
TUGboat, Volume 43 (2022), No. 3 311

Patching Lucida Bright Math

Hans Hagen, Mikael P. Sundqvist

1 Introduction

During the last year we have been working on the
typesetting of mathematics in ConTEXt LMTX. This
system is using OpenType fonts, and in particular
Unicode math fonts. In the last decade several such
math fonts have been created, many of them by con-
verting old fonts from the Type 1 format. Lucida
Bright Math1 is one of these fonts, though the de-
signers, Charles Bigelow and Kris Holmes, made sig-
nificant additions and changes when developing the
OpenType version. It comes in two weights, regular
and bold.

While working through the math engine we have
been running tests with essentially all the freely
available OpenType math fonts available, and we
have noticed that, besides being different in the ap-
proach to italic corrections, kerning and metrics,
they all come with small issues. This is not so sur-
prising, given that the fonts typically have thousands
of glyphs, many parameters, and the specification of
the format is often vague.

We fixed many common font issues in so-called
goodie files, and the patching takes place at runtime.
(See the accompanying article in this issue for much
more about this.) We have finally come to a point
where we believe that we have a model where most
of the fonts look OK, independent of whether they
are old converted TEX fonts controlled by italic cor-
rections or new fonts driven by staircase kerns. We
consider Lucida Bright Math to be one of the better
fonts, both in the sense that the design is beautiful
and that we did not have to tweak it so much to get
it look right.

Nevertheless, we found some flaws in the font,
and reported a few of them on the Lucida mailing
list. They were put on the list of corrections to be
fixed for the next Lucida release. In the meantime,
we began to discuss the possibility to do font fixes
directly in the font editor FontForge. Combined with
the possibility to debug with the available visual
helpers in ConTEXt LMTX, we realized that we had a
rather effective work flow for editing and fixing. The
problem-solving part and the direct payoff when we
could see things getting corrected live on screen also
made the process a joy. Below we give an overview
of the fixes we did. We hope that the Lucida users
out there will benefit from these changes.

1 Read more about this font at tug.org/TUGboat/tb37-2/
tb116bigelow-lucidamath.pdf

After the fixing we need fewer tweaks in Con-
TEXt for Lucida, but we also have to make sure that
tweaks could be applied per font version, because
even with TUG’s unique update policy it might take
a while before all users have the new version.

2 Correcting the math axis

This is what Microsoft writes2 about the math axis
(our emphasis):

“In math typesetting, the term axis refers to
a horizontal reference line used for position-
ing elements in a formula. The math axis is
similar to but distinct from the baseline for
regular text layout. For example, in a sim-
ple equation, a minus symbol or fraction rule
would be on the axis, but a string for a vari-
able name would be set on a baseline that
is offset from the axis. The axisHeight value
determines the amount of that offset.”

Let us look at the minus sign.3− −
The minus sign to the left is not centered vertically
on the math axis. The value of the math axis in
Lucida Math Bright has been set to 313, but the
minus was centered on 325. At first we thought that
this might have been a problem with the minus sign,
but when looking at more glyphs, we realized that
a large majority of the ones that one could argue
should be aligned vertically around the math axis
were in fact aligned to the height 325. We show
below first some of the most common symbols

+−× = +−× =
and some others, less often used

⊗⇒→⊧ ⋮ ⊗⇒→⊧ ⋮
In fact, almost all symbols that one could argue

should be placed vertically centered on the math
axis are centered on 325. We conclude that the value
313 is not correct for this font, it should simply be
325. Thus, we changed the math axis to 325. This
had some, not too big, consequences. We needed

2 learn.microsoft.com/en-us/typography/opentype/
spec/math#mathconstants-table

3 Here, and in the continuation, we show in our examples the
output before our edits (on the left or above) between a pair of
red rules (dark gray on paper) and the edited version (right or
below) between green ones (medium gray). The red and green
boxes indicate the height of the math axis. The gray rule in the
background is centered at the height of the math axis. Orange
(light gray) boxes show bounding boxes of glyphs (with an extra
line for the baseline, if the glyph has a non-zero height and
depth). The glyph shape itself is black.

doi.org/10.47397/tb/43-3/tb135hagen-lucida

Patching Lucida Bright Math

https://tug.org/TUGboat/tb37-2/tb116bigelow-lucidamath.pdf
https://tug.org/TUGboat/tb37-2/tb116bigelow-lucidamath.pdf
https://learn.microsoft.com/en-us/typography/opentype/spec/math#mathconstants-table
https://learn.microsoft.com/en-us/typography/opentype/spec/math#mathconstants-table
https://doi.org/10.47397/tb/43-3/tb135hagen-lucida

312 TUGboat, Volume 43 (2022), No. 3

to adapt vertically the parentheses, since originally
they were aligning vertically on the old math axis (i.e.,
they were correct before). We also needed to align
integrals (some of them were in fact not centered at
the math axis before).

(𝑎) [𝑏] {𝑐} (𝑎) [𝑏] {𝑐}
In practice this meant that many glyphs needed

to be raised by 12 units in FontForge. We emphasize
again that this was done to have a perfect vertical
alignment with the minus and plus signs, and the
other symbols that live symmetrically around the
math axis. This is striking for the braces

−{
1

1+𝑥2} −{
1

1+𝑥2}
and for the angle brackets

+⟨𝜙̂, 𝜓̂⟩ +⟨𝜙̂, 𝜓̂⟩
but the difference is less obvious for the round
parentheses

1 + (
𝑛
𝑘) 1 + (

𝑛
𝑘)

and the square brackets

[𝑎] ⊕ [𝑏] [𝑎] ⊕ [𝑏]
3 Aligning around the math axis

As mentioned, the different parentheses and similar
glyphs were centered around the old math axis 313.
We have shifted them up 12 steps so that they are
now aligned with the corrected math axis. Below we
give a few examples of glyphs that were shifted (all
of them were of course reported to TUG).

()()()()() ()()()()()

∫∫∬∬∭∭ ∫∫∬∬∭∭

4 Modifying glyph sizes

Our first mail to the Lucida mailing list was about
the < and >. We noticed that their size was different

from other similar relation symbols, like the equal
sign =. This becomes a problem when one is aligning
equations on different lines, since then one usually
aligns on these characters, and if they are of different
width, the result will not look good. This is how it
could look in the old font:

𝑓(𝑥) = 𝑒𝑥

> 1+𝑥
If you look carefully at the e and the 1, they are

not horizontally aligned with each other, and the
reason for that is simply that the bounding box of
> is smaller than the bounding box of =. We added
a temporary fix to ConTEXt (in the goodie file for
Lucida) where we scaled these glyphs. But it is better
to fix them in the fonts. After fixing the font, the
example looks like this.

𝑓(𝑥) = 𝑒𝑥

> 1+𝑥
We not only changed the bounding box of the

glyphs, but also scaled the glyph horizontally so that
it had the same width as the equal sign (the glyph,
not the bounding box!). We also scaled it vertically
so that it became centered on the math axis. When
that was done, we made sure that it ended up with
the same side bearing as the equal sign.

<> <>
It might help to see these symbols together with

some other similar ones.

⇐←<≤=≥>→⇒
⇐←<≤=≥>→⇒

Lucida Bright Math also has some alternative,
in fact smaller, versions of some glyphs. (They are
the operators from the original Type 1 fonts; the
font designers increased the operator size in Open-
Type based on their observations of usage and user
requests, but some users prefer the original size, so
both are available.) They are available by activating
the ss03 style alternative, “small operators”. Here,
the problem is that the equal sign has no alternate,
so the big version is used.

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 43 (2022), No. 3 313

The previous less than and greater than fit well
with the alternate stylistic set ss03. We thus added
new slots at the end of the font for that purpose.
Also, the equal sign lacked a version in ss03, so we
added it. Note that the symbols in ss03 are not in
general centered vertically around the math axis.

<≤=≥> <≤=≥>
FontForge has a nice view where it is easy to

browse the glyphs one by one with the position pre-
served. That makes it very clear when there are dif-
ferences in following glyphs that should be similar.
While browsing in this manner in the slots 0x2295
to 0x229D (various circles with decorations inside)
we noticed that the last one had different dimen-
sions than the other. This was the case both for the
ordinary glyphs

⊕⊖⊗⊘⊙⊚⊛⊜⊝
⊕⊖⊗⊘⊙⊚⊛⊜⊝

and for the smaller variants in ss03.

⊕⊖⊗⊘⊙⊚⊛⊜⊝
⊕⊖⊗⊘⊙⊚⊛⊜⊝

As you can see, the last one was a bit small,
and is fixed. One more such symbol that stood out,
0x2A29, the minus sign with a comma on top (who
uses that?):

⨩⨪⨫⨬ ⨩⨪⨫⨬
5 Artifacts in the integral glyphs

While going over the shifting of the parentheses and
integrals, we noticed two glyphs that had defects.
It was the display versions of 0x222F (\oiint) and
0x2230 (\oiiint), and in both cases it was the oval
part of the symbol that was incorrect.

∯∰ ∯∰
We realized that the glyphs had some extra

points added that messed them up. We simply re-
moved the extra points, made some point a corner
point and tuned the control points to agree with the
other corresponding ones in the glyph.

6 Dots, dots, dots

We also found some inconsistent combinations of
glyphs that include dots (or, squares, as they are
in Lucida). If we look at 0x02234 to 0x0223B, for
example, we see that first four are different from the
final four.

∴∵∶∷∸∹∺∻
∴∵∶∷∸∹∺∻

We first decided to make the first four of these
adopt the spacing of the last four. It was mainly the
ratio symbol (0x2236, the third in the list) that made
us decide that, since we agreed that the two squares
in it are simply too far away from each other (remem-
ber, this symbol is used in the \colon construction).
We then ended up with this.

∴∵∶∷∸∹∺∻
∴∵∶∷∸∹∺∻

As there are so many symbols, we eventually
found out that our local changes introduced new
inconsistencies.

≐≑≒≓∴∵∶∷⋮⋯⋰⋱
≐≑≒≓∴∵∶∷⋮⋯⋰⋱

We therefore decided to ditch our first changes,
but instead of throwing them away, we added the
glyphs as a new set of style alternates, ss06. Thus,
these glyphs stay unchanged (note that the new
choice of math axis also agree with them):

∴∵∶∷⋮⋯⋰⋱
∴∵∶∷⋮⋯⋰⋱

We are still not completely happy with the ra-
tio, and prefer the version from the newly added
alternate set (below shown to the right).

𝑓∶ ℝ → ℝ 𝑓∶ ℝ → ℝ
While discussing the ratio, we looked also at the

normal colon (0x3A) and semicolon (0x3B) charac-
ters, and we noticed that their side bearings were
not symmetrical. We thus fixed that, and made them
consistent with the period and the comma.

Patching Lucida Bright Math

314 TUGboat, Volume 43 (2022), No. 3

.,:; .,:;
Finally, we also saw that the ellipses on the

baseline (0x22EF) are wider spaced than the ones on
the math axis (0x2026). We decreased the right side
bearing of 0x22EF so that became consistent with
similar constructions.⋯… ⋯…

We added yet another style alternative, ss07,
with a version of 0x22EF with the small squares
spaced in the same way as the other similar glyphs.

𝑘 = 1,… , 𝑛 𝑘 = 1, … , 𝑛
One can still question the fact that the squares

in the ellipses are smaller than the squares in the
comma and the period.

𝑘 = 1,… , 𝑛 𝑘 = 1,… , 𝑛
7 Extensible recipes

We did not want to touch the extensible recipes.
But then we saw that the top and bottom pieces
of the round parentheses, when just too large for
the largest variants, clash into each other with bad
results.

()

()

()
()

The problem becomes more apparent if we use
transparent colors.

()

()

()
()

Note that in the fixed version, the largest variant
is still used in the left example, while the first exten-
sible is used in the right one. This means, and that is
unavoidable, that the parentheses are slightly taller
than the content. This can of course also happen
when we use the variants.

() () () ()
So, how should the extensible recipe be built?

Let us look at the left parenthesis. It consists of three
parts, the “left parenthesis upper hook” (0x239B),

the “left parenthesis extension” (0x239C) and “left
parenthesis lower hook” (0x239D).

⎛⎜⎝ ⎛⎜⎝
There is a table in the font, a recipe, that de-

cides how the extensible is to be built. For the left
parenthesis, the first and the third are always used
once, and then there can be as many middle ones
as needed (including zero). Looking at Table 1 we
see that the size of the glyphs are 1648 (top and
bottom) and 570 (the middle one). Since the top
and bottom glyphs are needed, the minimum height
plus depth will be 2× 1648 = 3296. Or, that is what
one could imagine. But there is a font parameter
MinConnectorOverlap, set to 40 in Lucida Bright
Math. It is supposed to be the minimal overlap of
the glyphs. This means that the true minimal height
is 3256. This can be compared with the height plus
depth of the largest variant of the left parenthesis,
1686+ 1061 = 2747.

Table 1: Original extensible values.

Glyph Extender StartLen EndLen FullLen

uni239D false 549 549 1648
uni239C true 190 190 570
uni239B false 549 549 1648

The biggest problem is not the values in the ta-
ble, but the fact that the top and bottom parts do not
have ends that can overlap aesthetically. No matter
how little we overlap, the pieces will not fit perfectly
with each other, or with the rectangular middle piece,
since they are not rectangular themselves at the end.
Thus, we wanted to add a rectangular part to the first
and the last pieces. But then we got another prob-
lem. If we just added a rectangular piece, the glyphs
would be too large, and the extensibles would kick
in too late. After some trial and error, we decided to
scale the original top and bottom parts just slightly,
and then to add a rectangular piece of height 100.
We changed the height of the extensible part to 200.
Inspired by the TEX Gyre fonts, we ended up with the
values in Table 2.

Table 2: Updated extensible values.

Glyph Extender StartLen EndLen FullLen

uni239D false 0 100 1583
uni239C true 200 200 200
uni239B false 100 0 1583

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 43 (2022), No. 3 315

The top and bottom pieces are allowed to over-
lap by 100 units with each other (or with the middle
piece), exactly the size of the added rectangle. For
maximum flexibility, the middle piece is allowed to
overlap 200 in both directions. Let us look at a few
examples.

()

()

()

()

()
()

()

()

In the first case (to the left), the content is high
enough to trigger the extensible in the unfixed font,
but not in the fixed one. In the next, the content is
precisely sufficiently high to trigger the extensible
also in the fixed font. Observe that the parenthe-
ses are slightly bigger than the content. The grayer
area shows the overlap, and it corresponds approx-
imately to the value 100 in Table 2. If we increase
the content a bit more we still get no middle piece,
but the overlap is now very small. The size now fits
the content well. Finally, with slightly larger rule,
the new version adds a rectangular middle piece. If
you look carefully, you will see that almost all of it is
overlapping with the other two pieces. The unfixed
font still has no middle piece.

A similar situation is present for symbols that
scale horizontally, and in particular for the parenthe-
ses. We decided to scale equally as much as for the
vertical parentheses, and then also add a rectangular
piece.

⏜⏜

⏜⏜

⏝⏝

⏝⏝

An analogous change was made to the horizon-
tal up and down braces.

⏞⏞

⏞⏞

⏟⏟

⏟⏟

The attentive reader may notice that the side
bearings of the glyphs are set to zero. We could
not find any other math font with a non-zero side
bearing for these glyphs. That makes sense, since
they only complicates the calculations.

1 +…+𝑛
⏟

1 +…+𝑛
⏟

A character in an OpenType font can have two
variant lists, two extensible recipes and two extra
italic corrections, meant to support both horizon-
tal and vertical extensibles. Only a few fonts have
these extra italic corrections set, and we have only
observed them on integral signs, and we haven’t
seen corrections set on horizontal extensibles at all.
The (vertical) italic correction is used for positioning
the subscript and limits (on n-ary operators).

Lucida is one of those fonts that has an exten-
sible integral. Although the LuaMetaTEX engine will
use the maximum width of a snippet, to be coher-
ent with the other fonts with extensible integrals,
we have made sure that in the updated Lucida all
snippets have the same width, as shown in the exam-
ple below (width of middle and bottom pieces now
matches width of top piece). We did not reset the
corrections on individual snippets, because these
are ignored anyway.

∫

𝑏

𝑎 ∫

𝑏

𝑎
Patching Lucida Bright Math

316 TUGboat, Volume 43 (2022), No. 3

8 The radical symbol

Our last stop is the radical symbol, and the reason
to stop here can be seen in the following simple
expression:

√𝑥
The radical symbol and the horizontal rule do

not fit together. When we were looking at the vari-
ants of the radical symbol, we became surprised by
two things.

√√√√√ √√√√√
We first noted that the base glyph and the vari-

ants look different. Next, we realized that the first
variant will probably never kick in, since it has the
same size as the base glyph. We decided to move
the first variant into the base glyph, to get a consis-
tent look, and to modify the size of the first variant
slightly. In the following set of examples we see that
the new size is used (second from left) in the fixed
version, while we get the slightly larger radical for
the unfixed one.

√𝑥2√𝑥
2
2 √

1+𝑥
1−𝑥√

1+𝑥2

1−𝑥2√

1+𝑥
1+𝑥2

1−𝑥2

√𝑥2√𝑥2
2 √

1+𝑥
1−𝑥√

1+𝑥2

1−𝑥2√

1+𝑥
1+𝑥2

1−𝑥2

Regarding the mismatch between the radical
and the horizontal rule, this turned out to not be
a problem in the font (except for the old radical
base character). It was instead related to a backend
related snapping feature in ConTEXt, used to prevent
loading fonts in too many sizes due to rounding
errors.

This is comparable to cases where TEX’s scal-
ing of 1000 means 1.000 with three digit precision,
although that often goes unnoticed because it hap-
pens consistently in the whole document. The mis-
match doesn’t happen when we operate in PostScript
points (bp) that are natural to both OpenType fonts
and PDF, but it does when we use TEX points (pt)
which means that when going to PDF’s points we
lose some accuracy. The difference between 0.9963
and 0.9954 is noticeable to the sensitive eye when
you blow up these composed glyphs for testing, and
we can’t tolerate that, can we? So we now go for
more precision at the cost of (possibly) some font
sizes. There is currently an experimenting mode
in ConTEXt, the compact font mode, where any font
is loaded just once, anyway, but that has to be dis-
cussed elsewhere.

⋄ Hans Hagen
Pragma ADE

⋄ Mikael P. Sundqvist
Department of Mathematics
Lund University
Box 118
221 00 Lund
Sweden
mickep (at) gmail dot com

Hans Hagen, Mikael P. Sundqvist

	Introduction
	Correcting the math axis
	Aligning around the math axis
	Modifying glyph sizes
	Artifacts in the integral glyphs
	Dots, dots, dots
	Extensible recipes
	The radical symbol

