
TeX and Scripting Languages

William M. Richter
Texas Life Insurance Company



Bill Clinton: Eat your heart out... 
This is MY LIFE!



Painting, Hacking and TeX
--- Say what??

● Paul Graham - “Hackers and Painters”

● Painting and writing are “evolutionary”

● Hacking: Also an evolutionary process

● TeX/Authoring: Yet another evolutionary 
process

● TeX + Authoring + Hacking = ???



Definition of “Hacking”

● From Eric Raymond's “Hacking Folklore”: 
Hacking has several meanings:
– Appropriate application of ingenuity

● Could be in a quick-and-dirty patchwork job,
● Or in a carefully crafted work of art

– A creative practical joke
● Today we're interested in the first definition.  The 

practical joke will have to wait for another day :(



The Recipe:

● Mix equal parts hacking and TeX'ing, 
stir well...

● Yields: Automatic document 
preparation.



WANTED:

A programming language that allows for 
the “appropriate application” of ingenious 

algorithms.

--or--

A programming language that allows us to 
HACK.



Properties of our desired 
language:

● Simple syntax
● Standard control 

structures
● Embeddable in 

other systems

● High level data types
● Malleable
● Plays well with other 

entities (i.e. TeX)



Scripting Languages

● Depart from traditional edit /compile /
link / test “cycle-of-pain”

● Just edit and run
● High level data types:

– Lists, Tuples, Dictionaries, etc.
● Object-oriented
● Clean, readable syntax
● Dynamic variables / Loose type checking



Welcome to the scripting 
language Zoo

● Perl
● Python
● Tcl/Tk
● JavaScript
● Rebol
● Bash

● Awk
● PHP
● Ruby
● Small
● Groovy
● Lua



Scripting Languages go prime 
time

● Google search of “scripting language”: 
returns 1,570,000 hits

● Many have evolved past original origins 
to become general-purpose languages

● Only reason to continue calling them 
“scripting languages” is lack of a better 
term -- ESR



Popular Scripting Languages

● Perl - www.perl.org
● Python - www.python.org
● PHP - www.php.net
● Ruby - www.ruby-lang.org



We chose Python because:

● Simple syntax
● Standard control 

structures
● Embeddable
● Object-oriented to 

the bone
● Elegant internal 

design

● High level data 
types

● Malleable
● Plays well with 

external entities 
(i.e. TeX)

● Highly Extendable



Combining Python and TeX

● Application Domains: 
Thinking about Python / 

TeX integration:

– Python does most of 
the work

– TeX does most of the 
work

– Cooperative effort



Four approaches to Python / 
TeX integration

● Imperative
● Form-based paradigm (TeXmerge)
● Tricks with TeX macros
● Hybrid: Imperative + TeXmerge



The imperative technique:
Example: A trivial script that creates a .tex file,
runs it through TeX, and Dvips.

!/usr/bin/env python
import sys
import os
f = open('MyDocument.tex', 'w')
f.write('\\nopagenumbers\n')
f.write('This is my first \\TeX\\ document \
    produced from a script.\n')
f.write('\\vfil\\eject\\bye\n')
f.close()
os.system('tex MyDocument.tex')
os.system('dvips MyDocument')
print 'Done.'



About the imperative way...

● Simplest approach to combining 
Python / TeX 

● Development emphasis is on the Python 
side (but not exclusively so).

● Surprisingly effective:  Python logic 
decides:
– What text to assemble
– How to assemble it



A small increase in 
sophistication: Using m4

Example: Assume we have a file, form.txt,  with the following contents:

Hello, NAME, today is DATE.

Now consider the following command:

m4 -DNAME=Sally -DDATE='22-June-2004' form.txt

Hello, Sally, today is 22-June-2004.

The command produces the following output:



Now use Python to command 
m4 and TeX

Assemble TeX code
from snippets of text.

Gather data for tag-
replacement.

Build m4 command line
with -Dname=value

arguments.

Execute the m4 command.

Present m4's output
to TeX.



M4 Example:
#!/usr/bin/env python
import sys
import os
import commands

# DATA TO BE 'MERGED' ONTO FORM.TXT:
data = {'NAME': 'Sally', 'DATE': '22-June-2040'}

# BUILD THE m4 COMMAND LINE, EXECUTE IT, AND GET RESULT:
cmd = 'm4 '
for name in data.keys():

cmd += “ -D%s='%s'” % (name, data[name])
cmd += ' form.txt'
snippet = commands.getoutput(cmd)

# ASSEMBLE TEX FILE, RUN TEX AND PRODUCE POSTSCRIPT FILE:
f = open('MyDocument.tex', 'w')
f.write('\\nopagenumbers\n')
f.write(snippet)
f.write('\\vfil\\eject\\bye\n')
f.close()
os.system('tex MyDocument.tex')
os.system('dvips MyDocument')
print 'Done.'



While m4 is an excellent macro preprocessor, there is
another equally powerful tool that can do the job.

And we're already using it...  TeX!

Consider the following file, form.tex:

\nopagenumbers
This is my first \TeX\ document produced
from a script.
\par
Hello, \NAME, today is \DATE.
\vfil\eject

Alone, this file will result in undefined macro references
because the macros \NAME and \DATE are not defined.



Imperative TeX code-writing 
script

#!/usr/bin/env python
import sys
import os
f = open('temp.tex', 'w')
f.write('\\def\\NAME{Sally}\n')
f.write('\\def\\DATE{22-June-2004}\n')
f.write('\\input form.tex\n')
f.write('\\bye\n')
f.close()
os.system('tex temp.tex')
os.system('dvips temp')
print 'Done.'



Results of the script

Running the previous script creates temp.tex:

\def\NAME{Sally}
\def\DATE{22-June-2004}
\input form.tex
\bye



Formalizing the process as an API: 
TeXmerge

● Need a concise formalism for 
interfacing with TeX in order to:
– Escape tokens in merge data that would 

otherwise confuse TeX
– Remove the tedium of running TeX and 

backend DVI programs
– Help with error checking

● The API is called TeXmerge



Schematic overview of TeXmerge-based 
document production

Template
.tex
files

Data
Source

Temporary
.tex
file

Finished
Document

TeXmerge
Application

Run
TeX

and DVI backend
processor



A TeXmerge script:

#!/usr/bin/env python
import sys
import os
import TeXmerge

f = TeXmerge.openOutput('temp.tex')
mergeVars = {'NAME': 'Sally',
             'DATE': '22-June-2004'}

TeXmerge.merge('form.tex', mergeVars)
TeXmerge.closeOutput(f)
TeXmerge.process('temp.tex', 'dvips')
print 'Done.'



Results of the script

Running the previous script creates temp.tex:

\batchmode
\nopagenumbers
\begingroup
\def\NAME{Sally}
\def\DATE{22-June-2004}
\input form.tex
\endgroup
\bye



Another Example
(this time object-oriented)

#!/usr/bin/env python
import sys
import os
import TeXmerge

mergeObj = TeXmerge.TeXmerge('temp.tex')
mergeVars = {'NAME': 'Sally',
             'DATE': '22-June-2004'}

mergeObj.merge('form.tex', mergeVars)
mergeObj.process('dvips')
print 'Done.'



Work increasingly done by script

W
o

rk
 i
n

cr
e

a
si

n
g

ly
 d

o
n

e
 b

y
 T

e
X

Sophisticated
Script-TeX-Script

Schemes

TeXmerge-based
Applications

TeX Code-writing
Applications

Cooperative

TeXm
erge/Code-w

riting

Applications



Going Further with Macros

● Do-Nothing Macros – TeX sees them as 
\relax.  Python scripts search for and act 
on them
– Classic merge variable declarations
– Extended merge variable declarations
– Named text blocks

● Do-Something Macros and Hybrid 
schemes



Merge variable declarations

● Allow the author of template (form) .tex 
documents to explicitly state the names 
of all merge variables used in the 
document

● TeXmerge API has a method call to 
extract these declarations

● Two flavors:
– Classic
– Extended



Classic merge variable 
declarations

● Usage:
– \texmergevar varname

● Simply states that varname will be 
referenced in the document as \varname

● Therefore, the data dictionary passed to 
the merge() method must have a tag 
varname or TeX will throw an error.



Extended merge variable 
declarations

● Usage:
– \texmergevardef[attrName=attrValue...]

● Attribute names:
– Name= the name of the merge field
– Type= the type of merge field.  Intended to 

convey information to GUI applications
● Entry: a simple text entry field
● Text: a multi-line text entry field
● Toggle: a toggle button field
● Optionmenu: a drop-down option menu of choices
● Radiobutton: a set of mutually exclusive toggle 

buttons



More on extended merge field 
attribute values:

● Attribute names (continued)
– Values= a list of valid values for the 

variable, delimited by |'s
– Labels= a list of alternate labels that 

should be associated with the values 
attribute for display purposes.  Used with 
toggle, optionmenu, and radiobutton field 
types.

– Descr= a textual description of the merge 
field's purpose



Retrieving information about 
extended merge fields

● Use the TeXmerge method 
getExtendedNames()

● Returns a dictionary, keyed by field 
name. The key's value is a dictionary of 
field attributes: name, type, value, etc.



getExtendedNames() example
Assume we have the file test.tex:

\texmergevardef[name=ISTATE, type=optionmenu, values=TX|OK|AZ|CA|OR|WA,descr=Issuing state]
\texmergevardef[name=ONAME, type=entry, descr=Owner name']
\texmergevardef[name=APPTYPE, type=radiobutton,values=1|2|3, labels=Employee|Spouse|Child,
                 descr=Applicant type]

The call:
 TeXmerge.getExtendedNames('test.tex')

will return the Python dictionary:

{'ISTATE': {'name': 'ISTATE', 'type': 'optionmenu',
            'values': ('TX', 'OK', 'AZ', 'CA', 'OR', 'WA'),
            'descr' : 'Issuing state'},
'APPTYPE': {'name': 'APPTYPE', 'type': 'radiobutton',
            'values':('1', '2', '3'),
            'labels': ('Employee', 'Spouse', 'Child'),
            'descr': 'Applicant type'},
   'ONAME: {'name': 'ONAME',
            'type': 'entry', 'descr': 'Owner name'}
}



Named Text Blocks

● Some applications have need to share 
identical text between two markup 
languages.  i.e. TeX and HTML

● It is the language that needs to be 
shared (i.e. For legal purposes), not the 
structure of the text.

● The named text blocks technique makes 
a TeX document the owner of the text 
and the shared language is delimited by 
a set of special macros:



Named Text Blocks Example
This technique is best explained by example.  Consider the
the file test.tex below:

This is a test document containing \textit{named text blocks.}
\StartNamedTextBlock[name=B1]
This is the first block.
\StopNamedTextBlock
Now for a second block:
\StartNamedTextBlock[name=B2]
Second block
\StopNamedTextBlock
Now for a series of sequenced blocks...
\line{\hbox{\StartNamedTextBlock[name=C1,seq=1]C1.Left\StopNamedTextBlock\hfil}
      \hbox{\hfil\StartNamedTextBlock[name=C1,seq=2]C1.Right\StopNamedTextBlock}
}
Finally, a named text block having a subkey:
\StartNamedTextBlock[name=D1,istate=TX]
This text is specific to the state of Texas.
\StopNamedTextBlock

\StartNamedTextBlock[...] marks the beginning of a block.
The name=... argument assigns a name to the block.

\StopNamedTextBlock marks the end of a block.

Partial blocks can be declared with the seq=... parameter



Working with named text blocks
an interactive Python interpreter session...

[hawkeye2:~/sftug] williamr% python
Python 2.3.2 (#1, Nov  6 2003, 13:18:07)
[GCC 2.95.2 19991024 (release)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import TeXmerge
>>> o = TeXmerge.TextBlockManager('test.tex')
>>> o
<TeXmerge.TextBlockManager instance at 0x750648>
>>> o.getBlockNames()
['C1', 'B1', 'B2', 'D1']
>>> b1 = o.getBlock('B1')
>>> b1
<TeXmerge.TextBlock instance at 0x72b5d0>
>>> b1.getText()
'This is the first block.'
>>> c1 = o['C1']
>>> c1.getTextSegments()
{1: 'C1.Left', 2: 'C1.Right'}
>>> c1.getText()
'C1.Left C1.Right'
>>> d1 = o['D1']
>>> d1.getSubkeys()
['istate']
>>> d1.getSubkeyValues('istate')
['TX']
>>> d1.getText('istate','TX')
'This text is specific to the state of Texas.'



Work increasingly done by script

W
o

rk
 i
n

cr
e

a
si

n
g

ly
 d

o
n

e
 b

y
 T

e
X

Sophisticated
Script-TeX-Script

Schemes

TeXmerge-based
Applications

TeX Code-writing
Applications

Cooperative

TeXm
erge/Code-w

riting

Applications



DoSomething Macros
Document Templates

● Document template macros serve to 
produce documents where a certain 
structure needs to be imposed

● Follows a “plug-and-socket” model
● Three types of macro arguments:

– Simple parameters (mp....)
– Data sockets (sd...)
– Slots (sl...)



Client Letter document template, left, showing sockets and slots.
Actual document produced by \StartClientLetter[], right. 



Hybrid Script-TeX-Script Schemes

If we have a complex application where a 
substantial amount of the document's content 
may vary, the merge paradigm of TeXmerge 
begins to break down under the complexity of 
so many variables.  This is especially true of 
variable tabular data.



Premium “Mode” varies: i.e. Monthly, 
Semi-Monthly, Annual, etc.

              “Underwriting class” varies: 'Express' or 'Simplified'

Each cell value and
footnote label must be
calculated.

Premium waiver, ADB and
group-size optional / variable. Premium column headers

are variable and changes
affect calculated cell values.

Form number is variable.



Rate Sheet Example

● The preceding page is complex.
– Only one page of a larger document
– Remainder of document has merge 

variables and works well in the TeXmerge 
framework

– This sheet needs to be embeddable into 
many documents 

● We desire a macro to make 
implementation simple and painless...



The MakeRateSheet macro

● Gathers macro arguments and marshal them into 
a Python script command-line.  The python 
script's function is to generate TeX code that will 
format the rate sheet based on passed arguments

● Executes the python script

● \input's the file of code produced by the python 
script

\MakeRateSheet[uwclass=express,
               mode=semi-monthly,
               groupsize=150,
               formno=test,
               waiver=yes,
               adb=yes
]



Script writes TeX code

TeX interprets code,
encounters script-enabled

macros

Secondary script executed
via \write18 with

possible arguments.

Temporary
TeX code

Run DVI backend
(dvips)

T
i
m
e

Post-process
PostScript

Printer-ready
file

\input temp_tex_code

Schematic Overview of the
Hybrid Script-TeX-Script Method



GUI Applications



TeXmerge – the application



TeXtool
Document selection panel



TeXtool
Document editor panel



TeXtool
Document preferences panel



Policy
Prin t

Policy
Adm in .
System

Docum en t
Im agin g
System

GQCSTeXmerge

Custom
Ap p lication s

Bulk Prin t
Producers

Im agin g
Arch iver

Scan n er
Scan

Ap p lication

Agen t
Merge

Extern al
World

DIS
Adap ter

Web
Server

Laser
Prin ters

Prin t
Man ager

Print
Tracker

The big picture at Texas Life





Conclusion
Why we like hacking Python and TeX

● TeX is a powerful page description language
● Conditional typesetting / intelligent documents
● Python is a malleable, high level language
● Documents are simple ASCII text files
● Independent of proprietary technology
● Bounded only by Imagination
● It's fun!


