
170 TUGboat, Volume 44 (2023), No. 2

Architectural guides for Bonn—book
production with ConTEXt

Henning Hraban Ramm

“Architekturführer der Werkstatt
Baukultur Bonn”

At the University of Bonn, there is a group of scholars
who care about the modernist buildings that were
built after the second world war, when Bonn was Ger-
many’s capital. They do research, offer guided tours
and also publish a series of little architectural guides.
My publisher colleagues were already involved with
them when they studied German literature in Bonn,
so we took over this series when we founded Dreivier-
telhaus publishers in 2017. As it happened, I took
over the design even earlier, since their designer had
no time after becoming a mother.

The design is rather simple, so I decided to do it
in ConTEXt (instead of InDesign). But the structure
of every booklet is unique, since they have a wide
variety in the contents: Some volumes are about only
one building, others about an ensemble or a housing
estate or a themed collection such as “buildings of the
university”; some are by a single author, others collect
contributions by several authors. That means I must
adapt the table of contents and the structure of titles
in every other volume. (Figure 1 is an example.)

Design and layout

Since we use many photos from archives, most pages
are black-and-white, as well as the front covers. But
the booklets are printed in color, because we also
show current pictures, and sometimes color is im-
portant, for example with stained glass windows in
churches or other artwork.

For the cover, we try to use one image front-to-
back, but it’s just not possible for every volume to
find a landscape photo where the important part of
a building is on the right-hand side. Since my setup
expects one image, I glue different photos for front
and back together in such cases. (Figure 2.)

Interior images are often full page, sometimes
even over a double page spread.

Images that cover the full width or height of a
page need to be a few millimeters bigger to avoid
problems in paper trimming; this is called bleed. This
affects not only full page images, but everything that
touches paper edges. We also have images that stay
within the type area.

Most images have captions. On full page images,
the caption is moved into the image and gets a back-
ground shadow to increase readability. (Figure 3.)

Figure 1: symbolic #0 guide

Figure 2: cover images (back and front)

doi.org/10.47397/tb/44-2/tb137ramm-books

Henning Hraban Ramm

https://doi.org/10.47397/tb/44-2/tb137ramm-books


TUGboat, Volume 44 (2023), No. 2 171

Figure 3: example spreads with half-page and
full-page images

Maps

There’s another tricky subject in these architectural
guides, namely city maps.

For my architectural guide on the Kyrgyz capi-
tal Bishkek, I got experience with processing Open-
StreetMap data for custom maps.

I’m using Maperitive,1 because it allows for
batch processing. Maperitive is written in .NET,
and I run it on my Mac with Mono. It’s horribly
slow, the programming interface is severely under-
documented, and the latest version is from 2018, but
it’s still the best choice and I somehow manage to
get what I want.

What I want is also a custom style with very
subdued colors, nearly black and white, and not
many location markers for shops etc. Maperitive
uses style sheets that are somewhat similar to CSS,
so you have selectors and style instructions.

The output is SVG, and I use Inkscape to convert
it to PDF for inclusion. ConTEXt LMTX doesn’t need
this any more and can process SVG on its own via
a MetaPost conversion. But when I made the latest

1 https://maperitive.net

Figure 4: city map, with advertising for related guides

architectural guide in 2019, this was not yet possible.
Also, I want to postprocess the images, e.g. deleting
unnecessary labels.

You may have read in TUGboat 42:3 that Con-
TEXt can process OpenStreetMap data on its own,
also via a MetaPost conversion. This is true, but
unfortunately not more than a proof of concept. It
can’t handle labels, like street names, so it’s quite
useless for a city map. The colors are ugly, too — that
would be easy to change, and I promised to provide a
theme, but the rendering is just not flexible enough:
All paths can only be drawn as single lines, while if
you look at other OpenStreetMap renderers, streets
usually have a fill and an outline, and for railway
tracks you need a thick white line with a dashed
black line on it. My programming skills don’t suffice
to fix that.

So I stick to my proven workflow for the time
being. (Figure 4.)

Setup

I wrote the setup for these architectural guides mostly
in 2015, and since then, plenty has happened— not
only has ConTEXt moved to LuaMetaTEX, but also
I’ve learned a lot and can do a bit better, so I found
my old code a bit embarrassing and refactored it,
just in time for the upcoming guides that we hope
to publish in 2023/24.

I will leave out all the setups with regard to
language, fonts and colors.

Simple page layout First we define the page size.
That’s easy:
\setuppapersize[A6]

The page layout is quite simple, we have no page
header and usually don’t need footnotes.

If you set up a layout in ConTEXt, you should
always define the parameters backspace and width
first, then topspace and height. The latter includes

Architectural guides for Bonn —book production with ConTEXt

https://maperitive.net


172 TUGboat, Volume 44 (2023), No. 2

header and footer. You can leave the other areas like
margins and edges alone if you don’t need them.

Header and footer setting reflect that we don’t
need page headers and the footer only for page num-
bers. We need double pages to get the page numbers
in the outer footer, otherwise we couldn’t distinguish
left and right pages.
\setuplayout[

backspace=12.5mm, width=80mm,
topspace=12.5mm, height=125mm, % text+footer
header=0mm,footer=10mm,

]
\setuppagenumbering[

alternative=doublesided,
]

Bleed and trim Most of our images cover the full
page width, and that means they must bleed. 3 mm
is a traditional value; in this small format, 1 mm
probably would be enough. If our printshop tells me
to change it, I want to change it in only one place.
\definemeasure[Bleed][3mm]
\definemeasure[Trim][7.5mm]
\setuplayout[

marking=on, % cut marks
location=middle,
bleedoffset=\measure{Bleed},
trimoffset=-\measure{Trim},

]

With regard to printing, we activate cut marks and
center the page on the sheet. The trim offset is the
difference between sheet and page size as a negative
value. The bleed offset is from the page outward as
a positive value. It’s the same on all sides.

If you would check the outcome so far, you
couldn’t find these boxes in the PDF. The activation
is strangely coupled to some PDF viewer settings:
\setupinteractionscreen[

option={doublesided,bookmark},
% necessary for Trim/BleedBox:

width=max,height=max,
]

This should work now. But what’s the sheet
size? We only defined the paper size! Let’s fix this:
\setuppapersize[A6][A6,oversized]

The oversized option adds 7.5 mm around the
A6 page. We could also define that size explicitly or
use the envelope size C6 instead. (Figure 5.)

Figure 5: title page with crop marks, trim box (inner)
and bleed box (outer)

Preview and print mode While we need bleed,
trim and cut marks in the PDF for the printshop,
they might confuse the authors in the preview version.
They’re also not needed for an ebook.

So let’s mode-ify the settings. It turns out we
only need one mode, ‘print’; if activated, it fixes
the page size, bleed and trim; it can also turn off
interaction (links, etc.).

Another topic where it makes sense to distin-
guish between preview and print mode is image res-
olution. It makes no sense to send draft PDFs with
high resolution images, and some pictures could use
some downsampling even in print mode.

% preview (correction copies)
\startnotmode[print]

\setuppapersize[A6]
\def\Resolution{96}
\setupinteraction[state=start]
\setupexternalfigures[

conversion=lowres.jpg,
]
% no bleed/trim settings

\stopnotmode

% print version

Henning Hraban Ramm



TUGboat, Volume 44 (2023), No. 2 173

\startmode[print]
\setuppapersize[A6][A6,oversized]
\def\Resolution{200}
\setupinteraction[state=stop]
\setupexternalfigures[

conversion=hires.jpg,
]
% setuplayout with bleed/trim as above

\stopmode

\setupexternalfigures[
directory={img},
resolution={\Resolution},

]
\loadluafile[grph-downsample]

This resolution stuff is not (or not yet) a feature
of ConTEXt, but handled by some Lua functions that
call GraphicsMagick during the TEX run to reduce
the image size.

Color conversion to greyscale is already included
in ConTEXt and works the same way, but here we
don’t need a greyscale mode.

Image dimensions For our image calculations be-
sides resolution, we need a few basic dimensions.
\definemeasure[maxWidth]

[\paperwidth + \measured{Bleed}]
\definemeasure[maxHeight]

[\paperheight + 2\measured{Bleed}]
\definemeasure[doubleWidth]

[2\measured{maxWidth}]
% offsets of images from the type area
\definemeasure[topOffset]

[\topspace+\headerheight+\measured{Bleed}]
\definemeasure[bottomOffset]

[\bottomheight+\footerheight+\measured{Bleed}]

Where you would use \newdimen and \dimexpr
in ε-TEX, you should use \definemeasure in Con-
TEXt. My companion article “Calculating covers” in
this issue (pp. 176–179) explains dimension calcula-
tions.

Layers for image placement If you want to place
elements in specific locations, the ConTEXt way is to
use layers.

For images, it makes sense to use full page layers,
but we need to distinguish right and left pages.
\definelayer[bgpicleft][

x=-\measure{Bleed},y=-\measure{Bleed},
width=\measure{maxWidth},
height=\measure{maxHeight},

] % incl. bleed
\definelayer[bgpicright][

x=0mm,y=-\measure{Bleed},
width=\measure{maxWidth},
height=\measure{maxHeight},

] % incl. bleed

\setupbackgrounds[leftpage]
[background=bgpicleft]

\setupbackgrounds[rightpage]
[background=bgpicright]

After definition, we must assign the layers as
backgrounds. It’s possible to use several layers for
one area: background takes a list, left to right is top
to bottom.

Cover layers For the cover, we need additional
layers, and we can already set up the black bar as a
text background. (Figure 6.)
\definelayer[titlebar][

x=83mm,y=-\measure{Bleed},
width=25mm,
height=\measure{maxHeight},

]
\setupframed[frame=off,offset=overlay]
\setlayerframed[titlebar][

background=color,
backgroundcolor=titlebarcolor,
width=25mm,
height=\measure{maxHeight},

]{\strut}

Image placement

Sorry, I won’t show you the implementation of my
macros — it’s long, convoluted, and ugly.

Full page images The placement command for a
full page image looks like this:

Figure 6: #13 HICOG settlements

Architectural guides for Bonn —book production with ConTEXt



174 TUGboat, Volume 44 (2023), No. 2

\startpostponing[15]
\pagefig

[fig:10544-08]% reference
[rh]% placement code
{Kurpark, 1950er Jahre}% caption
{DA01_10544-08}% image file

\stoppostponing

“Postponing” moves content to a specific page,
the page number can be absolute or relative (+1).
Due to expansion and buffering issues it’s not possible
to include this in a macro.

The \pagefig macro is my own; it takes a ref-
erence, a placement code, a caption and the filename
of an image. But what does it do?

• decide if we’re on a right or left page
• start an empty “makeup” (special layout page)
• place the picture on the layer for the left/right

page
• clip the picture to fit (placement code defines if

height or width are leading)
• place the caption in the footer (usually white

on a dark shadow)
• place debugging information (e.g. filename) in

the trim area
The code for a double page image looks nearly

the same:
\startpostponing[+0]
\doublepagefig

[fig:11390-29]
[lh]
{Blick von Osten}
{DA01_11390-29}

\stoppostponing

This instance was placed between chapters and
uses “immediate” postponing (+0).

The macro works similarly to the previous one,
except we place the left half of the picture on the
layer for the left page and the right half on the right
page, each in its own makeup. (A multi-page makeup
would confuse the page numbering.) The placement
code defines the location of the caption.

Half-page images The call for an image that does
not cover a whole page looks like this:
\topfig

[fig:9251]
[rw]
{Großer Saal}
{IMG_9251}

I love a consistent interface. But the macro
works differently:

• decide if we’re on a right or left page
• calculate the actual image dimensions with a

Lua function

• decide where to clip (top/bottom) according to
placement code

• calculate how much to clip so that the picture
fits the line grid

• place it as a float, but move it into the trim area

Why the calculations? I’m using grid setting,
even if this is rather questionable with these picture-
heavy booklets. But it implies that all images should
“sit” on a grid line, i.e. a baseline of body text. Con-
TEXt couldn’t do that on its own. (Only recently,
Hans Hagen extended the options for float placement;
it might be easier now.) Also, the top border of an
image should align with the x-height of a text line,
but that doesn’t matter in this case.

The image has a fixed width, namely the page
width plus bleed. With proportional scaling, we know
its maximum height. We subtract the space above
the type area (4 values) plus bleed. The remainder
modulo the line height is what we need to cut.

It would have also been possible to just move
the image, without clipping it.

The simplified float placement looks like this:
\startplacefigure[
location={top,high},
reference={#1},
title={#3},

]
\offset[
topoffset=-\topOffset,
leftoffset=\measure{leftOffset},

]{%
\clip[
x=0mm,y=\topCut,
width=\measure{maxWidth},
height=\measure{calculatedImgHeight},

]{%
\externalfigure[#4][width=\measure{maxWidth}]

}%
}%
\stopplacefigure

Shadow captions

The shadow behind captions in full-page images is
a MetaPost graphic: A number of stacked rounded
rectangles of slightly increasing size, set to a high
transparency in “multiply” mode, so that the main
shape becomes dark and the borders get blurry.

This graphic is set as an overlay and used as a
background to the (invisible) caption frame.
\startuniqueMPgraphic{mpshadow}
mw := BodyFontSize/3;
ox := -0.5 ; % offset x
oy := -0.5 ; % offset y
bx := 1.5mw ; % bleed x (height of the shadow)
by := 1.5mw ; % bleed y (width of the shadow)

Henning Hraban Ramm



TUGboat, Volume 44 (2023), No. 2 175

This is my caption.

If the caption gets really long
and breaks into several lines,
you see the problem of this approach.
Of course you could break the lines
manually and use separate backgrounds…

Figure 7: multiline caption with a subtle shadow

rx := 3mw ; % max. corner radius x
ry := 2mw ; % max. corner radius y
steps := 10 ; % number of shadow layers,

% 10 is a good value
hue := 0.015 ; % 0.02 is a good value
ycorr := 1mw ; % difference between overlay

% height and shadow height
for step = 1 upto steps:

part := (step-1)/steps;
xstep := bx * part ; % current part of bleed
ystep := by * part ;
crx := (rx + rx*part)/2; % current radius
cry := (ry + ry*part)/2;
% points of the rounded rectangle
xa := -xstep + ox;
xb := -xstep + ox + crx;
xc := xstep + ox - crx + \overlaywidth;
xd := xstep + ox + \overlaywidth;
ya := -ystep + ycorr + oy;
yb := -ystep + ycorr + oy + cry;
yc := ystep - ycorr + oy - cry

+ \overlayheight;
yd := ystep - ycorr + oy + \overlayheight;

fill (xb, ya)---(xc, ya)...(xd, yb)---
(xd, yc)...(xc, yd)---(xb, yd)...
(xa, yc)---(xa, yb)...cycle
withcolor transparent(1, hue, black) ;

endfor;
setbounds currentpicture to OverlayBox ;
\stopuniqueMPgraphic
\defineoverlay[shadow][\useMPgraphic{mpshadow}]
% ...
\inframed[frame=off,

background=shadow,
foregroundcolor=white,

]{This is my caption.}

This was first made for a shadow behind images,
and it works well for text when there’s only one line
or if you can make all lines the same width. The

example is one of the few where that wasn’t possible,
but I was never satisfied with this solution.

The outline approach Just recently I found out
how to make a shadow that adapts to the font shape.
This uses a LuaMetaFun extension for font outlines.
Again, we stack elements with a low opacity, this
time with an increasing outline “rulethickness”.

The shadow color is somewhat irregular due
to overlapping outlines between letters or letter ele-
ments. Maybe it’s possible to combine the paths.
\definecolor[tshade][t=.05,a=1,k=1]
\starttexdefinition ShadowText #1
\startMPcode
steps := 10 ; % number of shadow layers
rulesize := BodyFontSize/steps/3;
for step = 1 upto steps:

draw lmt_outline [
text = "\vbox{\strut #1}",
kind = "fillup",
fillcolor = "tshade",
rulethickness = (step*rulesize),

];
endfor;
% finally, opaque white text on top
draw lmt_outline [

text = "\vbox{\strut #1}",
kind = "fillup",
fillcolor = "white",
rulethickness = 0,

];
\stopMPcode
\stoptexdefinition
% ...
\ShadowText{Now, doesn’t this ...}

If you use this with big text, it makes sense to
add randomized 3 to the lmt_outline call to make
it look a bit more natural.

The LuaMetaFun lmt functions were introduced
in 2021 and are quite fun to play with. E.g. to fill an
lmt_outline path with an lmt_poisson pattern:

⋄ Henning Hraban Ramm
Limburg, Germany
hraban (at) fiee dot net

Architectural guides for Bonn —book production with ConTEXt


	``Architekturführer der Werkstatt Baukultur Bonn''
	Design and layout
	Maps
	Setup
	Simple page layout
	Bleed and trim
	Preview and print mode
	Image dimensions
	Layers for image placement
	Cover layers

	Image placement
	Full page images
	Half-page images

	Shadow captions
	The outline approach


