
134 TUGboat, Volume 44 (2023), No. 1

Storing Unicode data in TEX engines

Joseph Wright, LATEX Project Team

1 Introduction

Unicode has become established over the past three
decades as the international standard for representing
text in computer systems. By far the most common
input encoding in use today is UTF-8, in which Uni-
code text is represented by a variable number of
bytes: between one and four. Unicode deals with
codepoints: a numerical representation for each char-
acter. There are in principle 1 114 112 codepoints
available, although not all are currently assigned and
some of these are reserved for ‘private use’ for ad hoc
requirements.

Each codepoint has many different properties.
For example, depending on our application, we might
need to know whether a codepoint is a (lower case)
letter, how it should be treated at a line break, how
its width is treated (for East Asian characters), etc.
Unicode provides a range of data files which tabulate
this information. These files are human-readable
and are, in the main, purely ASCII text: they are
therefore not tied to any particular programming
language for usage. The full set of files is available
from unicode.org/Public/UCD/latest/ucd/: the
complete current set as a zip is around 6.7MiB.

There are of course standard libraries for com-
mon programming languages such as C which both
load this data and provide implementations of the
algorithms which use this data: things like changing
case, breaking text into lines and so on. However,
these are not readily available to us as TEX pro-
grammers. Thus, if we want to be able to properly
implement Unicode algorithms, we will need to look
at how to load the relevant data and store it within
TEX in an efficient manner.

Here, I will focus on how the LATEX team is
approaching the data storage challenge. I will show
how the particular requirements of implementing
in TEX mean we need to use a mix of approaches,
depending on exactly which data we are looking at.
The current implementation for loading this data in
expl3 is available at github.com/latex3/latex3/

blob/main/l3kernel/l3unicode.dtx, and is read
as part of the LATEX2ε format-building process.

2 The data challenge

With over a million codepoints, even on a modern
computer, storing values for every codepoint sep-
arately is impractical, particularly when we worry
about having multiple properties and needing to
access any data value with equal ease.

In some cases, we do not need to record prop-
erties for every single Unicode codepoint. We will
see that for example with grapheme breaking: most
codepoints have the same property value here, so
we can tackle data storage by looking just at ex-
ceptions. However, there are major problems there.
First, there are plenty of properties where we do need
to track information of most if not all codepoints.
There are cases where we might look at using ranges
of characters, but the downside to this can be that
we get uneven speed of access: that’s fine if all of our
documents are written in ASCII, but not acceptable
if we need to cover a range of input scripts in an
even manner.

This is not something that applies only to TEX
of course, and it’s a problem that the notes from
the Unicode Consortium themselves address. The
recommended approach is to use what is called a
two-stage table. This is a way of covering all of
those 1 114 112 codepoints without needing to store
separate values for every single one, and maintaining
fast access for all codepoints. We will see both how
that works and how to do it in TEX below.

3 TEX aspects

For classical TEX engines, we might think we don’t
need to cover all of Unicode: the engines are only
8-bit anyway. But we know that we can take that
8-bit input and treat it as codepoints: the LATEX
inputenc package has done that for over 30 years. So
even if we don’t need to cover all of Unicode, we need
to handle a subset, and it’s not always easy to make
this a clearly limited and non-expanding subset. So
even for these engines, we likely need methods to
store a full range of data.

The Unicode engines X ETEX and LuaTEX present
a different question. They do have tables for some
Unicode data: \uccode, \lccode, \catcode and so
on. But whilst we do need to set those up (so that
they have the ‘right’ values for TEX operations), it
turns out they don’t offer enough flexibility to track
everything needed. Also, if we want to be able to
use code shared by different engines, we want to use
approaches that work with pdfTEX anyway. For the
LATEX team, that’s the case, of course.

The experienced TEX programmer might at this
stage well be worrying about where I’m thinking
of putting all of this data. TEX is very limited in
the data structures it provides: macros and some re-
gisters. The latter are simply too limited in number,
even with the ε-TEX extensions. We can store quite
a bit in macros, and rely on the hash table to get
fast access, but even that isn’t going to scale well for
the amount of data we might want, at least without

doi.org/10.47397/tb/44-1/tb136wright-unidata

Joseph Wright, LATEX Project Team

https://unicode.org/Public/UCD/latest/ucd/
https://github.com/latex3/latex3/blob/main/l3kernel/l3unicode.dtx
https://github.com/latex3/latex3/blob/main/l3kernel/l3unicode.dtx
https://doi.org/10.47397/tb/44-1/tb136wright-unidata

TUGboat, Volume 44 (2023), No. 1 135

some extra tricks. But there is another, perhaps
unexpected, data store we can use, one that will give
us quite a bit of headroom: font dimensions.

It turns out that we can set almost as many
\fontdimen values for a font as we want, but we
need to know how many to create for any given font.
We don’t want to do that for real fonts, but we can
load the same font at lots of sizes and use each size
as, effectively, an integer array. All that’s needed is
to pick sizes that the user doesn’t care about: we do
that by starting at 1 sp and working upwards. There
is a limit on the total number of \fontdimen values,
but it’s in the millions and we won’t get close to that.
So we do have a fast random access data structure
we can use for storing integer values. Now all we
need to do is use this idea efficiently.1

4 Making it numerical

Before we deal with storing all of the Unicode data
we need, there’s the question of exactly what we will
store. Very few Unicode properties are numerical:
they are descriptors of behaviour. However, we can
turn most of them into something we can represent by
a number. The Unicode ‘General Category’ property
is a good demonstration here. There are 31 possible
values, for example

Cc Control character
Lu Uppercase letter
Nd Decimal number

It’s trivial to assign a numerical value to each of these;
then we can store that integer value and quickly
convert to the descriptor as required.

That approach works for most properties, but
not, for example, for case-changing data. The case
mapping of a codepoint will itself be a codepoint:
it could be the same one, or it could be anywhere
in the Unicode range. We are going to want values
that have some chance of repeating, so storing the
absolute value of the target codepoint isn’t going to
work. Instead, we will store the relative position of
the ‘output’ codepoint. For example, A is "0041 and
a is codepoint "0061. So we will store the lowercase
mapping for A as "0041−"0061, i.e. −32. The open-
ended nature of the values here is going to impose a
few extra conditions, as we’ll see in a bit.

1 If we are working in LuaTEX, other data structures are
available for storage. In expl3, the same macro-level interface
is used for creating integer arrays in all engines, with LuaTEX
using a Lua-based storage method. This allows an engine-
neutral approach to the problem of storing large amounts of
numerical data whilst still taking advantage of the greater
flexibility of Lua where available.

5 Two-stage tables . . .

The idea of a two-stage table is that it offers fast
data access to a large number of values, while at
the same time avoiding storing every single entry
separately. This works for us here as there are pat-
terns in the data we can exploit. Two-stage tables
are recommended by the Unicode Consortium and
are used by several languages. A particularly clear
explanation, including an implementation for storing
general category data written in Python, is available
at strchr.com/multi-stage_tables.

The two-stage approach is based on arbitrary
data blocks (not Unicode’s character blocks): we
divide the full Unicode range into equal-sized blocks,
then deal with each block separately. The size of the
block (a power of two) somewhat affects the amount
of compression we will see, but anything from 64 to
256 gives similar results; these are typical values.

Dividing the full range into blocks of known
size means of course that we know how many blocks
there will be. For example, if we assume a block
size of n = 256, there will be 4352 blocks. That will
be the size of the first table we will use, with one
entry for each of these blocks: that means it has a
predictable size, and can be created before we do any
data processing. Each entry in this first table points
to a second table, of which we will need several.

The second stage tables contain the data for
each block, so have n entries each. What we don’t
know here before creating the entire data structure
is how many of these second stage tables we will
need. At the start of building the structure, each
block of codepoints will need a separate second stage
table. But as we go on, we will find that different
blocks can reuse the same second stage table. So,
representing the table as a comma-separated list, we
might see our first stage table (the property values
we need to store) looking something like2

1, 2, 3, 1, 4, 5, 6, 1, 2, 8, 1,

...

That is, the first three values in the first-stage table
each point to different blocks in the second stage
table, but the fourth value points to the same second
stage block as the first, and so on. As we get into the
parts of Unicode that have long ranges of codepoints
with identical property values, this compression effect
becomes significant and the total size of the two
stages ends up much smaller than the total number
of codepoints.

2 Here, I am using an index from 1: this is the approach
used by expl3 and by Lua. Languages involving direct memory
management will use an offset starting from 0.

Storing Unicode data in TEX engines

https://strchr.com/multi-stage_tables

136 TUGboat, Volume 44 (2023), No. 1

With this all set up, retrieving a value is quite
quick. We can find which block a codepoint is in,
and the position within a block, with a couple of
numerical expressions. So getting a value out of the
tables is very fast. That of course is the point: the
work is done in the creation stage, so at point of use
everything is very quick.

To set this up in TEX, we need to think about
exactly how to create those two tables. As I’ve said,
we can predict the size of the first table, so we can
make that directly using the \fontdimen approach.
We can’t do that for the second stage as we don’t
know in advance how many entries we will need.
Also, we want to be able to check each block’s table
against those we’ve already created. That’s better
done if the data are stored in macros: a series of
comma lists work well. Macros are fine if we don’t
need to access the values randomly, and during the
creation stage that’s true. We can then use fast \ifx
tests to check each block as we finish it: have we seen
this block before? Once we’ve done all the blocks,
we can then create the second \fontdimen table in
one shot. (We could make lots of stage-two tables,
but as they are of predictable size, we can store all
the information in a single \fontdimen array using
an offset to get the right block information.)

With over a million codepoints, one might be
worried about how long reading every one of them
will take. However, in most cases, large parts of
the full range are compressed in the input. For
example, UnicodeData.txt contains details of case
mappings and general category. For many east Asian
characters, these and other values are identical, so
the file simply lists the first and last entries with
similar values. So for these, we don’t have to work
through every codepoint: we just have to work out
which second stage table they use, then add the right
number of entries to the first stage.

With some carefully-coded for loops, we can read
the entirety of UnicodeData.txt and save all of the
upper- and lowercase data in a couple of seconds.
That needs only four \fontdimen arrays, and the
total number of entries is fewer than half of the
number of codepoints that have case data.

6 . . . or not

As you will have seen, whilst a two-stage table ap-
proach is efficient for covering the whole Unicode
range, there is a limit to the degree of compression,
as the first stage will always have a significant num-
ber of entries, even if we need very few second stage
tables. At the same time, the approach relies on
being able to read the data once, so it’s not so good
if we want to make ad hoc changes. It should come

as no surprise, therefore, that dealing with one-off
overrides is best done using other methods, for ex-
ample storing as macros which can then be looked
up using TEX’s hash table.

The line between using a two-stage table ap-
proach and individual hash table entries (or other
approaches) is fuzzy: one needs to make a judgement.
But broadly, if we are looking at fewer than a couple
of thousand codepoints, we are likely to avoid a two-
stage approach. For example, storing case folding
and titlecasing information is easier using a macro
approach: both are essentially tightly focussed vari-
ants of standard case changing, and apply only to a
relatively small number of codepoints.

Another area where two-stage tables are more
tricky to use is where we need to store multiple
values. This applies for example to normal form
decomposition and to full lower/uppercasing data.
We could do that by having combined values in a
first stage table, for example 1 to 999 for the first
output codepoint and 1000 to 100 000 for the second.
But the alternative of using a two-stage approach
for the one-to-one data, then a hash approach for
one-to-many, works pretty well for us.

Finally, there is a consideration about how we
are actually loading the data. The source data file
UnicodeData.txt is ordered by codepoint, so is ideal
for reading line by line and turning the contents into
a few two-stage tables covering the different concepts.
Here are a few lines from UnicodeData.txt:
0000;<control>;Cc;0;BN;;;;;N;NULL;;;;

...

0041;LATIN CAPITAL LETTER A;Lu;0;L;;;;;N;;;;0061;

...

0061;LATIN SMALL LETTER A;Ll;0;L;;;;;N;;;0041;;0041

...

10FFFD;<Plane 16 Private Use, Last>;Co;0;L;;;;;N;;;;;

Several of the other Unicode data files are ordered for
logical access. For example, the grapheme-breaking
data file (GraphemeBreakProperty.txt) is divided
up by breaking class, then within that ordered by
codepoint. Some example lines, from three different
classes (in the real file, the comments are not on
separate lines):
0600..0605 ; Prepend

Cf [6] ARABIC NUMBER SIGN..ARABIC NUMBER MARK ABOVE

...

00AD ; Control

Cf SOFT HYPHEN

...

AC01..AC1B ; LVT

Lo [27] HANGUL SYLLABLE GAG..HANGUL SYLLABLE GAH

...

D789..D7A3 ; LVT

Lo [27] HANGUL SYLLABLE HIG..HANGUL SYLLABLE HIH

To turn that into a two-stage table, we first need to
do some manipulation to get it into the right form.

Joseph Wright, LATEX Project Team

TUGboat, Volume 44 (2023), No. 1 137

We can do that, of course, but there’s a time cost,
and we would also have to worry about how many
intermediate data structures we are using.

Many languages handle this problem using a
dedicated script to make their two-stage table struc-
tures, then reading some ‘digested’ form back at
runtime. For TEX use, that would probably be bet-
ter done using a different scripting language: Python
has some advantages, but as Lua is the TEX world’s
standard scripting system, I would favour that. The
downside to this approach is you can’t use the files
from the Unicode Consortium directly, so you have
to keep track of your digested set. Also, as in TEX
we tend to create formats, and they already are di-
gested data dumps, it feels more natural to just read
the ‘raw’ Unicode files as part of format-building,
wherever possible.

The outcome of that decision is that there are
places where it’s easier not to use a two-stage table,
as we can make a reasonably efficient structure in
macros that works ‘well enough’. I’ve done that,
for example, for grapheme breaking. There are only
about 12 different grapheme breaking classes, and
almost all codepoints are in the default one that we
don’t need to record. The raw data are ordered by
breaking class, so it’s easy to turn that into comma-
separated lists of codepoint ranges: one list for each
breaking class. Whilst this means that a few code-
points perform slightly less well than others when
looking them up,3 that’s acceptable as most of the
effort TEX is making here is not the data checking.

7 Outlook

Unicode is the way that most computer systems
work with text data today. Supporting Unicode
methods is workable in TEX, even with engines that
are fundamentally 8-bit. Over time, more Unicode
data will be needed by expl3, and potentially by
others, and using the approaches outlined here we
can make that available inside TEX runs without
needing to look to novel engine extensions.

It’s possible that as more data are required, it
will be sensible to move from parsing in TEX to
parsing in Lua for ‘digestion’. But the underlying
data structures can remain the same; that is only a
question of how best to create them.

⋄ Joseph Wright
Northampton, United Kingdom
joseph dot wright (at) morningstar2.co.uk

⋄ LATEX Project Team
https://latex-project.org

3 Hangul characters: these have the most complex breaking
behaviour.

TUGboat, Volume 44 (2023), No. 1 137

Book review: Do Not Erase: Mathematicians
and Their Chalkboards, by Jessica Wynne

Jim Hefferon

Jessica Wynne, Do Not Erase: Mathematicians
and Their Chalkboards. Princeton University
Press, USA, 2021, 240 pp., hardcover, US$35,
ISBN 9780691199221.

This book exhibits an art that is small but that
is very important to many of us: the handwritten
work of mathematicians.

The author introduces the project by describing
some friends, “Amie and Benson are theoretical or
‘pure’ mathematicians . . . One day on the Cape, I
watch Benson work at his dining room table. . . . For
several hours, he sits, thinking, creating, jotting down
the occasional note. It looks like he has a secret. . . .
I feel like he is creating something so expansive and
beautiful it is beyond words, something that exists
only in his head. When I ask him to explain what
he is working on, he pauses, appears to struggle for
the right words, and replies, simply, ‘No. I can’t.’ ”

Later the author also says, “I have always used
my camera as a way to understand and explore the
world.” So while this book is subtitled Mathemati-
cians and their chalkboards, another good way to
understand it is: glimpses into the works of mathe-
maticians through their chalkboards.

This is a coffee table book. It is beautiful, with
typography that is understated yet powerful. It is
not coffee table-sized but it has the same feel in that
you shouldn’t read it, you should browse it. Open it
anywhere and you see a two-page spread about one
mathematician. Most are research mathematicians,
although a few do not fit that description perfectly.
Even-numbered pages have a brief biography and
an essay by that mathematician reflecting on their
work. They write about their perception of beauty,
or perhaps a bit about their career and what drew

doi.org/10.47397/tb/44-1/tb136reviews-wynne

Book review: Do Not Erase

138 TUGboat, Volume 44 (2023), No. 1138 TUGboat, Volume 44 (2023), No. 1

them in the direction that they went. It is not the
usual thing for mathematicians to put in writing.

Odd-numbered pages show that person’s chalk-
board. Each picture is different than the others and
all are visually interesting.

These are not necessarily candid shots. The
author says, “I ask the mathematicians to write or
draw whatever they want on their boards. (Often I
end up shooting whatever is already on the board—
usually something they are currently working on.)”
So the subject had the option to put on the board
what they want to share. That’s wise, if only because
for instance my board would contain a grocery list,
along with some passwords.

Some boards are messy, some are spare. Some
are covered with formulas, while others focus on a
figure or two.

I’ll take Gilbert Strang as an example. There is
a five-sentence biography and his essay focuses on
what he is most popularly famous for, his lectures
and book on Linear Algebra. His blackboard is taken
straight from that class, with matrices and matrix
equations hard at work.

The author asserts, “Despite technological ad-
vances (such as the creation of computers), chalk
on a board is still how most mathematicians choose
to work. As musicians fall in love with their instru-
ments, mathematicians fall in love with their boards—
the shape, the texture, the quality of the special Ja-
panese Hagoromo chalk.” While I don’t know that
this is completely true, since plenty of people prefer
whiteboards, or paper, or tablets, perhaps it doesn’t
matter. Certainly chalk gives the pictures a theme.
Certainly also many of us agree with Sun-Yung Alice
Chang who says, “Despite the computer age we live
in, the type of talks I enjoy the most are still those
in which the speaker writes on the blackboard line
by line and explains his or her thoughts.”

There are many books about mathematics filled
with beautiful graphics. Searching for phrases such
as ‘mathematics art’ or ‘mathematics beauty’ will
produce a list. They often have lots of drawings done
with computers, such as fractals, and these can be
stunning as well as fascinating. However, as with re-
ally high-end natural science illustrations, often some-
how the hand-crafted ones are more compelling and
show better what it is that the viewer needs to see.

This book also fits with another tradition, ones
that reflect on a life in mathematics. Many of these
are biographies but there are some that like this
one touch on a number of mathematicians, sampling
broadly rather than deeply. Two familiar and ex-
cellent ones of this type are Mathematical People
and More Mathematical People. One that is recent
enough that some readers may not yet have seen it is
Mathematicians: An Outer View of the Inner World,
published by the AMS in 2018.

Alec Wilkinson’s afterword is a powerful medita-
tion, “These photographs . . . typify the mathemati-
cian’s historic engagement with beauty.” Strictly
speaking this book doesn’t have to do with TEX—
for instance, there is no mathematical typography
in the typeset material—but it is about conveying
mathematics and about beauty. He closes by saying,
“Each of these elegant photographs preserves a detail
in the canvas of rigorous human thought.”

Do Not Erase is an excellent choice as a gift for
a budding mathematician, to communicate what the
life of a mathematician is like, especially that of a
researcher. For the same reason it is also a great
choice for either an institutional or departmental
library. The striking beauty draws the reader in and
the essays hold them.

⋄ Jim Hefferon
jhefferon (at) smcvt dot edu

Jim Hefferon

	Introduction
	The data challenge
	TeX aspects
	Making it numerical
	Two-stage tables …
	… or not
	Outlook

