
Transparent file I/O using the original TEX

program and the plain TEX format

Udo Wermuth

Abstract

Research papers demonstrate that it is possible to
use a TEX file to distribute malware to a victim’s
system. Although it seems that no report has been
published about a virus of this kind in a real at-
tack, the potential danger to abuse a TEX source file
to transport unfriendly code exists. This article ex-
plains an idea to make TEX’s file I/O more transpar-
ent and develops requirements to turn the idea into
TEX macros. Their application in a TEX file received
from an untrusted source identifies all file names
used for I/O operations. But the macros demand
concentrated work with numerous text inputs and
a non-beginner’s knowledge of TEX. Furthermore,
users should be patient, curious, and courageous.

1 Introduction

The usual input to TEX is a plain text file containing
a few control sequences to instruct the program how
to format the document. Through its macro capa-
bilities TEX allows an author to increase the num-
ber of recognized control sequences, tailoring them
to the needs of the text. But TEX does not forbid
writing a macro like “\def\useless{\useless}”
which generates an endless loop when \useless ap-
pears in the text. (Such endless loops are inherent
for a macro expansion language [9, p. 659].) Simi-
larly, some control sequences implemented directly
in the TEX program—these are named primitives—
must be used with care. For example, the simple
“\openout0=\jobname\bye” truncates the file name
to which \jobname expands, plus extension .tex,
with zero bytes. As this is usually the file that TEX
processes as the main file in the current run its orig-
inal contents are gone.

Thus it’s easy to waste CPU cycles by executing
\useless. On a modern multiuser system the single-
threaded TEX program occupies at most one CPU

and a reasonably configured TEX system doesn’t re-
quire much main memory. So other users are hardly
affected in their own work unless many TEX pro-
grams run \useless in parallel. To produce a file
that should be loaded by \input in a co-worker’s
TEX source file with the above \openout statement
is a bad joke and might become a disaster if there
is no backup of a laboriously created main file. (To
protect yourself in such a case from this bad joke set
your main file temporarily to read-only, for example,
under Unix-like systems with chmod u-w.)

TUGboat, Volume 43 (2022), No. 1 59

These examples raise the question: how brave
or careful must one be to typeset a TEX file re-
ceived from a friendly joker, a well-known silly per-
son, an inexperienced beginner, a person known only
by name, or an unknown individual who makes files
available for downloading on the Internet. Is it pos-
sible that the TEX run of this plain text file results
in a damaged or, worse, virus-infected system?

Unfortunately the answer is: Be careful! A TEX
run using a specific prepared plain text file might
delete important files, read private data, or infect
your local system with a computer virus.

Published attacks. The thesis [13] uses LATEX and
GNU Emacs to show in a feasibility study that a
plain text file can contain code that spreads itself to
other plain text files. In [1, 2] an ε-TEX source in-
cludes instructions to create during the compilation
a JScript file in a certain directory. The execution of
this file infects computers running MS Windows—
the TEX source contains an absolute path that’s only
valid for this operating system (OS).

The attacks are possible as TEX contains com-
mands to read from and write to any file. Some im-
plementations of TEX restrict which directories are
permitted for TEX’s I/O primitives. Of course, every
OS should protect itself and mechanisms are usually
in effect for ordinary users. But what can be done if
the user runs TEX with system administrator rights?
Or when the system administrators of a multiuser
system that provides a TEX service configured the
system in a way that private information is accessi-
ble to users without a need to know [12]?

I found no report of any real attack in which
someone was the victim of a TEX source file trans-
porting a virus. This risk seems to be very small. But
we can assume that some users have coded an end-
less loop and a few users have deleted an important
file with an inappropriate file name for an \openout.

Is TEX an insecure program? No, definitely not.
Both published attacks need supporting tools: the
programmable GNU Emacs or a JScript file placed
in an auto-start directory. Similar to an email, TEX
source can be abused to transport malicious code.
We avoid clicking on a link in an email sent by an
unknown person and we must be cautious if we ex-
ecute a TEX file received from an untrusted source.
Sure, TEX could be more verbose with file names.
But it doesn’t help to learn which file was deleted
and it’s very cumbersome if TEX asks every time for
the user’s permission to process a file, as we will see.

It’s somewhat pointless to ask today why TEX
wasn’t programmed with a more restricted access
to files. I only provide three observations. First,

doi.org/10.47397/tb/43-1/tb133wermuth-trio

Transparent file I/O using the original TEX program and the plain TEX format

at the time TEX was designed, this program tried
to achieve new inconceivable advancements in type-
setting. The limits of the available computers were
touched; for example, memory had to be conserved.
Second, Don Knuth’s intention, when he began the
design, was to create a tool for his secretary and him-
self [9, p. 606; 10, p. 63]. There was no reason for mis-
trust, i.e., bad jokes were not expected. Third, the
original TEX was reimplemented as TEX82 and at
that time portability was a major concern [8, p. 254].
As file names are highly OS-dependent TEX’s code
cannot cover all possibilities and must be carefully
customized through a change file [8, pp. 123–124].

Implementors often transfer TEX’s archaic de-
fault file system into a nearly unrestricted model
for the target OS. But excluding absolute paths or
paths containing the short-cut for the parent direc-
tory (i.e., “../”) inhibit the attacks of [1, 2]. The
recommendation of [7, §511], to use portable file
names built only from letters and digits may be too
restrictive, yet reminds us to think about simplicity.

Other risks. Modern TEX implementations, not
the original one that is used in this article, activate a
communications mechanism to the OS; this feature
uses the stream number 18 in \write statements.
That such a communication makes the life easier for
viruses and their developers or crackers (to name
them in accordance with [15]) has been known for a
long time (see [11, p. 454, no. 3]. Thus, the \write18
feature is often disabled by default and must be ex-
plicitly switched on by the user.

A cracker might hide the use of a \write18.
Therefore, always distrust tricky code without ap-
propriate comments. For example, a single search for
\write18 fails with this obfuscated code; see [14].

\lccode‘e=‘r\lccode‘q=‘w\lccode‘r=‘t\lccode‘u=‘i

\lccode‘w=‘e\let\ea=\expandafter\lowercase{\ea

\global\ea\let\ea\trouble\csname qeurw\endcsn%

ame}\newcount\maker\maker=9 \multiply\maker by2

\immediate\trouble\maker{echo === GOTCHA ===}

All computer users know that all operating sys-
tems require regular updating to reduce the risk of a
cracker getting into a system through security holes.
Additional risks exist that stem from the installation
of a distribution (see, for example, [16]) or that are
given through the tools of the OS which are required
to process a TEX source file and TEX’s output; see
section 10. From all I know, these risks are much
higher than the danger coming from a plain text file
containing TEX commands.

Unfriendly code can lurk everywhere. Even if
you compile carefully inspected source code yourself,
malicious code can be present [18].

60 TUGboat, Volume 43 (2022), No. 1

Protection by inspection. The abovementioned
articles about possible attacks need several lines of
TEX code so a look at the source file might reveal
the presence of instructions for a virus. But a cracker
might try to hide the coded malware. Thus the TEX
files one gets from an unknown or untrusted source
must either be executed in a restricted environment
or be the subject of a thorough visual inspection.

A journal or proceedings editor receives numer-
ous source files and it’s unlikely that all authors are
known by the editor. On the other hand, the au-
thors want to have their articles published and not
be accused of spreading bad code. Nevertheless, an
author might be a victim and unknowingly send out
a TEX file transporting code for a virus.

Although it’s a significant effort, editors should
perform a visual inspection as part of the editorial
work. I assume that they review text and code in
most cases. Besides security, other reasons make this
necessary as not all authors are willing to follow the
instructions of the journal; some prefer to cheat. For
example, look at the report [4] about problems with
the length of submitted papers.

Protection by macros. This article describes a
set of macros for the original TEX engine with the
plain TEX format to make the file I/O operations
more transparent. By this I mean that a user con-
trols which files are processed when TEX executes
\input, \openin, or \openout. The macros don’t
detect instructions for a virus or state that a file
shouldn’t be processed; they only report which file
names occur and give the user a chance to change
them. But they accomplish more: The instrumented
source file cannot stealthily bypass their reporting.

One goal of the macros is to produce an identi-
cal DVI file compared to a run without the macros if
the original source is error-free. Section 3 discusses
why this goal cannot be reached for all plain TEX
source files; a few eccentric constructions might fail.

Of course, the macros need a few resources. Be-
sides memory space for the macros and other con-
trol sequences, the macro package declares five token
registers. Thus, one cannot use the macros in the
unlikely case that a source file requires more than
238 non-scratch token registers. Sure, the dread-
ful “TEX capacity exceeded” error message occurs
earlier if the macros are used. But this is merely
a theoretical problem as modern TEX installations
set TEX’s compile-time constants so high that it’s
doubtful that an error-free source reaches TEX’s lim-
its even if the macros of this article are active.

Usefulness of the macros. Above I wrote that
the risk to become a victim of a virus that enters a

Udo Wermuth

system via a plain TEX file is very small. Neverthe-
less it might be an interesting intellectual pastime
to see how to protect a system with macros against
malicious code. Moreover, such macros may reassure
people and increase confidence in TEX’s security.

A cracker might be aware that these macros ex-
ist and avoid conspicuous actions if they are present.
Or, say, the code contains a test so that it gets ex-
ecuted only on Sundays and thus a check that runs
on a Thursday doesn’t detect it. Clearly the macros
cannot help to protect a system if they are not active
during all executions of a source file.

Although I think a cracker cannot circumvent
the macros if the user follows all usage instructions
carefully, everyone uses the macros at one’s own risk.

2 Primitives requiring file names

With the procedure scan file name [7, §526] TEX
scans in a system-independent way file names. Al-
though file names are highly system dependent, this
aspect is handled in other sections of the program.
Here I use the convention that a file name consists
of an optional path, the main part of the file name,
and an optional extension. The path is a sequence
of directories with a slash after each directory name;
a period separates main part and extension. Spaces
are forbidden in file names. A single period in the
path, i.e., “./”, stands for the current directory, and
“../” represents the parent directory.

The above-mentioned procedure is used in the
implementation of four primitives: \input in §537,
\font in §1257, \openin in §1275, and \openout in
§1351.

The primitive \font is somewhat special in this
list. TEX expects a file name but replaces any exten-
sion with tfm (§563) as it reads for \font only files
containing TEX font metric (TFM) data. It checks
that the contents of the file with the constructed
name obey the specifications of TFM files (§562).

Although this sounds simple it might be very
hard to determine which font TEX loads. Above it
was shown that the flexibility of TEX can be abused
to hide what the code will do. File names are no
exception, as the following input proves.

\def\gobble#1{r}\lccode‘z=‘f \lowercase{\edef

\word{zont}}\let\something\futurelet

\expandafter\expandafter\expandafter\let

\expandafter\expandafter\expandafter\futurelet

\expandafter\csname\word\endcsname\def

\lookatnext#1{\romannumeral100\romannumeral1000

\gobble\the\the\count18.\the#1}\futurelet\next

\lookatnext\linepenalty\let\futurelet\something

\lccode‘z=‘z \show\next

What does \show\next in the last line display?

TUGboat, Volume 43 (2022), No. 1 61

I don’t see any way to abuse the primitive \font
to read a file that isn’t a TFM file.

Three main primitives. The primitives \input,
\openin, and \openout use the complete file name
that they receive. They append the extension .tex

if TEX doesn’t find one [6, pp. 25, 217, 226]. With
\input and \output, TEX prompts for a new file
name if the file cannot be found or opened for writ-
ing, respectively [7, §530, §537, §1374]. The primi-
tive \openin never asks the user to enter a new file
name [8, p. 325, no. 582 of TEX’s error log]. When
TEX asks for another file name, the good news is
that it displays first “! I can’t find file” or “! I can’t
write on file” followed by the file name that it had
scanned. Thus, even if the file name was entered in
an obfuscated manner now the user sees the name.

3 Expected problems

Primitives and macros behave differently in a TEX
run. If the three file I/O primitives are replaced by
macros, under what circumstances does this influ-
ence the typesetting? Sure, a source file might test
these command names and produce a different DVI

file if one of them is a macro. In this case I only care
about the result obtained with file I/O macros.

One important difference lies in the ability of
macros to expand. The primitives \openout and
\openin are allowed in an \edef (or \xdef, \write,
etc.) so the macros should be accepted too. Thus the
macros must either contain only expandable tokens
and be quite simple or stop the expansion early.

The primitive \input is a special case as its
acceptance in an \edef depends on the contents of
the file that is input. TEX usually throws an error,
as it treats the end of a file that’s input similar to
an outer macro [6, p. 206]. But TEX accepts a file
that ends with the primitive \noexpand. Thus, the
macro \input must be completely expanded and do
its work. But if this macro, say, sets a Boolean flag
from false to true, TEX runs into an error if \input
is executed in an \edef. This is completely indepen-
dent of the contents of the file that gets input.

This is expected, as \input’s expansion is null
but TEX starts to read from the file [6, p. 214]. Thus,
use of \expandafter will also give different results.
For example, \expandafter\show\input hello dis-
plays “the letter H” if the file hello.tex contains
the text “Hello TeX!”. But a macro for \input ex-
pands just one level and TEX displays its first token,
i.e., \show inactivates this token. (Our macro will
start with \begingroup; so any control sequence
between \expandafter and \input that reads at
least one argument and doesn’t open an unclosed

Transparent file I/O using the original TEX program and the plain TEX format

group gives an error.) Similar problems exist with
the macros for \openin and \openout.

This “contents dependency” for the acceptance
of the primitive \input makes it possible to place it
between \csname and \endcsname. TEX allows this
if the file that’s input expands to character tokens
only; \openin and \openout are always rejected.
For example, the statement \csname\input hello

\endcsname is a valid construction. Usually a macro
fails in this scenario if it isn’t very simple.

A similar situation occurs with the application
of a prefix, \number, etc., to the primitive \input.
The first token of the file that’s input must accept
this command or TEX displays an error; \openin
and \openout don’t accept such commands.

A reader might agree with me in finding some of
these constructions weird and classify them as bad
programming practice. Nevertheless the macros will
address the four problems: the “\csname problem”,
the “\edef problem”, the “\expandafter problem”,
and the “apply problem”. Some can be solved inter-
actively, others require a change of the source. The
important point is: Be alert if a source file uses one
of these unusual constructions and check the code
carefully to convince yourself that it is required.

Note: The discussion concentrates on plain TEX
but, for example, TUGboat uses its own macro pack-
age in which the command \input becomes a macro.
Now, TEX always throws errors for the \edef and
\csname problems but not for \global as the macro
absorbs it; \long, \number, etc., give errors. Macros
with at least three arguments in the \expandafter

problem hinder \input.

Privacy. Let’s state it frankly: It’s not possible to
hide the fact that file I/O primitives are replaced
by macros. This doesn’t mean that all macros must
be made public but it means that I decided not to
change, for example, \meaning, so a cracker can look
at the macro \input. Thus, a cracker knows which
control word was given the original meaning of the
primitive as it is called in the macro.

The important question is, what can a cracker
do with this information? It’s suspicious to input a
file without using the macro. A user sees on the ter-
minal that TEX inputs a file except if \batchmode
is active. My advice: Stop the execution if this hap-
pens without the approval through the procedure
of the macro described in section 4. Thus the first
statements of the macro package are

\let\batchmode=\scrollmode

\let\nonstopmode=\scrollmode

to make sure that no file can be input without a
message on the terminal.

62 TUGboat, Volume 43 (2022), No. 1

I deactivate \nonstopmode too in order to as-
sure that TEX stops if it cannot find a file as I de-
cided to let \input scan all file names with a trick
that makes TEX prompt for a new file name. Then
the user has the chance to check which file gets pro-
cessed and to change the file name if necessary or to
end the run. In a second step the file name is given
to the primitive whose name occurs in the source to
process the file, if the run wasn’t canceled.

Another source file might redefine the primi-
tives used in our macros and then they might not
do what is intended. This problem gets solved in the
usual manner: The used primitives are copied to new
control words with a unique start sequence. I use the
string “TRIO” for these copies and “TrIO” for all pri-
vate macros. For example, instead of the primitive
\begingroup I use \TRIObegingroup. The source
might use the prefix TRIO too, for example,

\def\TRIObegingroup{% open three groups

\begingroup \begingroup \begingroup}

(how likely is this?) and our own macro must get a
new name, for example, \TRIxObegingroup.

Security. The primitives \openin and \openout

are not as verbose as \input. They operate on a
file without stating the file name on the terminal
(or in the log file). The control words that save the
meaning of these primitives must not be made pub-
lic. Otherwise an evil-doer circumvents the macros
and applies the original primitives under their new
name.

Fortunately, none of our public macros require
the control words with the original meaning of these
two primitives as \input is executed first. As men-
tioned above the file name is read with a trick to
make TEX ask for a new file name. The user must
enter a special file name that in a next step contains
control words that have received via \let the mean-
ing of either \openin or \openout. Therefore these
control words can be given what I call a password-

protected name.
A password-protected name contains a string of

at least six letters in upper- and lowercase and with
one letter from the first third of the alphabet and
another from the last third. If the six letters form
neither an English word nor a word in the language
of the user it is very unlikely that this control word
can be guessed or computed by a cracker. (Six letters
define the minimum; use more if you like. Shorter
passwords might be discovered with TEX through a
brute force attack.) For example, I use in this text
the name \TRIOaAmNzZopenin in a \let assignment
to save the meaning of the primitive \openin. Note,
“aAmNzZ” is a placeholder that must be changed

Udo Wermuth

by the user if the macros are used. First, it’s the
default that a cracker knows; second, it’s much too
simple to make a good password.

The macros contain several passwords and some
are applied more than once. For example, every used
TEX primitive has not only a copy with the prefix
“TRIO” but also one with the prefix “TRIOhHJqsS”
built with the password “hHJqsS”—again this is a
placeholder which must be changed before the macro
package is used. During the run a check procedure
gets occasionally called to assure that both control
words have the same meaning. At the start we define

\let\TRIOhHJqsSifx\TRIOifx

\let\TRIOhHJqsSelse\TRIOelse

\let\TRIOhHJqsSfi\TRIOfi

... % many more \let assignments

\def\TrIOhHJqsSstop#1{\TRIOhHJqsSerrmessage{TrIO

ALERT !!! Don’t trust the source (#1)}}

\def\TrIOdDjQwWcheck{% check that macros are OK

\TRIOhHJqsSifx\TRIOhHJqsSifx\TRIOifx

\TRIOhHJqsSelse\TrIOhHJqsSstop{TRIOifx}%

\TRIOhHJqsSfi % \TRIOifx is OK

\TRIOifx\TRIOhHJqsSelse\TRIOelse

\TRIOhHJqsSelse\TrIOhHJqsSstop{TRIOelse}%

\TRIOhHJqsSfi % \TRIOelse is OK

\TRIOifx\TRIOhHJqsSfi\TRIOfi

\TRIOelse\TrIOhHJqsSstop{TRIOfi}%

\TRIOhHJqsSfi % \TRIOfi is OK

... }% many more \ifx tests

An undetectable problem. As mentioned above
the macros for \openin and \openout input a spe-
cial file. Changes in the category codes (or catcodes)
of used characters might change what the file shall
accomplish. Thus, I decided to reset all letters and
some symbols to their default catcodes before the
macros of the special file are executed. This—as
well as other decisions like the use of \count255—
requires executing the code of the macros most of the
time inside a group. Sure, \input should not load
the file inside a group. But \openin and \openout

act globally and can be placed inside a group.
In order to keep such changes local to the group

they must not be prefixed by \global. The prob-
lem occurs if the source sets \globaldefs=1 because
then every assignment, prefixed by \global or not,
becomes global. Code like this is ok:

\begingroup\globaldefs=1 \input hello \endgroup

Our macro \input sets \globaldefs=0, executes
its code, and sets \globaldefs=1. The first assign-
ment to \globaldefs inside the macro, inside the
group, is always global. Thus a problem occurs if
\globaldefs was set to −1 before the above group
as then \globaldefs is restored as 0 rather than −1
after \endgroup. Similarly the code \globaldefs=1

TUGboat, Volume 43 (2022), No. 1 63

\begingroup \input hello \endgroup restores 0
not 1 for \globaldefs after \endgroup.

A positive \globaldefs is rare, and when it
does occur it is usually in the good case above. But
the problem that arises from the two bad cases can
be neither solved nor detected. The macros can only
report that \globaldefs is positive. The user must
then carefully check the source to understand why
this seldom-used integer parameter was set.

4 The macro \input

Do we need to make \input more transparent, as
it writes the received file name to the terminal if
\batchmode is inactive? It’s easy to miss one file in
a flood of output on the terminal. I prefer to check
which files are input and I want to have the control
to redirect the request. It is crucial for success to
check which files are input. For example, a user must
never allow that a source inputs any of the files of
the macro package and continues the run.

The trick. How does the macro force TEX to ask
for a new file name? A nonexistent path is placed in
front of the given file name. For example, I define
\def\TrIOnosubdir{nosubdir/} where nosubdir/
must not exist as a directory in the current direc-
tory. Next, the macro changes \input hello into
\TRIOinput\TrIOnosubdir hello.

This works fine as long as the file name doesn’t
start with “../” as this might undo in some TEX im-
plementations the “nosubdir/” and the remaining
path points to a file in the current directory that car-
ries the same name as the file that should be found
in the parent directory. In such a case an existing
file is input without asking the user. The user sees
on the terminal that TEX inputs a file without ap-
proval; stop the run and nothing dangerous can hap-
pen. Next the replacement text of \TrIOnosubdir
should be changed to, for example, two nonexistent
directories “nosubdir/nosubdir/” before a new run
is started. It is unusual for the main source to input
a file from the parent directory. Be alert if this hap-
pens; stop the execution if that still happens after
two nonexistent directories are used. The code tries
to cope with the definition of \TrIOnosubdir.

The macro. This is the main macro:

\def\input{% add nonexistent subdir; raise error

\TRIObegingroup % next line works in \edef too

\TRIOafterassignment\TRIOnoexpand\TrIOempty

\TRIOdef\TrIOskipXXXVIinsTrIOfixedef\TrIOempty

{}\TrIOempty \TrIOhandleglobaldefs

\TRIOglobal\TRIOlet

\TrIOskipXXXVIinsTrIOfixedef=\TRIOundefined

\TrIOcountiocmd \TrIOmessage{<<<}%

Transparent file I/O using the original TEX program and the plain TEX format

\TrIOsetcatcodes \TRIOinput TrIOinput.tex

\TrIOinputmessage \TrIOendgroup

\TRIOinput \TrIOnosubdir}% and file name: error

The first line (\TRIObegingroup) makes TEX
stop if the “apply problem” occurs or if the macro is
expanded inside a \csname/\endcsname structure.
Line 2 switches off the application of a token held
by the primitive \afterassignment; see section 5.
The tricky code works in an \edef too; see below.
The definition of an undefined control word catches
the expansion of \input in an \edef. The macro
\TrIOhandleglobaldefs handles the \globaldefs

problem described in the previous section. All these
technical parts are discussed in a moment.

The important parts: \TrIOcountiocmd, cat-
code changes in \TrIOsetcatcodes, the TrIOinput
file, \TrIOinputmessage, and the last line’s trick.

The first macro counts the number of times one
of the three file I/O primitives is called.

\def\TrIOcnt{0 }\countdef\TrIOcount=255

\def\TrIOcountiocmd{% increment \TrIOcnt

\TrIOcount=\TrIOcnt \TRIOadvance\TrIOcount by 1

\TRIOxdef\TrIOcnt{\TRIOnumber\TrIOcount

\TrIOspace}}

Together with information written to the terminal
and the log file a simplified procedure for repeated
execution of the source can be realized; see section 9.

\def\TrIOmessage{\TRIOimmediate\TRIOwrite16 }

\def\TrIOinputmessage{% what happens; what to do

\TrIOmessage{TrIO >>> (\TrIOcnt) Line

\TRIOthe\TRIOinputlineno: input}%

\TrIOmessage{>>> enter shown file name without

‘\TrIOnosubdir’.}\TrIOmessage{<<<}}

The catcode changes were mentioned in sec-
tion 3. The macro prepares to load TrIOinput.tex.

\def\TrIOsetcatcodes{% establish a few \catcodes

\TRIOedef\TrIOnext{\TRIOthe\TRIOcatcode‘\%}%

\TRIOcatcode‘\%=12 \TRIOlet\%=\TRIOcatcode

\%‘\\=0 \%‘\==12 \%‘\‘=12 \%‘\1=12 \%‘\2=12 }

These catcodes are fixed and build the base for the
catcode changes in the file TrIOinput.tex:

\%‘\0=12 \%‘\3=12 ... \%‘\9=12 \%‘\a=11 \%‘\b=11

... \%‘\z=11 \%‘\A=11 \%‘\B=11 ... \%‘\Z=11

\%‘\%=\TrIOnext \TrIOdDjQwWcheck

Handling \globaldefs. The macro that checks
the setting of \globaldefs clears it if it is positive
as explained earlier. This macro de- and reactivates
\afterassignment in case it holds a token: The
macro \TrIOsuspendafterassignment blocks the
application of this token after an assignment and the
macro \TrIOinitafterassignment restores the de-
fault behavior. Finally, the macro defines the macro
\TrIOendgroup that resets the integer parameter

64 TUGboat, Volume 43 (2022), No. 1

\globaldefs if necessary after it closes the group
opened in the first line of \input.

\def\TrIOhandleglobaldefs{% inform about

% \globaldefs>0 and switch to \globaldefs=0

\TRIOifnum\TRIOglobaldefs>0 \TrIOmessage

{TrIO Info: globaldefs is >0 (I/O)}%

\TRIOafterassignment\TrIOsuspendafterassignment

\TRIOglobaldefs=0 % only this is global

\TRIOdef\TrIOendgroup{\TRIOendgroup

\TRIOafterassignment\TrIOinitafterassignment

\TRIOglobaldefs=1 }%

\TRIOelse \TrIOsuspendafterassignment

\TRIOglobaldefs=0 \TRIOdef\TrIOendgroup{%

\TRIOendgroup\TrIOinitafterassignment}%

\TRIOfi}

A variant. To address some of the problems dis-
cussed in the previous section a second macro for
\input is coded. It carries a password-protected
name, \TrIOcCkPxXinput, to avoid its unnoticed
use. It differs from the macro shown in two respects:

1. The message states “INPUT” instead of “input”
to identify itself to the user.

2. In front of \TRIOinput in the last line the macro
\TrIOcCkPxXtransfer appears.

The variant is called if the source file contains
\TrIOcCkPxXmove. The user must enter this macro
into the source to fix some of the discussed problems.

\def\TrIOcCkPxXmove#1\input{% transfer tokens

\def\TrIOcCkPxXtransfer{#1}\TrIOcCkPxXinput}

Use this macro only if you are convinced that a
\csname, \expandafter, or “prefix” is required and
the source cannot extract the password in the name.

An example. Most macros of this article are bun-
dled in the file TrIOmacros.tex. This file is input in
the first line of the source file that should be checked.

\input TrIOmacros

\batchmode \input hello \errorstopmode

\csname \input hello \endcsname

\TrIOcCkPxXmove\global\input hello

\expandafter\show\input hello

\edef\csone{\input hello }\show\csone\bye

When this file is executed TEX displays the mes-
sages of the macro followed by an error:

<<<

(TrIOinput.tex)

TrIO >>> (1) Line 2: input

>>> enter shown file name without ‘nosubdir/’.

<<<

! I can’t find file ‘nosubdir/hello.tex’.

l.2 \batchmode \input hello

\errorstopmode

Please type another input file name:

This is the normal case: First, a user should check
that TrIOinput.tex was input, then the macro re-

Udo Wermuth

ports that the first I/O command was found in line 2
and that this command is \input, and finally the
macro displays what to do next.

We enter “hello” as the new file name. TEX
shows in the next line that it inputs hello.tex. But
then an error message pops up.

(hello.tex)

! Missing \endcsname inserted.

<to be read again>

\TRIObegingroup

\input ->\TRIObegingroup

\TRIOafterassignment...

l.3 \csname \input

hello \endcsname

?

This error message signals the \csname/\endcsname
problem. The answer to the question mark is to type
“42”, then to insert the correct code, i.e., I\csname,
at the next prompt. Finally, enter the file name.

? 42

\input ...\TrIOendgroup

\TRIOinput \TrIOnosubdir

l.3 \csname \input

hello \endcsname

? I\csname

! I can’t find file ‘nosubdir/hello.tex’.

l.3 \csname \input hello

\endcsname

Please type another input file name: hello

(hello.tex)

In this example the \csname problem was fixed
successfully. But, for example, the code \csname AA

\input hello \endcsname would create a different
typesetting result compared to the original source.
Check carefully if the macro \TrIOcCkPxXmove can
be inserted, if the contents of the file can be typed
in, or if the source file should be rejected.

The next line represents such an insertion by
the user. Now the “normal” case occurs except that
the word “INPUT” signals the use of the macro.
(Note the “2” as the “42” skipped the counting.)

<<<

(TrIOinput.tex)

TrIO >>> (2) Line 4: INPUT

>>> enter shown file name without ‘nosubdir/’.

<<<

! I can’t find file ‘nosubdir/hello.tex’.

l.4 \TrIOcCkPxXmove\global\input hello

Please type another input file name: hello

(hello.tex

without the macro TEX reports “! You can’t use a
prefix with ‘\begingroup’.” and the fix is to enter
“42” and “I\global”. The apply problem can al-
ways be solved in this way.

TUGboat, Volume 43 (2022), No. 1 65

Next, an error message appears as the contents
of hello.tex doesn’t start with an assignment; it’s
an error in the original source: “! You can’t use a
prefix with ‘the letter H’.”.

After pressing RETURN TEX displays

> \TRIObegingroup=\begingroup.

\input ->\TRIObegingroup

\TRIOafterassignment...

l.5 \expandafter\show\input

hello

which is not an error message but the result of the
primitive \show. Nevertheless the macro \input lost
its first token. Without intervention TEX will display
an error message as soon as it reads the correspond-
ing \endgroup. This time the interactive fix is to
type “41” followed by “I\expandafter\show”.

With a macro that reads arguments instead of
the non-typesetting command \show such a fix is not
possible. Edit the source and use \TrIOcCkPxXmove
except in cases like \expandafter{\input hello },
in which the \expandafter should be deleted.

The macros in TrIOmacros.tex are designed
in a way that all errors in the original source pro-
duce errors in the instrumented file, although the
error messages and/or recovery might be different.
An erroneous source might lead to an instrumented
source in which it is impossible to recover from an
error during the execution.

The last line in the above source gives an exam-
ple of such an error. In the original source TEX dis-
plays “Runaway definition?” but the instrumented
source shows first “! Undefined control sequence.”

! Undefined control sequence.

\input ... \TrIOskipXXXVIinsTrIOfixedef

\TrIO...

l.6 \edef\csone{\input

hello }\show\csone\bye

The name of the undefined control sequence informs
the user what to do: Skip 36 tokens and insert then
\TrIOfixedef. Doing so and after entering ”hello”
TEX displays the original error message.

? 36

\input ...\TrIOendgroup

\TRIOinput \TrIOnosubdir

l.6 \edef\csone{\input

hello }\show\csone\bye

? I\TrIOfixedef

! I can’t find file ‘nosubdir/hello.tex’.

l.6 \edef\csone{\input hello

}\show\csone\bye

Please type another input file name: hello

(hello.tex)

Runaway definition?

->\TRIObegingroup \TRIOafterassignment \ETC.

! File ended while scanning definition of \csone

Transparent file I/O using the original TEX program and the plain TEX format

<inserted text>

}

l.6 \edef\csone{\input hello

}\show\csone\bye

Next TEX complains about too many closing curly
braces as in the original source.

The \show\csone displays:

\TRIObegingroup \TRIOafterassignment \TrIOempty

\TRIOdef \TrIOempty {}\TRIOendgroup Hello TeX!

because of the trick in line 2 and this definition

\def\TrIOfixedef{% fix \edef problem for \input

\TRIOnoexpand\TrIOempty{}\TRIOendgroup}

so that \csone contains more material than in the
source file; a prefix or \number, etc., now gives a new
error if the original accepts this in front of \csone.

Summary: A user can fix the apply problem
interactively, but not always the \csname and the
\expandafter problems; one can try to fix them in
the source. The \edef problem must be fixed inter-
actively but the defined macro has additional tokens.

5 Macro for \afterassignment

Next, let’s look at the support macros that we need
to handle the primitive \afterassignment. This
primitive stores a single token that isn’t expanded
[6, p. 215]; thus it can hold an undefined macro and
execute it after it was defined. To reproduce this
behavior the macro must store the token in a to-
ken register and not via a \let assignment. On the
other hand, a curly brace cannot be placed in a to-
ken register; this requires \let. To distinguish these
cases the macro sets a flag. (\afterassignment can-
not appear in a \csname/\endcsname construction
or with a prefix like \global.)

\newif\ifTrIOsavedtoken % true: token is stored

\newif\ifTrIOblockafterassignment % true: don’t

% insert a token after an assignment

\newif\ifTrIOusetokenlist % true: use token reg

\newtoks\TrIOtoken % the token register

A second difficulty is that \afterassignment

can be used in an \edef or \xdef but the macro
would fail if it is fully expanded. Therefore a second
token register is declared to stop the expansion.

\let\TRIOafterassignment=\afterassignment

\newtoks\TrIOtrafterassignment % stops expansion

% the replacement of the primitive

\def\afterassignment{% \edef expands one level

\the\TrIOtrafterassignment}

\TrIOtrafterassignment={\TrIOafterassignment}

For the rest of the article—and already in the
code just above— I omit the initial “TRIO” if a
primitive is meant and no macro replaces it. For
example, above I wrote \the instead of \TRIOthe,

66 TUGboat, Volume 43 (2022), No. 1

but I will still write \TRIOinput since the \input

primitive has been replaced by a macro.
The main macro blocks the usual work of the

primitive \afterassignment and then fetches via
\futurelet the token that should be stored. Two
of the other three user macros were shown earlier.
One sets the flag to block \afterassignment, the
second removes this block. The third uses the origi-
nal primitive to call our own insertion macro.

\def\TrIOafterassignment{% first save a token

\begingroup\endgroup % stop \global

\TrIOglobaldefs \TrIOsavedtokentrue

\futurelet\TrIOsavedtoken\TrIOchecktoken}

% user commands for those who know the macros

\def\TrIOsuspendafterassignment{% switch off

\TrIOblockafterassignmenttrue}

\def\TrIOresumeafterassignment{% switch on

\TrIOblockafterassignmentfalse % remove block

\TrIOinitafterassignment}

\def\TrIOinitafterassignment{% init exec macro

\TRIOafterassignment\TrIOAFTERASSIGNMENT}

Again \globaldefs must be checked. This is
similar to the procedure used for \input but here
no group must be closed so \TrIOresetglobaldefs

is defined. It’s called when a token must be stored.

\def\TrIOglobaldefs{% inform about \globaldefs>0

% and switch to \globaldefs=0 for the macros

\ifnum\globaldefs>0 \TrIOmessage{TrIO Info:

globaldefs is >0 (store)}%

\TRIOafterassignment\TrIOsuspendafterassignment

\globaldefs=0 \def\TrIOresetglobaldefs{%

\TrIOblockafterassignmentfalse

\TRIOafterassignment\TrIOinitafterassignment

\globaldefs=1 }%

\else\ifnum\globaldefs<0 % no group, do a reset

\TRIOafterassignment\TrIOsuspendafterassignment

\globaldefs=0 \def\TrIOresetglobaldefs{%

\TrIOblockafterassignmentfalse

\TRIOafterassignment\TrIOinitafterassignment

\globaldefs=-1 }%

\else \TrIOsuspendafterassignment % switch off

\def\TrIOresetglobaldefs{% and switch on again

\TrIOresumeafterassignment}%

\fi\fi}

The next macro determines the type of the to-
ken and stores it either in a token register or via a
\let assignment.

\def\TrIOchecktoken{% check token, store a macro

\ifcat\noexpand\TrIOsavedtoken\relax

\let\TrIOnext=\TrIOstoresavedtoken % a macro

\else % otherwise remove token from the input

\let\TrIOnext=\TrIOremovesavedtoken

\fi \TrIOnext}

\def\TrIOstoresavedtoken#1{% #1: cs in token reg

\let\TrIOnext=\undefined \TrIOusetokenlisttrue

\TrIOtoken={#1}\TrIOresetglobaldefs}

Udo Wermuth

\def\TrIOremovesavedtoken{% remove a token

\let\TrIOnext=\undefined \TrIOusetokenlistfalse

\TRIOafterassignment\TrIOresetglobaldefs

\let\TrIOsavedtoken=}

The application macros just test the flags.

\def\TrIOAFTERASSIGNMENT{% use the stored token

\ifTrIOblockafterassignment% true nothing to do

\else % otherwise output token if one is saved

\ifTrIOsavedtoken \ifnum\globaldefs>0

\TrIOmessage{TrIO Info: globaldefs is 1

(apply)}\globaldefs=0 % clear it

\TrIOsavedtokenfalse \globaldefs=1 % & reset

\else \TrIOsavedtokenfalse \fi

\expandafter\expandafter % get rid of

\expandafter\TrIOoutputtoken % the 2 \fi

\expandafter\fi % with 3+1 \expandafter

\fi}

\def\TrIOoutputtoken{% output token (check type)

\ifTrIOusetokenlist % true: use token reg

\expandafter\the\expandafter\TrIOtoken

\else % otherwise use the saved token

\expandafter\TrIOsavedtoken

\fi}% no need to change \ifTrIOusetokenlist

6 Macro for \openin

Let’s repeat what we already know about \openin.
It’s nicer than \input as it can’t occur in a \csname/
\endcsname construction. Moreover, it can’t be pre-
fixed by \global as the equals sign here does not
mean an assignment is performed; it’s an association
between a stream number and a file name. This asso-
ciation acts globally so that we can execute \openin
inside a group. To solve the \expandafter problem
in the source just delete this token. But \openin

might be part of an \edef. Thus, the technique of
the previous section is applied for \openin too.

But \openin is also much more unpleasant than
\input. It operates without stating the file name
on the terminal or in the log file. Thus, the con-
trol word that saves the meaning of the primitive
must not be made public. Otherwise an evil-doer
could circumvent the macro and apply the original
primitive under its new name. Therefore the copy
of the primitive is assigned a password-protected
name: \TRIOaAmNzZopenin.

The macro \openin first reads the stream num-
ber, next a test is made to see if the optional equals
sign follows, and third \TRIOinput is called with the
trick so that TEX asks for a new file name. But this
time the user enters two file names. First, a generic
file name— for \openin it’s by default openin—
and then the file name that should be processed by
the primitive \openin. The file openin.tex contains
several password-protected macros that do the im-
portant work. Please remember: A user must never

TUGboat, Volume 43 (2022), No. 1 67

allow TrIOmacros.tex or any other file of this pack-
age, such as openin.tex, to be processed by the
original source.

All aspects of the following macros are either
well-known or have been discussed.

\newtoks\TrIOtropenin % token register for \edef

\def\openin{\the\TrIOtropenin}% expand one level

\TrIOtropenin={\TrIOopenin}% call the main macro

\def\TrIOopenin{\begingroup

\TrIOhandleglobaldefs \TrIOcountiocmd

\TRIOafterassignment\TrIOOpenIn \TrIOcount=}

\def\TrIOOpenIn{% remove an optional =

\TRIOafterassignment\TrIOOPENIN

\let\TrIOnxt=}

\def\TrIOOPENIN{% add nonexistent directory

\TrIOmessage{<<<}% first: the instructions

\TrIOmessage{TrIO >>> (\TrIOcnt) Line

\the\inputlineno: openin \the\TrIOcount}%

\TrIOmessage{>>> If you accept that the file

(without \TrIOnosubdir) is read}%

\TrIOmessage{>>> enter ‘openin’ and

follow the instructions.}\TrIOmessage{<<<}%

\ifx=\TrIOnxt \def\TrIOnxt{}%

\fi % otherwise \TrIOnxt <> ‘=’; so keep it

\TrIOsetcatcodes % required for openin.tex

\TRIOinput\TrIOnosubdir\TrIOnxt}

In openin.tex, private information is used: a
kind of signature that it is the user’s openin.tex

and not one by a cracker. A user should change the
text to make it unique for each installation. But
of course, use only characters whose category codes
are known, i.e., set in the list. As \TrIOnext be-
comes undefined in the macro \TrIOaAmNzZopenin

the message stays private.

\%‘\0=12 \%‘\3=12 ... \%‘\9=12 \%‘\a=11 ...

\%‘\z=11 \%‘\A=11 ... \%‘\Z=11 \%‘\>=12

\%‘\{=1 \%‘\}=2 \%‘\%=\TrIOnext \TrIOdDjQwWcheck

\TRIOgGKptTpausing=1 \def\TrIOnext{My message

Enter 1> return 2> file name}\TRIOgGKptTpausing0

\TrIOaAmNzZopenin

The mentioned macro prompts for the file name
and calls the password-protected primitive using the
stream number stored in the register \TrIOcount.

\def\TrIOaAmNzZopenin{% get file name from user

\read16 to \FilenameOPENIN

\TRIOaAmNzZopenin\number\TrIOcount=

\FilenameOPENIN

\let\FilenameOPENIN=\undefined

\let\TrIOnext=\undefined

\let\TrIOnxt=\undefined

\TrIOendgroup}% see \TrIOhandleglobaldefs

7 Macros for \openout and \immediate

The macros to replace the primitive \openout are
very similar to the ones used for \openin; and the

Transparent file I/O using the original TEX program and the plain TEX format

file openout.tex is similar to openin.tex. The only
aspect not yet discussed is the “prefix” \immediate.

TEX allows an \immediate everywhere without
raising an error for the next token. This is in con-
trast to, for example, the prefix \long that, after
expansion of the next token, requires a definition
primitive (\def, etc.) or another prefix (\global,
etc.). Although \immediate never complains, it in-
fluences the next token after expansion only if it is
one of \openout, \write, or \closeout.

The way \immediate operates means that the
macro that replaces the primitive cannot simply set
a flag that signals that it was seen. For example,
the sequence “\immediate\begingroup\openout”
would then faultily apply \immediate to \openout.
Can we just test if the macro \openout follows the
macro \immediate? I decided to put an identifi-
cation primitive at the start of \openout so that
\TrIOopenout doesn’t start with \begingroup but
with the sequence “\TRIOimmediate\begingroup”.

The macros for \immediate. As indicated above,
the first part of the macros uses the known structure.
Only the last line of \TrIOImmediate contains a new
technique (or trick).

\newif\ifTrIOimoo % true: \immediate\openout

\newtoks\TrIOtrimmediate % token reg. for \edef

\def\immediate{\the\TrIOtrimmediate}% one level

\TrIOtrimmediate={\TrIOImmediate}% expansion

\def\TrIOImmediate{% expand the following token

\begingroup \TrIOhandleglobaldefs

\TRIOafterassignment\TrIOIMMEDIATE

\TrIOcount=‘x}% the trick; explanation follows

TEX treats the alphabetic constant ‘x like a
number and digests a space after such a number [7,
§442]. To check if a space follows, tokens are ex-
panded (§443) but TEX doesn’t add anything to the
alphabetic constant. Thus TEX assigns the value 120
to \TrIOcount after it determines the first token of
the expansion of the token that follows \immediate.
Only if this first token is \TRIOimmediate does the
source contain \openout as an interim next token
for \immediate during the expansion.

\def\TrIOIMMEDIATE#1{% #1: a token; it’s tested

\ifx#1\TRIOimmediate % true: macro \openout

\global\TrIOimootrue % follows; set flag

\else \global\TrIOimoofalse \fi \TrIOendgroup

\TRIOimmediate#1}% apply the primitive

A cracker might set the flag (either directly or
via \TRIOimmediate as the names aren’t protected)
to confuse the user. The next \openout will use the
flag even if no \immediate precedes it. Stop the ex-
ecution if TrIOmacros reports “immediate openout”
but the source file seems to have no \immediate in
front of \openout. Then check the source carefully.

68 TUGboat, Volume 43 (2022), No. 1

The macros for \openout. As written above, the
macros for \openout are so similar that they aren’t
shown here in detail. Besides the wording “openout”
instead of “openin” and “created” instead of “read”
in the messages there are two differences:

1. \TrIOopenout starts with \TRIOimmediate;
2. the first message in \TrIOOPENOUT contains now

“\ifTrIOimoo immediate \fi” in front of the
string “openout”.

A new password-protected macro is called in
openout.tex; it makes use of the new flag. Other-
wise openout.tex is identical to openin.tex.

\def\TrIObBlOyYopenout{% get file name from user

\read16 to \FilenameOPENOUT

\ifTrIOimoo \global\TrIOimoofalse

\let\TrIOnext=\TRIOimmediate % use \immediate

\else \let\TrIOnext=\relax \fi

\TrIOnext\TRIObBlOyYopenout

\number\TrIOcount=\FilenameOPENOUT

\let\FilenameOPENOUT=\undefined

\let\TrIOnext=\undefined

\let\TrIOnxt=\undefined \TrIOendgroup}

8 The virus example

The following instructions are a modified version of
the code containing the virus shown in [1] and [2].
This badly formatted, comment-free but obfuscated
code should alert everyone who sees it. (I changed
the original source so that it can be executed under
plain TEX. Moreover, the original file names and in
one case the contents of a file were changed.)

1. \input TrIOmacros % new 1st line; see below

2. \newif\ifcontinue \continuetrue

3. \def\uncat{\def\do##1{\c‘##1=12 }\dospecials

4. \do\^^M\do*}\def\nice{\endlinechar=‘\^^M

5. \uncat}\def\readline#1to#2{\begingroup\nice

6. \global\read#1to#2\endgroup}%

7. {\newwrite\w\let\c\catcode\c‘*13\def

8. *{\afterassignment\d\count255"}\def\d{%

9. \expandafter\c\the\count255=12}{*0D\def%

10. \a#1^^M{\immediate\write\w{#1}}\c‘^^M5%

11. \newread\r\openin\r=\jobname

12. \immediate\openout\w=../justafile.tex

13. \loop\ifeof\r\continuefalse\fi\ifcontinue

14. \readline\r to\l\expandafter\a\l\repeat

15. \immediate\closeout

16. \w\closein\r}{*7E*24*25*26*7B*7D\immediate

17. \openout\w gotcha.tex \c‘[1\c‘]2\c‘\@0

18. \newlinechar‘\^^J\endlinechar-1*5C@immediate

19. @write@w[What have I done?]@immediate

20. @closeout@w]}%

21. \bye

As in the example of section 4 the file got a new
first line “\input TrIOmacros”. Next we run TEX
on this file, which I call danger.tex. TEX quickly

Udo Wermuth

stops to display a message. (Some lines are broken
for TUGboat’s column width, and the identifying
password in the name for \pausing was deleted.)

<<<

TrIO >>> (1) Line 11: openin 0

>>> If you accept that the file (without

nosubdir/) is read

>>> enter ‘openin’ and follow the instructions.

<<<

! I can’t find file ‘nosubdir/danger.tex’.

<to be read again>

\begingroup

\TrIOImmediate ->\begingroup

\TrIOhandlegl...

l.12 \immediate

\openout\w=../justafile.tex

Please type another input file name:

Don’t get confused by the shown source lines.
TEX detects that it has the complete file name only
after seeing the \immediate in line 12. The “TrIO
>>>” line shows the number of the I/O command, the
line number in which it was found, and the command
itself. The first file I/O is in line 11 and the com-
mand is \openin with stream number 0. After the
instructions TEX displays the file name that it read
plus the nonexistent subdirectory that our macros
added. Here the source looks for the file danger.tex,
i.e., itself. Although I find it weird for a file to read
itself, this process is harmless compared to a file that
wants to destroy itself. So I continue; that is, I enter
“openin”, press return, check my private message,
press return, and enter the file name.

Please type another input file name: openin

(openin.tex

Enter 1> return 2> file name}\TRIO...pausing0=>

\FilenameOPENIN=danger

Next, TEX stops again. As expected it is the sec-
ond file I/O command and this time it’s \immediate
\openout with stream number 0. The source wants
to write a file in the parent directory. This is very
strange and shouldn’t be allowed. I prefer to create a
subdirectory trioo/ and to redirect all output files
to this directory. Of course, the user must remem-
ber which files are placed in this subdirectory if the
source wants to read one of them again.

<<<

TrIO >>> (2) Line 12: immediate openout 0

>>> If you accept that the file (without

nosubdir/) is created

>>> enter ‘openout’ and follow the instructions.

<<<

! I can’t find file ‘nosubdir/../justafile.tex’.

l.12 \immediate\openout\w=../justafile.tex

Please type another input file name: openout

TUGboat, Volume 43 (2022), No. 1 69

(openout.tex

Enter 1> return 2> file name}\TRIO...pausing0=>

\FilenameOPENOUT=trioo/justafile

Maybe you directly saw in the source that a path
contains two periods. To avoid the case that TEX
inputs an existing file justafile.tex in the cur-
rent directory, add in front of \input TrIOmacros

\let\twonosubdirs=y to have \def\TrIOnosubdir
{nosubdir/nosubdir/} as explained earlier.

The third stop is similar to the second except
one should check that \immediate occurs at the end
of line 16. Again I use the output directory trioo.

<<<

TrIO >>> (3) Line 17: immediate openout 0

>>> If you accept that the file (without

nosubdir/) is created

>>> enter ‘openout’ and follow the instructions.

<<<

! I can’t find file ‘nosubdir/gotcha.tex’.

l.17 \openout\w=gotcha.tex

\c‘[1\c‘]2\c‘\@0

Please type another input file name: openout

(openout.tex

Enter 1> return 2> file name}\TRIO...pausing0=>

\FilenameOPENOUT=trioo/gotcha

At the end of the run the user should check the
files in the subdirectory trioo. This reveals that
justafile.tex is a copy of danger.tex.

9 Repeated executions

Although the macros work well, a user needs to con-
centrate during the stop-and-go operation and thus
it’s easy to make mistakes. A run is ruined if the
user enters, for example, the file name instead of
openout at a stop for \openout. No harm to the
system is done as TEX reads the file; the creation of
a file is only possible through the file openout.tex.

As soon as one manages to finish a successful
run the package provides macros to avoid the input
of file names in subsequent runs if the I/O commands
and the file names aren’t changed from run to run.
These macros use the I/O commands with the file
names entered in the successful run in exactly the
order they occured previously. A run is deemed suc-
cessful if and only if TEX doesn’t report an error that
was interactively fixed. To activate the macros for
repeated executions a user has to do the following.

1. Copy the .log file of the successful run. For
example, copy danger.log to danger.trio.

2. Run a sed command on the copied log file.
Use TrIOlineno.sed (or TrIOextract.sed) to
create another TEX file called TrIOnames.tex.
For example, enter: sed -f TrIOlineno.sed

danger.trio > TrIOnames.tex.

Transparent file I/O using the original TEX program and the plain TEX format

3. Change the first line of the instrumented source
file; replace TrIOmacros by TrIOauto.

The log file contains in the lines that start
with “TrIO >>> . . . ”, “! I can’t find file . . . ”, and
“\FilenameOPEN...” all the data needed to create
a case statement in TEX, in which for each sequence
number the line number, the I/O command, and the
file name can be combined to do the file I/O auto-
matically; the uppercase form of “input” is thereby
changed to “\TrIOcCkPxXtransfer \TRIOinput”.

The difference between the two sed files is that
in one the new line number and the line number of
the successful run are compared. This exact replica-
tion of the successful run might be too strict if the
user has to edit the text but doesn’t change the se-
quence of I/O commands. A user can create a new
TrIOnames.tex by using TrIOextract.sed instead
of TrIOlineno.sed in step 2 of the above list.

The case statement is placed in a password-
protected macro stored in TrIOnames.tex. Here is
the structure of this file from the run of section 8.

\def\TrIOeEMnvVfilenames{% use files of prev run

\ifcase\TrIOcnt \iffalse % a technicality

\else\TrIOstop{case (\TrIOcnt) in auto}\fi

\or\ifnum\TrIOcount=11 % case 1

\def\TrIOiocmd{\TRIOaAmNzZopenin 0}%

\TrIOenvopen \def\TrIOfile{danger}%

\TrIOmessage{TrIO >>> (1) Line 11:

openin 0 \TrIOfile}%

\else \TrIOstop{case (\TrIOcnt) in auto}\fi

\or\ifnum\TrIOcount=12 % case 2

...

\else

\TrIOstop{unknown case (\TrIOcnt) in auto}%

\fi \TrIOfFLouUexecute}

The macro \TrIOenvopen provides some definitions
for an “environment” to end the current group for
\openin and \openout. For \input the group must
end before it gets active.

\def\TrIOenvopen{\let\TrIOleft=\relax

\let\TrIOright=\TrIOendgroup}

\def\TrIOenvinput{\let\TrIOleft=\TrIOendgroup

\let\TrIOright=\relax}

The new macros. The file TrIOauto.tex con-
tains simplified macros for \input, \openin, and
\openout. It uses the file TrIOopen.tex to load
and write the files in TrIOnames.tex. The new file
TrIOopen.tex is like openin.tex or openout.tex

except that it doesn’t contain a personal message
and that it calls \TrIOeEMnvVfilenames, not the
password-protected copies of \openin or \openout.

The macro for \input no longer writes terminal
messages with \TrIOmessage; this also applies to all
other file I/O macros in TrIOauto.tex.

70 TUGboat, Volume 43 (2022), No. 1

\def\input{\begingroup \TrIOhandleglobaldefs

\TrIOcountiocmd \TrIOsetcatcodes

\TrIOcount=\inputlineno % see \TrIOfilenames

\let\TrIOnxt==% needed in \TrIOexecute

\TRIOinput TrIOopen.tex }

The variant with a password-protected name,
\TrIOcCkPxXinput, isn’t needed anymore because
the macro \TrIOcCkPxXmove, which might still oc-
cur in the source, now calls \input.

For \openin, two of the four macros are un-
changed. In \TrIOopenin the line number is saved
(as in \input) so that it becomes available in the
macro \TrIOeEMnvVfilenames. The other changes
in this set of macros are similar to the changes seen
in the new macro \input.

\def\openin{\the\TrIOtropenin}

\TrIOtropenin={\TrIOopenin}

\def\TrIOopenin{\begingroup

\TrIOhandleglobaldefs \TrIOcountiocmd

\xdef\TrIOnext{\TrIOcount=\the\inputlineno}%

\TRIOafterassignment\TrIOOpenIn \TrIOcount=}

\def\TrIOOpenIn{\TRIOafterassignment\TrIOOPENIN

\global\let\TrIOnxt=}

\def\TrIOOPENIN{\TrIOnext \TrIOsetcatcodes

\TRIOinput TrIOopen.tex }

The macros for \openout and \immediate re-
ceive drastic changes: \openout becomes identical to
\openin and \immediate isn’t replaced by a macro.

The execution macro. The last line in the macro
of TrIOnames.tex, i.e., in \TrIOeEMnvVfilenames,
calls a password-protected macro that executes the
stored file I/O command.

\def\TrIOfFLouUexecute{% prepare I/O execution

\ifx=\TrIOnxt \gdef\TrIOnext{TrIO_}%

\else \gdef\TrIOnext{TrIO_\TrIOnxt}\fi

\TRIOafterassignment\TrIOfFLouUdoiocmd % exec

\font\unused=\TrIOnext}% remove file name

The last line might be a surprise. Why do we need
a \font command here? Now that the file name
from the input isn’t used for an I/O command the
source contains an unread file name. I decided to
read and display the file name so that a user can
check that the file name agrees with the one used in
TrIOnames.tex. It’s possible that a cracker codes
something like “\input\myfile” and changes file
names in \myfile from run to run. Although our
macros use a name that was approved they can still
help the user to identify such sources.

Thus the file name should be displayed. But
with \input and the trick the user must enter an-
other file name, for example, null. To reduce this
to a simple return I apply the primitive \font and
a prefix for the file name to avoid loading a TFM file
if the file name is, for example, called cmr10.tex.

Udo Wermuth

TEX raises an error message that shows the file name
without extension; see section 2. After a quick check
that the main parts of the known file name and the
shown one without TrIO_ agree, the user continues
the run by pressing return. Next the I/O command
is executed; as mentioned earlier, \input outside the
group, \openin and \openout inside the group.

\def\TrIOfFLouUdoiocmd{% execute the I/O command

\let\TrIOnext=\undefined

\TrIOresumeafterassignment

\ifx\TrIOright\relax \expandafter\TrIOleft

\expandafter\TrIOiocmd \expandafter\TrIOfile

\else \TrIOiocmd\TrIOfile\TrIOright \fi}

For example, TEX’s first message for the source
danger.tex of section 8 with TrIOauto.tex is:

(TrIOopen.tex

TrIO >>> (1) Line 11: openin 0 danger

)

! Font \TRIOunused=TrIO_danger not loadable:

Metric (TFM) file not found.

<to be read again>

\immediate

l.12 \immediate

\openout\w=../justafile.tex

Although it is quite unusual the source might
contain something like “\input file.tex at” and
then TEX interprets the “at” as a keyword if the
input file.tex is treated as the name of a font. In
such a case the user should change the source and
place the “at” in curly braces; treat the keyword
“scaled” in the same way. With TrIOauto.tex the
repeated execution isn’t a big problem.

10 Treatment of \special

The previous sections introduce macros that allow
a user to control which external files TEX reads and
writes. But by default TEX writes data to two other
files: the log file and the DVI file.

The log file is a plain text file like the TEX
source. It is neither interpreted nor compiled.

The DVI file is a binary file that must be in-
terpreted by a device driver. Most of its content is
determined by the encoding of the text which TEX
has to typeset. But TEX also contains the primitive
\special that is able to write any data to the DVI

file. The device drivers must know what to do with
this data.

Some device drivers support a \special string
being executed as a shell command; this scenario
has the same risks as the \write18. Or the device
driver may interpret data as PostScript instructions.
PostScript code can delete files, spread a virus, or
hide private data inside the PostScript file— later
the author can extract this information if the user

TUGboat, Volume 43 (2022), No. 1 71

returns its output; see [5, chap. 4]. The macros of
this article cannot control the actions of shell scripts
or PostScript code.

It is strongly recommended to activate the se-
curity options of the device driver if a DVI file from
an untrusted source is processed even if the source
was compiled by oneself. For example, use -safer

in xdvi [3] and -R2 for the DVI-to-PostScript trans-
lator dvips [17].

Macros for \special. By default the macros as-
sume that the user configures the device drivers to
protect the system. That is, TrIOmacros.tex and
TrIOauto.tex keep the primitive \special active.

But the macros offer a way to look at the data
contained in a \special without touching the primi-
tive. TEX puts a marker for the \special and the as-
sociated token list into a so-called whatsit [6, p. 226]
that appears in the box that TEX ships out. TEX
writes all token lists into the log file (sometimes in
an abbreviated form, see [7, §292]) with:

\tracingoutput=1

\showboxdepth=10000 \showboxbreadth=10000

The log file might now become very large! The user
must search or extract the data to check what the
unknown token lists contain. For example,

grep -e’^\.\.*\\special’ 〈logfile〉

extracts the beginning of the token lists of all spe-
cials in the log file 〈logfile〉.

Of course, the source might set the above inte-
ger parameters to other values and we disable this
by assigning \tracinglostchars via \let to the
three parameters. But a source file that, for exam-
ple, relies on the fact that one of the values of the
three integer parameters has its default value—0, 3,
or 5, respectively—might now produce unintended
output. Again an unusual case; reject the source.

Besides the possibilities of keeping the primitive
untouched in TEX or tracing \special’s actions, the
package offers to deactivate \special and to trace
all complete token lists in the log file.

\def\TrIOwlog{\TRIOimmediate\write-1 }

\def\special{\TrIOwlog{<<< TrIO >>>

Line \the\inputlineno: special}\TrIOwlog}

A user starts the described tracing via either
\let\disablespecial=n or y before reading one of
TrIOmacros.tex or TrIOauto.tex, with or without
executing the primitive \special.

11 Final remarks

The shown code snippets introduce all password-
protected names, in total eight. The package con-
sists of ten main files and to change these passwords

Transparent file I/O using the original TEX program and the plain TEX format

in all of them is therefore a laborious job. To auto-
mate this task I added two more files: a sed file to
change the passwords and a shell script to apply the
sed file to the ten files. Remember: It’s crucial that
each installation has its own passwords.

Before files of your run are returned to the au-
thor (1) delete the new first line and all inserted
macros \TrIOcCKpxXmove in the source; (2) check
the log file for tracing output containing password-
protected macro names; (3) look at the DVI output
to avoid the unlikely case that it contains informa-
tion about the new macros.

I described scenarios in which the macros fail
but remember these are all exotic cases— the au-
thor is playing tricks on you. That’s why I wrote to
inspect or reject the source file. I assume a cracker
avoids these exotic cases; no one wants to attract
attention to one’s harmful code.

If you want to use the macros and you provide
a macro package to authors think about code like

\let\TeX@input=\input \let\globaldefs=\undefined

\def\input{\begingroup\def\undefinedinput{}%

\endgroup\TeX@input}

so that then error-free sources avoid most problems.

Can the program TEX adopt these ideas? No.
We can’t deactivate \batchmode or stop the run to
reenter a file name for \input without violating the
TRIP test [9, p. 572]. But it’s okay to exclude certain
paths and to reenter names of certain files. Only
when a file with such an excluded path occurs is the
user asked to enter a new name or reenter the then-
accepted file name that appeared in the TEX file.

References

[1] Stephen Checkoway, Hovav Shacham, and Eric
Rescorla, “Are Text-Only Data Formats Safe? Or,
Use This LATEX Class File To Pwn Your Computer”,
Proceedings of LEET ’10, USENIX (2010), 8 pp.
usenix.org/legacy/events/leet10/tech/

full_papers/Checkoway.pdf

[2] Stephen Checkoway, Hovav Shacham, and Eric
Rescorla, “Don’t take LATEX files from strangers”,
;LOGIN: 35:1 (2010), 17–22.
usenix.org/system/files/login/articles/73506-

checkoway.pdf

[3] Eric Cooper, Bob Scheifler, Mark Eichin, Paul
Vojta, et al., Xdvi man page, Xdvik version 22.87.04,
February 29, 2020, 34 pp.
tug.org/texlive/Contents/live/texmf-dist/doc/

man/man1/xdvi.man1.pdf

[4] Wouter Duivesteijn, Sibylle Hess, Xin Du, “How
to cheat the page limit”, WIREs Data Mining and

Knowledge Discovery 2020;10:e1361, 9 pp.
doi.org/10.1002/widm.1361

72 TUGboat, Volume 43 (2022), No. 1

[5] Markus Dürmuth, Novel Classes of Side Chan-

nels and Covert Channels, Ph.D. thesis, Saarland
University, Saarbrücken (2009), 146 pp.
publikationen.sulb.uni-saarland.de/

bitstream/20.500.11880/26018/1/

Dissertation_1920_Duer_Mark_2009.pdf

[6] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984.

[7] Donald E. Knuth, TEX : The Program, Volume B of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1986.

[8] Donald E. Knuth, Literate Programming, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 27, 1992.

[9] Donald E. Knuth, Digital Typography, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 78, 1999.

[10] Donald E. Knuth, Companion to the Papers of

Donald Knuth, Stanford, California: Center for the
Study of Language and Information, CSLI Lecture
Notes No. 202, 2011.

[11] Joachim Lammarsch, “VM/CMS site report”, TUG-

boat 11:3 (1990), 454–455.
tug.org/TUGboat/tb11-3/tb29site.pdf

[12] Guilhem Lacombe, Kseniia Masalygina, Anass
Tahiri, Carole Adam, Cédric Lauradoux, “Can You
Accept LATEX Files from Strangers? Ten Years
Later”, arXiv:2102.00856v1 [cs.CR], 2021, 10 pp.
arxiv.org/abs/2102.00856

[13] Keith Allen McMillan, A platform independent com-

puter virus, M. Sc. thesis, University of Wisconsin,
Milwaukee (1994), ix+28 pp.
ftp://coast.cs.purdue.edu/pub/doc/viruses/

KeithMcMillan-PlatformIndependantVirus.ps

[14] Scott Pakin, reply to “Malicious commands in
LATEX”, comp.text.tex, August 7, 2008.
groups.google.com/g/comp.text.tex/c/

epWW3eV9udw

[15] Eric S. Raymond with Guy L. Steele Jr., eds.,
The New Hacker’s Dictionary, 3rd ed., Cambridge,
Massachusetts: MIT Press, 1996.
catb.org/esr/jargon/

[16] Red Hat Customer Portal: RHSA-2012:0137 –

Security Advisory, 15 February 2012.
access.redhat.com/errata/RHSA-2012:0137

[17] Tomas Rokicki, Dvips: A DVI-to-PostScript Trans-

lator, version 2021.1, February 2021, 62 pp.
ctan.org/pkg/dvips

[18] Ken Thompson, “Reflections on Trusting Trust”,
CACM 27:8 (1984), 761–763.
dl.acm.org/doi/pdf/10.1145/358198.358210

⋄ Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

Udo Wermuth

