258

Rendering open street maps

Hans Hagen

1 Introduction

At the 2021 ConTEXt meeting I did a presentation
about rendering so-called open street maps with
MetaPost. These are maps available on the web and
in some mobile applications made from contributions
by (public) organizations, governments, and volun-
teers. On the web these maps are rendered efficiently
from cached tiles (bitmaps).

If you just want to render a map in ConTEXt
and not be bothered with how this is accomplished,
here is a recipe:

\usemodule [m-openstreetmap]

\startMPpage
draw 1lmt_openstreetmap [
filename = "hasselt.osm"
1
\stopMPpage

If you are interested in the details you can read
on. I will roughly describe what it takes and show
some TEX, MetaPost, Lua, and XML. You can find
the code in the files m-openstreetmap.mkxl and
m-openstreetmap.lmt. These (in the usual spacey-
coded way) files take some 50 KB which demonstrates
that modules that produce impressive graphics don’t
need to be large. Of course we fall back on plenty
that is available in the ConTEXt code base.

2 The XML files

In the web interface (www.openstreetmap.org) you
can export a selection. There are some pointers to
other exports. The osm file is an XML file that has
been exported from the web interface. These files
can become pretty large. The file used here describes
my hometown and is some 12 MB, and when we add

Hans Hagen
doi.org/10.47397/tb/42-3/tb132hagen-openstreetmap

TUGDboat, Volume 42 (2021), No. 3

a bit of the surroundings it becomes 24 MB.! The
small file results in this map:

Although we generate an outline, rendering is
still pretty fast. The colors that I use are rather
primary but at the ConTEXt meeting Hraban [Ramm]
promised to come up with less primary colors. These
maps are quite detailed so you can zoom in a lot, so
for practical reasons I will use a smaller section.

In this smaller map you see the buildings as
outlines. You cannot see how large the lot is that
belongs to a house, but normally that’s not how you
use these maps.

The reason for coming up with this rendering is
that on the mailing list a user wanted to know if we
had ways to render a country’s outline. I had already
looked into that decades ago and a little browsing
showed me that there were still no free high quality
outlines available. At a BachoTEX meeting Mojca
Miklavec and I had spent some time on rendering

11 found out that some sites have limitations on the total
amount that you can export in a period of time. Others have
slightly different export formats (for instance using coordinates
instead of latitudes and longitudes).

m-openstreetmap.mkxl
m-openstreetmap.lmt
https://doi.org/10.47397/tb/42-3/tb132hagen-openstreetmap

TUGDboat, Volume 42 (2021), No. 3 259

<?xml version="1.0" encoding="UTF-8"7>
<osm version="0.6">
<bounds minlat="52.58941" minlon="6.09082" maxlat="52.58967" maxlon="6.09128"/>
<node id="263682438" visible="true" lat="52.5895903" lon="6.0910379">
<tag k="addr:city" v="Hasselt"/> <tag k="addr:housenumber" v="27"/>
<tag k="addr:postcode" v="8061GH"/> <tag k="addr:street" v="Ridderstraat"/>
<tag k="source" v="BAG"/> <tag k="source:date" v="2014-01-22"/>
</node>
<node id="2636834867" visible="true" lat="52.5894257" lon="6.0908799"/>
<node id="2636834886" visible="true" lat="52.5894363" lon="6.0908368"/>

<way i1d="258306565" visible="true">

<nd ref="2636835112"/> <nd ref="2636835038"/> <nd ref="2636835025"/>

<tag k="building" v="yes"/> <tag k="ref:bag" v="1896100000000287"/>
<tag k="source" v="BAG"/> <tag k="source:date" v="2014-01-22"/>

<tag k="start_date" v="1951"/>
</way>
<way id="258307233" visible="true">

<nd ref="2636835038"/> <nd ref="2636835112"/> <nd ref="2636835042"/>

<tag k="building" v="house"/> <tag k="ref:bag" v="1896100000004701"/>
<tag k="source" v="BAG"/> <tag k="source:date" v="2014-01-22"/>

<tag k="start_date" v="1951"/>
</way>
</osm>

Figure 1: Stripped (and abridged) OpenStreetMap XML for three buildings in Hasselt

the open street map of that conference park in the
woods with MetaPost, so I wondered if we could use
that for country outlines. That code worked well but
of course only dealt with what we encountered in the
open street map XML at that time.

So, on a sunny (but too hot to stay outside)
weekend I sat down in my attic (which overlooks the
waterway you see in the rendering) to see what could
be done. It was only after I finished the code that I
found out that the country borders in these maps are
not that usable. For instance, for the Netherlands
the borders run through the North Sea, because part
of it belongs to the Netherlands. This, although
correct, doesn’t give the view one is accustomed to.
Because doing this is often a trial and error effort, it
makes sense to use data that you are familiar with,
which is why I choose Hasselt.

In the smallest map above, part of a neighboring
house is shown. In the map below this has been re-
moved, simply by editing the XML (shown in the code
above). I also removed the changeset, timestamp,
user and uid attributes because these bloat the out-
put (and we don’t need them).

When looking at the data I noticed the year 1951
which I always thought should be 1952. Although
this data likely comes from a government database
I won’t be surprised if it has errors. A while ago I

found out that the lot is actually multiple combined
lots and some were registered in a peculiar way, but
in general it can be revealing.

The node and way elements are what define
the map. What exactly is present in the way is
determined by the tag attribute. Once you look
into the large file it becomes clear that the fact that
numerous volunteers create the content on the one
hand results in completeness but on the other hand

Rendering open street maps

260

also brings inconsistencies. It doesn’t look like there
is any periodic cleanup, so applications that deal
with the data have to apply heuristics.

I am only interested in the graphics, not in the
text. If there is demand I could look into it, in
which case we probably also need some more control,
because the additional (textual) information can be
anything users add. The house is tagged as:
<tag k="building" v="yes"/>

The large old church close by (in the center of
town) has tags:
<tag k="amenity" v="place_of_worship"/>
<tag k="building" v="yes"/>
<tag k="denomination" v="protestant"/>
<tag k="name" v="Grote- of Sint Stephanus kerk"/>
<tag k="ref:bag" v="1896100000001276"/>
<tag k="religion" v="christian"/>
<tag k="source" v="BAG"/>
<tag k="source:date" v="2018-08-08"/>
<tag k="start_date" v="1380"/>

In order to determine what kind of building we
have we need to look at building and/or amenity
and their values. There is often some inconsistency
in what gets assigned. The problem that arises from
that is that one has to apply heuristics to determine
the stacking order. For instance, ships float on water,
buildings are on top of meadows and streets, bridges
span water ways.

Here’s another close-up:

The outline of the church has nice details and
the tower can be handled separately because it is
another way. The old town hall to the north lacks
detail, but that’s okay because the details are in the
third dimension.

Hans Hagen

TUGDboat, Volume 42 (2021), No. 3

Next example: these bridges are tricky. There is
information but my impression is that there is some
clever combination of road information and bridge
properties needed. The problem is not so much in
recognizing the shapes but in the intended stacking
order. For now, just to be sure, I use outlines but I
probably need to spend some more time on this in
the future.

3 The TEX and MetaPost files

It’s now time to look into the (mid-2021) implementa-
tion and we start top down, with the MetaPost macro
that one uses. Because we use ConTEXt LMTX, we
can use the parameter driven interface:

\startMPdefinitions
presetparameters "openstreetmap" [

filename = "test.osm",
% grid = "dots",
= 1.5,

griddot
1

def 1mt_openstreetmap = applyparameters
"openstreetmap" "lmt_do_openstreetmap"
enddef ;

vardef 1lmt_do_openstreetmap = image (
lua.mp.lmt_do_openstreetmap() ;
) enddef ;
\stopMPdefinitions

The presetparameters macro registers a parame-
ter set (at the Lua end) and the applyparameters
macro uses Lua to scan following parameters from a
key/value list given between square brackets. When
that is done the macro 1mt_do_openstreetmap will
be expanded. The parameter list is scanned using
Lua functions that themselves use MetaPost scanning
operations.

The filename parameter gets a string assigned
because the scanner sees a string (expression) and
griddot gets a number because a numeric expres-
sion is seen. From this you can deduce that we can
also pick up pairs, colors, transforms, paths, pens,
and we can also pick up a hash table (of parameters)
between square brackets and an indexed table (array)
by wrapping between curly braces. If you look at

lmt_do_openstreetmap

TUGboat, Volume 42 (2021), No. 3

how these scanners are implemented you will be sur-
prised how complex it is, simply because of the way
MetaPost interprets its input. It is a mix of picking
up tokens, symbols, known values, expressions with
occasional lookahead and push back. This scanning
interface is definitely more complex than the TEX
scanners but the good news is that we have it all
wrapped up in helpers like the ones mentioned here.?

The 1mt_do_openstreetmap macro renders an
image (which is a MetaPost macro returning a pic-
ture) by calling a Lua function. Here we use the
lua.mp interfacing method; a more efficient variant
would be to register a function and calling it by ref-
erence via runscript but that doesn’t pay off here.

In the ConTEXt distribution there are plenty of
examples where parameters are accessed from the
MetaPost end but here we don’t need that. We
handle all at the Lua end:

function mp.lmt_do_openstreetmap()
local specification = metapost.getparameterset
("openstreetmap")
return openstreetmap.convert(specification)
end

At the TEX end surprisingly little happens: we
only define some colors, for instance (from a set
of 27):

\definecolor [osm:building] [r=.50]

\definecolor [osm:boat] [b=.25]
\definecolor [osm:water] [b=.75]
\definecolor [osm:forest] [g=.75]
\definecolor [osm:sand] [y=.75]

which then gets referenced in more detail, for instance
(from a set of 173):

\definecolor[osm:amenity:hospitall
[osm:building:speciall
\definecolor[osm:amenity:townhall]
[osm:building:speciall

\definecolor[osm:barrier:gate]
[osm:barrier]

\definecolor[osm:barrier:wall]
[osm:barrier]

\definecolor[osm:boat:yes]
[osm:boat]

\definecolor[osm:building: cathedral]
[osm:building]
\definecolor[osm:building:residentiall
[osm:building]
\definecolor[osm:building:townhall]

[osm:building]

2 A further complication is that we can have multiple
MetaPost instances so an implementation has to deal with
that too.

261

From this you can conclude that much more
detail in coloring is possible. On the web you can
find CSS files with specifications, assuming some kind
of order, but I didn’t look into those much (I'm not
going to set up a large rendering farm); I leave that
to others.

4 The Lua file

The real work happens at the Lua end. Here we start
by reading in the XML file using the parser built into
ConTEXt. A 25 MB XML file loads reasonably fast
but takes a bit of memory (because we store files
in a round-trip way, prepared for filtering in and
rendering with TEX). At some point I exported Fort
Collins (the place where Alan Braslau, a MetaPost
companion, lives) which gave a 125 MB file. It paid
off to first strip the versioning information from the
file after loading the blob, but that (rather trivial
bit of) code is not shown here. In the following
explanation some other code has been left out also,
just to save paper and avoid confusion.

We start with some data tables. I mention these
lists because they give an idea of what one has to deal
with. The way objects get stacked is of relevance.
We omit objects that make no sense and end up with:

local order = {

"landuse", "leisure", "natural", "water",
"amenity", "building", "barrier", "man_made",
"bridge", "historic", "military", "waterway",
"highway", "railway", "aeroway", "aerialway",
"boundary",

We also need to determine what objects are
polygons. There is a bit of back and forth involved
here. For instance it makes sense in theory to add
bridges here but that doesn’t work out for Hasselt.
Watch the mix of main categories and subcategories:

local polygons = tohash {
"abandoned:aeroway", "abandoned:amenity",

"abandoned:building", "abandoned:landuse",
"abandoned:power", "aeroway", "allotments",
"amenity", "area:highway", "craft",
"building", "building:part", "club", "golf",
"emergency", "harbour", "healthcare",
"historic", "landuse", "leisure", "man_made",
"military", "natural", "office", "place",
"power", "public_transport", "shop",
"tourism", "water", "waterway", "wetland",

Another piece of information is the stacking
order. When we have a highway we have some 25
subcategories. For instance a track gets a value of
110, a path, footway and cycleway use 100, and
steps come on top with 190. There are of course
more subcategories and categories to cover. Because

Rendering open street maps

lmt_do_openstreetmap

262

all is in Lua tables, all can be tweaked and updated
easily.

local stacking = {

highway = {
track = 110,
path = 100,
footway = 100,
cycleway = 100,
steps = 190,
1,

What gets colored is also specified in tables.
Here we show the subtable for boundaries. This
boundary table demonstrates that there is some ar-
bitrary tagging going on: there is aboriginal_lands
but there are no tags for other lands (at least not
that I could find now).
local colors = {

amenity = {

}’

boundary = {
aboriginal_lands = true,
national _park = true,
protected_area = true,
administrative = true,

}’

We can fill areas but sometimes we need to force
outlines, so we have a registry for this:

local forcedlines = {
golf = { "cartpath", "hole", "path" },

emergency = { "designated", "destination",
"no", "official", "yes" 1},

historic = { "citywalls" },

leisure = { "track", "slipway" 1},

man_made = { "breakwater", "cutline",
"embankment", "groyne",
"pipeline" },

natural = { "cliff", "earth_bank",
"tree_row", "ridge", "arete" },

power = { "cable", "line", "minor_line" },

}

Normally we either draw or fill but sometimes
we have to do both:

local lines = {

amenity = true,
building = true,
man_made = true,
boat = true,

Hans Hagen

TUGhboat, Volume 42 (2021), No. 3

Again, by looking at these tables you get an
idea of the curious mix of tags. I was told (at the
meeting) that anyone can add tags so I suppose that
over time more has to be added to these tables. It’s
a bit like permitting any TEX user to add anything
to a macro package without being strict with respect
to how and where.

The conversion from XML data to MetaPost can
be seen in m-openstreetmap.lmt and is not that
complex. It is a typical example of “Sit down and
just stepwise implement” with some testing as one
progresses. For me the most time goes into the look
and feel and having clean code, and here I also had
to figure out the specification (and heuristics). Some
safeguards and small extras (like drawing a grid on
top) are not shown here.

The f_ functions are what we call ‘formatters’
in ConTEXt which are variants of string.format
that offer more features. We could use the .. (string
concatenation) which is probably faster but I prefer
the formatters. The collected option can be used to
either combine the path or output them separately.
Combined paths permit transparency because cross-
ing lines are not treated twice (strings are broken for
TUGboat presentation):

local formatters = string.formatters

local f_draw = formatters[’D %--t W "%s";’]
local f_fill = formatters[’F %--t--C W "%s";’]
local f_both = formatters[’P := %--t--C;°’
.. > FPW"%s"; DP W "white" L 2;°]
local f_draw_s = formatters[’D %--t W "%s" L %s;
local f_£fill_s = formatters
[°F %--t--C W "%s" L %s;
local f_both_s = formatters[’P := %--t--C;’
>F P W "4s"; DP W "white" L %s;’]
local f_nodraw = formatters[’ND %--t;’]
local f_nofill = formatters[’NF %--t--C;’]
local f_nodraw_s = formatters[’ND %--t;’]
local f_nofill_s = formatters[’NF %--t--C;’]
local f_background

= formatters[’F %--t -— C W "osm:background";’]
local f_clipped
= formatters[’clip currentpicture to %--t--C’
> withstacking (0,250);°]

The MetaPost wrapping blobs come first. We
use short commands so that we don’t have to pipe
too much from Lua to MetaPost. The no* and dox
commands are used to construct large paths instead
of small snippets. This is similar to drawing font
shapes. The resulting PDF is smaller and render-
ing can be faster. These commands are built into
Metafun and use some of the magic available in the

m-openstreetmap.lmt
string.format

TUGboat, Volume 42 (2021), No. 3

MetaPost library. The shortcuts are defined in the
preamble:
local beginmp = [[

begingroup ;

pickup pencircle scaled 1 ;

save P ; path P ;

save D ; let D = draw ;

save F ; let F = fill ;

save C ; let C = cycle ;

save W ; let W = withcolor ;
save L ; let L = withstacking ;

save ND ; let ND = nodraw ;

save DD ; let DD = dodraw ;

save NF ; let NF = nofill ;

save DF ; let DF = dofill ;
1]

The L shortcut expands to withstacking which
is a native MPlib (3.0) extension.> When writing
this summary I realized that for clipping a more
advanced stacking method was needed, which is why
f_clipped shown before specified the range to which
the clip applies. Just for the record, the stacking
property is just that: a property. It is the backend
that does the ordering based on these properties.

We end the graphics definitions with:

local endmp = [[endgroup; 1]

Between these two snippets we will make the
graphic. The graphic operators are collected and
flushed in one go. This all happens in the converter
that we define next. Reporting, tracing and checking
has been removed here but is of course present in
the real code. First, we load the file and determine
the bounds.
function openstreetmap.convert(specification)

local root = xml.load(specification.filename)
local bounds = xml.first(root,"/osm/bounds")

Users can overload colors by providing a table
in the parameter set (at the MetaPost end). Or
instead one can just overload the TEX definitions
shown before or use palettes.

local usercolors

= specification.used -- from the parameter set
local usedcolors
= table.copy(colors) -- preserve the originals

if usercolors then
for k, v in next, usercolors do
local u = usedcolors[k]
if not u then
-—- error
elseif v == false then
usedcolors[k] = false

3 Tt could be implemented using withprescript and some
backend filtering but a native mechanism is more efficient and
permits restacking.

263
elseif type(v) == "string" then
for k in next, u do
ulk] = v
end
elseif type(v) == "table" then
for kk, vv in next, v do
if vv == false then
ul[kk] = false
elseif type(vv) == "string" then
ulkk] = vv
end
end
end
end

end

We do need to convert from lat (latitude) and
lon (longitude). This helper used conversion code
that Mojca (who is far more capable in math than I
am) gave to me for the BachoTEX park graphic.

local minlat = bounds.at.minlat
local minlon = bounds.at.minlon
local maxlat = bounds.at.maxlat
local maxlon = bounds.at.maxlon
local midlat = 0.5 * (minlat + maxlat)
local deg_to_rad = math.pi / 180.0
local scale = 3600
—-- vertical scale: 1" = 1cm

local f_f_pair = formatters["(%.3Ncm,%.3Ncm)"]

local function f_pair(lon, lat)
return f_f_pair((lon - minlon) * scale
* cos(midlat * deg_to_rad),
(lat-minlat) * scale)
end

First we collect relevant data in tables. We need
to do this because the stacking order is not the same
as the order in the file. We could resolve everything
via XML path lookups, but limiting the passes saves
time. The real code is a bit more optimized. We
could check for bad and redundant paths but it’s not
worth the effort.

Most of the parsing action is driven by the xml.
collected iterators that filter the relevant elements.
Much has to do with determining if something should
be drawn (which can be specified), what color should
be applied to a fill or outline, and where the object
sits in the stacking order.

local insert = table.insert

local rendering = table.tohash(order)
local coordinates = { }

local ways =
local result

local layers =
local areas =

N
s

Rendering open street maps

withstacking
withprescript
xml.collected
xml.collected

264

for ¢ in xml.collected(root,"/osm/node") do
local a = c.at
coordinates[a.id] = a

end

for ¢ in xml.collected(root,"/osm/way") do
ways[c.at.id] = ¢

end

for ¢ in xml.collected(root,"tag[@k="area’]") do

areas[c] = c.at.v

end

for ¢ in xml.collected(root,"tag[@k="layer’]") do
layers[c] = c.at.v

end

Although normally filtering is fast enough not
to bother about performance, collecting nodes, ways,
areas and layers is cheaper than filtering them from
the (possibly huge) file each time. Most entries go
into the nodes table.

As mentioned we can combine paths to save
some space (not much). Another advantage is that it
works better with transparency when a path crosses
itself. This is what the do* and no* formatters are
for: piecewise build a path and flush it afterwards.
This is not native MetaPost but handled in the back-
end where we go from the graphic output (in Lua
tables) to PDF.

local function drawshapes(what,order)
function xml.expressions.osm(k)
return usedcolors [k]
end

local function getcolor(r)

local t = xml.first(r,"/taglosm(@k)]")
if t then
local at = t.at
local v = at.v
if v "= "no" then
local k¥ = at.k
local col = usedcolors[k] [v]

if col then
return k, col, lines[k], stackingl[k][v],
forcedlines[k] [v]
end
end
end
end

local function addpath(r, p, n)
for c¢ in xml.collected(r,"/nd") do
local coordinate = coordinates[c.at.ref]
if coordinate then

n=n+ 1 pln] = f_pair(coordinate.lon,
coordinate.lat)
end
end
return p, n

end

Hans Hagen

TUGhboat, Volume 42 (2021), No. 3

local function checkpath(parent,p,n)
local what, color, both, stacking,
forced = getcolor(parent)
if what and rendering[what] then
if not polygons[what] or forced
or areas[parent] == "no" then
insert(result,stacking

and f_draw_s(p,color,stacking)

or f_draw(p,color))
elseif both then
insert (result,stacking

and f_both_s(p,color,stacking)

or f_both(p,color))
else
insert(result,stacking

and f_fill_s(p,color,stacking)

or £f_fill(p,color))
end
end
end

There are ways and relations. Relations can
have members that point to ways but also to relations.
My impression is that we can stick to way members
so I'll deal with more when needed.

for ¢ in xml.collected(root,f_pattern(what)) do
local parent = xml.parent(c)
local tag = parent.tg
if tag == "way" then
local p, n = addpath(parent, { }, 0)
if n > 1 then
checkpath(parent,p,n)
end
elseif tag == "relation" then
if xml.filter(parent,"xml://tag[@k="type’
and (@v="multipolygon’ or Qv=’boundary’
or @v=’route’)]") then
local what, color, both, stacking,
forced = getcolor(parent)
if rendering[what] then
local p, n={ 1}, 0
for m in xml.collected(parent,
"/member [(@type=way’)
and (@role=’outer’)]") do

local f = ways[m.at.ref]
if £ then
p, n = addpath(f,p,n)
end
end

if n > 1 then
checkpath(parent,p,n)
end
end
else
for m in xml.collected(parent,
"/member [@type="way’]") do
local f = ways[m.at.ref]
if £ then

TUGboat, Volume 42 (2021), No. 3

local p, n = addpath(f, { }, 0)
if n > 1 then
checkpath(parent,p,n)
end
end
end
end
end
end
Now we can wrap up. We add a background
first and clip later. There can be substantial bits
outside the clip path (like rivers) because they are
defined as one way, but because paths are not that
detailed we don’t waste time on building a cycle.
We could check if points are outside the bounding
box and then use the MetaPost buildpath macro,
at least if it works at all on these kinds of paths. It’s
not worth the trouble and probably would introduce
errors too.
local boundary = {
f_pair(minlon,minlat),
f_pair(maxlon,minlat),
f_pair(maxlon,maxlat),
f_pair(minlon,maxlat),

}

insert(result,beginmp)
insert(result,f_background(boundary))

for i=1,#order do
local o = order[i]
if usedcolors[o] then
drawshapes(o0,1)
end
end

insert(result,f_clipped(boundary))
insert(result,endmp)

return concat(result)
end -- of drawshapes function

5 Running

This document only uses a few maps, a large one
and some smaller. On my 2013 Dell Precision laptop
processing this file gives this on the console. Ob-
serve how we use scaled mode. For larger maps it
probably makes sense to use a double instance.

metapost > initializing instance ’metafun:1’
using format ’metafun’ and method ’default’
metapost > loading ’metafun’ as ’metafun.mpxl’
using method ’default’
metapost > initializing number mode ’scaled’
metapost > trace > This is MPLIB for LuaMetaTeX,

version 3.11, running in scaled mode.

metapost > trace > loading metafun for lmtx, including
the plain 1.004 base definitions

And:

265

openstreetmap > processing file ’hasselt.osm’
openstreetmap > original size 12352168 bytes,
stripped down to 6232386 bytes
openstreetmap > 1599441 characters metapost code,
preprocessing time 2.433 seconds

openstreetmap > processing file ’hasselt-small.osm’
openstreetmap > original size 906573 bytes,
stripped down to 453398 bytes
openstreetmap > 165132 characters metapost code,
preprocessing time 0.155 seconds

openstreetmap > processing file ’hasselt-tiny.osm’
openstreetmap > original size 7318 bytes,
stripped down to 3790 bytes
openstreetmap > 1337 characters metapost code,
preprocessing time 0.000 seconds

openstreetmap > processing file ’hasselt-tiny-stripped.osm’

openstreetmap > original size 2875 bytes,
stripped down to 2322 bytes
openstreetmap > 1111 characters metapost code,
preprocessing time 0.008 seconds

openstreetmap > processing file ’hasselt-church-cityhall.osm’

openstreetmap > original size 156921 bytes,
stripped down to 123986 bytes
openstreetmap > 7601 characters metapost code,
preprocessing time 0.030 seconds

openstreetmap > processing file ’hasselt-bridge.osm’
openstreetmap > original size 1088541 bytes,
stripped down to 568184 bytes
openstreetmap > 190043 characters metapost code,
preprocessing time 0.182 seconds

As you can see, we output some statistics that
are not implemented in the code shown here. With
standard compression, the hasselt.osm file, when
processed standalone into hasselt.pdf, becomes a
951 KB file. It has quite a lot of detail so in the
end that is not too bad for a file with the usual
high-quality MetaPost outlines.

In the code above we had some code related to
user specified colors. This is how that works:

\startMPpage
draw 1lmt_openstreetmap [
filename = "hasselt.osm"
% collect = true,
% grid = "dots",
% griddot =1,
used = [
natural = "magenta",
leisure = "cyan",
landuse = "green",
amenity = false,
boundary = false,

building = false,

aerialway = false,
1
15
\stopMPpage

Rendering open street maps

266

Thus, you can drop objects and also force differ-
ent colors. This one doesn’t look pretty any more so
it is not shown here. It should be clear that you have
to know what objects are actually available, which is
not something trivial. The commented options drive
the collection in large paths and overlaying a dotted
grid with a given dot size. It would not be visible
here on the detailed map.

The last map (below) shows the location of the
next ConTEXt meeting in Dreifelden (Germany). be-
cause that is less populated than Hasselt, we can
show the grid. We use griddot=2 here and from the
log you can see that it is indeed a smaller map:
openstreetmap > processing file ’dreifelden.osm’
openstreetmap > original size 755190 bytes,

stripped down to 398891 bytes
openstreetmap > 130304 characters metapost code,
preprocessing time 0.150 seconds

6 Conclusion

This started out as an experiment but as usual once
you start you want to finish it. I admit that after
writing the code I didn’t really look at it before the
2021 ConTEXt meeting but I expect that once users
are aware of this module, they might have demands.
It is not hard to add features because after all it was
quite trivial to implement this, at least if we forget
about the guesswork and some fuzzy heuristics. But
these are things that users can help with once they
look at maps of places that they know well.

When wrapping up this document I decided to
check how Don Knuth’s university area comes out,
and I was surprised to see that first of all the whole

TUGDboat, Volume 42 (2021), No. 3

area turned red (a side effect of the area being tagged
as an university amenity) but more strangely, quite
a few buildings did not show up. When I looked in
the file I saw lots of ‘new’ (hence unrecognized) tags
for buildings and amenities. These two categories
(tags) are used very inconsistently and in the long
run I think that this should be fixed. After adding
colors (and enablers) for additional building values:
university barn bridge detached dormitory
farm_auxiliary grandstand greenhouse
kindergarten parking stable stadium toilets

the output looked more reasonable. And, after
adding a subset of the new amenities I saw
bicycle_parking bicycle_repair_station cafe
car_wash childcare clinic clubhouse college
community_centre events_venue fast_food(rnany Q
fire_station fountain fuel library mailroom
pharmacy place_of_worship post_office recycling
research_institute theatre wellness_centre

and even computer_lab showed up, but there is
plenty of work left (for potential users) to do. I
probably will make some helper for identifying new
tags and values.

In the end, this was one of the projects that
makes working with TEX, Lua and especially Meta-
Post fun. It is also a good demonstration that some
things are relatively easy in TEX and friends com-
pared to typographical challenges, where one mixes
all kinds of conflicting user demands and still expects
perfect typeset outcomes.

¢ Hans Hagen
http://pragma-ade.com

griddot = 2
computer_lab

	Introduction
	The XML files
	The TeX and MetaPost files
	The Lua file
	Running
	Conclusion

