
TUGboat, Volume 45 (2024), No. 1 145

Signing PDF files

Hans Hagen

Here I discuss a feature of PDF documents that
TEX users can safely ignore most of the time but
that is part of the package. But before we arrive at
describing what it is, first a few words about PDF

and the way it is used.
When PDF showed up as a format, DVI was

what TEX users had to deal with. It was possible
to preview the result with a DVI viewer or convert
it to some format suitable for a printer. The DVI

format is rather minimal and has no resources like
fonts and images embedded. Basically the file only
positions glyphs and rules on a canvas and the glyphs
are references to external fonts. Color and similar
effects have to be implemented using the \special
primitive that puts directives for the backend driver
in the file. Although technically one could embed
fonts and images using specials and thereby create a
self-contained file it never happened, partly because
it demands a dedicated viewer and (definitely at that
time) increased runtime.

At that time PostScript was one of the popu-
lar output formats. For a long time I used DVIPS-

ONE for (robust) printer output (with outline fonts)
and DVIWINDO for previewing (because it was fast,
supported color, graphics and hyperlinks). The ini-
tial road to PDF was to add another step to the
conversion: using Acrobat to convert a PostScript
(enhanced with so-called pdfmarks) into a PDF file.
Later direct DVI to PDF converters showed up along-
side pdfTEX that integrated an alternative backend.
We can realize that without these more direct meth-
ods TEX would not be as popular as it is now. The
fact that in ConTEXt we had a rather generic (ab-
stract) backend, where specific drivers plugged in,
indicates that we didn’t foresee that PDF would
eventually take over.

One of the reasons PDF showed up alongside
PostScript is that it removes the interpretation part
from the end result. Where PostScript is a program-
ming language and the result needs to be interpreted
in the printer or in a viewer (like GhostView), PDF

is a collection of related objects that express what
gets rendered in what way. Often the PDF files are
smaller, also due to compression (so they transfer
faster), and the lack of additional processing removes
a bottleneck in high speed and high resolution print-
ing. If you look at it this way, PDF is primarily a
printer format.

Some tools in the Adobe suite of editing pro-
grams use(d) a mix of binary and PostScript to store
the state. At some point PDF became the container

format, although one could find curious mixes of
PostScript, PDF, even configurations stored as type-
set streams, but that might have been normalized
by now. So, from this perspective PDF is a storage
format, kind of an object-oriented one.

When PDF showed up it had some rudimentary
support for annotations, like hyperlinks, and also for
embedding of audio and video. I’m pretty sure that
TEX was among the first programs to support this.
Over time more annotation types showed up, like
widgets (forms), complex media and 3D, JavaScript,
comments and attachments. Widgets evolved a bit
and one has to play rather safe (and not use all fea-
tures) because some bugs and side effects became
features and there is limited support in viewers, if
only because often JavaScript is assumed. Media
have always been sort of a mess, especially when the
straightforward annotations were dropped. We have
always supported them but I consider them unreli-
able in the long run. Most hyperlinks are working
as expected, comments (a form of PDF annotations)
when used wisely also work ok, although that de-
pends on the viewer (interfaces change). No matter
what one thinks of all this, here PDF is definitely a
viewing format. Because comments can be added,
PDF files can also be used in redacting workflows.

It is also worth remembering that in the early
days only Acrobat was available for viewing; there
was even a version for MS-DOS. The Reader only
offered basic functionality and for the real deal one
needed Exchange, which didn’t come free. There
was a complicated scheme for shipping a special ver-
sion with documents: basically that was the business
model for using PDF for an on-screen reading experi-
ence. This was not a success (cumbersome as well as
expensive), and when Internet access became more
common, using CD-ROM for distributing documents
was soon obsolete, let alone installing a related closed
source and operating system dependent viewer. We’ll
see that with document signing, another attempt at
a business model is made.

Following up on that we now arrive at two ad-
ditional aspects. One is accessibility and I could
spend a whole article on that. Let’s stick to the
observations that the idea is that rendered content
can be reinterpreted for reading aloud, for reflow
(sic), maybe for cut-and-paste. Personally I wonder
why one would use PDF to provide adaptive accessi-
bility, because HTML is meant for that. Distributing
a structured source might be more efficient when
interpretation is needed. Anyway, it’s not that hard
to support but we end up with a bloated PDF file,
while the PDF format started out with attempts to
minimize size. I understand that publishers don’t

doi.org/10.47397/tb/45-1/tb139hagen-pdfsign

Signing PDF files

https://doi.org/10.47397/tb/45-1/tb139hagen-pdfsign

146 TUGboat, Volume 45 (2024), No. 1

like to distribute sources but if this is the solution one
can wonder. The second addition is to render and
present text in a way that cannot be tampered with
and this is where signing comes in: can we somehow
mark a document such that the receiver can trust its
content. More about that later, but what we can say
here is that PDF has become a distribution format.
Conforming to standards, tagging, encryption and
signing all play a role in this.

No matter what usage we consider, all of them
depend on reliability. Can we show and process a
document in the future? Can PDF be relied upon
as a long-term archival format? From that perspec-
tive, standardization has to be mentioned. Already
early in the history of PDF, plugins (and additional
workflows) provided the printing industry ways to
check if a file was okay. One should think of color
spaces being used, fonts being present, etc. Some
tools manipulated the PDF, not always with the best
outcome, but we leave that aside. Other tools were a
bit more tolerant than might be considered healthy,
for instance by ignoring a bad xref table (basically
the registry of objects in a PDF file) and either fixing
it or just generating one from scratch. Although
Acrobat can complain or fail to open a document,
on the average commercial and open source tools
are tolerant enough and the lack of a proper error
log means that the PDF generators don’t get fixed
when that still can be done. It is also good to keep
in mind that there is a whole industry around PDF

generation, validation, manipulation, etc. and huge
money making machines are not always on the retina
of, for instance, TEX users who produce PDF. Of
course by now there are so many documents in PDF

format around that being tolerant kind of comes with
the package. Validators like VeraPDF evolve and a
document that is ok today (2023) might fail the test
tomorrow, and the verdict even depends on the PDF

framework being used (there are options). Where
TEX users can often regenerate a document from
source this is not true for the majority of documents
produced elsewhere.

It is also important to notice that rather soon
in the history of PDF, Ghostscript became an option
for viewing and at some point commercial and open
source viewers showed up. Not all were perfect and
even today there are differences in quality and func-
tionality. A good test is how well cut-and-paste deals
with spaces and how well a test area gets selected.
The open source viewers are slow in catching up,
but because the evolution of media PDF annotations
isn’t that stable either for most purposes viewers like
SumatraPDF (Windows) or Okular (Linux) is what
I use today, especially now that Acrobat has moved

to the cloud. There is also some competition from
browsers that show PDF. For purposes of signing
(which we’ll get to next) one probably has to rely on
Acrobat for a while, but we’ll see.

So, what does signing bring to this? Digital
signatures have been around for a while. You can for
instance sign a document with a certificate (similar
to what secure webservers do with sites). In that case
the distributed blob has security-related information
as well as the content. A validating application can
take the content and check if it has been tampered
with. It can do so off line (with limited security) but
also go online and check the embedded certificate.
With signed PDF files the same is true apart from
the fact that here the signature is a partial one,
not embedding the data. Instead the signature is
embedded in the PDF file.

Before we move on we have to stress that signing
is not the same as (password protected) encryption.
A signed PDF file is by default just readable, unless
one explicitly encrypts the file. These processes are
independent. Here we ignore encryption; suffice it
to say that ConTEXt can do it, but apart from users
asking for it I don’t know if it ever gets applied. We
discuss the process of signing in the perspective of
ConTEXt, although in itself it is not bound to that
macro package.

Let’s first look at how text ends up in a PDF

file. Take this source file, in ConTEXt-speak:

\startTEXpage[offset=1dk]

some text

\stopTEXpage

This leads to a so-called page stream that con-
tains this (except normally you are likely to see
garbage because compression is applied, so decom-
press first):

BT

/F1 10 Tf

1.195517 0 0 1.195517 7.485099 7.616534 Tm

[<000100020003000400050006000400070006>] TJ

ET

We switch to a font (Tf) with id F1, set up a
text transform matrix (Tm) and render the four plus
four characters (TJ) indicated by their index into a
(in our case subsetted) font. The 0005 is not really
a character: it refers to a space. It looks unreadable
but one can figure out the text by consulting the
ToUnicode resource associated with the font as it
has the mapping from the index numbers to Unicode
(with comments added):

<0001> <0073> % s

<0002> <006F> % o

<0003> <006D> % m

<0004> <0065> % e

Hans Hagen

TUGboat, Volume 45 (2024), No. 1 147

<0005> <0020> %

<0006> <0074> % t

<0007> <0078> % x

There is nothing hidden here and one can actu-
ally even change the text by changing an index in
the page stream, although of course you can only use
indices that are available and you also have to accept
weird rendering due to the change in progression
when the referenced glyph has different dimensions.
More extensive tampering with the document has
more severe consequences. For instance, the page
object looks like this:

3 0 obj

<< /Length 118 >>

stream

...

endstream endobj

So changing the content also demands changing
the Length. Even worse, there is an entry in the
object cross reference table:

0000000075 00000 n

0000000244 00000 n

that needs to be adapted, including all following
entries. So, tampering is possible but not something
that is likely to happen. Nevertheless we continue as
if some guard against this is needed. We now assume
the following document:

\nopdfcompression

\setupinteraction[state=start]

\definefield[signature][signed]

\defineoverlay[signature][my signature]

\starttext

\startTEXpage[offset=1ts,frame=on,

framecolor=darkblue]

sign: \inframed

[background=signature,framecolor=darkred]

{\fieldbody[signature][width=3cm,

option=hidden]}

\stopTEXpage

\stoptext

We get a small, one page, document:

This document has a widget that looks like this
(some less relevant entries are omitted):

2 0 obj

<<

/Type /Annot

/Subtype /Widget

/FT /Sig

/T <feff007300690067....074007500720065>

/V 1 0 R

/Rect [38.445125 11.522571

123.484489 23.471172]

>>

endobj

In principle we could add an appearance stream
and decorate the widget but when adding signature
support to ConTEXt I found that using a parent-kid
approach, for instance, was not appreciated by some
programs (I used mutool (mupdf), pdfsig (poppler),
Okular and Acrobat Reader for some basic testing),
so in the end the V key ended up in the root widget. It
probably relates to fuzzy specifications, experiments
with specific tool chains, non-public validation pro-
cesses, etc. Round trip signing and verification seems
not entirely trivial, so best to play safe.

When the value of a Sig widget is a string,
signing is up to the viewer but when we have a
dictionary the signature can be in the file. The V

value of 1 0 R is a reference to a dictionary with
object number 1. Here is what that value looks like
when we generate this document:

1 0 obj

<<

/ByteRange [2000000000 2000000000

2000000000 2000000000]

/Contents <0000000000000....00000000000000>

/Filter /Adobe.PPKLite

/SubFilter /adbe.pkcs7.detached

/Type /Sig

>>

endobj

The Filter and SubFilter entries are sort of
default, though alternatives are possible, which then
requires additional information to be added and also
a viewer (or validator) able to deal with it. We leave
that aside. The Contents hex-encoded string is a
placeholder for the signature and in our case is 4096
bytes long. We could compute a bogus signature
and check the size instead. Here the ByteRange

and Contents are actually invalid but viewers are
(supposed to be) tolerant so it triggers no error. After
all this widget is only consulted when signatures are
checked. The general structure of the file is like this:

%PDF-1.7

....

1 0 obj

<< /ByteRange [....] /Contents <....> >>

endobj

....

xref

The signature ends up between < and > and
has to be calculated over the bytes specified by the
ByteRange entries. Although one might think that

Signing PDF files

148 TUGboat, Volume 45 (2024), No. 1

these can be arbitrary, in practice it looks like it is
best sticking to the recommendation:

start of file

length up to position < of contents

position after > of contents

length up to end of file

So basically all except the Contents value is
taken into account. Because the ranges are part of
that, they need to be filled in properly, something
that has to be done after the PDF file is finished
because only then is the size known. In ConTEXt
that could be done as part of the main run, but it
makes little sense because we need to adapt the file
anyway. If the file is called sign-001.tex, we get
this:

mtxrun --script pdf --sign \

--certificate=sign-001.pem \

--password=test sign-001

The script will set the byte ranges and fill in
the content. It does that by making a data file and
running openssl with the appropriate parameters,
although with --library one can avoid the tempo-
rary file and gain a bit. Just for the record: we don’t
depend on that library but have only a minimal de-
layed binding to a few functions, with Lua wrappers
so it has no impact on (compiling) the LuaMetaTEX
binary. Eventually one ends up with something like
this (values abridged):

1 0 obj

<<

/ByteRange [0000000000 0000006276

0000010375 0000000380]

/Contents <3082061a06092a....a082060b308206>

....

endobj

Verifying can be done as follows:

mtxrun --script pdf --verify \

--certificate=sign-001.pem \

--password=test sign-001

which reports:

sign pdf | signature in file ’sign-001.pdf’

matches the content

while changing a byte in the trailer id results in:

sign pdf | signature in file ’sign-001.pdf’

doesn’t match the content

For verifying we can load the PDF file and use
the ByteRange specification but for signing this is less
trivial: when we load a PDF file we load a structure
that is ignorant of the position in the file. We could
use the cross reference table to find the position in the
file of the object but that assumes that this table is
available. So here we have two alternatives. We can
write an auxiliary file (sign-001.sig) at the end of

the TEX run that has the relevant information. This
approach permits us to keep the PDF file simple: we
reserve enough characters for the ranges and content
so we can overwrite them. If the file is lacking, the
sign routine tries to locate the object in the PDF

from the list of widgets and once we know its number
we also know where the object is in the file. This
alternative adds a little overhead because at least
the cross reference table has to be loaded. Whatever
route we take, it is still prettier than appending
additional objects to the file and basically creating a
new version, which not only makes the file larger but
also keeps unused objects around. Applications like
mutool and Acrobat prefer that route, though, in
part because they add their own appearance streams.

We now need to discuss these certificates and
that is where it becomes less convenient. For testing,
I use a Let’s Encrypt certificate but these officially
cannot be used as they are flagged as web certifi-
cates. There is (what’s new here) a whole industry
behind this signing. You need to get a certificate
someplace and for that often have to sign up for
a yearly subscription. In the worst case you get a
token instead of a file and then have to set up some
delegated workflow. Feeding a document into a USB

token is not the most efficient of all processes, so
you will find alternative solutions where you end up
with a dedicated machine in a server rack. This all
makes it a no-go for a low or zero budget situation. It
also means that for just printing, viewing or storing
purposes signing doesn’t make that much sense: it
only adds overhead.

One can argue that signing is not that robust
anyway. Just like we can add a signature to a file,
so can anybody. It’s all about trust. When a byte in
a PDF file is changed validation fails anyway so that
is already a signal; we don’t need to verify the cer-
tificate for that. And it’s not that hard to let a user
upload a file to the origin and let it validate there
where the private key is known. But wait, isn’t it
more convenient to do that without uploading? Sure,
but here are some pitfalls. First of all, who knows
if a certificate is still valid? An organization has to
spend quite some money on it yearly. And (even
root) certificates expire so in the end the document
refers to something invalid anyway, which effectively
makes the document expire after some time. Sav-
ing documents and providing them again might be
cheaper and also has the advantage of archiving. For
long term archiving signing makes little sense anyway
(expiration, cracking).

So why do we bother to add signing to Con-
TEXt? The answer is simple: user demand. Just
like being forced to use some PDF standard, users

Hans Hagen

TUGboat, Volume 45 (2024), No. 1 149

can be forced to comply with what the organization
prescribes with respect to signing, even when in the
end it’s just a demand, and nothing is actually done
with it. So the main question is: after showing that
it can be done, what eventually happens; how does
the workflow look? It’s comparable to tagging: it
is sometimes demanded, but after that the lack of
useful tools make it just a box to be ticked.

There are other alternatives to making users feel
good about a document: provide a printed copy, keep
the original someplace for downloading, maybe make
it possible to regenerate a document from source,
maybe even provide the resource. Generate a string
hash and keep that available alongside the original.
In the end it is all about trust, indeed.

Let’s end on a positive note. Getting to know
what has to end up in the file is not that trivial and
as with much on the Internet, looking for solutions
quickly brings you to a subset of partial and some-
times confusing answers and solutions. This is why
in the end I decided to just look in the code base
of openssl that comes with examples and eventu-
ally one can sort out something not too complex.
One of the interesting observations was that the bi-
nary blob is a structured key/value sequence using
technology from decades ago (1984), when data had
to be transferred reliably between architectures and
programming languages: Abstract Syntax Notation
One (ASN.1). It makes old TEXies feel young when
old tools survive beyond the modern short lifespan
of fancy web technologies. I might eventually spend
some more time on this, just for the fun of it.

If you want to know more details: the official
ISO standard on PDF has some sections on the mat-
ter; a more comprehensive summary can be found in
“Digital Signatures in a PDF, Adobe Systems Incor-
porated, May 2012”. There is also “CDS Certificate
Policy, Adobe Systems Incorporated, October 2005”
but I suggest to ignore that one unless you’re forced
to implement the more expensive route.

Some final words on the mentioned formats. For
printing and storage this feature is not needed. Nor
for regular viewing, because users probably don’t
care that much if a manual or book is signed and
it’s unlikely that certificates last that long (or stay
secure for that matter). But it might make sense
for distributing documents with some legal meaning
in the short term. In that perspective having this
feature in ConTEXt makes most sense in specific
workflows. But it doesn’t hurt to know that TEX is
still able to adapt itself to these situations.

⋄ Hans Hagen
Pragma ADE

TUGboat, Volume 45 (2024), No. 1 149

Computer Modern shape curiosities

Hans Hagen

azö (upright)

azö (italic)

azö (bold)

azö (bold italic)

When playing with some (upcoming) new font fea-
tures in LuaMetaTEX, I overlaid regular and bold
versions of Latin Modern characters. I took an ‘a’
with diaeresis as a test.

While staring at the overlays I noticed that the
little hook of regular was not present in the bold
variant. After displaying the whole upright alpha-
bet, that was the only difference in shapes. In the
italic shapes, the ‘z’ was a bit different. And when
blown up the dots are somewhat larger in the bold.
(Computer Modern is the same, naturally.)

So, the question is: how many users who can
immediately recognize Computer Modern have no-
ticed this difference in ‘a’? Another question is: did
personal taste win over consistency?

We can also wonder if Latin Modern should
have a few stylistic alternates, but maybe no one
is willing to pay the prices in additional overhead.
Of course most such details get hidden at a small
10 point size. When blown up enough, a few other
interesting design details can be seen, but I leave
noticing that to the reader. After all, these shapes
were never meant to be seen that large.

⋄ Hans Hagen
Pragma ADE

doi.org/10.47397/tb/45-1/tb139hagen-cmshapes

