Abstract

Eplain is a macro package for the TEX typeset-
ting engine. This document describes implemen-
tation of Eplain’s hypertext link support. For us-
age instructions refer to Eplain user manual [7].

Oleg Katsitadze
April 2006

Table of Contents

1

Background ... 3
L1 Eplain ... 3

Eplain vs. IATEX .. 3
1.2 TgX and electronic document interchange 4

Hypertext links in TEX ... i 4

Hypertext macros 5

Hypertext links in Eplain)
Implementation overview 6
Hyperlink drivers 7
3.1 Defining a driver i 7
3.2 Driver dvipdfm 7
3.3 Driver hypertex 8
3.4 Driver pdftex 8
3.5 Pseudo-driver nolinksiiiiiiii 8
Explicit hyperlinks 9
4.1 Destinationsuetii i 9
4.2 LAnKS .. 9
4.3 Handling of options 9
Implicit hyperlinks 11
Hyperlink types and options 12
6.1 Default types and options 12
6.2 Group types and Options 12
Turning hyperlinks on/off 14
7.1 Turning low-level hyperlinks on/off, 14
7.2 Turning group hyperlinks on/off 14
Acknowledgements 15
References 15
Appendix. Source listing 17

1.1

Background

TEX is a typesetting system developed by Donald E. Knuth [15]. TEX works by
processing an input ‘.tex’ file which contains text interspersed with commands,
such as commands to change the typeface, insert space, add accents, etc.

The low-level, atomic commands provided by TEX are called primitives. Con-
sidered individually, primitives provide very limited and specialized functionality.
Sequences of primitives (again, possibly mingled with text) are usually combined
together in a macro. Therefore macros provide more powerful typesetting capabil-
ities than individual primitives. Macros can in turn be combined to any level of
nesting to form other macros.

Such intricate system of macros can be collected in a file or several files to form
a macro package, or a format file. Some macro packages specialize on particular
features, such as fonts and typefaces, typesetting of music or lyrics. Other macro
packages provide general capabilities useful in development of other macros and
packages.

As part of his work on TgX, Donald E. Knuth developed plain TEX [14],
a general-purpose macro package. It was followed by many other macro pack-
ages: Eplain [7], AMS-TEX [5, 22], WIEX [16, 17], Texinfo [9], CONTEXT [19],
Lollipop [10] and many others. Nowadays IATEX is by far the most popular macro
package.

Eplain

The original plain TEX is more or less a low-level interface to TEX primitives (while
providing a number of user-oriented macros). It lacks many features which most
document writers will reasonably expect, implementation of which requires some
experience in TEX macro programming language. A good example is using labels
for cross-references. Instead of manually inserting absolute numbers throughout
the manuscript, authors like to assign labels to various parts of the document such
as sections, figures, etc. When later TEX encounters a cross-reference with a label,
it automatically changes the label to the appropriate number. This saves lots of
manual work when parts of the document are reordered.

The Eplain macro package was written by Karl Berry as part of the book
TEX for the Impatient [1], published by Addison-Wesley in 1990. Eplain expands
on and extends the definitions in plain TEX, providing features such as symbolic
cross-referencing, lists, citations, indexing and many other capabilities. Eplain
provides both macros intended to be used directly in documents and macros to be
used as tools in developing formats.

Eplain vs. IATEX

As IATEX is the most popular macro package for TEX, a note on how Eplain com-
pares to IATEX is in place.

The philosophy of Eplain is to provide functionality which can be used (or
not used) as desired, without forcing any typographic style on an author. This
approach is much different from that of IATEX. IATEX hides many details from
the user, making it easier to write documents with predefined styles and harder to
produce bad typesetting. A vast number of additional packages has been developed
to allow users to customize IATEX, but desired changes can still sometimes be hard
to accomplish.

http://www-cs-faculty.stanford.edu/~knuth
http://tug.org/eplain
http://www.ams.org/tex/amstex.html
http://www.latex-project.org
http://www.gnu.org/software/texinfo
http://www.pragma-ade.com
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=lollipop
http://www.awprofessional.com

1.2

IATEX is sometimes regarded as an easier-to-learn package, suitable for be-
ginners and occasional TEX users; however, many TEX experts are IATEX users, of
which many participate in TEX and IATEX development. On the other hand, plain
TEX and many plain-TEX-based packages (of which Eplain is one) are regarded as
“hacker-intensive”, and are mostly used by professional compositors and design-
ers or people who know TEX internals well and like to keep TEX under complete
control.

TEX and electronic document interchange

While TEX documents can be distributed in the form of source ‘.tex’ files, this
requires recipients to have a working installation of TEX in order to process the
‘.tex’ files prior to viewing or printing. Another complication is that to produce
identical outputs, systems must have fonts with identical metrics installed, which
is cumbersome and not always possible due to technical or legal issues.

TEX’s native output format, DVI (from “device independent”) is still not
appropriate for document interchange. Most importantly, it does not allow em-
bedding of actual glyphs of fonts used by the document, it can only store general
information about those fonts, so the problem of availability of compatible font
files persists.

All these problems can be overcome with Adobe’s POSTSCRIPT format and
Portable Document Format (PDF). Both of these formats allow font embedding
and preserve exactly layout of a document. Several utilities had been created for
conversion from DVI to PosTScripT [20], from DVI to PDF [13, 24] and from
PoOsTSCRIPT to PDF [11], as well as a TEX engine capable of outputting PDF
directly [23, 25].

POSTSCRIPT [2] is a page description language designed to convey a descrip-
tion of a page to a printer. While it was intended as a language to be “understood”
by printer drivers and even directly by some high-end printers, software packages
had been developed which allow viewing POSTSCRIPT documents on a computer
monitor [11]. POSTSCRIPT format has become an unofficial standard among pro-
fessionals, but remains exotic among unsophisticated users, especially on Microsoft
Windows.

On the other hand, Portable Document Format [3] was designed explicitly
for electronic document interchange. As such, it has some features beneficial to
electronic documents which are not available in POSTSCRIPT, for example, hyper-
text links. Furthermore, PDF is commonplace on a wider variety of platforms,
compared to POSTSCRIPT.

This makes PDF the best candidate for distribution of electronic documents
produced with TEX.

Hypertext links in TEX

The original TEX engine has no built-in support for hypertext links (a.k.a. hy-
perlinks). Many of the present-day file formats with hyperlinking capabilities did
not even exist at the time TEX was written. However, TEX’s \special primitive
can be used to instruct TEX to write special directives into its DVI output file.
These directives are not interpreted by TEX in any way; they are intended for pro-
grams which process the DVI files, be it printing or converting to other formats,
such as POSTSCRIPT or PDF. This approach is used by DVI-to-PDF and DVI-

4

http://www.adobe.com

to-POSTSCRIPT-to-PDF! converters (such as dvipdfmx [13], and dvips [20] with
Ghostscript [11]) to embed special features of the PDF format.
For example, invoking this \special command from TEX:

\special{pdf: dest ((label)) [@thispage /FitH @ypos]}

writes into the output DVI file a directive which instructs dvipdfmx to create a
PDF hyperlink destination (dest) named (label) on the current page (@thispage)
which fits the width of the page to the viewer window (/FitH) at the current
vertical position (@ypos).

Another approach is to extend the original TEX engine with the ability to
generate one of the hyperlink formats—TEX’s set of primitives can be extended to
include hyperlink commands. This is the approach used by the pdf TEX engine [23,
25] which is capable of producing PDF files directly from TEX sources, skipping
the DVI generation and processing step.

For example, this is pdf TEX equivalent of the above \special command:

\pdfdest name{(label)} fith

Hypertext macros

In principle, it is possible to create a document with hypertext links with TEX by
directly specifying \special commands for a DVI processor or extended pdfTEX
primitives in the document. However, this is inconvenient, and higher level macros
can greatly simplify the use of hypertext links.

Several macro packages had been developed for this purpose. For exam-
ple, the hyperref package for IATEX “extends the functionality of all the IATEX
cross-referencing commands (including the table of contents, bibliographies, etc.)
to produce \special commands which a driver can turn into hypertext links; it
also provides new commands to allow the user to write ad hoc hypertext links,
including those to external documents and URLs” [21]. Unfortunately, hyperref
is tightly integrated with IATEX and cannot be used with plain TEX or packages
based on plain TEX.

The hyperbasics [8] and lanlmac [12] packages provide hypertext function-
ality for plain TEX. These packages are based on HyperTEX [18], a standard for
embedding hypertext links in the DVI file. This standard is by necessity quite
limited and cannot take advantage of many hypertext-related features of PDF.

Hypertext links in Eplain

This document describes an attempt to provide hypertext capabilities to plain
TEX users through the Eplain macro package, similar to what hyperref provides
to IATEX users. Besides providing simple wrappers around low-level \special
commands or primitives, existing Eplain macros are extended to automatically
create hypertext links for cross-references, citations, indexes, etc.

The following chapters describe implementation of the hyperlink support in
Eplain; for usage instructions refer to Eplain user manual [7].

Hypertext link support was introduced in Eplain starting with version 3.0 [26].

1 Although POSTSCRIPT does not support hyperlinks, Adobe introduced the pdfmark oper-
ator [4] as a POSTSCRIPT language extension, which can be used to describe features that are
present in PDF but not in standard POSTSCRIPT. The use of the pdfmark operator requires sup-
port by POSTSCRIPT-to-PDF conversion software. Adobe Acrobat Distiller and Ghostscript [11]
support pdfmark.

Implementation overview

In the following discussion, we will use the term link to refer to a hypertext link, and
the term destination to refer to a hypertext destination (a.k.a. target or anchor).
When referring to links and destinations jointly, we will use the term hyperlinks.
Line numbers in brackets in typewriter type (like this: [1-10]) refer to the code
listing 8.1 (see Appendix, p.17).

As mentioned above, several options exist for producing PDFs with hypertext
links with TEX. To provide a way to support all these possibilities as well as future
developments, hyperlink support is structured to separate generic hyperlink macros
independent of a PDF engine used, from macros defining functionality specific to a
PDF engine. These latter macros are organized as hyperlink drivers (see Chapter 3,
p. 7).

The generic hyperlink macros can be used directly by the user to create
explicit hyperlinks (see Chapter 4, p.9). For example,

\hlstart{url}{}{http://tug.orgt
\TeX{} Users Group web site\hlend

typesets the text “TEX Users Group web site” as an explicit link to the specified
URL, http://tug.org.

These generic hyperlink macros are also used internally by several Eplain
macros to create implicit hyperlinks. For example, referring to a defined cross-
reference with the command

\ref{Chapter:Implementation}

converts the chapter reference into a hyperlink behind the scenes. Eplain macros
which implicitly generate destinations are assigned to one of the destination groups
(or destgroups for short); Eplain macros which implicitly generate links are assigned
to one of the link groups (or linkgroups for short) (see Chapter 5, p. 11).

Several macros are provided to control various aspects of hyperlinks, such
as type, width and color of link border, hypertext color, etc. These macros are
described in Chapter 6, p. 12.

It is possible to temporarily or permanently disable or enable all hyperlinks
at once or any hyperlink group selectively. The macros to do this are described in
Chapter 7, p. 14.

3.1

Hyperlink drivers

Version 3.0 of Eplain was released with two “real” drivers, pdftex and dvipdfm,
and one pseudo-driver, nolinks. As of this writing (April 2006), development
version of Eplain also provides the hypertex driver.

Defining a driver

In this section we will look at how a new hyperlink driver can be defined.

When the user calls \enablehyperlinks [(driver_name)] [652-628], the
presence of the driver is established by checking that a macro with the name
\hldriver@(driver_name) is defined [600]. If \enablehyperlinks finds the re-
quested driver, it calls the command \hldriver@(driver_name), which is expected
to define several commands with special names (see Table 3.1). These special com-
mands are what defines the behavior of the driver—they are used by the generic
hyperlink macros (see Chapter 4, p.9) to handle driver-specific part of hyperlink
creation.

TABLE 3.1
Commands which should be defined by a hyperlink driver
Command name Description
\hldest@driver This is a multiplexer for all supported destination types.
The type is passed in \@hltype; the label is passed in
\@hllabel.
\hldest@type Name of the default destination type, to be used when

no type is specified.

\hldest@typeh@(name) Should be defined for each destination type (name) the
driver supports. Actual definition does not matter.
\hldest@opt@(name) Should be defined to a default value for each destina-
tion option (name) the driver supports (except raise,
see Section 4.1, p.9). These will be set according to
user preferences before calling \hldest@driver (see
Section 4.3, p.9). The driver should consult current
values of relevant options when creating destinations.

\hl@driver This is a multiplexer for all supported link types. The
type is passed in \@hltype; the label is passed in
\@hllabel.

\hl@type Name of the default link type, to be used when no type
is specified.

\hl@typeh®({name) Should be defined for each link type (name) the driver
supports. Actual definition does not matter.

\h1l@opt@(name) Should be defined to a default value for each link option

(name) the driver supports (except colormodel and
color, see Section 4.2, p.9). These will be set accord-
ing to user preferences before calling \hl@driver (see
Section 4.3, p.9). The driver should consult current
values of relevant options when creating links.

\@hlend Should end the link started by \hl@driver.

3.2 Driver dvipdfm

This driver [957-1154] implements the \special commands supported by the
dvipdfm [24] and dvipdfmx [13] DVI-to-PDF converters. This driver allows exten-

7

3.3

3.4

3.5

sive customization of hyperlinks. See [7] for description of the types and options
supported by this driver.

Driver hypertex

This driver [702-781] implements the HyperTEX standard [18]. This driver sup-
ports very limited customization due to the nature of the HyperTEX standard.
See [7] for description of the types and options supported by this driver.

Driver pdftex

This driver [782-956] implements the extended primitives of the pdfTEX en-
gine [23, 25]. This driver allows extensive customization of hyperlinks. See [7]
for description of the types and options supported by this driver.

Pseudo-driver nolinks

Hyperlink macros use several features of TEX which can possibly affect spacing
and page-breaking. The nolinks driver [629-701] is a pseudo-driver for situa-
tions when you’ve prepared a document with hyperlinks and just want to compile
a version without them. This driver omits all hyperlinks in the document but en-
sures that spacing and page-breaking are the same as what you were getting with
hyperlinks enabled. Details can be found in [7].

4.1

4.2

4.3

Explicit hyperlinks

In this chapter we’ll look at the generic hyperlink macros which work on top of the
hyperlink driver and provide the basis for user-level explicit hyperlink macros.

Destinations

\@hldest [5-20] is the macro which is called to create a destination. This is what
ends up as \hldest when the user enables hyperlinks [544].

\@hldest works by first parsing its list of options (see Section 4.3) and then
calling the driver (\hldest@driver, see Section 3.1, p.7).

Unlike all other options which are handled by the driver, the option raise
is handled in \hldest@aftergetparam [21-41]. This is because raising of desti-
nations is handled the same way for all drivers using the standard TEX primitives.
Destinations are raised by placing them inside a box of zero width, height and
depth, and then raising that box to the requested height using TEX’s \raise prim-
itive. Raising is made only in horizontal mode; in vertical mode the destination is
placed directly in the vertical list, without an enclosing box.

Links

\@hlstart [44-61] and \@hlend (see Section 3.1, p.7) are the macros which are
called to create a hyperlink. They end up as \hlstart and \hlend, respectively,
when the user enables hyperlinks [536-539].

\@hlstart works by first parsing its list of options (see Section 4.3) and then
calling the driver (\hl@driver, see Section 3.1, p.7).

Unlike all other options which are handled by the driver, the two common op-
tions, colormodel and color, are handled in \hlstart@aftergetparam [61-76].
This is because coloring is not directly supported by the drivers. Instead, we rely
on the user to define the \color command which should take care of the color-
ing (for example, by loading IATEX’s color package which is supported by Eplain;
see [7], section on using IATEX packages with Eplain). The calling sequence for the
\color command is the following:

\color [{color_model)1{{color)}

where [(color_model)] is optional and can be omitted. The actual format of the
(color_model) and (color) parameters is not in any way controlled by the hyperlink
macros, therefore the user is responsible for setting the colormodel and color hy-
perlink options to appropriate values. Note, however, that default values for these
options are:

colormodel=cmyk
color=0.28,1,1,0.35

If the user’s \color command does not understand such specifications, the user
might need to override the default values of the colormodel and color link options
prior to using the link macros.

Handling of options

Parsing and setting of options is identical for \@hldest and \@hlstart, therefore
it is done by the \hl@getparam macro [79-118] which is called by both \@hldest

9

and \@hlstart. The options are set locally within a TEX group, so that the setting
is only effective for the current instance of the hyperlink macro.

\hl@getparam first checks that the requested destination or link type is
supported by the driver, by checking that the command \hl@typeh@(name) or
\hldest@typeh@(name) is defined [96] (see Section 3.1, p.7).

Next, for each option in the comma-separated list of option assignments of
the form (option)=(value), \h1@getparam calls \h1@set@opt [128-143] which en-
sures that the option is supported by the driver (by checking that the command
\hl@opt@(name) or \hldest@opt@(name) is defined [130], see Section 3.1, p.7)
and then sets that option to the requested value.

Options not listed in the option list automatically retain previous values.

After parsing and setting all options from the option list, \h1@getparam calls
\after@hl@getparam [123] (set to \hldest®@aftergetparam by \@hldest [15]
and to \hlstart@aftergetparam by \@hlstart [55]); \after@hl@getparam han-
dles the driver-independent options (raise for destinations, colormodel and color
for links, see Section 4.1, p. 9 and Section 4.2, p.9) and then calls the driver to cre-
ate destination or link using the options that have been set.

10

Implicit hyperlinks

Many Eplain macros create hyperlinks implicitly. They do so by using the macros
\hldest@impl [148-157] (for destinations) and \hlstart@impl [158-168] and
\hlend@impl [169-174] (for links). These macros take name of a linkgroup or
destgroup and, if the specified group has not been disabled (see Section 7.2, p. 14),
call \hldest, \hlstart or \hlend, passing the group’s type and options (see Sec-
tion 6.2, p. 12).

All destgroups should be listed in \hldest@groups [187]; all linkgroups
should be listed in \h1@groups [188]. These are used by the macros which set
types and options (see Chapter 6, p. 12) and turn hyperlinks on/off (see Chapter 7,
p. 14) to process the special group ‘*’ which expands to all defined groups.

11

6.1

6.2

Hyperlink types and options

Each driver declares link and destination types it supports and options which the
user may set to control various aspects of hyperlinks (see Section 3.1, p.7). Sec-
tion 6.1 describes macros for setting default types and options which are used when
the type or an option are not specified by the user in a call to an explicit hyperlink
macro (see Section 4.3, p.9) and when the type or an option are not defined for a
hyperlink group (see Chapter 5, p.11). Macros for setting hyperlink group types
and options are described in Section 6.2.

\hldesttype [200-205], \hldestopts [206-211], \hltype [212-217] and
\hlopts [218-223] are the top-level interface macros for the \hl@setparam macro
which does the actual parsing of their parameters and setting of types and op-
tions. When hyperlinks are not enabled, \hl@setparam is defined to issue an er-
ror message; \enablehyperlinks redefines \hl@setparam [606] to be the macro
\@hl@setparam [237-259].

Default types and options

Default destination type is stored in \hldest@type; default link type is stored in
\hl@type. Default value for an option (name) is stored in \hldest@opt@(name)
or \hl@opt@(name). These macros are initialized by a hyperlink driver (see Sec-
tion 3.1, p. 7).

Before \@hl@setparam is executed from one of the top-level interface macros,
\hl@param@read@excl [224-233] checks for the presence of ‘!’ following them
and remembers its presence by setting the \if@params@override switch to true.
This will later determine whether the current group option list is erased before
applying the new option list (see Section 6.2).

If group list is empty (i.e., if no optional argument is given to top-level in-
terface macro), \@hl@setparam calls \hl@setparam@default [240]. Otherwise
\@hl@setparam starts scanning the list of groups in the optional parameter and
setting group options or types for the groups listed (see Section 6.2). However,
if a reserved group with the empty name is encountered in the list of groups,
\hl@setparam@default is called to set the default options or types [264].

When setting options, \hl@setparam@default [292-315] iterates over the
option list, calling \hl@set@opt [128-143] to set an option (the same macro is
used by the explicit hyperlink macros, see Section 4.3, p.9). When setting type,
\hl@setparam@default simply defines a macro named \h1l@type or \hldest@type
to the requested value.

Group types and options

Group type for a group (name) is stored in \hldest@type®@(name) [412-420]
or \hl@type@(name) [443-455]. Unlike default options, we do not store value
for each option for each group in a separate macro. Instead, we store a comma-
separated list of (option)=(value) assignments for each group (name) in the macros
\hldest@opts@(name) [421-429] or \hl@opts@(name) [456-466]. These lists
contain a subset of the supported options; if assignment for some option is not in
the list, the default value (see Section 6.1) for that option will be used.

When the optional parameter is not empty, \@hl@setparam starts iterat-
ing over the list of groups in the optional parameter using the \For loop [248].

12

Two special group names are reserved and are treated specially: a group named
‘*’ is expanded to all defined destgroups (for \hldesttype and \hldestopts) or
linkgroups (for \hltype and \hlopts); and a group with the empty name, which
sets a default type or options.

Upon encountering the ‘*’ group, \hl@do®all@groups (just a \gobble by
default) is defined to recursively call \@hl@setparam with a list of all defined dest-
groups or linkgroups for the optional parameter [249]. \hl@do®@all@groups is
called after the \For loop is completed [257].

For all other groups \@hl@setparam calls \h1@setparam@group to parse and
set types and options for the group [253]. \hl@setparam@group [260-291] first
checks for an empty group, handled simply by calling \h1@setparam@default. For
all other groups, type is set by defining the macro \hldest@type®@(group_name) or
\h1@type®@(group_name) to the requested value; and option list is parsed and set by
\hlQupdate@opts@with@list. For option lists, \hl@setparam@group also clears
the previous value of the group’s option list if the switch \if@params@override is
set to true [278] (see p.12).

\hl@update@opts@with@list [316-332] iterates over the user-provided list
of option assignments, calling \hl@update@opts@with@opt for each. Since one
\For loop is already in progress at the outer level (within \@hl@setparam [248]),
the loop in \hl@update@opts@with@list is placed within the \begingroup ...
\endgroup group to avoid clashes with the outer-level \For.

\hlQupdate@opts@with@opt [333-380] takes option assignment and con-
structs a new option list out of the current option list for the group by either
updating that option (if the option is already in the list) or adding it at the end
of the list (if the option is not yet in the list). This new option list is saved in
\hlQupdate@new@list [373] and then assigned in \hlQupdateQopts@with@list
as the group’s option list [330]. Here again, \h1@update@opts@with@opt uses the
\For loop, which has to be isolated to avoid clashes with an outer-level \For.

13

7.1

7.2

Turning hyperlinks on/off

The next group of macros is for turning hyperlinks on and off. It is possible to
switch all hyperlinks on the lowest level, so that all hyperlink macros stop creating
hyperlinks (see Section 7.1). It is also possible to switch only hyperlinks generated
by macros from specific destinations or link groups (see Section 7.2).

\@hlon, \@hloff, \@hldeston and \@hldestoff [493-496] are the top-level
interface macros for \@finhlswitch [506-534] which does the actual parsing of
their parameters and switching of hyperlinks. These are what the macros \hlon,
\hloff, \hldeston and \hldestoff become when the hyperlinks are enabled with
the \enablehyperlinks macro [619].

Turning low-level hyperlinks on/off

The macros \@@hlon [536-539], \@@hloff [540-543], \@@hldeston [544-546]
and \@@hldestoff [547-549] affect all hyperlinks. \@finhlswitch calls these
when the top-level interface macros are called without the optional parameter or
with the empty group [608], [521].

Since the macros \@@hloff and \@@hldestoff are “cheaper” than the full-
fledged \hloff and \hldestoff, they are used extensively by Eplain macros when
they need to unconditionally turn off all hyperlinks.

Turning group hyperlinks on/off

Current state of a group (name) is stored as an integer value in the macros
\hldest@on@(name) [402-411] (for a destgroup) or \hl@on@(name) [431-442]
(for a linkgroup). The value of ‘0’ (zero) means that the group is turned off; other
values mean that the group is turned on.

When the optional parameter (list of groups) is not empty, \@finhlswitch
starts iterating over the list of groups in the optional parameter using the \For
loop [616-531]. Two special group names are reserved and are treated spe-
cially: a group named ‘¥’ is expanded to all defined destgroups (for \hldeston
and \hldestoff) or linkgroups (for \hlon and \hloff); and a group with the
empty name, which switches the low-level hyperlink macros (see Section 7.1).

Upon encountering the ‘*’ group, \hl@do@all@groups (just a \relax by
default) is defined to recursively call \@finhlswitch with a list of all defined dest-
groups or linkgroups for the optional parameter [617]. \hl@do®@all@groups is
called after the \For loop is completed [533].

For all other groups \@finhlswitch defines \hldest@on@(group_name) or
\h1l@on®@(group_name) to ‘0’ (for \hldestoff and \hloff) or ‘1’ (for \hldeston
and \hlon).

14

Acknowledgements

Hypertext support for Eplain described in this document was developed with the
help and advice from the Eplain community [27]. Some passages in this docu-
ment were borrowed from the Eplain manual [7] and the TUGboat article about
Eplain [6].

References

1]

[10]

[11]

Paul W. Abrahams, Karl Berry, and Kathryn A. Hargreaves. TgX for the

Impatient. Addison-Wesley, Reading, MA, USA, 1990. Available online from:
http:/tug.org/ftp/tex/impatient

(accessed April 20, 2006).

Adobe Systems Incorporated. PosTSCRIPT Language Tutorial and Cookbook.
Addison-Wesley, Reading, MA, USA, 1985. Available online from:

http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK . PDF
(accessed April 20, 2006).

Adobe Systems Incorporated. PDF Reference: Adobe Portable Document For-
mat, Version 1.4. Addison-Wesley, Reading, MA, USA, third edition, 2001.

Available online from http://www.adobe. com.

Adobe Systems Incorporated. pdfmark Reference Manual, October 2, 2005.
Available online from http://www.adobe. com.

American Mathematical Society. User’s Guide to ApS-TEX, August 2001.

Karl Berry and Oleg Katsitadze. Eplain 3: Expanded plain TEX. TUGboat,
26(3), 2005.

Karl Berry, Oleg Katsitadze, and Steven Smith. Eplain: Expanded Plain TEX,

December 2005. Latest release version available online from:
http://tug.org/eplain/doc/eplain/index.html

(accessed April 20, 2006). Development version available online from:
http://tug.org/eplain/src/doc/eplain.pdf

(accessed April 20, 2006). Printed version available from:
http://www.lulu.com/content/113810

(accessed April 20, 2006).

Tanmoy Bhattacharya. The hyperbasics package. ftp://ftp.tex.ac.uk/
tex-archive/support/hypertex/tanmoy/hyperbasics.tex
(accessed April 16, 2006).

Robert J. Chassell and Richard M. Stallman. GNU Texinfo, December 29,
2004.

Victor Eijkhout. The Lollipop macro package, January 1993. http://
Wwww.ctan.org/tex-archive/nonfree/macros/lollipop (accessed April 14,
2006).

Ghostscript, Ghostview and GSview, February 24, 2006. http://www.cs.
wisc.edu/~ghost (accessed April 20, 2006).

15

http:/tug.org/ftp/tex/impatient
http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF
http://www.adobe.com
http://www.adobe.com
http://tug.org/eplain/doc/eplain/index.html
http://tug.org/eplain/src/doc/eplain.pdf
http://www.lulu.com/content/113810
ftp://ftp.tex.ac.uk/tex-archive/support/hypertex/tanmoy/hyperbasics.tex
ftp://ftp.tex.ac.uk/tex-archive/support/hypertex/tanmoy/hyperbasics.tex
http://www.ctan.org/tex-archive/nonfree/macros/lollipop
http://www.ctan.org/tex-archive/nonfree/macros/lollipop
http://www.cs.wisc.edu/~ghost
http://www.cs.wisc.edu/~ghost

[12] Paul Ginsparg. The lanlmac package, July 1994. http://arxiv.org/
hypertex/lanlmac.tex (accessed April 15, 2006).

[13] Shunsaku Hirata and Jin-Hwan Cho. The DVIPDFMzx project, May 5, 2005.
http://project.ktug.or.kr/dvipdfmx (accessed April 15, 2006).

[14] Donald E. Knuth. The TgXbook, volume A of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.

[15] Donald E. Knuth. TgX: The Program, volume B of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.

[16] Leslie Lamport. HTEX: A Document Preparation System. Addison-Wesley,
Reading, Massachusetts, 1986.

[17] Tobias Oetiker, Hubert Partl, Irene Hyna, and Elisabeth Schlegl. The Not So
Short Introduction to MTEX 2¢, December 11, 2002.

[18] Kasper Peeters et al. HyperTpX FAQ, March 10, 2004. http://arxiv.org/
hypertex (accessed April 16, 2006).

[19] Pragma Advanced Document Engineering. Pragma ADE Web site, 2006.
http://www.pragma-ade.com (accessed April 14, 2006).

[20] Radical Eye Software. The official dvips home page. http://www.radicaleye.
com/dvips.html (accessed April 15, 2006).

[21] Sebastian Rahtz. Hypertext Marks in ATEX: The hyperref Package, June
1998.

[22] Michael D. Spivak. The Joy of TEX: A Gourmet Guide to Typesetting with
the AMS-TEX Macro Package. American Mathematical Society, Providence,
RI, USA, second edition, 1990.

[23] Han Thé Thanh, Sebastian Rahtz, Hans Hagen, and Hartmut Henkel. The
pdf TEX User Manual.

[24] The DVIPDFM Page, May 28, 2002. http://gaspra.kettering.edu/
dvipdfm (accessed April 17, 2006).

[25] The pdf TEX testing page, May 24, 2004. http://pdftex.sarovar.org (ac-
cessed April 20, 2006).

[26] TUG. The Eplain home page, 2006. http://tug.org/eplain (accessed
April 16, 2006).

[27) TUG. The Eplain mailing list, 2006. http://tug.org/mailman/listinfo/
tex-eplain (accessed April 15, 2006).

16

http://arxiv.org/hypertex/lanlmac.tex
http://arxiv.org/hypertex/lanlmac.tex
http://project.ktug.or.kr/dvipdfmx
http://arxiv.org/hypertex
http://arxiv.org/hypertex
http://www.pragma-ade.com
http://www.radicaleye.com/dvips.html
http://www.radicaleye.com/dvips.html
http://gaspra.kettering.edu/dvipdfm
http://gaspra.kettering.edu/dvipdfm
http://pdftex.sarovar.org
http://tug.org/eplain
http://tug.org/mailman/listinfo/tex-eplain
http://tug.org/mailman/listinfo/tex-eplain

Appendix. Source listing

Listing 8.1 contains the hyperlink part of the Eplain’s xeplain.tex source file.

[1]

[2]

[3]

[4]

(5]

(6]

[7]

(8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]

Source code of the hyperlink support for Eplain

/i Hypertexzt links support.

7 Hyperlink destinations (driver-independent code).

% \hldest{TYPE}{OPTIONS}{LABEL} defines a hyperlink destination
% LABEL. OPTIONS %s a comma-separated list of option assignments of
/% the form ‘opt=value’; permitted values for TYPE and OPTIONS depend

/% on selected hyperlink driver.

%

7% \hldest will be \let to \@hldest by \enablehyperlinks. TYPE,

7 OPTIONS and LABEL will be read by \hl@getparam.
\def\@hldest{/
\def\hl@prefix{hldestl}/
\let\after@hl@getparam\hldest@aftergetparam

LiIsTING 8.1

% Start the group which will isolate option settings. It will be

% ended in \hldest@aftergetparam
\begingroup
\hl@getparam
¥

7% This actually produces hyperlink destination. It will be called at

/% the end of \hl@getparam, after the parameters are parsed.
\def\hldest@aftergetparam{/
\ifvmode

% In vertical mode we don’t ratise the destination, so it can go

% directly into the vertical list.
\hldest@driver
\else

7% In hortzontal mode, the destination s ratsed \hldest@opt@ratise
7 above the baseline and placed inside a zero-width/height/depth
/% boxz; the box is surrounded by \allowhyphens in case it is
/% placed next to a word, to allow hyphenation of that word.

\allowhyphens

\smash{\ifx\hldest@opt@raise\empty \else \raise\hldest@opt@raise\fi

\hbox{\hldest@driver}}/
\allowhyphens
\fi

/% End the group which was isolating option settings (it was started

% in \@hldest).
\endgroup
14
%
7% Hyperlinks (driver-independent code).
A

% \hlstart{TYPE}{OPTIONS}{LABEL} starts a hyperlink to destination
/% LABEL. OPTIONS is a comma-separated list of option assignments of
/% the form ‘opt=value’; permitted values of TYPE and OPTIONS depend on

7 selected hyperlink driver. End the link with \hlend.

%

7% \hlstart will be \let to \@hlstart by \enablehyperlinks.
/4 OPTIONS and LABEL will be read by \hl@getparam.
\def\@hlstart{/

17

TYPE,

[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[671]
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]
[77]
[78]
[79]
[80]
[81]
[82]
[83]
[84]
[85]
[86]
[871]
[88]
[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]
[971
[98]
[99]
[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]

\leavevmode
\def\hl@prefix{hl}/
\let\after@hl@getparam\hlstart@aftergetparam
/% Start the group which will isolate option settings and color
/4 changes. It will be ended in \@hlend
\begingroup
\hl@getparam
Y
A
\def\hlstart@aftergetparam{/
/4 Set the color for the link.
\ifx\color\undefined \else
\ifx\hl@opt@color\empty \else
\ifx\hlQopt@colormodel\empty
\edef\temp{\noexpand\color{\hl@opt@color}}/
\else
\edef\temp{\noexpand\color [\hl@opt@colormodel] {\hl@opt@color}}/
\fi
\temp
\fi
\fi
/4 Call the driver.
\hl@driver
Y
% \hlend will be \let to \@hlend by \enablehyperlinks. \@hlend will
/% be defined by a driver.
A
/% Macros which are used commonly by \hldest and \hlstart to parse and
7 save parameters. \hl@prefiz must be set to ‘hldest’ by \hldest and
% to ‘hl’ by \hlstart.
%
7% \hl@getparam{TYPE}{OPTIONS}LABEL} reads, parses and saves the
7 parameters for \hldest or \hlstart into \@hltype, \hl[dest]@opta...
7% and \@hllabel. After doing that <t calls \after@hl@getparam which
/% should be defined by \@hldest and \@hlstart to produce destination /
7% link using the saved parameters.
\def\hl@getparam#1#2{/ We’ll read #3 (LABEL) later.
% Save TYPE in \@hltype (use default if empty).
\edef\@hltype{#1}/
\ifx\@hltype\empty
\expandafter\let\expandafter\@hltype
\csname \hl@prefix @type\endcsname
\fi
% For each supported destination / link type TYPE, a driver should
% define \hl[dest]@typeh@TYPE handler.
\expandafter\ifx\csname \hl@prefix Q@typeh@\G@hltype\endcsname \relax
\errmessage{Invalid hyperlink type ‘\@hltype’}/
\fi
4 \for will expand #2 once so user can pass a shortcut macro. We
/4 also ignore empty \hl@arg, so that the following
VA \hldest{TYPE}{\myopt, height=200pt}{LABEL}
% would be legal even when \myopt happens to be empty.
\For\hl@arg:=#2\do{/
\ifx\hl@arg\empty \else
\expandafter\hl@set@opt\hlQarg=,
\fi
Y
% Now read the third argument, LABEL. Do so inside a group wtith

18

[111]
[112]
[113]
[114]
[115]
[116]
[117]
[118]
[119]
[120]
[121]
[122]
[123]
[124]
[125]
[126]
[127]
[128]
[129]
[130]
[131]
[132]
[133]
[134]
[135]
[136]
[137]
[138]
[139]
[140]
[141]
[142]
[143]
[144]
[145]
[146]
[147]
[148]
[149]
[150]
[151]
[152]
[153]
[154]
[155]
[156]
[157]
[158]
[159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]
[167]
[168]

% \uncatcodespecials, to allow ‘#’ and ‘7’ in it (LABEL can be a URL
%4 for some link types).
\bgroup
\uncatcodespecials
\catcode ‘\{=1 \catcode‘\}=2
\@hl@getparam
Y
A
\def\@hl@getparam#i{/
\egroup
/4 Save LABEL in \@hllabel.
\edef\@hllabel{#1}/
/4 Execute the commands spectific to destination / link
\after@hl@getparam
/% Ignore spaces after \hlstart and \hldest.
\ignorespaces
Y
/% Parse and set a (default, not a group) option.
\def\hl@set@opt#1=#2,{/
% For each supported option OPTION, a driver should define
% \hl[dest]@opt@OPTION.
\expandafter\ifx\csname \hl@prefix Qopt@#1l\endcsname \relax
\errmessage{Invalid hyperlink option ‘#1’}/
\fi
/i Save the wvalue of the option.
\if ,#2, 7 <f #2 4is empty, complain.
\errmessage{Missing value for option ‘#1’}/
\else
/4 Remove a tratling =.
\def\temp##1={##1}/
\expandafter\edef\csname \hl@prefix Qopt@#1\endcsname{\temp#2}/
\fi
Y
% \hl{dest,start,end}@impl{GROUP}{LABEL} will generate ‘tmplicit’
7 destination / hyperlink, tf the user has not turned off this kind of
7% implictt destinations / hyperlinks. This is used by Eplain’s
7 cross-reference macros.
\def\hldest@impl#1{/
\expandafter\ifcase\csname hldest@on@#1\endcsname
\relax\expandafter\gobble
\else
\toks@=\expandafter{\csname hldest@type®@#1\endcsnamel}/
\toks@ii=\expandafter{\csname hldest@opts@#1\endcsname}/
\edef\temp{\noexpand\hldest{\the\toks@}{\the\toks@ii}}/
\expandafter\temp
\fi
Y
\def\hlstart@impl#1{/
\expandafter\ifcase\csname hlQon@#1\endcsname
/4 Still produce \leaveumode, to be constistent with \hloff.
\leavevmode\expandafter\gobble
\else
\toks@=\expandafter{\csname hl@type@#1\endcsname}/
\toks@ii=\expandafter{\csname hl@opts@#1\endcsname}/
\edef\temp{\noexpand\hlstart{\the\toks@}{\the\toksQ@ii}}/
\expandafter\temp
\fi
7

19

[169] \def\hlend@impl#1{/

[170] \expandafter\ifcase\csname hlQon®@#1\endcsname
[171] \else

[172] \hlend

[173] \fi

(1741 37

20

[175]
[176]
[177]
[178]
[179]
[180]
[181]
[182]
[183]
[184]
[185]
[186]
[187]
[188]
[189]
[190]
[191]
[192]
[193]
[194]
[195]
[196]
[197]
[198]
[199]
[200]
[201]
[202]
[203]
[204]
[205]
[206]
[207]
[208]
[209]
[210]
[211]
[212]
[213]
[214]
[215]
[216]
[217]
[218]
[219]
[220]
[221]
[222]
[223]
[224]
[225]
[226]
[227]
[228]
[229]
[230]
[231]
[232]

3

7 Setting options and types.

3

\def\hlQasterisk@word{*}/

\def\hl@opts@word{opts}/

\newif\if@params@override

/% We define hyperlink / destination groups. A group s a macro or a

7% group of macros which implicitly generate hyperlink / destination.

/% The user can set parameters for each group individually, as well as

/% the default parameters, with the macros defined below. Group

7 settings will override the default hyperlink / destination

7 parameters.

\def\hldest@groups{definexref,xrdef,1li,eq,bib,foot,footback,idx}/

\def\hl@groups{ref,xref,eq,cite,foot,footback,idx,url,hrefint,hrefext}/

% \hldesttype [GROUPS]{VALUE}

7% \hldestopts [GROUPS]{VALUE}
\hltype [GROUPS]{VALUE}
\hlopts [GROUPS]{VALUE}

A
A
A
7 Set hyperlink or destination parameter (type / opts) to VALUE for
7 each group im GROUPS. An empty ‘group’ will set default value for
7% the parameter. A star (*) ‘group’ stands for all groups (except the
7 empty ‘group’). If the macro is followed by an exclamation mark
7% (like \hlopts!...), the parameters will be overridden; otherwise,
/% they will be updated (this has effect only on group option list).
\def\hldesttype{”
\def\hl@prefix{hldest}/
\def\hl@param{type}/”
\let\hl@all@groups\hldest@groups
\futurelet\hl@excl\hl@param@read@excl
14
\def\hldestopts{/
\def\hl@prefix{hldest}/
\def\hl@param{opts}/
\let\hl@all@groups\hldest@groups
\futurelet\hl@excl\hl@param@read@excl
Y
\def\hltype{/
\def\hl@prefix{hl}/
\def\hl@param{type}/
\let\hl@all@groups\hl@groups
\futurelet\hl@excl\hl@param@read@excl
Y
\def\hlopts{/
\def\hl@prefix{hl}/
\def\hl@param{opts}/
\let\hl@all@groups\hl@groups
\futurelet\hl@excl\hl@param@read@excl
7
\def\hl@param@read@excl{/
\ifx!\hl@excl
\let\next\hl@param@read@opt@arg
\@params@overridetrue
\else
\def\next{\hl@param@read@opt@arg{!}}/
\@params@overridefalse
\fi
\next

21

[233]
[234]
[235]
[236]
[237]
[238]
[239]
[240]
[241]
[242]
[243]
[244]
[245]
[246]
[247]
[248]
[249]
[250]
[251]
[252]
[253]
[254]
[255]
[256]
[257]
[258]
[259]
[260]
[261]
[262]
[263]
[264]
[265]
[266]
[267]
[268]
[269]
[270]
[271]
[272]
[273]
[274]
[275]
[276]
[277]
[278]
[279]
[280]
[281]
[282]
[283]
[284]
[285]
[286]
[287]
[288]
[289]
[290]

Y
\def\hl@param@read@opt@arg#1{/ #1 <s the ‘!’, ignore tt.
\Q@getoptionalarg\hl@setparam
14
7 Set the parameter \hl@param to #1 for each group in \@optionalarg.
/% This wtll become \hl@setparam in \enablehyperlinks.
\def\@hl@setparam#i{/
\ifx\@optionalarg\empty
\hl@setparam@default{#1}/ Set default.
\else
% If we find an asterisk in the list, we have no choice but to
%4 finish the list and then call \hl@setparam again, now with
/4 \hl@all@groups for the list of groups.
\let\hl@do@all@groups\gobble

\For\hl@group:=\@optionalarg\do{/
\ifx\hl@group\hlQasterisk@word
\def\h1l@do@allGgroups{\let\C@optionalarg\hl@all@groups

\hl@setparam}/
\else
\hl@setparam@group{#1}/
\fi
Y

\hl@do@all@groups{#1}/
\fi
Y
7% Set a parameter (\hl@param) for one group (\hl@group) to the value
7% (#1). The group may be empty, in which case we call
7% \hl@setparam@default
\def\hl@setparam@group#1{/
\ifx\hl@group\empty
\hl@setparam@default{#1}/
\else
\expandafter\ifx\csname\hl@prefix @\hl@param @\hl@group\endcsname
\relax
\errmessage{Hyperlink group ‘\hl@prefix:\hl@param:\hl@group’
is not defined}/
\fi
\ifx\hl@param\hl@opts@word
/% For the ‘opts’ parameter, we want to expand the first token of
7 #1 once, in case the user passed a macro containing the option
% list. Even if we simply need to override the old option list,
% we still call \hl@update@opts@uith@list to go through the
/% options and trim possible leading space token in option keys.
\if@params@override
\expandafter\let\csname\hl@prefix @\hl@param @\hl@group\endcsname
\empty
\fi
\hl@update@opts@with@list{#1}/ #1 will be used in the \for
% loop, so it will be ezpanded once.
\else
% Do nmot use \edef here to define the parameter, so the user can
% define it to, e.g., \normalbaselineskip, and make the parameter
/4 adjustable to a situation.
\ece\def{\hl@prefix @\hl@param @\hl@group}{#1}/
\fi
\fi

22

[291]
[292]
[293]
[294]
[295]
[296]
[297]
[298]
[299]
[300]
[301]
[302]
[303]
[304]
[305]
[306]
[307]
[308]
[309]
[310]
[311]
[312]
[313]
[314]
[315]
[316]
[317]
[318]
[319]
[320]
[321]
[322]
[323]
[324]
[325]
[326]
[327]
[328]
[329]
[330]
[331]
[332]
[333]
[334]
[335]
[336]
[337]
[338]
[339]
[340]
[341]
[342]
[343]
[344]
[345]
[346]
[347]
[348]

Y
7 Set default parameter wvalues. We have to treat ‘opts’ (list of
7 options) specially, because for option defaults we don’t store a
7% list of options (like we do for the group options) but set each
7 option individually.
\def\hl@setparam@default#1{/
\ifx\hl@param\hl@opts@word
% ‘opts’.
\For\hl@opt:=#1\do{/
\ifx\hl@opt\empty \else
\expandafter\hl@set@opt\hlQopt=, 7
\fi
7
\else
/i Everything except ‘opts’.
\expandafter\ifx\csname\hl@prefix @\hl@param\endcsname\relax
\message{Default hyperlink parameter ‘\hl@prefix:\hl@param’
is not defined}/
\fi
% Should not use \edef, so the user could define this to, e.g.,
% \normalbaselineskip, to make the parameter adjustable to a
/i stituation.
\ece\def{\hl@prefix @\hl@param}{#1}/
\fi
Y
% For each option in the list (#1), call \hl@update@opts@uith@opt to
/% update the group’s option list (\csname\hl@prefiz Qoptse@
7% \hl@group\endcsname) with this new option.
\def\hl@update@opts@with@list#1{/
/4 Start with the current list of the group.
\global\expandafter\let\expandafter\hlQupdate@new@list
\csname \hl@prefix Qopts@\hl@group\endcsname
/ We have to isolate the \for loop inside a (TeX) group, to avoid
% clashes with the loop in \hl@setparam
\begingroup
\For\hl@opt:=#1\do{/
\hl@update@opts@with@opt
Yz
\endgroup
/4 Save the final list back in the option list for the group.
\ece\let{\hl@prefix @opts@\hl@group}\hl@update@new@list
Y
% Go through the option list (\hlQupdate@new@list) and construct the
7% new list (in \hl@update@new@list), replacing the old definition of
7% the option with the new one (\hl@opt).
\def\hlQupdate@opts@with@opt{/
% Save the old list and the new option.
\global\let\hl@update@old@list\hl@update@new@list
\global\let\hl@update@new@list\empty
\global\let\hl@update@new@opt\hl@opt
/ Get the key of the new option and save it.
\expandafter\hl@parse@opt@key\hl@opt=, /
\let\hl@update@new@key\hlOupdate@key
% We will set this to real comma after the first entry.
\global\let\hl@update@comma\empty
/% We have to isolate the \for loop inside a (TeX) group, to avoid
/% clashes with the loop in \hlQupdate@opts@uwith@list
\begingroup

23

[349]
[350]
[351]
[352]
[353]
[354]
[355]
[356]
[357]
[358]
[359]
[360]
[361]
[362]
[363]
[364]
[365]
[366]
[367]
[368]
[369]
[370]
[371]
[372]
[373]
[374]
[375]
[376]
[377]
[378]
[379]
[380]
[381]
[382]

\for\hl@opt:=\hl@update@old@list\do{/
\ifx\hl@opt\empty \else / Skip empty ‘options’.
/% Get the key of this option.
\expandafter\hl@parse@opt@key\hlQopt=, 7
4 If the key matches, replace the option definition with the
/4 new definition, otherwise, repeat the old definition.
\toks@=\expandafter{\hl@update@new@list}/
\ifx\hl@update@key\hl@update@newlkey
\ifx\hl@update@new@opt\empty \else / Skip multiple options.
\toks@ii=\expandafter{\hl@update@new@optl}/
\xdef\hl@update@new@list{\the\toks@\hlQupdate@comma
\the\toks@iil}/
\global\let\hl@update@new@opt\empty
\global\def\hl@update@comma{,}
\fi
\else
\toks@ii=\expandafter{\hl@opt}/
\xdef\hl@update@new@list{\the\toks@\hl@update@comma

\the\toks@iil}/
\global\def\hl@update@commai,}
\fi
\fi
Y
\endgroup

% If nothing was replaced, add the new option to the end of the new

% list.

\ifx\hl@update@new@opt\empty \else
\toks@=\expandafter{\hl@update@new@list}/
\toks@ii=\expandafter{\hlQupdate@new@optl}/
\xdef\hl@update@new@list{\the\toks@\hlQupdate@comma\the\toks@ii}/

\fi

Y
7 Parse the key of the option and save it in \hlQupdateQkey
\def\hl@parse@opt@key#1=#2,{\def\hl@updateCkey{#1}}/

24

[383]
[384]
[385]
[386]
[387]
[388]
[389]
[390]
[391]
[392]
[393]
[394]
[395]
[396]
[397]
[398]
[399]
[400]
[401]
[402]
[403]
[404]
[405]
[406]
[407]
[408]
[409]
[410]
[411]
[412]
[413]
[414]
[415]
[416]
[417]
[418]
[419]
[420]
[421]
[422]
[423]
[424]
[425]
[426]
[427]
[428]
[429]
[430]
[431]
[432]
[433]
[434]
[435]
[436]
[437]
[438]
[439]
[440]

A

/% Default and group parameters (options and types).

%

7% Option ‘raise’ will determine how much to ratse hyperlink

7 destinations above the baseline. It will be supported by all
/i drivers, since it 1s handled outside the drivers, in

% \hldest@aftergetparam.
\def\hldest@opt@raise{\normalbaselineskip}/

% Options ‘colormodel’ and ‘color’ will also be handled outside the
7 drivers, in \hlstart@aftergetparam.
\def\hl@opt@colormodel{cmyk}/
\def\hl@opt@color{0.28,1,1,0.35}%

%
7 Parameters for destinations and links produced tmplicitly by

7 cross-reference macros. Note that each driver will additionally

/% define \hldest@type and \hl@type parameters which will be used when
/% one of the below is empty, and default values for destination and

7% link options (which are driver-spectific).

A

7% Destination on/off flags (0=off, 1=on). Changing them here has no
7 effect, modify \enablehyperlinks to set defaults.
\def\hldestQon@definexref{0}/

\def\hldest@on@xrdef{0}/

\def\hldest@on@li{0}}

\def\hldest@on®eq{0}/ \egdef and friends

\def\hldest@on@bib{0}/ \biblabelprint (BibTeX)

\def\hldest@on@foot{0}/ \footnote / \numberedfootnote
\def\hldest@on@footback{0}/ back-ref for \footnote / \numberedfootnote
\def\hldest@on@idx{0}/ both ‘page’ dests and ‘exact’ dests

7% Types of destinations.

\let\hldest@type@definexref\empty

\let\hldest@type@xrdef\empty

\let\hldest@type@li\empty

\let\hldest@typeQeq\empty 7/ \eqdef and friends
\let\hldest@type@bib\empty 7 \biblabelprint (BibTeX)
\let\hldest@type@foot\empty 7 \footnote / \numberedfootnote
\let\hldest@type@footback\empty / back-ref for \footnote/\numberedfootnote
\let\hldest@type@idx\empty /% both ‘page’ dests and ‘exzact’ dests

7% Options for destinations.

\let\hldest@opts@definexref\empty

\let\hldest@opts@xrdef\empty

\let\hldest@opts@li\empty
\def\hldest@opts@eq{raise=1.7\normalbaselineskip}/ \eqdef and friends
\let\hldest@opts@bib\empty 7 \biblabelprint (BibTeX)
\let\hldest@opts@foot\empty 7 \footnote / \numberedfootnote
\let\hldest@opts@footback\empty / back-ref for \footnote/\numberedfootnote
\let\hldest@opts@idx\empty /% both ‘page’ dests and ‘exzact’ dests

%

7 Hyperlink on/off flags (0O=off, 1=on). Changing them here has no

7 effect, modify \enablehyperlinks to set defaults.

\def\hl@on@ref{0}/ \refn and \zrefn, \ref, \refs

\def\hl@on@xref{0}/

\def\hl@on@eq{0}/ \egref and \egrefn

\def\hlQon@cite{0}/ \cite (BibTeX)

\def\hl@on@foot{0}/ \footnote / \numberedfootnote
\def\hl@on@footback{0}/ back-ref for \footnote/\numberedfootnote
\def\hl@on@idx{0}/

\def\hlQon@url{0}/” \url from url.sty

25

[441]
[442]
[443]
[444]
[445]
[446]
[447]
[448]
[449]
[450]
[451]
[452]
[453]
[454]
[455]
[456]
[457]
[458]
[459]
[460]
[461]
[462]
[463]
[464]
[465]
[466]

\def\hl@on®hrefint{0}/ \href with internal #labels
\def\hl@on®hrefext{0}/ \href with external labels (URLs)
7% Types of links.
\let\hl@type@ref\empty % \refn and \zrefn, \ref, \refs
\let\hl@type@xref\empty
\let\hl@type@eq\empty / \eqref and \eqrefn
\let\hl@type@cite\empty /4 \cite (BibTeX)
\let\hl@type@foot\empty % \footnote / \numberedfootnote
\let\hl@type@footback\empty 7 back-ref for \footnote/\numberedfootnote
\let\hl@type@idx\empty
\let\hl@type@url\empty 7 \url from url.sty (this will be set to ‘url’ by
% drivers which support the ‘url’ type)

\let\hl@type@hrefint\empty % \href with internal #labels
\let\hl@type@hrefext\empty / \href with external labels (URLs) (this

7 will be set to ‘url’ by drivers which support the ‘url’ type)
% Options for links.
\let\hl@opts@ref\empty 7 \refn and \zrefn, \ref, \refs
\let\hl@opts@xref\empty
\let\hl@opts@eq\empty 7 \eqref and \egrefn
\let\hl@opts@cite\empty % \cite (BibTeX)
\let\hl@opts@foot\empty /% \footnote / \numberedfootnote
\let\hl@opts@footback\empty /7 back-ref for \footnote/\numberedfootnote
\let\hl@opts@idx\empty
\let\hl@opts@url\empty 7 \url from url.sty
\let\hl@opts@hrefint\empty 7 \href with internal #labels
\let\hl@opts@hrefext\empty / \href with external labels (URLs)

26

[467]
[468]
[469]
[470]
[471]
[472]
[473]
[474]
[475]
[476]
(4771
[478]
[479]
[480]
[481]
[482]
[483]
[484]
[485]
[486]
[487]
[488]
[489]
[490]
[491]
[492]
[493]
[494]
[495]
[496]
[497]
[498]
[499]
[500]
[501]
[502]
[503]
[504]
[505]
[506]
[507]
[508]
[509]
[510]
[511]
[512]
[513]
[514]
[515]
[516]
[517]
[518]
[519]
[520]
[521]
[522]
[523]
[524]

A
% \@hlon[GROUPS]
% \@hloff[GROUPS]
7 \@hldeston [GROUPS]
% \@hldestoff[GROUPS]
7% \@@hlon
% \@@hloff
% \@@hldeston
% \@@hldestoff
A
7% Macros to switch hyperlinks / destinations on/off.
%
7% The optional arg is the list of groups. It can contatin a star (*)
7% which will make the macros affect all groups (but not the low-level
/4 macros \hlstart, \hlend and \hldest).
%
/% \@hlon, \@Ghldeston, \G@hloff and \@hldestoff will turn low-level
7% macros on/off only when they are used either without the optional
7% arg or with an empty ‘group’ in the optional arg, otherwise only the
7 specifted groups are affected.
%
/% The single-‘@’ wariants (\@hl...) are for the user. In your macros,
7% if you want to (temporarily) turn low-level macros on/off, it’s
7 better to use the double-‘@’ wariants (\@Chl...), because they are
/% much faster and won’t clobber \@optiomalarg or anything else.
A
\def\@hlon{\Ghlonoff@value@stub{hl}\@Ghlonl }/
\def\@hloff{\@hlonoff@value@stub{hl}\@@hloff0 }/
\def\@hldeston{\@hlonoff@value@stub{hldest}\@Chldestonl }7
\def\@hldestoff{\@hlonoff@value@stub{hldest}\@@hldestoff0 }/
%
\def\@hlonoff@value@stub#1#2#3{/
\def\hl@prefix{#1}/
\let\hl@on@empty#2/
\def\hl@value{#3}/
\expandafter\let\expandafter\hl@all@groups
\csname \hl@prefix @groups\endcsname
\Q@getoptionalarg\@finhlswitch
Y
%
\def\@finhlswitch{/
\ifx\@optionalarg\empty
\hl@on@empty
\fi
% If we find an asterisk in the list, we have no choice but to
% finish the list and then call \@finhlswitch agatin, now with
% \hl@all@groups for the list of groups.
\let\hl@do®@all@groups\relax
%
\For\hl@group:=\Q@optionalarg\do{/
\ifx\hl@group\hl@asteriskQword
\let\@optionalarg\hl@all@groups
\let\hl@do@all@groups\@finhlswitch
\else
\ifx\hl@group\empty
\hl@on@empty
\else
\expandafter\ifx\csname\hl@prefix @on@\hlOgroup\endcsname \relax

27

[525]
[526]
[527]
[528]
[529]
[530]
[531]
[532]
[533]
[534]
[535]
[536]
[537]
[538]
[539]
[540]
[541]
[542]
[543]
[544]
[545]
[546]
[547]
[548]
[549]

\errmessage{Hyperlink group ‘\hl@prefix:omn:\hl@group’
is not defined}/

\fi
\ece\edef{\hl@prefix @on@\hlOgroup}{\hl@valuel}/
\fi
\fi
Y
A
\hl@do@all@groups

Y

7% Turn low-level macros on/off.

\def\@Ghlon{/
\let\hlstart\@hlstart
\let\hlend\@hlend

Y

\def\@@hloff{/
\def\hlstart##1##2##3{\leavevmode\ignorespacesl}/
\let\hlend\relax

Y

\def\@Chldeston{/
\let\hldest\@hldest

7

\def\@@hldestoff{/
\def\hldest##1##2##3{\ignorespaces}/

Y

28

[550]
[551]
[552]
[553]
[554]
[555]
[556]
[557]
[558]
[559]
[560]
[561]
[562]
[563]
[564]
[565]
[566]
[567]
[568]
[569]
[570]
[571]
[572]
[573]
[574]
[575]
[576]
[577]
[578]
[579]
[580]
[581]
[582]
[583]
[584]
[585]
[586]
[587]
[588]
[589]
[590]
[591]
[592]
[593]
[594]
[595]
[596]
[597]
[598]
[599]
[600]
[601]
[602]
[603]
[604]
[605]
[606]
[607]

SR AL IR L AR AW

%
%

Hyperlink drivers.

\enablehyperlinks [OPTIONS] will enable hyperlinks. OPTIONS ts a
list of comma-separated options. An option s ome of the following:

1dzezact Point index links to exact locations of the term
tdzpage Point index links to pages with the term (default)
tdznone No links for index entries

<driver-name> Force the hyperlink driver

If <driver—-name> ts omitted, appropriate driver will be detected, <if
possible; tf not, we fall back on ‘hypertex’.

\def\hl@idxexact@word{idxexactl}/
\def\hl@idxpage@word{idxpagel}/
\def\hl@idxnone@word{idxnone}/
\def\hl@raw@word{raw}/

%

\def\enablehyperlinks{\@getoptionalarg\@finenablehyperlinks}/
\def\@finenablehyperlinks{/

\let\hl@selecteddriver\empty
/4 By default we generate ‘idxzpage’ index hyperlinks.
\def\hldest@place@idx{0}/
/4 Go through the option list.
\for\hl®@arg:=\Qoptionalarg\do{/
\ifx\hl@arg\hl@idxexact@word
\def\hldest@place@idx{1}/
\else
\ifx\hl@arg\hl@idxnone@word
\def\hldest@place@idx{-1}/
\else
\ifx\hl@arg\hl@idxpageQword
\def\hldest@place@idx{0}/
\else
\let\hl@selecteddriver\hl@arg
\fi
\fi
\fi
Y
% Check the driver name.
\ifx\hl@selecteddriver\empty
% The user did not spectfy a driver, detect.
\ifpdf
\def\hl@selecteddriver{pdftex}/
\message{~~JEplain: using ‘pdftex’ hyperlink driver.}/
\else
\def\hl@selecteddriver{hypertex}/
\message{"~"JEplain: using ‘hypertex’ hyperlink driver.}/
\fi
\else
% Check that the requested driver’s initialization routine %s
% avatlable.
\expandafter\ifx\csname hldriver@\hl@selecteddriver\endcsname \relax
\errmessage{No hyperlink driver ‘\hl@selecteddriver’ availablel}/
\fi
\fi
/% Enable \hltype, \hlopts, \hldest and \hldestopts now (the driver’s
4 initialization routine may change this).

29

[608]
[609]
[610]
[611]
[612]
[613]
[614]
[615]
[616]
[617]
[618]
[619]
[620]
[621]
[622]
[623]
[624]
[625]
[626]
[627]
[628]
[629]
[630]
[631]
[632]
[633]
[634]
[635]
[636]
[637]
[638]
[639]
[640]
[641]
[642]
[643]
[644]
[645]
[646]
[647]
[648]
[649]
[650]
[651]
[652]
[653]
[654]
[655]
[656]
[657]
[658]
[659]
[660]
[661]
[662]
[663]
[664]
[665]

\let\hl@setparam\@hl@setparam

% Call the driver’s initialization routine.

\csname hldriver@\hl@selecteddriver\endcsname

% Driver should not be changed later.

\def\@finenablehyperlinks{\errmessage{Hyperlink driver
‘\hl@selecteddriver’ already selected}}/

% Free memory taken up by the drivers.

\let\hldriver®@nolinks\undefined

\let\hldriver@hypertex\undefined

\let\hldriver@pdftex \undefined

\let\hldriver@dvipdfm\undefined

/% The user can use these to turn the links / destinations on/off

/i (see comments to the driver ‘nolinks’).

\let\hloff\@hloff

\let\hlon\@hlon

\let\hldestoff\@hldestoff

\let\hldeston\@hldeston

/% By default turn everything on except the footnotes.

\hlon[*,]\hloff [foot,footback]/

\hldeston[*,]\hldestoff [foot,footback]/

Y

%
%
%
%
%
%
%
%
%
%
%
%
%

Driver ‘nolinks’.

Select this driver to suppress any hyperlinks / destimations in your
document.

NOTE: selecting this driver is quite different from not selecting
any driver at all, or from selecting some driver and then turning
off links and destinations for the entire document with \hloff and
\hldestoff.

The purpose of \hldestoff and \hloff is to mark (parts) of document
where links should never appear. (Imagine you want to prevent a
cross-referencing macro from genmerating a link at a certain spot in
your document.)

If 2nstead you have prepared a document with links and just want to
compile a version without the links, i1t is better to select the
driver ‘nolinks’. This wtill ensure that spacing and pagebreaking
will be the same as what you were getting with hyperlinks enabled.

The reason for this is that hyperlinks are produced by \special
commands. Each \special is placed inside a whatsit which may
introduce a legitimate breakpoint at places where none would exist
without the whatsit. The macros \hldestoff and \hloff disable
hyperlink macros so drastically that no whatsits are produced.

On the other hand, ‘nolinks’ driver does not completely disable
hyperlink macros. Instead, @t defines them to write to the log

file (what gets written is not really important). This will produce
the whatsits imitating the whatsits from the \special’s. (This
trick was borrowed from graphics bundle.)

Another reason for using ‘nolinks’ is that in horizontal mode
\hldest places destinations instde zero-width/height/depth bozes.
When you say \hldestoff, \hldest will omit both destination specs
and these boxes. The missing boxes can cause typesetting to be

30

[666]
[667]
[668]
[669]
[670]
[671]
[672]
[673]
[674]
[675]
[676]
[677]
[678]
[679]
[680]
[681]
[682]
[683]
[684]
[685]
[686]
[687]
[688]
[689]
[690]
[691]
[692]
[693]
[694]
[695]
[696]
[697]
[698]
[699]
[700]
[701]
[702]
[703]
[704]
[705]
[706]
[707]
[708]
[709]
[710]
[711]
[712]
[713]
[714]
[715]
[716]
[717]
[718]
[719]
[720]
[721]
[722]
[723]

%
%
%
%
%
%
%
%

inconsistent with what you were getting with destinations enabled.
Again, ‘nolinks’ driver helps here by defining \hldest to still
produce the empty bozxes.

Additionally, ‘nolinks’ driver defines the \hldesttype, \hldestopts,
\hitype, \hlopts macros to gobble their parameters, to avoid error
messages about "unknown" options and types under the ‘nolinks’
driver.

\def\hldriver@nolinks{/

%
%
%

Y

\def\@hldest##1##2##3{/
\edef\temp{\write-1{hldest: ##3}}/
\ifvmode

\temp
\else
\allowhyphens
\expandafter\smash\expandafter{\temp}/
\allowhyphens
\fi
\ignorespaces
Y
\def\@hlstart##1##2##3{/
\leavevmode
\begingroup / Start the color group.
\edef\temp{\write-1{hlstart: ##3}}/
\temp
\ignorespaces

Y

\def\@hlend{/
\edef\temp{\write-1{hlend}}/

\temp
\endgroup /% End the color group from \@hlstart.
b4

/% Make \hltype, \hlopts, \hldesttype and \hldestopts ignore their

% parameters.

\let\hl@setparam\gobble

Driver ‘hypertex’.

\expandafter\def\expandafter\hlhash\expandafter{\string#}/

%

\def\hldriver@hypertex{/

X
% Hyperlink destinations.
%
% Default type.
\def\hldest@type{xyz}/
/4 Set defaults for the options (this also tells \hl@set@opt what
/4 options we support). (We do not define \hldest@opt@raise,
7% \hl@opt@colormodel and \hl@opt@color, they are defined and used
/4 outside the drivers.)
\let\hldest@opt@cmd \empty
% Multiplezer for all supported destinmation types.
\def\hldest@driver{/
% Special case for ‘raw’ destinattions.
\ifx\@hltype\hl@raw@word
\csname \hldest@opt@cmd \endcsname
\else

31

[724] \special{html:}\special{html:}/
[725] \fi

[726] Y

[727] % Define handlers for each supported destination type (this also
[728] % tells \hl@getparam what types we support).

[729] \let\hldest@typeh@raw \empty

[730] \let\hldest@typeh@xyz \empty

[731] V4
[732] % Hyperlinks.
[733] A

[734] % Default type.

[735] \def\hl@type{name}/

[736] 4 We support ‘url’ hyperlinks, so set some group types.
[737] \ifx\h1l@typeQurl\empty

[738] \def\hl@type@url{url}/
[739] \fi

[740] \ifx\hl@type@hrefext\empty
[741] \def\hl@type@hrefext{url}/
[742] \fi

[743] /4 Set defaults for the options (this also tells \hl@set@opt what
[744] /4 options we support).

[745] \let\hl@opt@cmd \empty

[746] \let\hl@opt@ext \empty

[747] \let\hl@opt@file \empty

[748] % Multiplezer for all supported link types.

[749] \def\hl@driver{/

[750] % Special case for ‘raw’ links.

[751] \ifx\@hltype\hl@raw@word

[752] \csname \hl@opt@cmd \endcsname

[753] \else

[754] 7 Construct common preamble of a link.
[755] \def\hlstart@preamble{html:<a href="}/
[756] % Call the handler.

[757] \csname hl@typeh@\Ghltype\endcsname
[758] \fi

[759] Y

[760] % Define handlers for each supported link type (this also tells
[761] % \hl@getparam what types we support).

[762] \let\hl@typeh@raw \empty

[763] \def\hl@typeh@name{\special{\hlstart@preamble \hlhash\@hllabel">}}/
[764] \def\hl@typeh@filename{

[765] \special{/

[766] \hlstart@preamble

[767] file:\hl@opt@file\hl@opt@ext
[768] \ifempty\@hllabel \else \hlhash\@hllabel\fi
[769] ">

[770] Y

[771] Y

[772] \def\hl@typeh@url{/

[773] \special{/

[774] \hlstart@preamble

[775] \@hllabel

[776] ">

[777] Y

[778] Y

[779] %

[780] \def\@hlend{\special{html:}\endgroupl}/ The group from \@hlstart.
(781l X%

32

[782]
[783]
[784]
[785]
[786]
[787]
[788]
[789]
[790]
[791]
[792]
[793]
[794]
[795]
[796]
[797]
[798]
[799]
[800]
[801]
[802]
[803]
[804]
[805]
[806]
[807]
[808]
[809]
[810]
[811]
[812]
[813]
[814]
[815]
[816]
[817]
[818]
[819]
[820]
[821]
[822]
[823]
[824]
[825]
[826]
[827]
[828]
[829]
[830]
[831]
[832]
[833]
[834]
[835]
[836]
[837]
[838]
[839]

%
%
%

Driver ‘pdftex’.

\def\hldriver@pdftex{/
\ifpdf 7 PDF output is enabled.

% Hyperlink destinations.

% Default type.
\def\hldest@type{xyz}/
/4 Set defaults for the options (this also tells \hl@set@opt what
/% options we support). (We do not define \hldest@opt@raise,
% \hl@opt@colormodel and \hl@opt@color, they are defined and used
% outside the drivers.)
\let\hldest@opt@width \empty
\let\hldest@opt@height \empty
\let\hldest@opt@depth \empty
\let\hldest@opt@zoom \empty
\let\hldest@opt@cmd \empty
% Multiplexzer for all supported destination types.
\def\hldest@driver{/
% Special case for ‘raw’ destinattions.
\ifx\@hltype\hl@raw@word
\csname \hldest@opt@cmd \endcsname
\else
\pdfdest name{\@hllabel}\@hltype
\csname hldest@typeh@\@hltype\endcsname
\fi
Y
/% Define handlers for each supported destination type (this also
/% tells \hl@getparam what types we support).
\let\hldest@typeh@raw \empty
\let\hldest@typeh@fit \empty
\let\hldest@typeh@fith \empty
\let\hldest@typeh@fitv \empty
\let\hldest@typeh@fitb \empty
\let\hldest@typeh@fitbh \empty
\let\hldest@typeh@fitbv \empty
\def\hldest@typeh@fitr{/
\ifx\hldest@opt@width \empty \else width \hldest@opt@width \fi
\ifx\hldest@opt@height \empty \else height \hldest@opt@height \fi
\ifx\hldest@opt@depth \empty \else depth \hldest@opt@depth \fi
Y
\def\hldest@typeh@xyz{/
\ifx\hldest@opt@zoom\empty \else zoom \hldest@opt@zoom \fi
Y
%
/4 Hyperlinks.
%
/4 Default type.
\def\hl@type{namel}/
% We support ‘url’ hyperlinks, so set some group types.
\ifx\hl@typeQurl\empty
\def\hl@typeQurl{url})
\fi
\ifx\hl@type@hrefext\empty
\def\hl@type@hrefext{url}/
\fi

33

[840]
[841]
[842]
[843]
[844]
[845]
[846]
[847]
[848]
[849]
[850]
[851]
[852]
[853]
[854]
[855]
[856]
[857]
[858]
[859]
[860]
[861]
[862]
[863]
[864]
[865]
[866]
[867]
[868]
[869]
[870]
[871]
[872]
[873]
[874]
[875]
[876]
[8771]
[878]
[879]
[880]
[881]
[882]
[883]
[884]
[885]
[886]
[887]
[888]
[889]
[890]
[891]
[892]
[893]
[894]
[895]
[896]
[897]

% Set defaults for the options (this also tells \hl@set@opt what
% options we support).
\let\hl@opt@width \empty
\let\hl@opt@height \empty
\let\hl@opt@depth \empty
\def\hl@opt@bstyle {S}/%
\def\hl@opt@bwidth {1}/
\let\hl@opt@bcolor \empty
\let\hl@opt@hlight \empty
\let\hl@opt@bdash \empty
\let\hl@opt@pagefit \empty
\let\hl@opt@cmd \empty
\let\hl@opt@file \empty
\let\hlQopt@newwin \empty
4 Multiplezer for all supported link types.
\def\hl@driver{/

% Special case for ‘raw’ links.

\ifx\@hltype\hl@rawlword

\csname \hl@opt@cmd \endcsname
\else

/% See if we will construct a /BS spec. We want to bother only
% if any of \hl@opt@bstyle, \hl@opt@bwidth and \hl@opt@bdash is

7% not empty.
\let\h1l@BSspec\relax / construct
\ifx\hl@opt@bstyle \empty
\ifx\hl@opt@bwidth \empty
\ifx\hl@opt@bdash \empty
\let\hl@BSspec\empty / don’t construct
\fi
\fi
\fi
7 Construct common preamble of a link.
\def\hlstart@preamble{/
\pdfstartlink
\ifx\hl@opt@width \empty \else width \hl@opt@width \fi
\ifx\hl@opt@height \empty \else height \hl@opt@height \fi
\ifx\hl@opt@depth \empty \else depth \hl@opt@depth \fi
attr{/
\ifx\hl@opt@bcolor\empty\else /C[\hl@opt@bcolor]\fi
\ifx\hl@opt@hlight\empty\else /H/\hlQopt@hlight\fi
\ifx\h1@BSspec\relax
/BS<</
/Type/Border/
\ifx\hl@opt@bstyle\empty\else /S/\hl@opt@bstyle\fi
\ifx\hlQopt@bwidth\empty\else /W \hl@opt@bwidth\fi
\ifx\hl@opt@bdash\empty \else /D[\hl@opt@bdash]\fi
>>7
\fi
14
Y
/% Call the handler.
\csname hl@typeh@\@hltype\endcsname
\fi
Y
% Define handlers for each supported link type (this also tells
% \hl@getparam what types we support).
\let\hl@typeh@raw\empty
\def\hl@typeh@name{\hlstart@preamble goto name{\Ghllabell}}/

34

[898]
[899]
[900]
[901]
[902]
[903]
[904]
[905]
[906]
[907]
[908]
[909]
[910]
[911]
[912]
[913]
[914]
[915]
[916]
[917]
[918]
[919]
[920]
[921]
[922]
[923]
[924]
[925]
[926]
[927]
[928]
[929]
[930]
[931]
[932]
[933]
[934]
[935]
[936]
[937]
[938]
[939]
[940]
[941]
[942]
[943]
[944]
[945]
[946]
[947]
[948]
[949]
[950]
[951]
[952]
[953]
[954]
[955]

\def\hl@typeh@num{\hlstart@preamble goto num \@hllabell})
\def\hl@typeh@page{/
/4 PDF requires pages to start from 0, so adjust page number.
\count@=\0@hllabel
\advance\count@ by-1
%
\hlstart@preamble
user{/
/Subtype/Link/
/Dest/
[\the\count®
\ifx\hl@opt@pagefit\empty/Fit\else\hl@optCpagefit\fi]/
7
Y
\def\hl@typeh@filename{\hl@file{(\@hllabel)}}/%
\def\hl@typeh@filepage{/
/% PDF requires pages to start from 0, so adjust page number.
\count@=\0@hllabel
\advance\count@ by-1
Z
\hlefile{/
[\the\count@ \ifx\hlQopt@pagefit\empty/Fit\else\hlQ@opt@pagefit\fi]/
Y
b4
\def\hlofile##1{/
\hlstart@preamble
user{/
/Subtype/Link/
/A<
/Type/Action/
/S/GoToR/,
/D##17
/F(\hl@optefile) %
\ifx\hl@opt@newwin\empty \else
/NewWindow \ifcase\hl@opt@newwin false\else true\fi
\fi
>>7
Yz
Y
\def\hl@typeh@url{/
\hlstart@preamble
user{/
/Subtype/Link/
/A<y
/Type/Action/
/S/URL/
/URI(\@hllabel) 7
>>)
A3
Y
%
\def\@hlend{\pdfendlink\endgroup}/ The group from the \@hlstart.
A
\else / PDF output is not enabled.
\message{Eplain warning: ‘pdftex’ hyperlink driver: PDF output is”~"J
\space not enabled, falling back on ‘nolinks’ driver.}/
\hldriver@nolinks
\fi

35

[956]
[957]
[958]
[959]
[960]
[961]
[962]
[963]
[964]
[965]
[966]
[967]
[968]
[969]
[970]
[971]
[972]
[973]
[974]
[975]
[976]
[9771]
[978]
[979]
[980]
[981]
[982]
[983]
[984]
[985]
[986]
[987]
[988]
[989]
[990]
[991]
[992]
[993]
[994]
[995]
[996]
[997]
[998]
[999]
[1000]
[1001]
[1002]
[1003]
[1004]
[1005]
[1006]
[1007]
[1008]
[1009]
[1010]
[1011]
[1012]
[1013]

Y

%
%
%

Driver ‘dvipdfm’.

\def\hldriver@dvipdfm{/

% Hyperlink destinations.

% Default type.
\def\hldest@type{xyz}/
/4 Set defaults for the options (this also tells \hl@set@opt what
/% options we support). (We do not define \hldest@opt@raise,
% \hl@opt@colormodel and \hl@opt@color, they are defined and used
% outside the drivers.)
\let\hldest@opt@left \empty
\let\hldest@opt@top \empty
\let\hldest@opt@right \empty
\let\hldest@opt@bottom \empty
\let\hldest@opt@zoom \empty
\let\hldest@opt@cmd \empty
Multiplexzer for all supported destination types.
\def\hldest@driver{/
/4 Special case for ‘raw’ destinattions.
\ifx\@hltype\hl@raw@word
\csname \hldest@opt@cmd \endcsname
\else
% Construct common preamble of a destination.
\def\hldest@preamble{/
pdf: dest (\G@hllabel) [@thispage
Y
/4 Call the handler.
\csname hldest@typeh@\@hltype\endcsname
\fi
i
% Define handlers for each supported destination type (this also
% tells \hl@getparam what types we support).
\let\hldest@typeh@raw\empty
\def\hldest@typeh@fit{/
\special{\hldest@preamble /Fit]}/
Y
\def\hldest@typeh@fith{/
\special{\hldest@preamble /FitH
\ifx\hldest@opt@top\empty @ypos \else \hldest@opt@top \fil}/
Y
\def\hldest@typeh@fitv{/
\special{\hldest@preamble /FitV
\ifx\hldest@opt@left\empty @xpos \else \hldest@opt@left \fi]}/
Y
\def\hldest@typeh@fitb{/
\special{\hldest@preamble /FitB]}/
b4
\def\hldest@typeh@fitbh{/
\special{\hldest@preamble /FitBH
\ifx\hldest@opt@top\empty @ypos \else \hldest@opt@top \fil}/
Y
\def\hldest@typeh@fitbv{/
\special{\hldest@preamble /FitBV
\ifx\hldest@opt@left\empty @xpos \else \hldest@opt@left \fil}/

36

[1014]
[1015]
[1016]
[1017]
[1018]
[1019]
[1020]
[1021]
[1022]
[1023]
[1024]
[1025]
[1026]
[1027]
[1028]
[1029]
[1030]
[1031]
[1032]
[1033]
[1034]
[1035]
[1036]
[1037]
[1038]
[1039]
[1040]
[1041]
[1042]
[1043]
[1044]
[1045]
[1046]
[1047]
[1048]
[1049]
[1050]
[1051]
[1052]
[1053]
[1054]
[1055]
[1056]
[1057]
[1058]
[1059]
[1060]
[1061]
[1062]
[1063]
[1064]
[1065]
[1066]
[1067]
[1068]
[1069]
[1070]
[1071]

Y
\def\hldest@typeh@fitr{/
\special{\hldest@preamble /FitR
\ifx\hldest@opt@left\empty @xpos\else\hldest@opt@left\fil\space
\ifx\hldest@opt@bottom\empty Qypos\else\hldest@opt@bottom\fi\space
\ifx\hldest@opt@right\empty @xpos\else\hldest@opt@right\fi\space
\ifx\hldest@opt@top\empty @ypos\else\hldest@opt@top \fill}/
Y
\def\hldest@typeh@xyz{/
\begingroup
% Convert zoom factor: 12345 -> 12.345
\ifx\hldest@opt@zoom\empty
\count1=\z@ \count2=\z0
\else
\count2=\hldest@opt@zoom
\countl=\count2 \divide\countl by 1000
\count3=\countl \multiply\count3 by 1000
\advance\count2 by -\count3
\fi
\special{\hldest@preamble /XYZ
\ifx\hldest@opt@left\empty @xpos\else\hldest@opt@left\filspace
\ifx\hldest@opt@top\empty Qypos\else\hldest@opt@top\fi\space
\the\countl.\the\count2]3}/
\endgroup
Y
%
% Hyperlinks.
%
% Default type.
\def\hl@type{namel}/
74 We support ‘url’ hyperlinks, so set some group types.
\ifx\hl@typeQurl\empty
\def\hl@type@url{url}/
\fi
\ifx\hl@type@hrefext\empty
\def\hl@type@hrefext{url}/
\fi
/4 Set defaults for the options (this also tells \hl@set@opt what
% options we support).
\def\hl@opt@bstyle {S}/
\def\hl@opt@bwidth {1}%
\let\hl@opt@bcolor \empty
\let\hl@opt@hlight \empty
\let\hl@opt@bdash \empty
\let\hl@opt@pagefit \empty
\let\hl@opt@cmd \empty
\let\hl@opt@file \empty
\let\hl@opt@newwin \empty
Z Multiplexzer for all supported link types.
\def\hl@driver{/
% Special case for ‘raw’ links.
\ifx\@hltype\hl@raw@word
\csname \hl@opt@cmd \endcsname
\else
% See if we will construct a /BS spec. We want to bother only
% if any of \hl@opt@bstyle, \hl@opt@bwidth and \hl@opt@bdash is
/% mot empty.
\let\hl@BSspec\relax / construct

37

[1072]
[1073]
[1074]
[1075]
[1076]
[1077]
[1078]
[1079]
[1080]
[1081]
[1082]
[1083]
[1084]
[1085]
[1086]
[1087]
[1088]
[1089]
[1090]
[1091]
[1092]
[1093]
[1094]
[1095]
[1096]
[1097]
[1098]
[1099]
[1100]
[1101]
[1102]
[1103]
[1104]
[1105]
[1106]
[1107]
[1108]
[1109]
[1110]
[1111]
[1112]
[1113]
[1114]
[1115]
[1116]
[1117]
[1118]
[1119]
[1120]
[1121]
[1122]
[1123]
[1124]
[1125]
[1126]
[1127]
[1128]
[1129]

\ifx\hl@opt@bstyle \empty
\ifx\h1l@opt@bwidth \empty
\ifx\hl@opt@bdash \empty
\let\hl@BSspec\empty / don’t construct
\fi
\fi
\fi
% Construct common preamble of a link.
\def\hlstart@preamble{/
pdf: beginann
v/
/Type/Annot
/Subtype/Link/
\ifx\hl@opt@bcolor\empty\else /C[\hl@opt@bcolor]\fi
\ifx\hl@opt@hlight\empty\else /H/\hl@opt@hlight\fi
\ifx\h1l@BSspec\relax
/BS<</
/Type/Border/
\ifx\hl@opt@bstyle\empty\else /S/\hl@opt@bstyle\fi
\ifx\hlQopt@bwidth\empty\else /W \hlQopt@bwidth\fi
\ifx\hl@opt@bdash\empty \else /D[\hl@opt@bdash]\fi
>>/
\fi
b4
% Call the handler.
\csname hl@typeh@\@hltype\endcsname
\fi
Y
% Define handlers for each supported link type (this also tells
/% \hl@getparam what types we support).
\let\hl@typeh@raw\empty
\def\hl@typeh@name{\special{\hlstart@preamble /Dest(\@hllabel)>>}}7
\def\hl@typeh@page{/
% PDF requires pages to start from 0, so adjust page number.
\count@=\0@hllabel
\advance\count@ by-1
Z
\special{/
\hlstart@preamble
/Dest [\the\count@
\ifx\hl@opt@pagefit\empty/Fit\else\hl@opt@pagefit\fi]/
>>Y
b4
i
\def\hl@typeh@filename{\hlefile{(\@hllabel)}}
\def\hl@typeh@filepage{/
/% PDF requires pages to start from 0, so adjust page number.
\count@=\0@hllabel
\advance\count@ by-1
%
\hlefile{/
[\the\count@ \ifx\hl@opt@pagefit\empty/Fit\else\hl@opt@pagefit\fi]/
¥4
Y
\def\hl@file##1{/
\special{/
\hlstart@preamble
/A<

38

[1130]
[1131]
[1132]
[1133]
[1134]
[1135]
[1136]
[1137]
[1138]
[1139]
[1140]
[1141]
[1142]
[1143]
[1144]
[1145]
[1146]
[1147]
[1148]
[1149]
[1150]
[1151]
[1152]
[1153]
[1154]

\ifx\hl@opt@newwin\empty \else
/NewWindow \ifcase\hl@opt@newwin false\else true\fi

/Type/Action/
/8/GoToR/
/D##17
/F(\hl@opt@file)
\fi
>>7
>>7
Yz
Y
\def\hl@typeh@url{/
\special{/
\hlstart@preamble
/A<
/Type/Action/
/S/URIJ
/URI(\@hllabel)
>>7
>>
Y
Y
%
\def\@hlend{\special{pdf:
Y

endann}\endgroup}/ The group from \@hlstart.

39

[1155]
[1156]
[1157]
[1158]
[1159]
[1160]
[1161]
[1162]
[1163]
[1164]
[1165]
[1166]
[1167]
[1168]
[1169]
[1170]
[1171]
[1172]
[1173]
[1174]
[1175]
[1176]
[1177]
[1178]
[1179]
[1180]
[1181]
[1182]
[1183]
[1184]
[1185]
[1186]
[1187]
[1188]
[1189]
[1190]
[1191]
[1192]
[1193]
[1194]
[1195]
[1196]
[1197]
[1198]
[1199]
[1200]
[1201]
[1202]
[1203]
[1204]
[1205]
[1206]
[1207]
[1208]
[1209]
[1210]
[1211]
[1212]

A
7 Miscellaneous hyperlink macros.
%
%
7% \href{URL}TEXT} typesets TEXT as a link to the URL. If URL starts
/4 with a #, the rest of the URL is assumed to be this document’s local
% anchor. Special chars (like # and ~) in URL don’t need to be
7 escaped in any way.
\def\href{/
/% Read #1 (URL) inside a group with \uncatcodespecials, to get the #
% and ~ right.
\bgroup
\uncatcodespecials
\catcode ‘\{=1 \catcode‘\}=2
\@href
Y7
A
\def\@href#1{/ We’ll read #2 (TEXT) later.
\egroup
\edef\@hreftmp{\ifempty{#1}{}\£fi}/ Parameter stuffing for \@Chref.
\expandafter\Q@Chref\Chreftmp#1\0Q
Y
%
{\catcode‘\#=\other
\gdef\@hrefhash{#}}/
A
\def\href@end@int{\hlend@impl{hrefintl}}/
\def\href@end@ext{\hlend@impl{hrefextl}}/
7% Split out the first token and check if it is a #.
\def\@@href#1#2\0e{/
\def\@hreftmp{#1}/
\ifx\@hreftmp\@hrefhash
\let\href@end\href@end@int
\hlstart@impl{hrefint}{#2}/
\else
\let\href@end\href@end@ext
\hlstart@impl{hrefext}{#1#2}/
\fi
\@@Ghref
7
7% Now some tricks to avotid reading the TEXT as an argument (from the
7% \footnote definition in plain TeX).
\def\Q@@Ghref{/
\futurelet\@hreftmp\href@
Y
A
\def\href@{/
\ifcat\bgroup\noexpand\@hreftmp
\let\@hreftmp\href@Q
\else
\let\@hreftmp\href@eQ
\fi
\@hreftmp
Y
A
\def\href@@{\bgroup\aftergroup\href@end \let\@hreftmpl}/
%
\def\hrefQQQ#1{#1\hrefQendl}/

40

[1213]
[1214]
[1215]
[1216]
[1217]
[1218]
[1219]
[1220]
[1221]
[1222]
[1223]
[1224]
[1225]
[1226]
[1227]

A

7% Make all user-visible \hl* macros to give errors until hyperlinks

7 are explicitly enabled with \enablehyperlinks.

\def\hldeston{\errmessage{Please enable hyperlinks with
\string\enablehyperlinks\space before using hyperlink commands
(consider selecting the ‘nolinks’ driver to ignore all hyperlink
commands in your document)l}}/

\let\hldestoff\hldeston \let\hlon\hldeston \let\hloff\hldeston

\let\hlstart\hldeston \let\hlend\hldeston \let\hldest\hldeston

/% This catches \hltype, \hlopts, \hldesttype, \hldestopts.

\let\hl@setparam\hldeston

% Turn off all groups to make sure \hlstart@impl, \hlend@impl and

7% \hldest@impl do not call \hlstart, \hlend and \hldest until

7 hyperlinks are enabled.

\@hloff [*]\@hldestoff [*]/

41

