004, as reported in the
trip test.

Table 1984 2004 Growth

strings 1819 98002 53.9
string characters 9287 1221682 131.5
memory words 3001 1500022 499.8

control sequences 2100 60000 28.6
font info words 20000 1000000 50.0
fonts 75 2000 26.7

hyphen. exceptions 307 1000 3.3
stack positions (i) 200 5000 25.0
stack positions (n) 40 500 12.5

stack positions (p) 60 6000 100.0
stack positions (b) 500b 200000 400.0
stack positions (s) 600 40000 66.7

mentations were allowed to ignore the latter, so Don
could not use them. Instead, all memory manage-
ment is handled by the programs themselves, and
sizes of internal tables are fixed at compile time.
Table 1 shows the sizes of those tables, then and
now. To further economize, many data structures
were stored compactly with redundant information
elided. Thus, for example, while TEX fonts could
have up to 256 characters, there are only 16 differ-
ent widths and heights allowed, and one of those 16
is required to be zero. Also, although hundreds of
text fonts are allowed, only 16 mathematical fonts
are supported.

Instead of supporting scores of accented char-
acters, TEX expected to compose them dynamically
from an accent positioned on a base letter. That in
turn meant that words with accented letters could
not be hyphenated automatically, an intolerable sit-
uation for many European languages. That restric-
tion was finally removed in 1990 with the release of
TEX version 3.0 and METAFONT version 2.0, when
those programs were extended to fully support 8-bit
characters.

The TEX DVI and METAFONT GF and TFM files
were designed to be compact binary files that re-
quire special software tools to process. In contrast,
in UNIX TROFF, these files are generally simple, al-
beit compact and cryptic, text files to facilitate use of
filters in data-processing pipelines. Indeed, the UNIX

approach of small-is-beautiful encouraged the use of
separate tools for typesetting mathematics, pictures,
and tables, instead of the monolithic approach that
TEX uses.

1004 TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting

— 11 — beebe.pdf

Keynote Address: The design of TEX and METAFONT: A retrospective

Finally, error diagnostics and error recovery re-
flect past technology and resource limits. Robin Fair-
bairns remarked in a May 2005 TEXhax list posting:

Any TEX-based errors are pretty ghastly. This
is characteristic of the age in which it was
developed, and of the fiendishly feeble ma-
chines we had to play with back then. But
they’re a lot better than the first Algol 68 com-
piler I played with, which had a single syntax
diagnostic “not a program!.”

6 Choosing a programming language

When Donald Knuth began to think about the prob-
lem of designing and implementing a typesetting
system and a companion font-creation system, he
was faced with the need to select a programming
language for the task. We have already summarized
what was available on the PDP-10.

COBOL was too horrid to contemplate: imag-
ine writing code in a language with hundreds of re-
served words, and such verbose syntax that a simple
arithmetic operation and assignment c = a*b be-
comes

MULTIPLY A BY B GIVING C.

More complex expressions require every subexpres-
sion to be given a name and assigned to.

FORTRAN 66 was the only language with any
hope of portability to many other systems. How-
ever, its lack of recursion, absence of data structures
beyond arrays, lack of memory management, defi-
cient control structures, record-oriented I/O, primi-
tive Hollerith strings (12HHELLO, WORLD) that could
be used only in DATA statements and as routine ar-
guments, and its restriction to six-character variable
names, made it distinctly unsuitable. Even so, it was
later used elsewhere to implement a translation of
METAFONT from SAIL for use on Harris computers
[46].

PASCAL only became available on the PDP-10 in
mid-1982, more than five years after Don began his
sabbatical year. We shall return to it in Section 7.

BLISS was an expensive commercial product
that was available only on DEC PDP-10, PDP-11,
and later, VAX, computers. Although DEC later de-
fined COMMON BLISS to be used across those very
different 16-bit, 32-bit, and 36-bit systems, in prac-
tice, BLISS exposed too much of the underlying ar-
chitecture.

LISP would have been attractive and powerful,
and in retrospect, would have made TEX and META-
FONT far more extensible than they are, because
any part of them could have been rewritten in LISP,
and they would not have needed to have macro lan-

guages at all! Unfortunately, until the advent of
COMMON LISP in 1984 [51, 52], and for some time
after, the LISP world suffered from having about
as many dialects as there were LISP programmers,
making it impossible to select a language flavor that
worked everywhere.

The only viable approach would have been to
write a LISP compiler or interpreter, bringing one
back to the original problem of picking a language
to write that in. The one point in favor of this ap-
proach is that LISP is syntactically the simplest of all
programming languages, so workable interpreters
could be done in a few hundred lines, instead of the
10K to 100K lines that were needed for languages
like PASCAL and FORTRAN. However, we have to re-
member that computer use cost a lot of money, and
comparatively few people outside computer science
departments had the luxury of ignoring the substan-
tial run-time costs of interpreted languages. A type-
setting system is expected to receive a lot of use, and
efficiency and fast turnaround are essential.

PDP-10 assembly language had been used for
many other programming projects, including the
operating system and the three assemblers them-
selves. However, Don had worked on several differ-
ent machines since 1959, and he knew that all com-
puters eventually get replaced, often by new ones
with radically-different instruction sets, operating
systems, and programming languages. Thus, this
avenue was not attractive either, since he had to be
able to use his typesetting program for all of his fu-
ture writing.

There was only one viable choice left, and that
was SAIL. Although it had an offspring, MAINSAIL
(Machine Independent SAIL), that might have been
more attractive, that language was not born until
1979, two years after the sabbatical-year project.
Figure 1 shows a small sample of SAIL, taken from
the METAFONT source file mfntrp.sai. A detailed
description of the language can be found in the first
good book on computer graphics [47, Appendix IV].

The underscore operator in source-code assign-
ments printed as a left arrow in the Stanford variant
of ASCII (MIT also had its own flavor), but PDP-
10 sites elsewhere just saw it as a plain underscore.
However, its use as the assignment operator meant
that it could not be used as an extended letter to
make compound names more readable, as is now
common in many other programming languages.

The left arrow in the Stanford variant of ASCII
was not the only unusual character. Table 2 shows
graphics assigned to the normally glyphless control
characters. The existence of seven Greek letters in
the control-character region may explain why TEX’s

TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting 1005

— 12 — beebe.pdf

Nelson H. F. Beebe

internal saf string array fname[0:2]

file name, extension, and directory;

internal simp procedure scanfilename

sets up fname[0:2];

begin integer j,c;

fname[0]_fname[1]_fname[2]_null;

j_0;

while curbuf and chartype[curbuf]=space

do c_lop(curbuf);

loop begin c_chartype[curbuf];

case c of begin

[pnt] j_1;

[lbrack] j_2;

[comma][wxy][rbrack][digit][letter];

else done

end;

fname[j]_fname[j]&lop(curbuf);

end;

end;

Figure 1: Filename scanning in SAIL, formatted
as originally written by DEK, except for the
movement of comments to separate lines. The
square-bracketed names are symbolic integer
constants declared earlier in the program.

default text-font layout packs Greek letters into the
first ten slots.

Besides being a high-level language with good
control and data structures, and recursion, SAIL had
the advantage of having a good debugger. Symbolic
debuggers are common today, sometimes even with
fancy GUI front ends that some users like. In 1977,
window systems had not yet made it out of Xerox
PARC, and the few interactive debuggers available
generally worked at the level of assembly language.
Figure 2 shows a small example of a session with the
low-level Dynamic Debugging Tool/Technique, DDT,
that otherwise would have been necessary for de-
bugging most programming languages other than
SAIL (COBOL and FORTRAN, and later, PASCAL, also
had source-level debuggers).

SAIL had a useful conditional compilation fea-
ture, allowing Don to write

changed to ^P^Q when debugging METAFONT;

define DEBUGONLY = ^Pcomment^Q

...

used when an array is believed to require

no bounds checks;

define saf = ^Psafe^Q

Table 2: The Stanford extended ASCII character
set. Character numbers are given in octal.

000 · 001 ↓ 002 α 003 β

004 ∧ 005 ¬ 006 ǫ 007 π

010 λ 011 γ 012 δ 013
∫

014 ± 015 ⊕ 016 ∞ 017 ∇
020 ⊂ 021 ⊃ 022 ∩ 023 ∪
024 ∀ 025 ∃ 026 ⊗ 027 ↔
030 _ 031 → 032 ~ 033 6=
034 ≤ 035 ≥ 036 ≡ 037 ∨

040–135 as in standard ASCII
136 ↑ 137 ←

140–174 as in standard ASCII
175 ˚ 176 } 177 ^

used when SAIL can save time implementing

this procedure;

define simp = ^Psimple^Q

when debugging, belief turns to disbelief;

DEBUGONLY redefine saf = ^P^Q

and simplicity dies too;

DEBUGONLY redefine simp = ^P^Q

A scan of the SAIL source code for METAFONT

shows several other instances of how the imple-
mentation language and host computer affected the
METAFONT code:

• 19 buffers for disk files;

• no more than 150 characters/line;

• initialization handled by a separate program
module to save memory;

• bias of 4 added to case statement index to avoid
illegal negative cases;

• character raster allocated dynamically to avoid
128K-word limit on core image;

• magic TENEX-dependent code to allocate buf-
fers between the METAFONT code and the SAIL
disk buffers because there is all this nifty core

sitting up in the high seg .. . that is just begging
to be used.

7 Switching programming languages

Donald Knuth initially expected that TEX and META-
FONT would be useful primarily for his own books
and papers, but other people were soon clamoring
for access, and many of them did not have a PDP-
10 computer to run them on. The American Mathe-
matical Society was interested in evaluating TEX and
METAFONT for its own extensive mathematical pub-
lishing activities, but could make an investment in

1006 TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting

— 13 — beebe.pdf

Keynote Address: The design of TEX and METAFONT: A retrospective

@type hello.pas

program hello(output);

begin

writeln(’Hello, world’)

end.

@load hello

PASCAL: HELLO

LINK: Loading

@ddt

DDT

hello$b hello+62$b $$g

$1B>>HELLO/ TDZA 0 $x

0/ 0 0/ 0

<SKIP>

HELLO+2/ MOVEM %CCLSW $x

0/ 0 %CCLSW/ 0

HELLO+3/ MOVE %CCLDN $x

0/ 0 %CCLDN/ 0

HELLO+4/ JUMPN HELLO+11 $x

0/ 0 HELLO+11

HELLO+5/ MOVEM 1,%RNNAM $p

OUTPUT : tty:

$2B>>HELLO+62/ JRST .MAIN. $$x

Hello, world

Figure 2: Debugging a PASCAL program with DDT.
The at signs are the default TOPS-20 command
prompt. The dollar signs are the echo of ASCII
ESCAPE characters. Breakpoints ($b) are set at
the start of the program, and just before the call
to the runtime-library file initialization. Execution
starts with $$g, proceeds after a breakpoint with
$p, steps single instructions with $x, and steps
until the next breakpoint with $$x.

switching from the proprietary commercial typeset-
ting system that it was then using only if it could
be satisfied with the quality, the longevity, and the
portability of these new programs.

It was clear that keeping TEX and METAFONT

tied to SAIL and the PDP-10 would ultimately doom
them to oblivion. It was also evident that some of
the program-design decisions, and the early versions
of the Computer Modern fonts, did not produce the
high quality that their author demanded of himself.
Researchers at Xerox PARC has translated the SAIL
version of TEX to MESA, but that language ran only
on Xerox workstations, which, while full of great

ideas, were too expensive ever to make any signif-
icant market penetration.

A new implementation language was needed,
and in December 1981, when the first source files for
the new systems appeared, there was really only one
possibility: PASCAL. However, before you rise to this
provocation, why not C instead?

UNIX had reached the 16-bit DEC PDP-11 com-
puters at the University of California at Berkeley in
1974. By 1977, researchers there had it running
on the new 32-bit DEC VAX, but the C language
in which much of UNIX is written was only rarely
available outside that environment. Jay Lepreau’s
PCC20 work was going on in the Computer Science
Department at Utah in 1981–82, but it wasn’t until
about 1983 that TOPS-20 users elsewhere began to
get access to it. Our filesystem archives show my first
major porting attempt of a C-language UNIX utility
to TOPS-20 on 11 February 1983.

PASCAL, a descendant of ALGOL 60 [3], was de-
signed by Niklaus Wirth at ETH in Zürich, Switzer-
land in 1968. His first attempt at writing a compiler
for it in FORTRAN failed, but he then wrote a com-
piler for a subset of PASCAL in that subset, translated
it by hand to assembly language, and was finally able
to bootstrap the compiler by getting it to compile
itself [54].

Urs Ammann later wrote a completely new com-
piler [1] in PASCAL for the PASCAL language on the
60-bit CDC 6600 at ETH, a machine class that
I myself worked extensively and productively on for
nearly four years. That compiler generated ma-
chine code directly, instead of producing assembly
code, and ran faster, and produced faster code, than
Wirth’s original bootstrap compiler. Ammann’s com-
piler was the parent of several others, including the
one on the PDP-10.

PASCAL is a small language intended for teach-
ing introductory computer programming skills, and
Wirth’s book with the great title Algorithms + Data

Structures = Programs [55] is a classic that is still
worthy of being studied. However, PASCAL is not a
language that is suitable for larger projects. A frag-
ment of the language is shown in Figure 3, and much
more can be seen in the source code for TEX [37] and
METAFONT [39].

PASCAL’s flaws are well chronicled in a famous
article by Brian Kernighan [17, 18]. That paper was
written to record that pain that PASCAL caused in
implementing a moderate-sized, but influential, pro-
gramming project [19]. He wrote in his article:

PASCAL, at least in its standard form, is just
plain not suitable for serious programming.
. . . This botch [confusion of size and type]

TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting 1007

— 14 — beebe.pdf

Nelson H. F. Beebe

PROCEDURE Scanfilename;

LABEL 30;

BEGIN

beginname;

WHILE buffer[curinput.locfield] = 32 DO

curinput.locfield := curinput.locfield+1;

WHILE true DO

BEGIN

IF (buffer[curinput.locfield] = 59) OR

(buffer[curinput.locfield] = 37) THEN

GOTO 30;

IF NOT morename(buffer[curinput.locfield])

THEN GOTO 30;

curinput.locfield := curinput.locfield+1;

END;

30:

endname;

END;

Figure 3: Filename scanning in PASCAL, after
manual prettyprinting. The statements beginname

and endname are calls to procedures without
arguments. The magic constants 32, 37, and
59 would normally have been given symbolic
names, but this code is output by the TANGLE

preprocessor which already replaced those names
by their numeric values. The lack of statements
to exit loops and return from procedures
forces programmers to resort to the infamous
goto statements, which are required to have
predeclared numeric labels in PASCAL.

is the biggest single problem in PASCAL. . . .
I feel that it is a mistake to use PASCAL for any-
thing much beyond its original target. In its
pure form, PASCAL is a toy language, suitable
for teaching but not for real programming.

There is also a good survey of ambiguities and in-
securities of the language by Welsh, Sneeringer, and
Hoare [53].

Donald Knuth had co-written a compiler for a
subset of ALGOL 60 two decades earlier [2], and
had written extensively about that language [41, 21,
20, 22, 24, 25]. Moreover, he had developed the
fundamental theory of parsing that is used in com-
pilers [23]. He was therefore acutely aware of the
limitations of PASCAL, and to enhance portability of
TEX and METAFONT, and presciently (see Section 8),
to facilitate future translation to other languages,
sharply restricted his use of features of that language
[37, Part 1].

The botch that Brian Kernighan criticized has
to do with the fact that in PASCAL, object sizes are
part of their type: if you declare a variable to hold
ten characters, then it is illegal to assign a string of
any other length to it, and if it appears as a routine
argument, then all calls to that routine must pass a
string of exactly the correct length.

Donald Knuth’s solution to this extremely vex-
ing problem for programs like TEX and METAFONT

that mainly deal with streams of input characters
was to not use PASCAL directly, but rather, to dele-
gate the problem of character-string management,
and other tasks, to a preprocessor, called TANGLE.
This tool, and its companion WEAVE, are fundamen-
tal for the notion of literate programming that he de-
veloped during this work [34, 50].

Because PASCAL had mainly been used for small
programs, few compilers for that language were pre-
pared to handle programs as large and complex as
TEX and METAFONT. Their PASCAL source code pro-
duced by TANGLE amounts to about 20,000 lines
each when prettyprinted.

Ports of TEX and METAFONT to new systems fre-
quently uncovered compiler bugs or resource limits
that had to be fixed before the programs could op-
erate. The 16-bit computers were particularly chal-
lenging because of their limited address space, and it
was a remarkable achievement when Lance Carnes
announced TEX on the HP3000 in 1981 [5], fol-
lowed not long after by his port to the IBM PC with
the wretched 64KB memory segments of the Intel
8086 processor. He later founded a company, Per-

sonal TEX, Inc. About the same time, David Fuchs
completed an independent port to the IBM PC, and
that effort was briefly available commercially. David
Kellerman and Barry Smith left Oregon Software,
where they worked on PASCAL compilers, to found
the company Kellerman & Smith to support TEX in the
VAX VMS environment. Barry later started Blue Sky

Research to support TEX on the Apple MACINTOSH.

8 Switching languages, again

UNIX users had more of a problem getting TEX and
METAFONT, because of compiler problems. Pavel
Curtis and Howard Trickey first announced a port in
1983 [7], where they noted:

Unhappily, the PC compiler has more deficien-
cies than one might wish.

Their project took several months, and ultimately,
they had to make several changes and extensions to
the PASCAL compiler.

In 1986–1987, Pat Monardo at the University of
California, Berkeley, did the UNIX community a great

1008 TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting

— 15 — beebe.pdf

Keynote Address: The design of TEX and METAFONT: A retrospective

service when he undertook a translation, partly ma-
chine assisted, and partly manual, of TEX from PAS-
CAL to C, the result of which he called COMMON TEX.
That work ultimately led to the Web-to-C project to
which many people have contributed, and today, vir-
tually all UNIX installations, and indeed, the entire
TEXLive distribution for UNIX and Microsoft WIN-
DOWS, is based on the completely automated trans-
lation of the master source files of all TEXware and
METAFONTware from the Web sources to PASCAL

and then to C.
Although we shall not further describe it here,

it is worth noting that yet another programming
language has since been used to reimplement TEX:
Karel Skoupý’s work with JAVA [14].

Another interesting project is Achim Blumen-
sath’s ANT: A Typesetting System [4], where the re-
cursive acronym means ANT is not TEX. The first ver-
sion was done in the LISP dialect SCHEME, and the
current version is in OCAML. Input is very similar
to TEX markup, and output can be DVI, PostScript,
or PDF.

9 Wrapping up

In this article, I have described how architecture,
operating systems, programming languages, and re-
source limits influenced the design of TEX and META-
FONT. This analysis is in no way intended to be crit-
ical, but instead, offer a historical retrospective that
is, I believe, helpful to think about for other widely-
used software packages as well.

TEX and METAFONT, and the literate program-
ming system in which they are written, are truly
remarkable projects in software engineering. Their
flexibility, power, reliability, and stability, and their
unfettered availability, have allowed them to be
widely used and relied upon in academia, industry,
and government. Donald Knuth expects to use them
for the rest of his career, and so do many others,
including this author. His willingness to expose his
programs to public scrutiny by publishing them as
books [37, 39], and then to further admit to errors
in them [33] in order to learn how we might become
better programmers, are traits too seldom found in
others.

References

[1] Urs Ammann. On code generation in a PAS-
CAL compiler. Software—Practice and Experi-
ence, 7(3):391–423, May/June 1977. CODEN
SPEXBL. ISSN 0038-0644.

[2] G. A. Bachelor, J. R. H. Dempster, D. E. Knuth,
and J. Speroni. SMALGOL-61. Communica-
tions of the Association for Computing Machin-

ery, 4(11):499–502, November 1961. CODEN
CACMA2. ISSN 0001-0782. URL http://doi.

acm.org/10.1145/366813.366843.

[3] J. W. Backus, F. L. Bauer, J. Green, C. Katz,
J. McCarthy, A. J. Perlis, H. Rutishauser,
K. Samelson, B. Vauquois, J. H. Wegstein,
A. van Wijngaarden, and M. Woodger. Revised
report on the algorithmic language Algol
60. Communications of the Association for
Computing Machinery, 6(1):1–17, January
1963. CODEN CACMA2. ISSN 0001-0782.
URL http://doi.acm.org/10.1145/366193.

366201. Edited by Peter Naur. Dedicated to
the memory of William Turanski.

[4] Achim Blumensath. ANT: A typesetting
system. World-Wide Web document
and software, October 24, 2004. URL
http://www­mgi.informatik.rwth­aachen.

de/~blume/Download.html.

[5] Lance Carnes. TEX for the HP3000. TUGboat, 2
(3):25–26, November 1981. ISSN 0896-3207.

[6] M. Crispin. RFC 4042: UTF-9 and UTF-18
efficient transformation formats of Unicode,
April 2005. URL ftp://ftp.internic.

net/rfc/rfc4042.txt,ftp://ftp.math.

utah.edu/pub/rfc/rfc4042.txt. Status:
INFORMATIONAL.

[7] Pavel Curtis and Howard Trickey. Porting TEX
to VAX/UNIX. TUGboat, 4(1):18–20, April
1983. ISSN 0896-3207.

[8] Edward R. Fiala. MAXC systems.
Computer, 11(5):57–67, May 1978.
CODEN CPTRB4. ISSN 0018-9162. URL
http://research.microsoft.com/~lampson/

Systems.html#maxc.

[9] Michel Goossens, Frank Mittelbach, and
Alexander Samarin. The LATEX Companion.
Tools and Techniques for Computer
Typesetting. Addison-Wesley, Reading, MA,
USA, 1994. ISBN 0-201-54199-8. xxi + 528
pp. LCCN Z253.4.L38 G66 1994.

[10] Michel Goossens and Sebastian Rahtz. The

LATEX Web companion: integrating TEX, HTML,
and XML. Tools and Techniques for Com-
puter Typesetting. Addison-Wesley Longman,
Harlow, Essex CM20 2JE, England, 1999. ISBN
0-201-43311-7. xxii + 522 pp. LCCN
QA76.76.H94G66 1999. With Eitan M. Gurari
and Ross Moore and Robert S. Sutor.

[11] Michel Goossens, Sebastian Rahtz, and Frank
Mittelbach. The LATEX Graphics Companion: Il-
lustrating Documents with TEX and PostScript.

TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting 1009

— 16 — beebe.pdf

Nelson H. F. Beebe

Tools and Techniques for Computer Type-
setting. Addison-Wesley, Reading, MA, USA,
1997. ISBN 0-201-85469-4. xxi + 554 pp.
LCCN Z253.4.L38G663 1997.

[12] Ralph E. Gorin. Introduction to DECSYSTEM-

20 Assembly Language Programming. Digital
Press, 12 Crosby Drive, Bedford, MA 01730,
USA, 1981. ISBN 0-932376-12-6. xxx + 545
pp. LCCN QA76.8.D17 .G67.

[13] Katie Hafner and Matthew Lyon. Where wiz-

ards stay up late: the origins of the Inter-
net. Simon and Schuster, New York, NY, USA,
1996. ISBN 0-684-81201-0. 304 pp. LCCN
TK5105.875.I57H338 1996.

[14] Hans Hagen. The status quo of the NT S
project. TUGboat, 22(1/2):58–66, March
2001. ISSN 0896-3207.

[15] Ken Harrenstien. KLH10 PDP-10 emula-
tor. World-Wide Web document and software,
2001. URL http://klh10.trailing­edge.

com/. This is a highly-portable simulator that
allows running TOPS-20 on most modern Unix
workstations.

[16] John Douglas Hobby. Digitized Brush
Trajectories. Ph.D. dissertation, Department
of Computer Science, Stanford University,
Stanford, CA, USA, June 1986. 151 pp. URL
http://wwwlib.umi.com/dissertations/

fullcit/8602484. Also published as report
STAN-CS-1070 (1985).

[17] Brian W. Kernighan. Why Pascal is not my fa-
vorite programming language. Computer Sci-
ence Report 100, AT&T Bell Laboratories, Mur-
ray Hill, NJ, USA, July 1981. URL http://cm.

bell­labs.com/cm/cs/cstr/100.ps.gz. Pub-
lished in [18].

[18] Brian W. Kernighan. Why Pascal is not my
favorite programming language. In Alan R.
Feuer and Narain Gehani, editors, Comparing
and assessing programming languages: Ada,

C, and Pascal, Prentice-Hall software series,
pages 170–186. Prentice-Hall, Englewood
Cliffs, NJ, USA, 1984. ISBN 0-13-154840-9
(paperback), 0-13-154857-3 (hard). LCCN
QA76.73.A35 C66 1984. See also [17].

[19] Brian W. Kernighan and P. J. Plauger. Software

Tools in Pascal. Addison-Wesley, Reading, MA,
USA, 1981. ISBN 0-201-10342-7. ix + 366 pp.
LCCN QA76.6 .K493.

[20] D. E. Knuth, L. L. Bumgarner, D. E. Hamilton,
P. Z. Ingerman, M. P. Lietzke, J. N. Merner, and
D. T. Ross. A proposal for input-output conven-
tions in ALGOL 60. Communications of the As-

sociation for Computing Machinery, 7(5):273–
283, May 1964. CODEN CACMA2. ISSN 0001-
0782. URL http://doi.acm.org/10.1145/

364099.364222. Russian translation by M. I.
Ageev in Sovremennoe Programmirovanie 1

(Moscow: Soviet Radio, 1966), 73–107.

[21] Donald E. Knuth. Man or boy? Algol Bulletin
(Amsterdam: Mathematisch Centrum), 17(??):
7, January 1964. CODEN ALGOBG. ISSN
0084-6198.

[22] Donald E. Knuth. Man or boy? Algol Bulletin
(Amsterdam: Mathematisch Centrum), 19(7):
8–9, January 1965. CODEN ALGOBG. ISSN
0084-6198.

[23] Donald E. Knuth. On the translation of lan-
guages from left to right. Information and Con-

trol, 8(6):607–639, December 1965. CODEN
IFCNA4. ISSN 0019-9958. Russian transla-
tion by A. A. Muchnik in ⁀Iazyki i Avtomaty, ed.
by A. N. Maslov and É. D. Stotskĭı (Moscow:
Mir, 1975), 9–42. Reprinted in Great Papers in
Computer Science (1996) [?].

[24] Donald E. Knuth. Teaching ALGOL 60. Algol

Bulletin (Amsterdam: Mathematisch Centrum),
19(??):4–6, January 1965. CODEN ALGOBG.
ISSN 0084-6198.

[25] Donald E. Knuth. The remaining trouble
spots in ALGOL 60. Communications of the
Association for Computing Machinery, 10(10):
611–618, October 1967. CODEN CACMA2.
ISSN 0001-0782. URL http://doi.acm.org/

10.1145/363717.363743. Reprinted in E.
Horowitz, Programming Languages: A Grand
Tour (Computer Science Press, 1982), 61–68.

[26] Donald E. Knuth. Fundamental Algorithms,
volume 1 of The Art of Computer Program-

ming. Addison-Wesley, Reading, MA, USA,
1968. ISBN 0-201-03803-X. xxi + 634 pp.
LCCN QA76.5 .K74. Second printing, revised,
July 1969, with page count xxi + 634.

[27] Donald E. Knuth. Seminumerical Algorithms,
volume 2 of The Art of Computer Program-

ming. Addison-Wesley, Reading, MA, USA,
1969. ISBN 0-201-03802-1. xi + 624 pp.
LCCN QA76.5 .K57.

[28] Donald E. Knuth. Seminumerical Algorithms,
volume 2 of The Art of Computer Program-

ming. Addison-Wesley, Reading, MA, USA,
1971. ISBN 0-201-03802-1. xii + 624 pp.
LCCN QA76.5 .K57. Second printing, revised,
November 1971.

1010 TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting

— 17 — beebe.pdf

Keynote Address: The design of TEX and METAFONT: A retrospective

[29] Donald E. Knuth. Fundamental Algorithms,
volume 1 of The Art of Computer Program-

ming. Addison-Wesley, Reading, MA, USA, sec-
ond edition, 1973. ISBN 0-201-03809-9. xxi
+ 634 pp. LCCN QA76.6 .K641 1973. Second
printing, revised, February 1975.

[30] Donald E. Knuth. Sorting and Searching,
volume 3 of The Art of Computer Program-

ming. Addison-Wesley, Reading, MA, USA,
1973. ISBN 0-201-03803-X. xii + 722 pp.
LCCN QA76.5 .K74.

[31] Donald E. Knuth. Sorting and Searching,
volume 3 of The Art of Computer Program-

ming. Addison-Wesley, Reading, MA, USA,
March 1975. ISBN 0-201-03803-X. xii + 725
pp. LCCN QA76.5 .K74. Second printing, re-
vised.

[32] Donald E. Knuth. TEX and METAFONT—New

Directions in Typesetting. Digital Press, 12
Crosby Drive, Bedford, MA 01730, USA, 1979.
ISBN 0-932376-02-9. xi + 201 + 105 pp.
LCCN Z253.3 .K58 1979.

[33] Donald E. Knuth. The errors of TEX. Technical
Report STAN-CS-88-1223, Stanford University,
Department of Computer Science, September
1988. See [33].

[34] Donald E. Knuth. The errors of TEX. Software—

Practice and Experience, 19(7):607–685, July
1989. CODEN SPEXBL. ISSN 0038-0644.
This is an updated version of [?]. Reprinted
with additions and corrections in [34, pp. 243–
339].

[35] Donald E. Knuth. Literate Programming. CSLI
Lecture Notes Number 27. Stanford University
Center for the Study of Language and Infor-
mation, Stanford, CA, USA, 1992. ISBN 0-
937073-80-6 (paper), 0-937073-81-4 (cloth).
xv + 368 pp. LCCN QA76.6.K644.

[36] Donald E. Knuth. Digital Typography. CSLI
Publications, Stanford, CA, USA, 1999. ISBN
1-57586-011-2 (cloth), 1-57586-010-4 (pa-
perback). xvi + 685 pp. LCCN Z249.3.K59
1998.

[37] Donald E. Knuth. The TEXbook, volume A of
Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986. ISBN 0-201-13447-
0. ix + 483 pp. LCCN Z253.4.T47 K58 1986.

[38] Donald E. Knuth. TEX: The Program, volume B
of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986. ISBN 0-201-13437-
3. xv + 594 pp. LCCN Z253.4.T47 K578 1986.

[39] Donald E. Knuth. The METAFONTbook, vol-
ume C of Computers and Typesetting. Addison-
Wesley, Reading, MA, USA, 1986. ISBN 0-201-
13445-4. xi + 361 pp. LCCN Z250.8.M46 K58
1986.

[40] Donald E. Knuth. METAFONT: The Program,
volume D of Computers and Typesetting. Addi-
son-Wesley, Reading, MA, USA, 1986. ISBN 0-
201-13438-1. xv + 560 pp. LCCN Z250.8.M46
K578 1986.

[41] Donald E. Knuth. Computer Modern Typefaces,
volume E of Computers and Typesetting. Addi-
son-Wesley, Reading, MA, USA, 1986. ISBN 0-
201-13446-2. xv + 588 pp. LCCN Z250.8.M46
K574 1986.

[42] Donald E. Knuth and Jack N. Merner. ALGOL
60 confidential. Communications of the Associ-

ation for Computing Machinery, 4(6):268–272,
June 1961. CODEN CACMA2. ISSN 0001-
0782. URL http://doi.acm.org/10.1145/

366573.366599.

[43] Leslie Lamport. LATEX—A Document Prepara-

tion System—User’s Guide and Reference Man-

ual. Addison-Wesley, Reading, MA, USA, 1985.
ISBN 0-201-15790-X. xiv + 242 pp. LCCN
Z253.4.L38 L35 1986.

[44] Leslie Lamport. LATEX: A Document Preparation

System: User’s Guide and Reference Manual. Ad-
dison-Wesley, Reading, MA, USA, second edi-
tion, 1994. ISBN 0-201-52983-1. xvi + 272
pp. LCCN Z253.4.L38L35 1994.

[45] Phillip Laplante, editor. Great papers in com-
puter science. IEEE Computer Society Press,
1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1996. ISBN 0-314-06365-X
(paperback), 0-07-031112-4 (hardcover). iv +
717 pp. LCCN QA76 .G686 1996. URL http://
bit.csc.lsu.edu/~chen/GreatPapers.html.

[46] Franklin Mark Liang. Word hy-phen-a-tion
by com-pu-ter. Technical Report STAN-CS-83-
977, Stanford University, Stanford, CA, USA,
August 1983.

[47] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, Chris Rowley, Chris-
tine Detig, and Joachim Schrod. The LATEX
Companion. Tools and Techniques for Com-
puter Typesetting. Addison-Wesley, Reading,
MA, USA, second edition, 2004. ISBN 0-201-
36299-6. xxvii + 1090 pp. LCCN Z253.4.L38
G66 2004.

[48] Sao Khai Mong. A Fortran version of META-
FONT. TUGboat, 3(2):25, October 1982. ISSN
0896-3207.

TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting 1011

— 18 — beebe.pdf

Nelson H. F. Beebe

[49] William M. Newman and Robert F. Sproull.
Principles of Interactive Computer Graphics.
McGraw-Hill Computer Science Series,
Editors: Richard W. Hamming and Edward
A. Feigenbaum. McGraw-Hill, New York, NY,
USA, 1973. ISBN 0-07-046337-9. xxviii +
607 pp. LCCN T385 .N48.

[50] Michael F. Plass. Optimal pagination techniques
for automatic typesetting systems. Thesis (ph.
d.), Stanford University, Stanford, CA, USA,
1981. vi + 72 pp.

[51] Lynn Elizabeth Ruggles. Paragon, an in-

teractive, extensible, environment for typeface
design. Ph.D. dissertation, University of
Massachusetts Amherst, Amherst, MA, USA,
1987. 192 pp. URL http://wwwlib.umi.com/

dissertations/fullcit/8805968.

[52] E. Wayne Sewell. Weaving a Program: Literate
Programming in WEB. Van Nostrand Reinhold,
New York, NY, USA, 1989. ISBN 0-442-31946-
0. xx + 556 pp. LCCN QA76.73.W24 S491
1989.

[53] Guy L. Steele Jr. Common Lisp—The Language.
Digital Press, 12 Crosby Drive, Bedford, MA
01730, USA, 1984. ISBN 0-932376-41-X. xii
+ 465 pp. LCCN QA76.73.L23 S73 1984.
US$22.00.

[54] Guy L. Steele Jr. Common Lisp—The Lan-
guage. Digital Press, 12 Crosby Drive, Bed-
ford, MA 01730, USA, second edition, 1990.
ISBN 1-55558-041-6 (paperback), 1-55558-
042-4 (hardcover), 0-13-152414-3 (Prentice-
Hall). xxiii + 1029 pp. LCCN QA76.73.L23
S73 1990. See also [51].

[55] J. Welsh, W. J. Sneeringer, and C. A. R. Hoare.
Ambiguities and insecurities in Pascal. Soft-
ware—Practice and Experience, 7(6):685–696,
November/December 1977. CODEN SPEXBL.
ISSN 0038-0644.

[56] Niklaus Wirth. The design of a PASCAL com-
piler. Software—Practice and Experience, 1(4):
309–333, October/December 1971. CODEN
SPEXBL. ISSN 0038-0644.

[57] Niklaus Wirth. Algorithms + Data Structures

= Programs. Prentice-Hall Series in Automatic
Computation. Prentice-Hall, Englewood Cliffs,
NJ, USA, 1976. ISBN 0-13-022418-9. xvii +
366 pp. LCCN QA76.6 .W561.

[58] F. H. G. Wright II and R. E. Gorin. FAIL. Com-
puter Science Department, Stanford Univer-
sity, Stanford, CA, USA, May 1974. Stanford
Artificial Intelligence Laboratory Memo AIM-
226 and Computer Science Department Report
STAN-CS-74-407.

[59] Ignacio Andres Zaballa Salelles. Interfacing
with graphics objects. PhD thesis, Depart-
ment of Computer Science, Stanford Univer-
sity, Stanford, CA, USA, December 1982. 146
pp.

1012 TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting

— 19 — flom.pdf

A LATEX fledgling struggles to take flight

Peter L. Flom
National Development and Research Institutes, Inc.
71 West 23rd St., 8th floor
New York, NY 10010∗

A little about this article

I work as a statistical consultant and data analyst at
a nonprofit research company. I also work as an in-
dependent statistical consultant, mostly to graduate
students in the social and behavioral sciences. I’ve
done almost no computer programming (I did have
one course in computer programming, but it was so
long ago that we used punch cards and waited a day
or more for our programs to run on the mainframe
that took up most of the basement; I also write some
very simple programs in R).

When I read the first issue of The PracTEX
Journal, I was thrilled. Finally, someone was writing
a journal for beginners. So, I wrote a very enthusi-
astic ‘Thank you’ to the editor (Lance Carnes), and
he wrote back, thanking me for the feedback, and
asking me to write an article. I said OK. And here
it is.

I’m writing with two groups in mind: Begin-
ners, and people who write for beginners. I’d like
to offer both groups some perspective from some-
one who is just a little way along the path. I’d like
to let the true beginners know that it is possible to
learn LATEX; after only a few months of intermittent
use, I can do a lot — I have written entire articles
in LATEX, some of them with quite complicated or-
ganizational structure and with fairly intimidating
formulas; I’ve also started doing some presentations
in LATEX, using the Beamer package. If I can do
it, you can. I’d like to give the teachers the per-
spective of a recent beginner, so that their efforts
can have maximum reward; when I consider that so
many people contribute to LATEX, often without any
monetary reward, I imagine that those people would
like to have their efforts help as many people as pos-
sible to use LATEX easily and well. This article is in
three sections:

1. Introduction
2. Some suggestions for teaching beginners
3. Some hints for beginners

∗ Work on this project was supported by NIDA grant P30
DA11041; I’d like to thank the editor and the reviewers for
their helpful comments and encouragement. The article was
originally published in The PracTEX Journal, issue 2005-2,
http://tug.org/pracjourn.

I hope, however, that both teachers and learners will
read all the sections — the division of material is not
rigid.

How I started using LATEX

Long ago, I used Nota Bene. This was a very nice
word processing program, designed for use by schol-
ars. But no one I knew used it, so . . . I then became
a dissatisfied user of Microsoft Word for years. But
it came with my computer, everyone else used it,
journal editors liked it, so, I used it. Then, at the
recommendation of a friend and colleague, I started
using WinEdt to write R files (R is a language and
environment for statistical computing and graphics).
It’s great for that purpose, but I noticed that it kept
mentioning LATEX. I looked into it a little, but it
looked really hard, so I didn’t do much.

Then, I saw on the R-help list that someone
was writing a book on R for beginners. I asked if he
wanted some help from a beginner. He said he did;
but the files were in LATEX. He expressed amazement
that I didn’t use it. But it looked really hard, so I
didn’t do much.

Then I wrote a grant proposal that included
a lot of formulas. A consultant on the grant did
not have Word on his machine. He recommended
LATEX; but my co-investigator wanted Word files.
So, I started looking more into LATEX, and into pro-
grams to convert Word into LATEX and vice versa.
The deadline was looming, so I wrote that grant in
Word (using Math Edit), and wrote files out as rtf
files, which my consultant could read. Still, some
formulas didn’t print right; or printed differently on
different computers; it was a mess. So, I resolved
to learn LATEX. I’ve been using it more and more
over the last 6 months or so, and now really prefer
it to Word, for virtually everything. Maybe after
reading another issue of this journal, I’ll prefer it
for absolutely everything.

Some suggestions for teaching beginners

Ease of use

LATEX looks hard. When I first saw a .tex file, I
wondered how anyone could ever learn to write such

— 20 — flom.pdf

stuff. There are reasons for this: LATEX was (natu-
rally) written and extended by computer scientists
(Donald Knuth for TEX, Leslie Lamport for LATEX,
and many others), and that’s probably why it looks
like a programming language.2 When you are really
expert at something, it’s hard to remember what
it was like to not be expert; when you are really
talented at something, it’s hard to empathize with
the less talented — this is not to criticize the peo-
ple who write for beginners, it’s just the way people
are. Well, I am neither experienced nor talented at
programming, so I can empathize; even moderately
complex LATEX files look indecipherable to true be-
ginners (at least, they did to me). Part of this is
due to how people are first exposed to LATEX. The
first .tex file I saw was one which was going to be a
book on a statistical programming language. I think
that many people who start using LATEX do so be-
cause of the limitations of Word or Word Perfect, or
some other program. Thus, the first things we want
to write are complicated files. Also, for the peo-
ple who write documentation, it’s easy to get into
tricky stuff quickly, and this makes sense — there’s
not much point in having pages and pages of very
simple documents.

One way of making the learning curve a little
less steep is to provide annotated programs. An-
other might be to provide more exercises and treat
an introductory book more as a text.

So, if you’re writing for true beginners, empha-
size ease of use. And, as LATEX becomes used by
more people who are not and never were program-
mers, try to remember that we don’t think the way
you think. If you’re a programmer who doesn’t like
statistics, maybe thinking about how you would like
to learn statistics would help in how people like me
like to learn things like LATEX.

Distributions

Everything I see on LATEX mentions several (or more
than several) different distributions. This just con-
fused the heck out of me. Is there a difference? (I
still don’t know). Is one better than the other? (I
still don’t know). Some are free, some are com-
mercial — what advantages do the commercial pro-
grams have? (They must have some or the com-
panies would go out of business). I’ve heard about
LyX, which is a WYSIWYG version of LATEX — this
seems nice, but what are the drawbacks? I wound
up using TEX Live, more or less by chance. Now
I use proTEXt, because that’s what I got sent as a

2 Reviewers pointed out that most all document markup
languages developed in the pre-GUI (graphical user interface)
era looked like this.

member of the TEX Users Group (TUG). It would
be good if some documentation could list the var-
ious distributions and what their strengths are, or
state that there are no real differences.

Writing in LATEX is not like writing in Word

In Word (and probably in other word processors)
when you don’t get what you want, it’s often be-
cause the program is illogical. It does some things
automatically, some (most?) of which make no sense.
In LATEX, though, when you don’t get what you want
it’s often because you messed up. When I started
writing things that were a little complex, I often
got errors. This still happens. At first, this really
annoyed me. It almost made me stop using LATEX.
But I realized I should look on this more like a pro-
gramming problem: Debugging is often necessary,
and this doesn’t mean you’re stupid. I got this from
the minimal programming I’ve done in R, but others
who have never done any programming at all may
not get this attitude, and I didn’t see it in any of
what I’ve read. Programmers may be so used to this
way of thinking that they don’t even mention it.

Adding packages

I find this very confusing.3 I’ve read various help
files on how to do this; I’m sure they’re all correct,
I know they’re all written by experts. It seems to
me, as a nonprogrammer, that they contradict each
other. I know they really don’t, because then they
wouldn’t all work. So, it must be that I am even
more confused than I thought, which is saying some-
thing. I don’t fully understand why this has to be so
hard (like I said, I am no programmer). The other
free software I use a lot is R, which also runs on lots
of platforms, and also has lots of additional packages
written by lots of different people, but there, when
you add a package, it does all the background work
for you, you just find the package you want, click on
it, and you’re done. If it can’t be made easy, then
I would strongly urge recommending that beginners
install everything — all the available packages — at
once. Disk space is cheap, writing the files takes a
while, but it only needs to be done once. That’s
what I wound up doing (by uninstalling all the files,
and then reinstalling everything I could get all at
once) and this worked perfectly.

To a large extent, these problems have been
solved by proTEXt, which automates a lot of this.
But, as far as I know, it is only for Windows, and

3 According to one reviewer, this may not be as difficult
as I think it is — there are, apparently, tools for doing this
that I am unaware of; I am just writing about what I know.

— 21 — flom.pdf

LATEX users using other systems may still have the
type of question outlined above.

Annotated programs

All the books and other material on learning LATEX
include numerous examples of LATEX files, which is
good. One of the best ways of learning is by exam-
ple. But one way to make these examples even more
useful would be to include extensive annotations, ei-
ther in the margins, in footnotes, or in text imme-
diately below the program. What I have in mind
is something like the way many editions of Shake-
speare have notes explaining terms and references
that are unfamiliar. The first few times a command
is used, it would be useful to include a note. Kopka
and Daly (3) do a nice job of this in their “Sam-
ple LATEX file” on pages 16–19; I’d like to see more
examples like this.

Debugging and error messages

Whenever I do anything complicated in LATEX (and
sometimes when I do something simple) I get er-
rors. The messages accompanying these are some-
times helpful, but often rather obscure, at least to
non-programmers such as myself. It would be great
to have a source that explains some of these error
messages in ordinary English. It would also be great
to have some reference on debugging.4

Some hints for beginners

LATEX has to be learned

Word is designed not to be learned. It’s supposed
to function right out of the box (whether it does
or not is another matter); if you are used to Word,
then you may think that you should be able to use
LATEX right out of the box. Well, maybe some people
can. I couldn’t. On the other hand, as you learn
LATEX, you get more and more control over how your
document looks.

Some resources

There are a lot of free resources available for LATEX
(see the CTAN website). A lot of these are won-
derful, and some are intended for beginners. I know
some people find these resources to be enough for
them to use LATEX very well. Personally, I like books.
I keep three close at hand: Math into LATEX (1) is
on my desk, and Guide to LATEX (3), and The LATEX
Companion (4) are on my bookshelf. I like books (as
opposed to web-based material) in general because

4 I have since found that Kopka and Daly (3) do include
a list of some error messages in an appendix.

1. They have extensive tables of contents and in-
dexes

2. They are already bound and thus easy to flip
through

3. I am just old-fashioned enough to like being
able to page through a book, and keep it open
on my desk while I work on something complex.

I like the three books mentioned above for dif-
ferent things. The LATEX Companion (4) is a great
book, but not for beginners. It’s intimidating. It’s
too big. It assumes knowledge. I think it should be
the 3rd or 4th book a LATEX user buys; it’s a great
reference, but it still kind of intimidates me. Kopka
and Daly’s Guide to LATEX (3) is the best introduc-
tion to LATEX that I’ve seen. The book I use most
now is George Grätzer’s Math into LATEX (1) (it’s
open on my desk as I write this, I just looked up
how to type the author’s accented name). I use this
all the time, partly because one of the main reasons
I started using LATEX was to typeset some complex
mathematical formulas. All three of these books are
very well organized and comprehensible, given their
depth. Your taste in particular books may vary. Try
out a few. Even if you buy a bunch of books before
finding one or two you really like, it’s not that much
money (after all, the software is free).

Another resource I find very helpful is the TEX
users mailing list; information on this group is at
http://tug.org/mailman/listinfo/texhax.

Figure out what you need to know, and
when you need to know it

LATEX is huge. It does all kinds of things, plus a lot
that I am sure I am unaware of. What you need
from it depends on what kind of work you do. For
instance, I need to do a lot with tables, equations,
bibliographies and imported graphics; I had to learn
these first. But I don’t have as much need to make
my own drawings — I’ll wait. Learning about some
different fonts would be fun, but not urgent (for me
— this may be very urgent for you). I will proba-
bly never learn to typeset Sanskrit or musical nota-
tion. But just figuring out what is available can be a
challenge. One thing to do, after you can write basic
documents, is to browse through various sources, in-
cluding books and the CTAN website; Jim Hefferon
wrote a good introduction to the website in the first
issue of this journal (2). Try to follow the discus-
sions on the mailing group. This journal, of course,
is very helpful; and then there’s TUGboat, which is
mostly more advanced (sometimes, I don’t even un-
derstand the titles!).

— 22 — flom.pdf

Run files often

Run your file through LATEX a lot. Each time you do
something even a little interesting, where you have
any doubts about whether what you are doing will
work correctly, typeset the file. If you’ve only made
one or a few changes since you last ran the file, then
it will be easier to find your error. In the editor I
use (WinEdt) you can also typeset a small part of
your document (hit ctrl+shift+c). This saves a lot
of time. On a related note, make backups often, and
give them names you will understand and remember
later. In particular, if you’ve gotten something com-
plicated to work reasonably well, but still want to
tweak it a little, save the file that works before you
forget how you got it to work. (For me, this hap-
pens most often with complex, multiline equations
and with tables that have complicated structures).

Look at examples

All the books I listed have lots of examples. Try
to figure out how they work and how they could be
changed. Fool around; see what happens.

Make a default preamble

As you learn more LATEX, you will (probably) find
that there are certain packages that you always want
loaded. It’s hard (at least for me) to remember
which ones I want, so I made a default file;5 as of
March 6, 2005, it looked like this:

\documentclass{article}

\usepackage{graphicx}

\usepackage{amsmath, amssymb, latexsym, amsthm}

\usepackage{exscale, mathrsfs}

\usepackage{caption2, float, chapterbib, natbib}

\usepackage[section]{placeins}

\usepackage{fancyhdr}

\usepackage{geometry}

\usepackage[symbol, perpage]{footmisc}

\theoremstyle{plain}

\newtheorem{theorem}{Theorem}

\theoremstyle{definition}

\newtheorem{definition}{Definition}

\begin{document}

\title{Put title here}

\author{Peter L. Flom}

\maketitle

Sample text

\bibliographystyle{amsplain}

\bibliography{file name}

\end{document}

5 One of the reviewers commented that it would be better
to make a .sty file; I, however, do not know how to do this.

Summary

As I get more and more used to LATEX, I find it more
and more useful. I am gradually using it for more
and more documents. For me, the best things about
using LATEX, as opposed to Word, are

1. LATEX directs my attention to things that need
attention. It takes care of section formatting,
typography, and so on; but it forces my atten-
tion to things like complicated mathematical
formulas and complex tables.

2. The ability to typeset complex mathematical
equations and know they will appear correctly
on other people’s computers and on printout.

3. The naturalness of section formatting (such as
with \section, and related commands)

4. The ease of cross-referencing to different sec-
tions of a document (using \label and \ref).

5. The helpfulness of the LATEX community in find-
ing solutions.

The biggest barriers to using LATEX are
1. Working with co-authors and editors who insist

on Word files.
2. Formatting complex tables.
3. Learning to use my editor (WinEdt) more effi-

ciently.
4. Remembering that getting an error message is

not the computer telling me that I am stupid
(careless, ignorant, forgetful . . . but not stupid).
I look forward to learning more, and to becom-

ing more expert, and to finding ways to spread my
LATEX wings. Certainly writing this article helped
me do so, I hope reading it helped you, as well.

Bibliography

[1] George Grätzer, Math into LATEX, Birkhäuser,
New York, 2000.

[2] Jim Hefferon, CTAN for starters, The PracTEX
Journal 1 (2005).

[3] Helmut Kopka and Patrick W. Daly, Guide to
LATEX, Addison Wesley, Boston, 2004.

[4] Frank Mittelbach and Michel Goossens, The
LATEX companion, Addison Wesley, Boston,
2004.

— 23 — hoeppner.pdf

Strategies for including graphics in LATEX documents

Klaus Höppner
Nieder-Ramstädter Str. 47
64283 Darmstadt
Germany
klaus.hoeppner@gmx.de

Abstract

This talk presents strategies for including graphics into LATEX documents. It
shows the usage of the standard graphics packages of LATEX as well as an intro-
duction to different graphics formats. Some external tools for converting graphics
formats are shown.

Overview of graphics formats

In general, their exist two kinds of graphics formats:
vector and bitmap graphics. For bitmapped images
their exist different flavors, no compression (what
makes your files really big dependent on resolution
and color depth, so I won’t cover them from here
on), compression methods that just do data com-
pression and preserve the images’s quality and lossy
compression methods with a reduction of images’s
quality.

So let’s go more into detail:

Vector graphics are set up by drawing or filling
geometrical objects like lines, Bezièr curves,
polygons, circles and so on. The properties of
these objects are stored mathematically. Vec-
tor graphics are in general device independent.
It is easy to scale or rotate them without loss
of quality since to job to rasterize them is done
by the printer or printer driver.

Bitmaps without lossy compression store the
image information as pixels where each pixel is
given a color. In principle the quality of a bit-
map becomes better the higher the resolution
and color depth is (e. g. GIF files use a color

Figure 1: Zoomed view into a sample image as
vector graphics (left) and bitmap (right).

Figure 2: A low
quality JPEG image
showing some artifacts
at the transition
between black and
white

depth of 8 bit leading to 256 different indexed
colors while a bitmap with 24 bit color depth
can have about 16 millions colors). Scaling and
rotating bitmap images will yield in a loss of
quality, and printing bitmaps to a device with
a different resolution can produce bad results.
Fig. 1 shows the difference between a scaled im-
age as vector and bitmap graphics.

Bitmaps with lossy compression uses the fact
that the human eye is fairly good at seeing small
differences in brightness over a relatively large
area, but not so good at distinguishing the ex-
act strength of a high frequency brightness vari-
ation. For this reason, components in the high
frequency region are reduced leading to smaller
file sizes. This works well for photographs that
usually contain smooth transitions in color, but
for graphics with sharp border artifacts can
occur as shown in fig. 2. The most promi-
nent graphics format using lossy compression
are JPEG files.

Graphics formats in practice

There exist many graphics formats, so I will concen-
trate on some of them that are often used:

EPS is the encapsulated PostScript format. It is
used for vector graphics but can also contain
bitmap graphics.

— 24 — hoeppner.pdf

PNG is the portable network graphics format. It
was introduced due to the problem that Unisys
claimed a patent for the compression algorithm
used in GIF. For this reason, it is often used
nowadays on WWW pages. PNG is a bitmap
format that supports both compression without
and with quality loss of the image.

JPEG is a bitmap format with lossy compression
and is often used for photographs (e. g. most
digital cameras produce JPEG files).

TIFF is a bitmap format often used for high qual-
ity pictures — not only because it supports the
CMYK color space for printing.

Now the question is: What format shall I use for
what purpose? Though there is no definite answer
to this question, my advice is as follows:

1. For drawings (e. g. technical drawings or data
plots) use vector graphics. It gives you max-
imum freedom on manipulating the the image
when including it into a document where you
may want to scale the image to fit into your lay-
out. Additionally, you are independent of your
output device, and you can zoom into the image
in your document viewer without seeing single
pixels. The drawing tools offered by TeX dis-
tributions — PSTricks and METAPOST — pro-
duce EPS output natively. Most vector draw-
ing programs like xfig and Corel Draw offer
export functionality for producing EPS output
(though sometimes buggy).

2. If you are stuck to bitmaps, use PNG for images
with sharp color transitions.

3. For photographs, you can use JPEG in most
cases, since the quality loss by compression nor-
mally doesn’t matter in printout. On most de-
vices, a resolution of 100 to 200 dpi will be suf-
ficient (remember that screen resolution is nor-
mally about 75 to 100 dpi, and color printers
claim to have high resolutions but dither color
prints, so you will hardly notice the difference
compared to JPEGs with higher resolution).

The LATEX graphics package

Since the introcution of LATEX 2ε, the graphics bun-
dle is part of the standard packages accompanying
the LATEX base distribution [1]. It consists of two
style files, graphics.sty and graphicx.sty. While
graphics.sty requires the use of \scalebox and
rotatebox for scaling or rotating your graphics, the
extended style graphicx.sty supports scaling and
rotating using the keyval package. In general, there
is no reason not to always use graphicx.sty.

So the first step is to load the graphicx style
file after the \documentclass statement:

\usepackage{graphicx}

The graphics bundle is driver dependent, i. e.
it needs to know the output driver it has to pro-
duce \special statements for. Nowadays, there are
two main workflows for producing documents: us-
ing latex to produce a DVI file and then dvips
for converting it to PostScript, and using pdflatex
to produce a PDF file. Most modern TEX systems
are configured to automatically check wether you
are using latex or pdflatex and creating dvips
\specials in the first case and producing the ap-
propriate \pdfimage statements in the second case.
So if you are using one of the above workflows, you
shouldn’t need to specify your output backend ex-
plicitely. If you are using another backend you have
to specify it as an option, e. g.

\usepackage[dvipsone]{graphicx}

but be aware that other backends often don’t sup-
port scaling or rotating.

To include an image simply use

\includegraphics{sample1}

Please notice that no extension for the file was
given. The explanation why will follow later. In
the case of using \includegraphics without op-
tions the image is included in its natural size. When
using the graphicx style, you can scale your image
by a factor:

\includegraphics[scale=0.5]{sample1}
\includegraphics[scale=1.5]{sample1}

Another option supports rotating an image:

\includegraphics[angle=30]{sample1}
\includegraphics[angle=-10]{sample1}

— 25 — hoeppner.pdf

Positive numbers lead to counterclockwise ro-
tation, negative numbers to clockwise rotation. The
origin for the rotation is the lower left corner of the
image, so in counterclockwise rotation in the former
example the result does not only have a height but
also a depth below the baseline (as shown by the
rules).

Images can not only be scaled by a given fac-
tor, you can specify a height and/or width for the
resulting image instead:

\includegraphics[width=2cm]
{sample1}

\includegraphics[height=1.5cm]
{sample1}

heigth gives the height above the baseline. If
your image has a depth, you can use totalheight
instead, i. e. the sum of height and depth will be
scaled to the given length.

\includegraphics[angle=-30,height=1cm]
{sample1}

\includegraphics[angle=-30,
totalheight=1cm]{sample1}

You can both specify width and height. In
this case your image may be scaled different in hor-
izontal and vertical direction, unless you use the
keepaspectratio option:

\includegraphics[width=2.5cm,height=1.5cm]
{sample1}

\includegraphics[width=2.5cm,height=1.5cm,
keepaspectratio]{sample1}

Please notice that using angle and width or
height are sensitive for the order you are using the
options. Specifying the angle first means that your
image is rotated first and then the rotated image is
scaled to the desired width or height, while specify-
ing a width or height first will first scale the unro-
tated image and rotate it afterwards.

Source Target Tool

latex+dvips

EPS directly supported
PNG EPS ImageMagick/netpbm
JPEG EPS ImageMagick/netpbm
TIFF EPS ImageMagick/netpbm/tif2eps

pdflatex

PDF directly supported
EPS PDF epstopdf
PNG directly supported
JPEG directly supported
TIFF PNG ImageMagick/netpbm
TIFF PDF tif2eps+epstopdf

Table 1: Conversion to graphics formats supported
by latex with dvips and pdflatex

Supported graphics formats

To make things a bit more complicated, latex with
dvips and pdflatex support different graphics for-
mats:
latex+dvips EPS
pdflatex PDF, PNG, JPEG

Table 1 shows ways to convert the standard
graphics formats to supported formats.

Fortunately, converting the graphics from exist-
ing documents with included EPS graphics from the
latex+dvips to pdflatex workflow is quite easy
using the epstopdf Perl script that uses Ghostscript
to convert EPS to PDF.

It is in general recommended to give the file
names in the \includegraphics command without
extensions. In this case the graphics package looks
for a supported graphics format automatically. So
if you have an image both as EPS and e. g. PDF,
you can use both the latex+dvips and pdflatex
workflows without changing the your document.

By the way, including the output of METAPOST

is very easy since though it is a variant of EPS,
pdflatex supports the inclusion of METAPOST out-
put directly. The only thing you have to do is to
change the file extension of the output file to .mps.

Tools for image conversion

There exist several tools for conversion of graphics
formats, both free and commercially. Besides free
GUI based tools like Gimp on Unix systems there
are two command line tools available for Unix and
Windows: ImageMagick [2] and netpbm [3].

ImageMagick can convert images directly, e. g.
by typing

— 26 — hoeppner.pdf

convert sample.gif sample.png

while netpbm uses the pnm format as intermediate
format:
giftopnm sample.gif | pnmtopng - > sample.png

A nice tool is tif2eps by Bogus law Jackowski et
al. [4] that uses Ghostscript to convert a TIFF file
to EPS, e. g.
gs -- tif2eps.ps sample.tif sample.esp -rh

what produces a RLE compressed and hex encoded
EPS file. Upon my experience EPS files produced
with tif2eps are smaller than those produced by Im-
ageMagick. Additionally it supports CMYK TIFF
files smoothly.

Additional tools

There are some other tools that are helpful in some
cases. I will present two I use quite often.

overpic is a LATEX package written by Rolf Nie-
praschk [5]. It includes an image into a LATEX pic-
ture environment, giving you the opportunity to add
new elements into the image with normal LATEX pic-
ture commands. Fig. 3 shows a map overlayed with
symbols and text at some points. The source code
for this picture looks like
\usepackage[abs]{overpic}

...

\begin{document}

\begin{overpic}[grid,tics=5]{map}

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80
Windmühle

Mainzer Str.

7
Haus für

Industriekultur

A Fr
D

�
�

�
��

Figure 3: A map with additional marks produced
with overpic

Figure 4: A bitmap (left) converted to vector
graphics (right)

\put(32,74){\includegraphics[scale=.3]

{busstop.mps}}

\put(32,77){\llap{\scriptsize%

\colorbox{back}{Windm\"uhle}}}

\put(28,63){\small\textcolor{red}{%

\ding{55}}}

...

\put(17.5,11){\scriptsize\colorbox{back}%

{{\Pisymbol{ftsy}{65} Fr}}}

\put(6.3,13){\colorbox{back}%

{{\Pisymbol{ftsy}{68}}}}

\put(29.8,61.4){\color{blue}\vector(-1,-3){2}}

\put(38.6,63){\color{blue}\vector(1,3){2}}

\end{overpic}

\end{document}

potrace is a tool to convert a pure black and white
bitmap to vectorgraphics [6]. Fig. 4 shows a sample
bitmap converted to a vector image.

References

[1] CTAN:/macros/latex/required/graphics

[2] http://www.imagemagick.org

[3] http://netpbm.sourceforge.net

[4] CTAN:/support/pstools/tif2eps

[5] CTAN:/macros/latex/contrib/overpic

[6] http://potrace.sourceforge.net

— 27 — ignat.pdf

Word to LATEX for a Large, Multi-Author Scientific Paper

D. W. Ignat
PO Box 1380
Middlebury, VT 05753 USA
ignat at mailaps dot org

Abstract

Multiple authors from diverse locations submitted to a scientific journal a manu-
script for large review article in many sections, each formatted in MS Word. Jour-
nal policy for reviews, which attract no page charges, required a translation to
LATEX, including the transformation of section-based references to a non-repetitive
article-based list. Saving Word files in RTF format and using rtf2latex2e ac-
complished the basic translation, and then a perl program was used to get the
references into acceptable condition. This approach to conversion succeeded and
may be useful to others.

Introduction

Twelve authors from five countries and ten research
institutions proposed to the Nuclear Fusion journal
(NF) of the International Atomic Energy Agency
(IAEA) in Vienna, Austria, a review paper with six
sections plus a glossary. This unusually large man-
uscript had some hundred thousand words and a
thousand references. The sections had different lead
authors, so that the references of each section were
independent of those in other sections, while often
repetitive among sections.

The IAEA gave review papers the privilege
of waived publication charges ($150/page), but re-
quired authors to ease the publisher’s costs by sub-
mitting manuscripts of reviews in LATEX, the jour-
nal’s typesetting system. Therefore, a considerable
financial incentive appeared for finding a somewhat
automated transformation of all the Word sources
into a unified LATEX source.

I was the editor of IAEA’s NF from mid-1996
to mid-2002 with primary responsibility for the ref-
ereeing system and the development of the journal.
Previous experience in Unix and and LATEX for my
own research brought an unofficial role as adviser to
the IAEA production office on shell scripts, LATEX,
regular expressions, perl, and web mounting.

Since the paper appeared valuable from the
point of view of journal development, and at the
same time a challenge in computer processing, I be-
came particularly interested, and encouraged the au-
thors find ways to satisfy the IAEA requirement: a
LATEX manuscript to better support refereeing and
eventual publication.

In the end, the paper in question [1] was pub-
lished in NF and was very well received by the re-
search community, at great credit to the co-authors
and also good for NF.

When the recent call for papers at PracTex
came in from Karl Berry, it occurred to me that
the story might be interesting for this audience.

Translation from Word to LATEX

At the time of submission (mid-1999) the IAEA
and NF had investigated with a consultant con-
versions from Word to LATEX, but had not found
a satisfactory solution. One of the twelve authors
suggested “rtf2latex2e” by Ujwal Setlur Sathyam
(now Ujwal Setlur) and Scott Prahl, following the
Word-native RTF (Rich Text Format) writer.

According to Microsoft, msdn.microsoft.com,
“The Rich Text Format (RTF) Specification provides a
format for text and graphics interchange that can be
used with different output devices, operating environ-
ments, and operating systems. RTF uses the ANSI,
PC-8, Macintosh, or IBM PC character set to control
the representation and formatting of a document, both
on the screen and in print. With the RTF Specifica-
tion, documents created under different operating sys-
tems and with different software applications can be
transferred between those operating systems and appli-
cations.”

rtf2latex2e uses the RTF reader by Paul
DuBois and converts RTF files to LATEX2e. Some
features are: detects text style: (bold, italic, etc.);
reads embedded figures; reads tables; converts em-
bedded MathType; converts most Greek and math
symbols; reads footnotes; translates hyperlinks. It
should compile on any platform that supports a C

— 28 — ignat.pdf

compiler. Versions for Macintosh, Unix-type sys-
tems, and Windows are available. The distribution,
issued under the terms of the GNU General Public
License as published by the Free Software Founda-
tion, comes with example .rtf files.

The current, and final, version of rtf2latex2e
can be found at the Comprehensive TEX Archive
Network, ctan.org/tex-archive/support/

rtf2latex2e
or at the Source Forge, sourceforge.net.

The result of translation gave the expected
\documentclass{article}
\begin{document}
\section*{1. INTRODUCTION}

and looked good regarding mathematics and tables,
but left all citations as footnotes with the expected
chaos with repeated references. A typical reference
(of the thousands) appeared many times with differ-
ent chapter-based numbers.

The footnotes were rendered, for example, as
[1.\footnote{[1.] Author, A., Some Journ-
al \textbf{36} (1997) 123.}] in section 1, but
in generally the same way in section 2, except that
the “[1.” became “[2.”.

One task is to transform the \footnote style
that survives after the Word-rtf-LATEX transforma-
tion into the normal \cite{...}-\bibitem{...}
representation of for references. More complicated is
to detect as identical those references presented with
slight differences; and to detect as distinct references
that are actually different but “look” similar.

The goal was a unique citation in the
body, such as \cite{AuthorA36p123}, and a cor-
responding entry in the bibliography, such as
\bibitem{AuthorA36p123} Author, A., Some Jour-
nal, 36 (1997) 123.

The power of “perl” (Practical Extraction and
Reporting Language) and its version of “regular ex-
pressions” made order from chaos, and produced
material suitable for refereeing, and, eventually,
publication.

Basic Regular Expressions

A “regular expression” (regex) is a generalized string
for matching patterns, and possibly replacing what-
ever is found found with something else. The pro-
grams grep (Global Regular Expression Printer)
sed (Stream EDitor) and the text editor emacs, all
of which are part of Unix-like systems, incorporate
regex-es. (The tools mentioned above had versions
workable under Windows 95, but comments on the
capability of later Windows and Macintosh systems
are outside the scope of this document.)

For a flavor of the regex world:

/s/Old/New/g : Old → New globally (g)
/s/^Old/New/ : Old → New at line start (^)
/s/(...)Old/NEW\1/ : xyxOld → NEWxyz
In the last example, the string Old is sought,

but only if it preceded on its line by 3 characters,
which are to be remembered by the parentheses ()
with the label \1. Then, Old is to be replaced by
NEW but followed by the 3 characters just found (here
called xyz).

These examples only suggest the full power of
searching and replacing available, in particular with
perl.

A short summary of the regex usages is in
“Linux in a Nutshell” [2], and an excellent intro-
duction is in the Wikipedia [3].

For an advanced treatment, see “Mastering
Regular Expressions” [4]. The “GNU Emacs Man-
ual” [5] explains using regex-es in editing.

The prime documentation of perl is the ”camel
book” now in its third edition [6]. The NF Of-
fice happened to rely mostly on the “llama book”
[7] and the pocket-size Desktop Reference by Johan
Vromans [8].

Manipulating the References

The lead author of Ref. 1, Gianfranco Federici, con-
tacted a colleague, Andreas Schott, about the chal-
lenge of rationalizing the references. Schott pro-
duced a perl script foot2cite.pl which accom-
plished the task.

A few years previously the NF Office had devel-
oped a collection of bash [9] shell and perl scripts
to produce print masters and files for mounting pdf
and html [10] of articles on the IAEA web server.
The LATEX source of individual articles led to tables
of contents and indexes of authors and subjects from
individual article source files with the help of native
LATEX markup plus additional markup commands
of the local style file. ¿From that experience1 it
appeared interesting to develop an IAEA-local pro-
gram which could be the base of solutions that might
be needed in the future. Some features of the result-
ing ref_manip.pl are described in the following.

The idea is to use the “hash” facility in perl.
Here, a hash is a 1-dimensional array in which the
index and the value of the index are both character
strings. The 1-to-1 hash num2cite connected the
Word-original reference number, such as “1.101,”
to a string designed to be unique (except in patho-
logical circumstances) such as “AuthorA36p123.”

1 The utility of combining LATEX with scripting languages
has been explored recently for the TUG; see for example
William M. Richter, “TEX and Scripting Languages” TUG-
boat, Vol 25, No. 1, p 71 (2004).

— 29 — ignat.pdf

For diagnostic purposes the 1-to-1-or-more hash
cite2nums connected the (uniquely created) \cite
and \bibitem string such as “AuthorA36p123” to
the (multiple, in general) original reference numbers
such as “1.101”; “2.45”.

The multiple LATEX section files produced by
rtf2latex2e are scanned in sequence for a footnote.
If footnote-style text of the nature author-journal-
volume-page is found, then an identifier string is
made of the first author’s last name, first initial, vol-
ume number, page number (AuthorA36p123). The
text of the reference is entered in a holder for the bib-
liography under \bibitem{AuthorA36p123}, while
the footnote is replaced by \cite{AuthorA36p123}.
Next, the two hashes receive the appropriate entries
— such as “1.101” and “AuthorA36p12” — with the
help of a counter in the perl script. That counter
should not become out of synchronization with the
footnote numbers given in the paper unless there is
is a mistake in the original text.

The references not citing journal articles are
detected by the absence of a bolding of an alpha-
numeric volume number in a footnote. In that case,
the cite/bibitem identifier is formed from the first
twenty alpha-numeric characters in the citation, ex-
cluding all white space. Again, the text of the ref-
erence goes to the bibliography as a \bibitem.

If the footnote is to a previously used number,
such as [1.101] or [2.202], then the num2cite
hash is used to enter the citation with the \cite
format, without adding anything to the bibliogra-
phy.

In the script as developed, pre-processing of the
raw section files does, for example, the following:

• take out explicit section numbering

• make all citations (recall, they are of the
\footnote type) begin in column one as
\CITE[...] and occupy one entire (sometimes
very long) line

• make the bolded volume numbers into a par-
ticular form that will not confuse later searches
for a right brace closing the footnote.

That pre-processing is no doubt a sign of igno-
rance of the full power of perl, and no doubt extends
the execution time. However, execution time is not
a practical issue, but being able to construct the
script in small pieces that do small, easily testable,
things was very much an issue in the environment
of the NF editorial and production offices.

The final pass changes \CITE[...] into
\cite{...}, writes the \bibitem{...} entries,
and, optionally, saves the hashes num2cite and
cite2nums for diagnostics.

There are vulnerabilities. A simple one, which
could be programmed around, is that the original
footnotes cannot contain inside them the charac-
ters [] or, other than for volume bolding, {}. A
more difficult vulnerability, practically speaking in-
evitable, is that truly identical references have to be
presented in pretty much the same way. There is
probably no automated way to defend against ty-
pographical errors in the names, volume or page
numbers. (The potential vulnerability to different
amounts white space had a simple defense.) How-
ever, an off-line sort of all the \cite and \bibitem
texts would have a good chance of revealing a prob-
lem.

The Result

The processing into LATEX of the first draft man-
uscript created one format completely common to
all contributing institutions and authors. With that
common form, adjustments in response to the con-
cerns of the NF editorial office and referees became
easier, as did changes originating with the paper’s
authors as the review developed. Even so, the refer-
eeing process was extensive, which is not uncommon
for articles appearing in NF, and particularly arti-
cles of such a length.

Independent of what the authors of Ref. 1 feel
about their article and the process of publishing it,
the publishing journal and its home organization
have interests.

The Institute for Scientific Information (ISI)
keeps track of an “Impact Factor” (IF) for thousands
of journals [11]. The IF is (at least approximately)
the number of citations to a journal divided by the
number of articles in the period studied. Nature and
Science have IFs in the 20–30 range. The very pres-
tigious Physical Review Letters has an IF around 6,
and the Physical Review, (series A, B, C, D, and
E) is typically between 2 and 3. Journals covering
plasma physics and nuclear fusion range from 0.5 to
3 or so, and NF is consistently the highest in the
group. In the six years ending in 2003 NF was be-
tween 2.2 and 3.4.

According to Google’s newly introduced
“Scholar” service, articles from all journals covered
referenced Ref. 1 23 times, which is unusually high
for the sub-field of science and engineering covered
by NF. (The time frame was not apparent from the
information at Google.)

Records available at the IAEA show that for
Ref. 1: there were 162 downloads in 2003, placing
it number 7 in the top 10 downloads for that year;
and that the citation rate is roughly double the next
most cited article, and far above the average rate.

— 30 — ignat.pdf

The numbers quoted above suggest that the re-
search community received Ref. 1 unusually well,
making it a fine credit to each of the authors and
to their institutions. The numbers also say that the
article had significant positive influence on the IF of
NF, and therefore a positive influence on the contin-
ued success of NF. In other words, the appearance
of this article was very good for its authors as well
as the IAEA and NF.

Remembering that publication in NF, and at
low cost to submitters, required a LATEX manuscript,
one can wonder if all the good news would have hap-
pened without rtf2latex2e and perl. My specu-
lation:

1. the research paper would have come out, if at
all, later than it did,

2. it would not have appeared in NF,
3. the authors would not have gotten quite the

recognition they did,
4. the IAEA and its journal would have a lower IF

for the relevant period.

Acknowledgments

Co-author of rtf2latex2e, Ujwal S. Setlur, assisted
the co-authors of Ref. 1 during the preparation of a
manuscript that the IAEA would accept. As men-
tioned previously, Andreas Schott, a computer pro-
fessional experienced in perl, produced the script
that the co-authors actually used.

LATEX production and web-posting at the IAEA
owed particular thanks to M. Bergamini-Rödler,
N. Douchev, H. Giller, P. Gillingwater, F. Hannak,
I. Kurtev, A. Primes, N. Robertson, M. Sherwin,
J. Weil, and, for the LATEX-to-html translations,
I. Hutchinson, author of tth [10]. The management
support of R. Kelleher and D. McLaughlin was indis-
pensable, particularly as NF production processes
grew to depend heavily on the tools of Unix shell
scripts, perl, native and locally developed LATEX
markup.

In January 2002, the Institute of Physics Pub-
lishing (IoPP) of Bristol, UK, assumed responsibil-
ity for production (again, based on LATEX) while the
IAEA editorial office, located in Vienna, Austria,
continued to manage content. The Federici paper
[1] is now mounted on the web by the IoPP. The
present editor of NF is F.C. Schüller of The Nether-
lands.

David Walden contributed helpful comments on
a preliminary draft of this paper.

References

[1] G. Federici, C. H. Skinner, J. N. Brooks, J. P.
Coad, C. Grisolia, A. A. Haasz, A. Hassanein,

V. Philipps, C. S. Pitcher, J. Roth, W. R.
Wampler, D. G. Whyte, “Plasma-material in-
teractions in current tokamaks and their im-
plications for next step fusion reactors,” Nucl.
Fusion 41 No. 12R (2001) 1967-2137.

[2] Jessica Perry Hekman, “Linux in a Nutshell,”
O’Reilly and Associates, Inc., 1997.

[3] Wikipedia, the Free Encyclopedia,
en.wikipedia.org/
wiki/Regular_expression

[4] Jeffrey E. F. Friedl, “Mastering Regular Ex-
pressions,” O’Reilly and Associates, Inc., 1997.

[5] “The GNU Emacs Manual,” 14th edition for
version 21.3, Free Software Foundation, 2004.
Online at
www.gnu.org/software/emacs/manual

[6] Larry Wall, Tom Christiansen, Jon Orwant,
“Programming Perl,” (Third Edition) O’Reilly
and Associates, Inc., 2000.

[7] Randal L. Schwartz and Tom Christiansen,
“Learning Perl,” O’Reilly and Associates, Inc.,
1997.

[8] Johan Vromans, “Perl 5 Desktop Reference,”
O’Reilly and Associates, Inc., 1996.

[9] Cameron Newham and Bill Rosenblatt, “Learn-
ing the bash Shell,” O’Reilly and Associates,
Inc., 1995.

[10] Ian H. Hutchinson, “TtH: a TeX to HTML
translator,”
hutchinson.belmont.ma.us/tth/manual/

[11] See http://www.isinet.com/ .

— 31 — slough.pdf

Beamer by Example

Andrew Mertz
William Slough

Mathematics and Computer Science Department
Eastern Illinois University

June 15, 2005

Practical TEX 2005

Overview

I Benefits of Using Beamer
I Examples

I A tiny example
I Basic frame ingredients

\begin{frame}, \frametitle, \end{frame}
I Static frame contents

I Lists, mathematics, tables, verbatim text, graphics
I Colors and tables via xcolor
I Two columns

I Incremental frame contents
I Tables and lists with \pause
I Lists with \onslide
I Tic-tac-toe with \onslide and multiple graphics files
I Highlighting items of a list

I Ornaments: Fonts and Themes

I Producing N-up output with pdfjam and pdfpages
I Pitfalls

I References
Practical TEX 2005

Benefits of Using Beamer

I LATEX-based, platform-independent

I Extensively documented

I Provides color

I Rich, dynamic effects

I Generates PDF output suitable for both presentation and
printing

I Easy to learn and use

I Flexible

Practical TEX 2005

A Tiny Example

\documentclass{beamer}

\title{A Tiny Example}

\author{Andrew Mertz and William Slough}

\date{June 15, 2005}

\begin{document}

\maketitle

\begin{frame}

\frametitle{First Slide}

Contents of the first slide

\end{frame}

\begin{frame}

\frametitle{Second Slide}

Contents of the second slide

\end{frame}

\end{document}

Practical TEX 2005

A Tiny Example

Andrew Mertz and William Slough

June 15, 2005

Practical TEX 2005

First Slide

Contents of the first slide

Practical TEX 2005

— 32 — slough.pdf

Second Slide

Contents of the second slide

Practical TEX 2005

Processing

talk.tex talk.pdfpdflatex

Practical TEX 2005

What Goes into a Frame?

I Headline and footline

I Left and right sidebar

I Navigation bars

I Logo

I Frame title

I Background

I Content

Practical TEX 2005

Frame Content

I Lists

I Mathematics

I Tables

I Verbatim text

I Graphics

I Other packages

I . . .

Practical TEX 2005

Example: Lists

\begin{frame}

\frametitle{Frame Content}

\begin{itemize}

\item Lists

\item Mathematics

\item Tables

\item Verbatim text

\item Graphics

\item Other packages

\item \ldots

\end{itemize}

\end{frame}

Practical TEX 2005

L’Hôpital’s Rule

If

f and g are differentiable,

limx→∞ f (x) =∞, and

limx→∞ g(x) =∞,

then

limx→∞
f (x)
g(x) = limx→∞

f ′(x)
g ′(x) .

Practical TEX 2005

— 33 — slough.pdf

Example: Mathematics

\begin{frame}

\frametitle{L’H\^{o}pital’s Rule}

If

\begin{itemize}

\item[] f and g are differentiable,

\item[] $\lim_{x \rightarrow \infty}f(x) = \infty$, and

\item[] $\lim_{x \rightarrow \infty}g(x) = \infty$,

\end{itemize}

then

\begin{itemize}

\item[] $\lim_{x \rightarrow \infty}\frac{f(x)}{g(x)} =

\lim_{x \rightarrow \infty}\frac{f’(x)}{g’(x)}$.

\end{itemize}

\end{frame}

Practical TEX 2005

Practical TEX 2005 Events

8-9 am Registration
9 am Karl Berry Opening

9:15 am Nelson Beebe Keynote address
10:15 am Break
10:30 am Peter Flom A True Beginner Looks at LATEX

11 am Anita Schwartz The Art of LATEX Problem Solving
11:45 am Steve Peter Introduction to memoir
12:30 pm Lunch

Practical TEX 2005

Example: Tables

\begin{frame}

\frametitle{Practical \TeX\ 2005 Events}

\begin{center}

\begin{tabular}{|r|l|l|}\hline

8-9 am & Registration & \\

9 am & Karl Berry & Opening \\

9:15 am & Nelson Beebe & Keynote address \\

10:15 am & Break & \\

10:30 am & Peter Flom & A True Beginner Looks at \LaTeX \\

11 am & Anita Schwartz & The Art of \LaTeX\ Problem Solving \\

11:45 am & Steve Peter & Introduction to memoir \\

12:30 pm & Lunch & \\ \hline

\end{tabular}

\end{center}

\end{frame}

Practical TEX 2005

Verbatim Text

\begin{frame}

\frametitle{Practical \TeX\ 2005 Events}

\begin{center}

\begin{tabular}{|r|l|l|}\hline

8-9 am & Registration & \\

9 am & Karl Berry & Opening \\

9:15 am & Nelson Beebe & Keynote address \\

10:15 am & Break & \\

10:30 am & Peter Flom & A True Beginner Looks at \LaTeX \\

11 am & Anita Schwartz & The art of \LaTeX\ Problem Solving \\

11:45 am & Steve Peter & Introduction to memoir \\

12:30 pm & Lunch & \\ \hline

\end{tabular}

\end{center}

\end{frame}

Practical TEX 2005

Example: Verbatim

\begin{frame}[fragile]
\frametitle{Verbatim Text}

{\scriptsize
\begin{verbatim}

\begin{frame}

\frametitle{Practical \TeX\ 2005 Events}

\begin{center}

\begin{tabular}{|r|l|l|}\hline

8-9 am & Registration & \\

9 am & Karl Berry & Opening \\

9:15 am & Nelson Beebe & Keynote address \\

10:15 am & Break & \\

10:30 am & Peter Flom & A True Beginner Looks at \LaTeX \\

11 am & Anita Schwartz & The Art of \LaTeX\ Problem Solving \\

11:45 am & Steve Peter & Introduction to memoir \\

12:30 pm & Lunch & \\ \hline

\end{tabular}

\end{center}

\end{frame}

\end{verbatim}
}

\end{frame}

Practical TEX 2005

Practical TEX 2005 Logo

Practical TEX 2005

— 34 — slough.pdf

Example: Graphics

\begin{frame}

\frametitle{Practical \TeX\ 2005 Logo}

\begin{center}

\includegraphics[height=3.25in]{p2005}

\end{center}

\end{frame}

Practical TEX 2005

Colors via xcolor

Practical TEX
Practical TEX
Practical TEX
Practical TEX
Practical TEX
Practical TEX
Practical TEX
Practical TEX
Practical TEX
Practical TEX

Practical TEX 2005

Example: xcolor

\begin{frame}

\frametitle{Colors via {\color{BrickRed} xcolor}}

\begin{center}

{\color{BlueViolet!10} Practical} {\color{BrickRed!10} \TeX} \\

{\color{BlueViolet!20} Practical} {\color{BrickRed!20} \TeX} \\

{\color{BlueViolet!30} Practical} {\color{BrickRed!30} \TeX} \\

{\color{BlueViolet!40} Practical} {\color{BrickRed!40} \TeX} \\

{\color{BlueViolet!50} Practical} {\color{BrickRed!50} \TeX} \\

{\color{BlueViolet!60} Practical} {\color{BrickRed!60} \TeX} \\

{\color{BlueViolet!70} Practical} {\color{BrickRed!70} \TeX} \\

{\color{BlueViolet!80} Practical} {\color{BrickRed!80} \TeX} \\

{\color{BlueViolet!90} Practical} {\color{BrickRed!90} \TeX} \\

{\color{BlueViolet!100} Practical} {\color{BrickRed!100} \TeX} \\

\end{center}

\end{frame}

Practical TEX 2005

Practical TEX 2005 Events

8-9 am Registration
9 am Karl Berry Opening

9:15 am Nelson Beebe Keynote address
10:15 am Break
10:30 am Peter Flom A True Beginner Looks at LATEX

11 am Anita Schwartz The Art of LATEX Problem Solving
11:45 am Steve Peter Introduction to memoir
12:30 pm Lunch

Practical TEX 2005

Example: Table with Color

\begin{frame}

\frametitle{Practical \TeX\ 2005 Events}

\begin{center}

\rowcolors{1}{RoyalBlue!20}{RoyalBlue!5}

\begin{tabular}{|r|l|l|}\hline

8-9 am & Registration & \\

9 am & Karl Berry & Opening \\

9:15 am & Nelson Beebe & Keynote address \\

10:15 am & Break & \\

10:30 am & Peter Flom & A True Beginner Looks at \LaTeX \\

11 am & Anita Schwartz & The Art of \LaTeX\ Problem Solving \\

11:45 am & Steve Peter & Introduction to memoir \\

12:30 pm & Lunch & \\ \hline

\end{tabular}

\end{center}

\end{frame}

Practical TEX 2005

Revising documentclass for xcolor

\documentclass[xcolor=pdftex,dvipsnames,table]{beamer}

I Beamer loads some packages automatically

I \usepackage{...} cannot be used for such packages

I Package options are specified within documentclass

I xcolor=... specifies options for xcolor

I pdftex specifies the correct driver for pdflatex

I dvipsnames loads the Crayola/dvips colors

I table loads the colortbl package

Practical TEX 2005

— 35 — slough.pdf

A Race Condition

Two people share a checking account. They each visit an ATM
machine in different parts of town at approximately noon. One
deposits $100; the other withdraws $100.

What happens?

Process A

...
balance += 100;
...

Process B

...
balance -= 100;
...

Practical TEX 2005

Example: Two Columns

Two people share a checking account. They each visit an ATM

machine in different parts of town at approximately noon.

One deposits \$100; the other withdraws \$100.

\vspace{2ex} What happens? \vspace{2ex}

\begin{columns}[t]

\column{3cm}

{\color{BrickRed} \centerline{Process A}

\begin{verbatim}

...

balance += 100;

...
\end{verbatim}

}

\column{3cm}

{\color{BlueViolet} \centerline{Process B}

\begin{verbatim}

...

balance -= 100;

...
\end{verbatim}

}

\end{columns}

Practical TEX 2005

Incremental Frame Contents

I Tables with \pause

I Lists with \pause

I Lists with \onslide

I Tic-tac-toe via tabular and \onslide

I Tic-tac-toe via multiple graphics files

I Highlighting items

Practical TEX 2005

Software Complexity

Date Developer OS Lines of C

1976 Thompson/Ritchie AT&T UNIX 9,000

1997 Tanenbaum Minix 62,000

1999 Torvalds Linux 1,000,000

2000 Cutler et al. Windows NT 28,000,000

Practical TEX 2005

Example: Table with pause

\begin{frame}

\frametitle{Software Complexity}

\setbeamercovered{dynamic}

\renewcommand{\arraystretch}{1.2}

\begin{tabular}{c|c|c|c|c}

Date & Developer & OS & Lines of C & U’s\\ \hline \hline

1976 & Thompson/Ritchie & AT\&T UNIX & 9,000 \\ \hline \pause

1997 & Tanenbaum & Minix & 62,000 \\ \hline \pause

1999 & Torvalds & Linux & 1,000,000 \\ \hline \pause

2000 & Cutler {\em et al.} & Windows NT & 28,000,000 \\ \hline \hline

\end{tabular}

\end{frame}

Practical TEX 2005

Frames and Overlays

I A frame consists of one or more overlays

I Dynamic effects can be achieved by using overlays

I Inserting \pause is one way to create a new overlay

Practical TEX 2005

— 36 — slough.pdf

Possible Objections To Using TEX

I I’ve heard TEX and LATEX are not WYSIWYG
TEX is a mark-up language

I LATEX is not installed on my computer
ProText, TEXLive, TEXShop

I I don’t know who to ask for help
TEX Users Group – www.tug.org
News group – comp.text.tex
Google search

Practical TEX 2005

Example: List with pause

\begin{frame}[fragile]

\frametitle{Possible Objections To Using \TeX}

\setbeamercovered{invisible}

\begin{itemize}

\item I’ve heard \TeX\ and \LaTeX\ are not WYSIWYG\\ \pause

{\color{BrickRed} \TeX\ is a mark-up language} \pause

\item \LaTeX\ is not installed on my computer\\ \pause

{\color{BrickRed} ProText, \TeX Live, \TeX Shop} \pause

\item I don’t know who to ask for help\\ \pause

{\color{BrickRed} \TeX\ Users Group -- {\tt www.tug.org}\\

News group -- {\tt comp.text.tex}\\

Google search}

\end{itemize}

\end{frame}

Practical TEX 2005

Possible Objections To Using TEX

I I’ve heard TEX and LATEX are not WYSIWYG
TEX is a mark-up language

I LATEX is not installed on my computer
ProText, TEXLive, TEXShop

I I don’t know who to ask for help
TEX Users Group – www.tug.org
News group – comp.text.tex
Google search

Practical TEX 2005

Example: List with onslide

\begin{frame}[fragile]

\frametitle{Possible Objections To Using \TeX}

\begin{itemize}

\item I’ve heard \TeX\ and \LaTeX\ are not WYSIWYG\\

\onslide<2-> {{\color{BrickRed} \TeX\ is a mark-up language}}

\item \LaTeX\ is not installed on my computer\\

\onslide<3-> {{\color{BrickRed} ProText, \TeX Live, \TeX Shop}}

\item I don’t know who to ask for help\\

\onslide<4-> {{\color{BrickRed} \TeX\ Users Group -- {\tt www.tug.org}\\

News group -- {\tt comp.text.tex}\\

Google search}}

\end{itemize}

\end{frame}

Practical TEX 2005

Overlay Specifications

I Overlays are numbered 1, 2, 3, . . . ,N

I An overlay specification defines a sequence of numbers
I Examples:

I <2>
I <2-4>
I <2->
I <1,3,5,7,9>
I <-3,8->

I Some LATEX commands can provide an overlay specification
I \textbf<2->{bolded text}
I \emph<3,5>{emphasized text}
I {\color<4>{RoyalBlue} blue}

Practical TEX 2005

Tic-Tac-Toe via tabular

O X X
X O O
X O X

Practical TEX 2005

— 37 — slough.pdf

Example: Tic-Tac-Toe via tabular

\begin{frame}

\frametitle{Tic-Tac-Toe via {\tt tabular}}

\setbeamercovered{invisible}

{\Huge

\begin{center}

\begin{tabular}{c|c|c}

\onslide<9->{O} & \onslide<8->{X} & \onslide<2->{X} \\ \hline

\onslide<6->{X} & \onslide<3->{O} & \onslide<5->{O} \\ \hline

\onslide<10->{X} & \onslide<7->{O} & \onslide<4->{X}

\end{tabular}

\end{center}

}

\end{frame}

Practical TEX 2005

Tic-Tac-Toe via Multiple Graphics Files

X
O
X
OX

O

XO

X
Practical TEX 2005

Example: Multiple Graphics Files

\usepackage{xmpmulti}

...

\begin{frame}

\frametitle{Tic-Tac-Toe via Multiple Graphics Files}

\setbeamercovered{invisible}

\begin{center}

\multiinclude[format=pdf,width=3in]{game}

\end{center}

\end{frame}

X
O

game-0.pdf game-1.pdf game-2.pdf

Practical TEX 2005

Highlighting Items of a List

I Practical

I TEX

I 2005

Practical TEX 2005

Example: Multiple Overlay Specifications

\begin{frame}

\frametitle{Highlighting Items of a List}

\setbeamercovered{dynamic}

\begin{itemize}

\item<1-> {\color<1>{BrickRed} Practical}

\item<2-> {\color<2>{BrickRed} \TeX}

\item<3-> {\color<3>{BrickRed} 2005}

\end{itemize}

\end{frame}

Practical TEX 2005

Highlighting Items of A List Revisited

I Practical

I TEX

I 2005

Practical TEX 2005

— 38 — slough.pdf

Example: Default Overlay Specifications

\begin{frame}

\frametitle{Highlighting Items of A List Revisited}

\setbeamercovered{dynamic}

\setbeamercolor{alerted text}{fg=BrickRed}

\begin{itemize}[<+- | alert@+>]

\item Practical

\item \TeX

\item 2005

\end{itemize}

\end{frame}

Practical TEX 2005

Other Fonts

I Other fonts installed with TEX can be used
I For example, to use the Microsoft Comic Sans font, place

\usepackage{comicsans}

\renewcommand{\sfdefault}{comic}

in the preamble

Practical TEX 2005

Beamer by Example

Andrew Mertz
William Slough

Mathematics and Computer Science Department
Eastern Illinois University

June 15, 2005

Practical TEX 2005

Practical TEX 2005

Overview
I Bene�ts of Using Beamer
I Examples

I A tiny example
I Basic frame ingredients

\begin{frame}, \frametitle, \end{frame}
I Static frame contents

I Lists, mathematics, tables, verbatim text, graphics
I Colors and tables via xcolor
I Two columns

I Incremental frame contents
I Tables and lists with \pause
I Lists with \onslide
I Tic-tac-toe with \onslide and multiple graphics �les
I Highlighting items of a list

I Ornaments: Fonts and Themes
I Producing N -up output with pdfjam and pdfpages
I Pitfalls
I References

Practical TEX 2005

Practical TEX 2005

Other Themes

I The Beamer package supplies many themes
I For example, place

\usepackage{beamerthemesplit}

\usetheme{Berkeley}

\usecolortheme{dolphin}

in the preamble

Practical TEX 2005

Beamer by
Example

Andrew
Mertz
William
Slough Beamer by Example

Andrew Mertz
William Slough

Mathematics and Computer Science Department
Eastern Illinois University

June 15, 2005

Practical TEX 2005

Practical TEX 2005

— 39 — slough.pdf

Beamer by
Example

Andrew
Mertz
William
Slough

Overview

Benefits of Using Beamer
Examples

A tiny example
Basic frame ingredients

\begin{frame}, \frametitle, \end{frame}
Static frame contents

Lists, mathematics, tables, verbatim text, graphics
Colors and tables via xcolor

Two columns
Incremental frame contents

Tables and lists with \pause

Lists with \onslide

Tic-tac-toe with \onslide and multiple graphics files
Highlighting items of a list

Ornaments: Fonts and Themes
Producing N-up output with pdfjam and pdfpages
Pitfalls
References

Practical TEX 2005

Practical TEX 2005

pdfjam and pdfpages

I Beamer output can be created without overlay effects:
\documentclass[handout,xcolor=pdftex,dvipsnames,table]{beamer}

I The pdfpages package can be used to generate an N-up
version from an overlay-free presentation

I pdfjam is a Unix shell script to automate the use of pdfpages

Practical TEX 2005

Pitfalls

I Beamer’s verbatim environment

I Multiple processing steps

I Switching themes after content is established

I Frame numbering

I Temptation to exert fine control

Practical TEX 2005

Credits and Acknowledgments

beamer Till Tantau

mpmulti Klaus Guntermann

pdfjam David Firth

pdfpages Andreas Matthias

xcolor Uwe Kern

Practical TEX 2005

References

I Beamer: latex-beamer.sourceforge.net

I TEX Live: www.tug.org/texlive/

I TEX Shop: www.uoregon.edu/~koch/texshop/texshop.html

I ProTEXt : www.tug.org/protext/

I pdfpages: www.ctan.org/tex-archive/help/Catalogue/
entries/pdfpages.html

I pdfjam: www2.warwick.ac.uk/fac/sci/statistics/staff/
academic/firth/software/pdfjam

Practical TEX 2005

— 40 —

NO MATTER IF

YOUR DOCUMENTS

ARE

�

smokin’

friendly
FORMAL

OR JUST A LITTLE

odd

2
6=

⌊

odd

2

⌋

THEY’RE SPECIAL

TO YOU

SO BRING THEM

TO US

siLmaRiL
consultants

. LATEX typesetting

. XML document systems

http://www.silmaril.ie/

The LATEX Companion has long been

the essential resource for anyone using

LATEX to create high-quality printed

documents. This completely updated

edition brings you all the latest informa-

tion about LATEX and the vast range of

add-on packages now available—over

200 are covered. Like its predecessor,

The LATEX Companion, Second Edition

is an indispensable reference for anyone

wishing to use LATEX productively.

For more information, visit:
www.awprofessional.com/

titles/0201362996

Frank Mittelbach and Michel Goossens
with Johannes Braams,

David Carlisle, and Chris Rowley

ISBN: 0-201-36299-6

Available at fine bookstores everywhere.

The LATEX
Companion

Second Edition

The LATEX
Companion

Second Edition

LaTex TugBoat ad 5/26/04 10:20 AM Page 1

— 41 —

Hea
lth

and Happines
s

Tax Benefits

Creativ
ity

Ente
rtainment

Building Equity

Helping Buyers and Sellers Succeed

Joe Hogg, Broker-Associate

Seniors Real Estate Specialist; Realtor

, Los Angeles, CA 90027

voice: (323) 842-9764

email: joe@joehogg.com

web: http://www.joehogg.com

Do you need on-site training for LATEX?

Contact Cheryl Ponchin at

cponchin@comcast.net

Training will be customized for your company needs.

Any level, from Beginning to Advanced.

— 42 —

Π Π

Carleton Production Centre
HUMANITIES TYPESETTING

Specialising in Linguistics
Since 1991

613-823-3630 • 15 Wiltshire Circle
Nepean, Ont., Canada • K2J 4K9

qqqqqqqqqqqqqqqqqqqqqqqqqqqq

typesetting and editorial services

on-site training

Steve Peter
310 Hana Road
Edison, NJ 08817

Specializing in foreign language, linguistic, and technical typesetting using TEX, LaTEX,
and ConTEXt, I have typeset books for Oxford University Press, Routledge, and Kluwer,
and have helped numerous authors turn rough manuscripts, some with dozens of lan-
guages, into beautiful camera-ready copy.

With a background in linguistics and information technology, I have extensive ex-
perience in planning, editing, proofreading, and writing documentation, to offer you a
complete solution.

I am an award-winning teacher and offer training in all matters TEX for individuals,
groups, and corporations. Training is targeted to the specific needs of the client.

Phone: +1 732 287-5392
Email: speter@dandy.net

— 43 —

� � � � � � � � � � � �
����� ������

 Nature trusts us… Nature trusts us…
You can too!

Nature Physics is a new journal. Like others from Nature Publishing Group, it is set to
become the leader in its fi eld.

And it’ll be typeset using TEX. And of course River Valley were chosen for the task.
Needless to say, the fi nal PDF will come from XML with zero intervention.

See why NPG, IOP and Elsevier trust us with their toughest journals. Perhaps we can
breath new life into your journals.

www.river-valley.com

 Nature trusts us…

— 44 —

Math and Science
Equations 40% Faster!
MathType for Windows and Macintosh
MathType is the full-featured, professional version of the
Equation Editor in Microsoft Office. It has hundreds of
extras that you do not get with Equation Editor, and
installs special features into MicrosoftWord/PowerPoint,
that effectively creates an integrated math word proces-
sor, slide creator, and web page editor.

Get the job done faster!
Tests have proven that using MathType gets the same
job done 40% faster than using Equation Editor.

Download a fully-functional 30-day trial of MathType today!
www.dessci.com

MathType™
The best thing for writing equations since chalk!™

MathType™ WebEQ™ MathPlayer™ MathFlow™

Design Science, Inc. 4028 Broadway, Long Beach, CA 90803, USA
www.dessci.com Telephone: 562-433-0685, Fax: 562-433-6969, Email: sales@dessci.com
MathType,“The best thing for writing equations since chalk!” and “How Science Communicates” are trademarks of Design Science.
All other company and product names are trademarks and/or registered trademarks of their respective owners.

