
TUGboat, Volume 43 (2022), No. 2 127

IoT theatre presents: The Tempest

Island of TEX (developers)

Abstract

2021 was a challenging year for the Island of TEX:
roadmap changes, lack of resources, server limita-
tions. Yet, resilience, persistence and a bit of good
humour made the island even stronger, with new
joiners, community support, bold plans and an even
brighter future for the TEX ecosystem. And all just
in time for celebrating 10 years of arara, our beloved
bird!

1 Introduction

For those who do not know anything about us, the
Island of TEX started as a pair of friends trying to
improve the TEX ecosystem. Nowadays, the island
acts as a friendly hub to community-based TEX-
related projects, still mostly focused on the tooling
side of things.

The last year has been challenging for us: road-
map changes, lack of resources, server limitations.
Yet, resilience, persistence and, of course, a bit of
good humour made the island even stronger, with
new joiners, community support, bold plans and an
even brighter future for the TEX ecosystem.

2 Docker images

The Island of TEX provides Docker images for easily
reproducible builds as well as an official response
to the need for continuous integration. Our images
were among the first using vanilla TEX Live, pro-
viding the required tools for running software in-
cluded in TEX Live— for example, Java Virtual Ma-
chine, Python, and so forth. Additionally, we provide
TEX Live releases from 2014 on and let the user de-
cide whether they want to pull all the documentation
and source files into their CI configuration.

We officially publish our images at Docker Hub:
hub.docker.com/r/texlive/texlive. Docker Hub
is the world’s largest repository of container images
with an array of content sources including container
community developers, open source projects and in-
dependent software vendors building and distributing
their code in containers.

We feel honoured to maintain and provide one
of the most complete and comprehensive TEX Live
Docker images available in the TEX ecosystem. Sev-
eral organisations now base their images on ours—
for instance, DANTE e.V., the German-speaking TEX
user group. Thank you very much for trusting our
builds!

More recently, given certain characteristics of
a typical TEX Live install, our shared CI runners
could not meet the requirements to properly build
and generate entries in our registry for historic and
current images (e.g., failure due to timeout and disk
space constraints). At first, we believed this was
just a temporary issue (e.g., having a job assigned
to a weak CI runner) and subsequent jobs would
eventually have our images correctly built. Alas,
we had no luck— failure rates were increasing at an
alarming rate.

V́ıt Novotný reached out to us to discuss poten-
tial build improvements to our images and joined
our Docker team. A new islander! His contributions
were amazing—the build process soon became way
more robust and reliable than ever. However, the
blocking issue with our shared CI runners was still
haunting us. We had to do something.

We agreed to reach out to the TEX community
and ask for any spare computational resource that
could host one of our CI runners. We then wrote an
e-mail to the TEX Live mailing list on May 12 and
hoped for the best.

In less than 30 minutes, we got three replies
offering help! In that same day, the island already
had a new dedicated CI runner. A couple of days
later, two more runners were added to our pool. The
response from the TEX community was fantastic.

Special thanks to Uwe Ziegenhagen, Erik Braun,
DANTE, Marei Peischl, Paul Gessler, and the In-
stitute of Mathematics of the Czech Academy of
Sciences. We really appreciate it—our Docker im-
ages are saved because of you! Also, thanks to all
who sent us messages of encouragement, from elec-
tronic mail to public support via our Matrix chat
room.

Incidentally, Marei Peischl became an islander
as well, joining our team of Docker experts. Thanks,
Marei! Apparently, dragons are very good at building
images!

Still, there is a long road to go. The TEX Live
images are becoming more and more versatile but we
still only feature full-fledged installations. So there
are new frontiers waiting for us: splitting the images
by scheme and improving layer-friendliness. Docker
experts are invited to join our quest to solve these
issues.

3 TEXdoc online

From all those projects using our TEX Live images,
TEXdoc online is our most prominent contribution in
the field—an online TEX and LATEX documentation
lookup system based on CTAN’s JSON API. Alas,
TEXdoc online has not seen much activity in the last

doi.org/10.47397/tb/43-2/tb134island-tempest

IoT theatre presents: The Tempest

https://hub.docker.com/r/texlive/texlive
https://doi.org/10.47397/tb/43-2/tb134island-tempest


128 TUGboat, Volume 43 (2022), No. 2

year. It has a long way to go until it is not only
a successor of the former texdoc.net but an even
better replacement.

Some of our ideas include a source code lookup
mode, based on a combination of texdoc, kpsewhich
and file output, and runtime macro definition capa-
bilities with a frontend for texdef. In general, the
frontend should get a UI overhaul at some point in
order to make it friendlier, more responsive, and
more accessible.

We are also planning to include an optional
analytics layer based on anonymous browsing and
queries. But do not worry; at this point we are only
interested in counting visits for starters— something
which does not track anyone. Our generous sponsor
of the world’s most accessed TEXdoc online instance
at texdoc.org, Stefan Kottwitz, would love to see
this feature implemented as well. By the way, thanks
for updating and maintaining texdoc.org, Stefan!

If anyone is interested in tackling one (or more)
of the aforementioned features, definitely get in touch
with us. All you need is some kind of programming
background. Picking up Kotlin and contributing is
something we can help you with. And if you have
further ideas for improvement for this or any of our
projects, our issue trackers are open 24/7. We believe
that community feedback is key to building software
the community actually finds useful.

4 CLI tooling

Apart from the web-based end, we should expect
improvements to our CLI tooling in the near future
as well. Take, for instance, our lovely Albatross, a
tool for finding system fonts that provide a certain
glyph (ctan.org/pkg/albatross).

Some of our ideas include report customisation,
support for output formats (e.g., JSON or CSV), and
caching. We also plan extending the glyph lookup
based on specific files and directories, so any font in
the filesystem—even ones not installed—could be
properly inspected.

We’ve released a patched version of checkcites,
our tool for checking missing or unused references, in
order to address an outstanding issue due to a break-
ing BibLATEX update. (ctan.org/pkg/checkcites)

This tool also has an interesting roadmap. Some
of our ideas include a complete rewrite from Lua to
Kotlin (work in progress) and moving to a modular
approach, in which we have a proper BibTEX parser
and a command line interface.

The ultimate goal for our BibTEX parser is to
produce native code for all major operating systems
alongside a Java Virtual Machine-compliant bytecode
for major vendors, as well as a JavaScript backend.

This would be the perfect place to talk about
our plans for arara as they share many goals. But
before we do that, we want to celebrate with you.
So let us go back in time for a bit.

5 Ten years of arara

Ten years ago, the very first version of arara, the cool
TEX automation tool, was released. It was a humble
flight for such a little bird. Little did we know, a
delightful story about friendship, TEX, community
and noisy birds was about to be written.

5.1 Version 1

There is a famous quote along the lines of

If at first you do not succeed,
call it version 1.0.

Version 1 of arara was also the first public re-
lease, dated April 4, 2012. Nothing much was there,
besides the core concepts that still exist today: rules
and directives.

Amusingly, the first version offered only a log
output as an additional feature. There was no ver-
bose mode. The log file was a gathering of streams
(error and output) from the sequence of commands
specified through directives. And that was it.

5.2 Version 2

The first version had a serious drawback: compilation
feedback was not in real time and, consequently, no
user input was allowed. For version 2, real time
feedback was introduced when the tool was executed
in verbose mode.

Two other features were included in this version:
a flag to set an overall execution timeout, in millisec-
onds, as a means to prevent a potentially infinite
execution, and a special variable in the rule context
for handling cross-platform operations.

5.3 Version 3

So far, arara was only a tiny project with a very re-
stricted user base. However, for version 3, a qualita-
tive goal was reached: the tool became international,
with localised messages in English, Brazilian Por-
tuguese, German, Italian, Spanish, French, Turkish
and Russian. Further, new features such as configu-
ration file support and rule methods brought arara
to new heights. As a direct consequence, the lines of
code just about doubled from previous releases.

When the counter stopped at version 3, we de-
cided it was time for arara to graduate and finally
be released in TEX Live. Then things really changed
in our lives. Given the worldwide coverage of TEX
distributions, arara silently became part of the daily
typographic tool belt of many users.

Island of TEX (developers)

https://texdoc.org
https://ctan.org/pkg/albatross
https://ctan.org/pkg/checkcites


TUGboat, Volume 43 (2022), No. 2 129

5.4 Version 4

Version 4 was definitely a quantum leap from previ-
ous releases. New features included a REPL workflow
(i.e., rule evaluation on demand as opposed to prior
to execution), an improved rule format, support for
multiline directives, partial directive extraction mode,
commands and triggers as abstraction layers, and an
improved lookup strategy for configuration files.

5.5 Version 5

Version 5 featured a major rewrite from Java to
Kotlin. We mainly worked on features from user
feedback, especially directory support and the pro-
cessing of multiple files.

We got hooked by the idea of aligning release
schedules of arara with TEX Live releases enabling
us to make (small) breaking changes more often.
We had big plans and started to work on version 6
right after releasing version 5. As with checkcites,
we walked the extra mile and arara went from a
monolithic implementation to a modular one, plus
an enhanced feature set and optimized workflow.

5.6 Version 6

Version 6 was split between an API, a core imple-
mentation, the engine and the CLI application to
separate concerns. This was the first step in the
direction of splitting out components that are bound
to one platform. New features included specifying
command line options to be passed to arara’s session
map, default preambles, expansion within directives,
safe mode, and rule improvements (towards safety
and optimization).

5.7 Version 7

For version 7, we wanted to take larger steps towards
platform-independence. Some components had to be
rewritten, some needed different interfaces for differ-
ent platforms. It is still a heavy work in progress,
but in the end, we hope to provide an even more
multitalented tool.

Version 7 still targets JVM, but the tool is al-
ready being shaped towards platform-independence.
New features include a new interface for the most
common file operations (as a means to supersede
Java’s I/O API in the future), better error messages
to indicate potential encoding problems, header mode
enabled by default, and a brand new project specifi-
cation.

6 The future

As previously stated, we are planning the stabiliza-
tion of the current projects and implementation of
new modular components, as well as improving sup-
port for our tools by producing native executables
by means of Kotlin/Native, a technology for compil-
ing Kotlin code to native binaries without the need
of a JVM, languages like Rust and similar modern
technology.

We also have challenges. For starters, hardware
limitations for development and testing. The develop-
ment happens on GNU/Linux machines. Incidental
issues specific to Windows or macOS are handled
through voluntary testing from users who sometimes
do not have development expertise.

The lack of such systems in the development
pool poses a problem and can hinder the long-term
goals for better coverage and interoperability. See,
for instance, the recent issues regarding Windows
support in version 7—we had to release three patches
in quick succession to properly address these issues!

Also, the island has no documentation team, so
we need to cover all fronts during development and
release, not to mention the limited number of active
developers and contributors.

Again, we kindly ask the TEX and software com-
munity for help, in any way possible. And, as always,
thanks for the patience with us.

Also, a special thanks to our new members Jon-
athan Spratte, Marei Peischl and Vı́t Novotný! We
are fortunate to have you on the team!

We have many plans and hope to realize as much
as possible. The island is a vibrant environment for
the development of TEX-related tools; we want to
enhance the user experience, from newbie to expert,
and promote use and diffusion of modern methodolo-
gies and technologies. If you are interested in helping
us develop ideas or even implementing some code,
visas for the island are free and no bureaucracy is
involved, so feel free to reach out.

The Island of TEX is hosted at GitLab, whom
we thank for providing us with a premium plan. It’s
highly appreciated.

If you are a TEX ecosystem tool author and want
to join us, you and your projects are always welcome.
If you want to become a tool author, or rewrite an
existing tool, you are welcome as well!

⋄ Island of TEX (developers)
https://gitlab.com/islandoftex

IoT theatre presents: The Tempest


	Introduction
	Docker images
	TeXdoc online
	CLI tooling
	Ten years of arara
	Version 1
	Version 2
	Version 3
	Version 4
	Version 5
	Version 6
	Version 7

	The future

