TUGboat, Volume 45 (2024), No. 1

Visualizing the Mandelbrot set with
METAPOST

Max Giinther

Abstract

With the advance of modern programming languages
allowing for parallelized and optimized computation,
visualizing the Mandelbrot set has become easier
than ever before. METAPOST was not designed for
such time-consuming tasks, nevertheless it has sur-
prisingly acceptable performance.

1 Introduction

The Mandelbrot set is a set of points in the complex
plane. A point ¢ is part of this set if the sequence z,
defined as 2,41 = 22 + ¢ with 2z,,c € C and zy = 0
does not diverge to infinity [1, 2]. In practical appli-
cations, it is impossible to perform an infinite number
of iterations for z,. For this reason we define a max-
imum number of iterations npyax. In addition, we
can stop the iteration as soon as the norm of the
position vector z, exceeds a radius of 2, since it can
be shown that in this case z, will eventually diverge
to infinity [4].

Herbert Vofs has already implemented an al-
gorithm for visualizing the Mandelbrot set in the
German journal DTK [3]. My goal was to port his
code from Lua to METAPOST, examining how it
will perform and what difficulties will arise in this
process.

2 Where are the complex numbers?

The first obstacle I encountered was the lack of com-
plex numbers in METAPOST. To be fair, it is pretty
unlikely that you will need complex numbers when
creating graphics, so nobody bothered to include
them. Luckily, the calculation can be performed
using basic algebral

Recall that a complex number a = x+yi consists
of both a real part x and an imaginary part y, which
can be used to represent the complex number as a
point in the complex plane, as shown in figure 1.
It is worth noting that this is a two-dimensional
coordinate system, which is (of course) supported by
METAPOST.

We also need to be able to add and square com-
plex numbers. By looking at the real and imaginary
part of a complex number separately, we can calcu-
late a 4+ b and a? with ease:

(@ +yi) + (u+wvi) = (z+u) + (y+v)i
(z +yi)? = 2% —y* + 2ayi

doi.org/10.47397/tb/45-1/tb139guenther-mandelbrot

113

Im

c=140.75¢
0.75

Figure 1: The complex number ¢ = 1 4 0.75¢ in the
complex plane. Re is the real axis, Im the imaginary
axis. The equation notated diagonally uses Pythagoras’
theorem for calculating the distance between point ¢
and the origin of the coordinate system.

3 Several arithmetic overflows later. ..

After successfully setting up the innermost loop and
checking that the sequence z, has been calculated
correctly, I tried to integrate the two outer loops.
During this stage I encountered multiple arithmetic
overflows. The mistake was that I carelessly mixed
the operators = and := in the loop body. An equal
sign (without the colon) is the instruction for solv-
ing linear equations, not the assignment operator.
This resulted in unnecessarily constructing a gigantic
equation, too huge to be handled by METAPOST.

4 Let it be colorful!

At this point the Mandelbrot set was easy to recog-
nize, but rather dull: each pixel belonging to the set
was colored black, the rest was white. To uncover
more detail of the Mandelbrot set — especially in the
aura— we can use the escape time algorithm. The
color of a pixel depends on the number of iterations n
completed before the norm of the position vector 2’
exceeds the radius of 2. In Vofs’ implementation,
this results in a value between 0 and 255; however,
METAPOST expects RGB values between 0 and 1.
For that, we can use the following equation:

(nmax - Tl)
nmax
5 Optimizing the code

To speed up the computation, I implemented the
following optimizations:

1. Extract constants (like dx and dy) from the loop
body to prevent unnecessary computation.

2. Square Pythagoras’ theorem, so sqrt(re**2
+ im*x*2) > 2 becomes re**2 + im**2 > 4.

3. Fill the whole image with black and only draw
pixels not belonging to the Mandelbrot set.

Visualizing the Mandelbrot set with METAPOST

https://doi.org/10.47397/tb/45-1/tb139guenther-mandelbrot

114

Figure 2: The output of the METAPOST program.
The generation of this image with a resolution of
1000 by 1000 pixels took about three minutes on an
11th Gen Intel i7. The following values were used:
Tmin = —2, Tmax = 0.5, Ymin = —1.25, Tmax = 1.25,
Nmax = 200 and res = 1000.

The last optimization has the positive side effect
of reducing the number of conditional statements
needed for drawing a pixel in the correct color.

6 Conclusion

Trying to implement Herbert Vofs’ algorithm for vi-
sualizing the Mandelbrot set was a great experience.
After about 3.5 hours of tinkering I finally achieved
convincing results. I enjoyed the process and now
feel more confident about working with METAPOST
in the future.

Figure 2 shows the final image of the “Apfel-
ménnchen”; as this detail of the Mandelbrot set is
called in Germany, because it is reminiscent of a man
rotated by 90 degrees. The source code is displayed
in section 7. Feel free to try it out by yourself and
play around with the values to explore different parts
of the Mandelbrot set.

7 Final code

Save the following code as mandelbrot.mp and run
it using mpost mandelbrot.mp. The resulting image
is called mandelbrot.png.

outputtemplate := "%j.png";
outputformat := "png";
beginfig(1)
numeric x_min, X_max, y_min, y_max, res;
x_min := -2; x_max := 0.5;
y_min := -1.25; y_max := 1.25;
res := 1000;
numeric n_max, dx, dy; n_max := 200;
dx := (x_max - x_min) / res;

dy := (y_max - y_min) / res;

Max Glunther

TUGboat, Volume 45 (2024), No. 1

£ill (0,0)--(res-1,0)--(res-1,res-1)
--(0,res-1)--cycle;

for x=0 upto res - 1:
for y=0 upto res - 1:
numeric re, im, old_re, old_im, a, b;
= 0;
:= 0; im_old := O;

re := 0; im
re_old

a := x * dx + x_min;
b .

y * dy + y_min;

for n=0 upto n_max:
numeric squared_re, squared_im;
squared_re := re**2;
squared_im := im**2;

re_old := squared_re - squared_im;
im_old := 2.0 * re * im;

re_old;

im_old;

re = a
im := b

if squared_re + squared_im > 4:
numeric c; ¢ := (n_max - n) / n_max;
numeric o; o := 0.95;
£ill (x,y)--(x+0,y)--(x+0,y+0)
--(x,y+o)--cycle withpen pencircle
scaled .1pt withcolor (c, c, c);
fi;
exitif squared_re + squared_im > 4;
endfor;
endfor;
endfor;
endfig
end

References

[1] B. Fredriksson. An introduction to the
Mandelbrot set, Jan. 2015. www.kth.se/
social/files/5504b42f£276543e4aabfb5al/
An_introduction_to_the_Mandelbrot_Set.
pdf

[2] J. Montelius. Generating a Mandelbrot Image,
2018. people.kth.se/” johanmon/courses/
id1019/seminars/mandel/mandel. pdf

[3] H. Vo. Chaotische Symmetrien mit Lua
berechnet. Die TpXnische Komddie, 32(3):51-57,
Aug. 2020. archiv.dante.de/DTK/PDF/
komoedie_2020_3.pdf

[4] E.W. Weisstein. The Mandelbrot set — from
Wolfram MathWorld. mathworld.wolfram.
com/MandelbrotSet.html

¢ Max Giinther
code-mg (at) mailbox dot org
WWW.guemax.de

https://www.kth.se/social/files/5504b42ff276543e4aa5f5a1/An_introduction_to_the_Mandelbrot_Set.pdf
https://www.kth.se/social/files/5504b42ff276543e4aa5f5a1/An_introduction_to_the_Mandelbrot_Set.pdf
https://www.kth.se/social/files/5504b42ff276543e4aa5f5a1/An_introduction_to_the_Mandelbrot_Set.pdf
https://www.kth.se/social/files/5504b42ff276543e4aa5f5a1/An_introduction_to_the_Mandelbrot_Set.pdf
https://people.kth.se/~johanmon/courses/id1019/seminars/mandel/mandel.pdf
https://people.kth.se/~johanmon/courses/id1019/seminars/mandel/mandel.pdf
https://archiv.dante.de/DTK/PDF/komoedie_2020_3.pdf
https://archiv.dante.de/DTK/PDF/komoedie_2020_3.pdf
https://mathworld.wolfram.com/MandelbrotSet.html
https://mathworld.wolfram.com/MandelbrotSet.html

	Introduction
	Where are the complex numbers?
	Several arithmetic overflows later…
	Let it be colorful!
	Optimizing the code
	Conclusion
	Final code

