
194 TUGboat, Volume 42 (2021), No. 2

bib2gls: sorting

Nicola L. C. Talbot

Abstract

When using makeindex and xindy, it’s advisable
to provide a sort value when the actual value con-
tains commands or other awkward content that can
confuse sorting. With bib2gls, which was writ-
ten specifically for the glossaries-extra package, the
advice is the reverse. In general you shouldn’t ex-
plicitly supply the sort value but instead make use
of bib2gls’s system of fallbacks. This provides a
more flexible approach that makes it easier to share
bib files across multiple documents that may require
different ordering.

1 Sorting with \makeglossaries

Symbols can be quite difficult to order. Consider the
following document that just uses the base glossaries
package [9]:
\documentclass{article}
\usepackage[style=treegroup]{glossaries}
\makeglossaries
\loadglsentries{constants}
\begin{document}
\gls{pi}, \gls{e}, \gls{gelfondcons} and
\gls{root2}.
\printglossary[nonumberlist]
\end{document}

The file constants.tex contains the following:
\newglossaryentry{pi}{name={\ensuremath{\pi}},
description={ratio of circumference of a circle
to its diameter},symbol={3.14159}}

\newglossaryentry{e}{name={\ensuremath{e}},
description={Euler's number},symbol={2.71828}}

\newglossaryentry{root2}{
name={\ensuremath{\surd 2}},symbol={1.41421},
description={Pythagoras' constant}}

\newglossaryentry{gelfondcons}{
name={\ensuremath{e\sp\pi}},symbol={23.1406926},
description={Gelfond's constant}}

I’ve used the symbol key to store the approximate
value, which means that it can be shown in paren-
theses in the glossary with the treegroup style.

The sort key hasn’t been explicitly set, so its
value is obtained from the name; but further, since
makeindex doesn’t recognise (LA)TEX commands, it
treats \ensuremath as a literal backslash followed
by 10 letters. The initial backslash results in the
entry being placed in the ‘symbols’ group. All four
sort values start with \ensuremath{ so the relative
ordering of those terms is based on the 13th character

π, e, eπ and
√
2.

Glossary

Symbols

π (3.14159) ratio of circumference of a circle to its diameter.√
2 (1.41421) Pythagoras’ constant.

eπ (23.1406926) Gelfond’s constant.
e (2.71828) Euler’s number.

1

Figure 1: Default ordering with makeindexπ, e, eπ and
√
2.

Glossary

Numbers

√
2 (1.41421) Pythagoras’ constant.

E

e (2.71828) Euler’s number.

P

π (3.14159) ratio of circumference of a circle to its diameter.

1

Figure 2: Ordering with xindy (π has sort=pi and
Gelfond’s constant uses \sp)

onwards (backslash comes before ‘e’ but after ‘}’):
\p, \s, e} and e\ (Figure 1).

If I switch to xindy (which requires adding the
xindy package option) then the document build will
fail: xindy discards commands and characters such
as { } and $, which means that the sort value for
the pi entry ends up as an empty string, which
xindy doesn’t allow. A sort value that’s acceptable
to xindy must be provided. For example:
\newglossaryentry{pi}{name={\ensuremath{\pi}},
sort={pi},
description={ratio of circumference of a circle
to its diameter},symbol={3.14159}}

This will place the π entry in the ‘P’ letter group
(Figure 2).

The
√
2 entry ends up in the ‘numbers’ group

because once the commands and braces have been
stripped only ‘2’ is left. Similarly, ‘e’ is all that
remains for both Euler’s number and Gelfond’s con-
stant. Since xindy merges items with duplicate sort
values this means that the locations from Gelfond’s
constant ends up merged into Euler’s number loca-
tion list. In this simple example, the locations are
all page 1 and they’ve been suppressed with the non-
umberlist option so it appears as though Gelfond’s
constant has been ignored.

If I use ^ instead of \sp then the sort value
for Gelfond’s constant becomes e^ instead of just
e, which now means all sort values are unique (Fig-
ure 3).

doi.org/10.47397/tb/42-2/tb131talbot-sorting

Nicola L. C. Talbot

https://doi.org/10.47397/tb/42-2/tb131talbot-sorting

TUGboat, Volume 42 (2021), No. 2 195π, e, eπ and
√
2.

Glossary

Numbers

√
2 (1.41421) Pythagoras’ constant.

E

e (2.71828) Euler’s number.
eπ (23.1406926) Gelfond’s constant.

P

π (3.14159) ratio of circumference of a circle to its diameter.

1

Figure 3: Ordering with xindy (π has sort=pi and
Gelfond’s constant uses ^)

Let’s suppose now that there’s a chance that I
might have an editor who insists on using an upright
font for constants. Providing some commands will
make it easier to switch:

\newcommand{\constante}{\mathrm{e}}
\newcommand{\constantpi}{\uppi}

(\uppi requires upgreek [3].) Now e and \pi need
to be replaced with \constante and \constantpi
in the name values. This means that with xindy the
e entry will end up with an empty sort value. This
will also happen to Gelfond’s constant if \sp is used.
If ^ is used instead then this will end up as the only
character in the sort value.

This means that, particularly with xindy, en-
tries that are symbols will typically need to have the
sort key set as they are likely to degrade into empty
strings or non-unique values. In the case of these
constants, their approximate numeric values may be
a more appropriate sort value. A helper command
can make it easier to assign. For example:

\newcommand{\newconstant}[5][]{%
\newglossaryentry{#2}{name={#3},symbol={#4},

description={#5},sort={#4},#1}}
\newconstant{pi}{\ensuremath{\constantpi}}
{3.14159}{ratio of circumference of a
circle to its diameter}

\newconstant{e}{\ensuremath{\constante}}
{2.71828}{Euler's number}

\newconstant{root2}{\ensuremath{\surd 2}}
{1.41421}{Pythagoras' constant}

\newconstant{gelfondcons}
{\ensuremath{\constante^\constantpi}}
{23.1406926}{Gelfond's constant}

Although makeindex can numerically order integers,
it doesn’t recognise decimals, so all the entries end
up in the ‘symbols’ group ordered according to a
string comparison, where ‘23’ comes between ‘2.’ and
‘3.’ (Figure 4).

π, e, eπ and
√
2.

Glossary

Symbols

√
2 (1.41421) Pythagoras’ constant.

e (2.71828) Euler’s number.
eπ (23.1406926) Gelfond’s constant.
π (3.14159) ratio of circumference of a circle to its diameter.

1

Figure 4: Ordering with makeindex by approximate
valueπ, e, e

π and
√
2.

Glossary

Numbers

√
2 (1.41421) Pythagoras’ constant.

eπ (23.1406926) Gelfond’s constant.
e (2.71828) Euler’s number.
π (3.14159) ratio of circumference of a circle to its diameter.

1

Figure 5: Ordering with xindy by approximate value

With xindy, by default the entries end up in the
‘numbers’ group (since the sort values all start with
a digit) and digits come before punctuation so ‘23’ is
placed between ‘1.’ and ‘2.’ (Figure 5). In order to
sort numerically with xindy, it’s necessary to use the
numeric-sort module. You can either call xindy
directly with -M numeric-sort or add the following
to the document preamble:
\GlsAddXdyStyle{numeric-sort}

This now produces the desired result (Figure 6).
If I change my mind and decide to order by the

description, I can simply change the definition of
\newconstant. Other possibilities are to order by
definition or by first use in the document (which
require the sort=def or sort=use package options).
These options work by assigning a numerical (integer)
value to the sort key that corresponds to the desired
order. The value is zero-padded in the event that
xindy is called without the numeric-sort module.

Suppose I now want to switch to using bib2gls
[7] with glossaries-extra [8]. Ordering by definition
or use can now be indicated with the resource op-
tions (not package options) sort=unsrt or sort=use.

π, e, eπ and
√
2.

Glossary

Numbers

√
2 (1.41421) Pythagoras’ constant.

e (2.71828) Euler’s number.
π (3.14159) ratio of circumference of a circle to its diameter.
eπ (23.1406926) Gelfond’s constant.

1

Figure 6: Ordering with xindy -M numeric-sort by
approximate value

bib2gls: sorting

196 TUGboat, Volume 42 (2021), No. 2

No comparisons are required in these cases, as it’s
simply a matter of iterating over the list of entries ob-
tained from parsing the bib file or the list of records
obtained from parsing the aux file.

Since all entries now have to be defined in the
bib file, it’s not possible to define a command like
\newconstant, but bib2gls provides a flexible way
of determining what the sort value should be.

2 bib2gls fallbacks

bib2gls has a set of fallbacks that are used if it
needs to access a field which hasn’t been set. The
different entry types have different fallbacks. For
example, when sorting entries the default behaviour
is to obtain the sort value from the sort field. If this
field has not been set then the value is obtained from
the sort field’s fallback. In the case of @entry, the
fallback is the value of the name field. In the case of
@symbol and @number, the fallback is the entry label
(as given in the bib file).

If the fallback is also missing, then the fallback’s
fallback is used (if one is available) and so on. For
example, consider the entry defined as:
@index{duck}

This only has a label (duck) and no fields. So when
bib2gls tries to access the sort field and finds that
it hasn’t been set, it then tries the fallback for the
sort field, which is the value of the name field for
this entry type. The name field also hasn’t been set,
so the fallback for that field is required, which is
the entry label. Therefore the sort value ends up as
‘duck’.

Now consider
@indexplural{duck}

Again the fallback for the missing sort field is the
value of the name field, which is also missing, but
now the fallback for the name field is the value of the
plural field, which is also missing. The fallback for
plural is the value of the text field with the letter
‘s’ appended. The fallback value for the text field is
the entry label. Therefore the sort value ends up as
‘ducks’.

Now consider
@index{glossary,plural={glossaries}}
@entry{gloscol,

parent={glossary},
description={collection of glosses}

}
@entry{gloslist,

parent={glossary},
description={list of technical words}

}

The sort value for the gloscol entry is obtained as
follows:

1. Look up the value of the sort field. This isn’t
set, so use the fallback value, which is the value
of the name field.

2. The name field isn’t set, so use the fallback value
for that, which is the parent entry’s name.

3. The parent field provides the parent’s label
(glossary), so look up the value of the name
field for the parent entry.

4. The name field isn’t set for the glossary entry,
so use the fallback value for that, which is the
entry’s label.

Therefore the sort value ends up as ‘glossary’. The
same process for gloslist leads to the same sort
value.

It’s possible to change the default fallbacks, but
some fields, such as description, don’t have a fall-
back, so that will terminate a fallback trail.

If the sort field is explicitly set, then the fall-
back is not required so in that situation changing the
system of fallbacks has no effect. The recommenda-
tion is that you don’t explicitly set the sort field but
instead use the fallback system to choose the most
appropriate field according to the entry type.

If you select a different field for the sort value,
then that field’s fallback (if provided) will be used
instead; e.g., with the option sort-field=description
then any entries which don’t have the description
field set will have an empty sort value (since there’s
no fallback for this field).

3 Examples

The examples below all use the same set of bib files
but use different settings to adjust the order. For
brevity, all entries are selected with no locations.
The condensed style is designed to show the ordering
in as compact a form as possible, for illustrative
purposes only. The document fonts are set with:
\usepackage[light,condensed,math]{iwona}
\usepackage[T1]{fontenc}

The name is formatted in a bold font, but this
will not be visible for mathematical content or pic-
tographs. If the symbol field is set, it’s shown in
parentheses before the description. (Bold parentheti-
cal content is part of the entry’s name.) The upgreek
and marvosym [2] packages are required for some of
the symbols.

The entry definition set up in the preamble for
each example is:
\setabbreviationstyle{long-short-sm-desc}
\setabbreviationstyle[acronym]{nolong-short-em}

\GlsXtrLoadResources[
selection=all,save-locations=false,
⟨options⟩]

Nicola L. C. Talbot

TUGboat, Volume 42 (2021), No. 2 197

This uses the ‘sm’ abbreviation style for entries de-
fined using @abbreviation, which requires the relsize
package [1]. The entries defined using @acronym will
use the ‘em’ abbreviation style which formats the
short form using \emph.

Additional \GlsXtrLoadResources commands
may be present for some examples. The main body of
the document just contains \printunsrtglossary.
Sample entries from each bib file are shown below.
The complete bib files can be downloaded [4].

abbreviations.bib contains entries such as:
@abbreviation{xml,

short={XML},
long={extensible markup language},
description={a markup language that defines

a set of rules for encoding documents}
}
@acronym{nasa,

short={NASA},
long = {National Aeronautics and Space

Administration}
}

constants.bib contains entries such as:
@number{pi,

description={pi},
name={\ensuremath{\constantpi}},
symbol={3.14159}

}
@number{root2,

description={Pythagoras' constant},
name={\ensuremath{\surd2}},
symbol={1.41421}

}
@number{zero,

description={zero},
name={\ensuremath{0}}

}

As with the earlier makeindex and xindy examples,
the symbol field has been used to store the approxi-
mate values so that they can easily been seen in the
glossary.

The custom commands such as \constantpi
are also provided:
@preamble{"
\providecommand{\constanti}{\mathrm{i}}
\providecommand{\constante}{\mathrm{e}}
\providecommand{\constantpi}{\uppi}
\providecommand{\constantgamma}{\upgamma}
\providecommand{\constantphi}{\upphi}
\providecommand{\constantlambda}{\uplambda}"}

These definitions can be detected by bib2gls and
will be used if they are encountered within any sort
values.

entries.bib contains entries such as:
@entry{mineral,

name = {mineral},
description = {solid, inorganic,

naturally-occurring substance}
}
@entry{quartz,

parent = {mineral},
name = {quartz},
description = {hard mineral consisting

of silica}
}

pictographs.bib contains entries such as:
@symbol{heartsuit,
name={\ensuremath{\heartsuit}},
description={heart}

}
@symbol{phone,

name={\Mobilefone},
description={mobile phone}

}

terms.bib contains a mixture of @index,
@indexplural and @entry, such as:
@index{sample}
@indexplural{homograph}
@entry{diamondjubilee,

name={diamond jubilee},
description={sixtieth anniversary}

}

It also uses an unknown entry type, for example:
@homograph{mineral.diamond,

name={diamond},
description={metastable allotrope of carbon}

}
@homograph{shape.diamond,

name={diamond},
description={four-sided shape with

equal sides}
}

These entries will be ignored unless they are aliased
to an entry type that bib2gls recognises.

3.1 Default sorting

The first example document uses the default sort
settings, but it needs to alias the custom @homograph
entries to make them behave as though they’d been
defined with @entry instead:
src={terms,pictographs,abbreviations,constants},
entry-type-aliases={homograph=entry}

Since no sort method has been specified and there’s
no document language, the sort method will be al-
phabetical according to my locale (en-GB). The
--group switch is used when invoking bib2gls. The
result is shown in Figure 7.

bib2gls: sorting

198 TUGboat, Volume 42 (2021), No. 2

Note that the entries defined with @symbol and
@number have been ordered according to their label.
(For example, root2 and phone.) The homographs
(such as ‘diamond’) trigger a warning from bib2gls:
Identical sort values for 'shape.diamond' and
'mineral.diamond'
Falling back on ID

This means that the relative ordering of the homo-
graphs is based on their labels (using a simple char-
acter code comparison) so the mineral diamond is
placed before the shape diamond. Both will still
have ‘diamond’ as the sort value when compared
with other entries.

The action to perform in the event of dupli-
cate sort values can be changed by setting a value
for identical-sort-action. For example, you can order
them according to first use in the document (which
doesn’t make sense for this example) or according
to which entry was defined first in the bib file. You
can also choose another field to determine the final
relative ordering, but only a simple character code
comparison is used (not a locale-sensitive alphabeti-
cal comparison).

If you have a set of homographs and you want to
use a field containing natural language to determine
their relative order then you may prefer to use the
sort-suffix field instead, which can append the con-
tents of another field to the sort value. This suffix
will apply to all sort values, not just the homographs.

The abbreviations have been ordered according
to the short form. This means that both XHTML
and XML are placed in the ‘X’ letter group, even
though the abbreviation style chosen in the document
shows the long form first. This ordering is, however,
appropriate for the acronyms such as ‘Ofcom’ and
‘Ofsted’.

3.2 Sort suffix and fallbacks

The next example makes some adjustments to the
resource options:
src={terms,pictographs,abbreviations,constants},
entry-type-aliases={homograph=entry}
sort-suffix=description,
symbol-sort-fallback=name,
abbreviation-sort-fallback=long

This will result in an error from inputenc arising from
the upright Greek letter \uppi. The sort fallback for
the symbol entries has been switched to the name field.
Although the letter group label is numeric, bib2gls
attempts to assign an appropriate title, which it
obtains from the sort value of the first entry to be
assigned to that group (in this case π).

Since the sort method is using my en-GB locale,
the upright Greek letters will all be placed in their

own group at the end because there’s no rule for
them in the English comparator being used. Since
this final group is one that you will typically need
to change, bib2gls provides a command to make it
easy to do this:
\newcommand{\bibglssetlastgrouptitle}[2]{%

\glsxtrsetgrouptitle{#1#2}{Greek}}

It’s necessary to define this command before calling
\GlsXtrLoadResources, or it will have no effect.

The result is shown in Figure 8. This has still
produced some oddities.

As already mentioned, the Greek letters are all
at the end of the glossary. The en-GB comparator
recognises them as letters (rather than punctuation
or other symbols) but they don’t form part of the
en-GB alphabet so they are all lumped together in a
single group.

Some of the symbols have been placed in the
‘symbols’ group (0, 1,

√
2). This is because bib2gls

recognised the commands in the name field (which is
now being used as the sort fallback for symbols) for
those entries and was able to convert them into Uni-
code. The comparator being used (en-GB) recognised
those Unicode characters as symbols.

A search of bib2gls’s transcript file shows that
bib2gls was also able to interpret the card suit
commands but not the marvosym commands. For
example, consider the phone entry:

1. The sort field hasn’t been set, so use the fall-
back for @symbol (which is now the name field):
\Mobilefone. Since bib2gls doesn’t recognise
this command the sort value is empty.

2. The sort-suffix=description setting then appends
the contents of the description field, so the
sort value is now mobile phone.

This means that the phone entry ends up in the ‘M’
letter group. Now consider the heartsuit entry:

1. The sort field hasn’t been set so use the fall-
back for @symbol (which is now the name field):
\ensuremath{\heartsuit}. These commands
are recognised by bib2gls and are converted
into the Unicode character U+2661. So the sort
value consists of the single character ♡.

2. The sort-suffix=description setting then appends
the contents of the description field, so the
sort value is now ‘♡heart’ but the en-GB com-
parator considers the heart character as ignor-
able punctuation and so the sort value becomes
‘heart’.

This means that the heart entry ends up in the ‘H’
letter group.

The sort fallback value for abbreviations is given
by the setting of abbreviation-sort-fallback. However,

Nicola L. C. Talbot

TUGboat, Volume 42 (2021), No. 2 199

this is used by both @abbreviation and @acronym.
In this case, it’s necessary to differentiate between
@abbreviation (which needs to be sorted according
to the long form) and @acronym (which needs to be
sorted according to the short form). This requires
using custom-sort-fallbacks instead, which can also be
used to differentiate between @number and @symbol.

The sort-suffix option has also caused ‘diamond
jubilee’ to be placed before the shape ‘diamond’.
This is because the description is now included in
the sort value but by default no separator is inserted
before the suffix. So the shape.diamond entry starts
by fetching the sort fallback value from the name
field (‘diamond’) and then appends the description
so the sort value becomes ‘diamondfour-sided shape
with equal sides’. The default break-at=word setting
marks the word boundaries so the final sort value is:
diamondfour-sided|shape|with|equal|sides|

The diamondjubilee entry starts by fetching
the sort fallback value from the name field ‘diamond
jubilee’ and then appends the description so the sort
value becomes ‘diamond jubileesixtieth anniversary’.
Again the default break-at setting marks the word
boundaries so the final sort value is:
diamond|jubileesixtieth|anniversary

The pipe character comes before the letter ‘f’ so
‘diamond jubilee’ ends up before ‘diamond’.

This can be fixed either by switching to using
identical-sort-action or by inserting a marker before
the suffix. This marker would need to be a punc-
tuation character or symbol that the comparator
recognises as coming before letters. It also needs to
come before the word boundary marker and should
not be a character that’s discarded by the collator.

3.3 Sort suffix marker and custom
fallbacks

The next example needs to remove the definition
of \bibglssetlastgrouptitle since the modified
settings will now place the Greek characters in the
‘symbols’ group.

This example still uses sort-suffix to append the
description to the sort value. I’ve chosen digits for
the markers to ensure that they’re not discarded by
the alphabetical collator and word separator used by
the sort method.

The resource options are now:
src={terms,pictographs,abbreviations,constants},
entry-type-aliases={homograph=entry}
sort-suffix=description,sort-suffix-marker=0,
break-marker=1,symbol-sort-fallback=name,
abbreviation-sort-fallback=long,
custom-sort-fallbacks={acronym=short,

number=symbol}

The result is shown in Figure 9. The entries defined
with @number now use the symbol field to obtain the
missing sort value. Unlike makeindex and xindy, the
alphabetical sort methods don’t create a ‘numbers’
group for items with numeric sort values but instead
use the ‘symbols’ group for any entries that don’t
belong to a letter group.

The numbers aren’t in numeric order (23.140692
is between 2.71828 and 3.14159). In fact, since the
sort-suffix option has been set, the sort values for the
constants aren’t simple numbers but are the num-
ber followed by the description. The digit markers
(0 and 1) have also caused the pictographs to ap-
pear between Euler’s constant (0.57721) and Apéry’s
constant (1.2020569).

There are two entries defined with @number that
don’t have the symbol field set (one and zero). How-
ever, the sort-suffix setting appends the description
so they end up ordered according to their descrip-
tion. (If you try this example and find them in the
‘N’ letter group, you need to update your version of
bib2gls.)

3.4 Aliasing and concatenation

The sort-suffix option is turning out to be quite prob-
lematic for this example set of entries. The reason
for using it was to ensure that the homographs were
sorted by name and then description. The option
identical-sort-action=description could be used as an
alternative, but it won’t allow for a locale-sensitive
word sort of the description.

Each item in the custom-sort-fallbacks list has
the general format:
⟨original entry type⟩=⟨field1 ⟩+⟨field2 ⟩...+⟨fieldN ⟩
where ⟨original entry type⟩ is the entry type as spec-
ified in the bib file. The homographs were defined in
the bib file using a custom entry type @homograph,
which is then aliased to @entry. If I use entry within
custom-sort-fallbacks it will only apply to entries that
were defined within the bib file with @entry (not
the entries that were aliased to @entry).

If I want to specifically change the sort fallback
for entries defined with my custom @homograph with-
out altering the fallback for the other entries then I
need to use homograph for ⟨original entry type⟩, and
I can use the concatenation operator (+) to create a
fallback value that’s formed by combining multiple
fields. The default separator is a space but may be
changed with field-concat-sep.

So this example dispenses with sort-suffix and
relies instead on aliasing and the custom sort fallback.
The resource options are now:
src={terms,pictographs,abbreviations,constants},
entry-type-aliases={homograph=entry},

bib2gls: sorting

200 TUGboat, Volume 42 (2021), No. 2

symbol-sort-fallback=description,
field-concat-sep={.},
custom-sort-fallbacks={abbreviation=long+short,
number=symbol+name,homograph=name+description}

The result is shown in Figure 10. Note that I’ve had
to change the default field concatenation separator;
otherwise, the default space would result in ‘diamond
jubilee’ (which now doesn’t include the description
in the sort value) being placed between the two
‘diamond’ entries (which do have their descriptions
in the sort value).

The sort-symbol-fallback setting ensures that the
pictographs are sorted according to their descriptions
but this setting is overridden by custom-sort-fallbacks
for the @number entries. Concatenating the symbol
and name fields means that the ‘zero’ and ‘one’ entries
(which don’t have the symbol field set) are sorted
according to their name fields and so are now in the
‘symbols’ group. However, the alphabetical word
ordering means that they’re not ordered numerically.

3.5 Sub-blocks

As discussed in the previous TUGboat article [5],
\printunsrtglossary simply iterates over all de-
fined entries for the given glossary. When used with
bib2gls the entry definitions are in the .glstex
file that’s loaded by \GlsXtrLoadResources. If
there’s more than one instance of this command,
each .glstex file is input sequentially and the entry
labels are added to the internal list associated with
the corresponding glossary.

As a result, a single \GlsXtrLoadResources
command doesn’t have to correspond to a single glos-
sary. It may be used to process multiple glossaries
at the same time (if there’s some way of assigning
the glossary type) or it may be used to process a
sub-block of a single glossary. Each sub-block may
be sorted according to a different method. The or-
dering of the sub-blocks corresponds to the order of
\GlsXtrLoadResources commands.

When dividing the glossary into sub-blocks, it’s
possible for letter groups to become fragmented. For
example, if my first sub-block contains ant, bee and
zebra and the second sub-block contains aardvark,
duck and wombat, there will be two ‘A’ letter groups.
This is a contrived example, as it would result in
a glossary with the rather odd order: ant, bee, ze-
bra, aardvark, duck, wombat. It’s more usual to
use different sort methods for each sub-block, which
may form different groups. Alternatively, you can
override the sort method’s group formation and force
all entries in a sub-block to belong to a single group.

This next example will have multiple sub-blocks.
The first block will be for the mathematical constants,

ordered by the numerical value. The approximate
value can be obtained from the symbol but, as noted
above, this doesn’t deal with 0 and 1. There are two
ways of approaching this:

• the fallback can be made from a combination of
the symbol and name (as in the previous exam-
ple) and then strip any non-numeric content;

• if the symbol hasn’t been set then copy the
name into it.

The first method can be achieved with the resource
options:
symbol-sort-fallback=symbol+name,
sort-replace={{[^0-9\string\.\string\-]+}{}}

The second method can be achieved with the resource
options:
symbol-sort-fallback=symbol,
replicate-fields={name=symbol}

The only problematic entry is
√
−1, which is a com-

plex number and therefore doesn’t have a defined
order within a set of real numbers. Whilst the TEX
parser library used by bib2gls recognises \surd it
doesn’t recognise \sqrt. Unrecognised commands
are ignored, so the sort value ends up as -1.

Here, I use the first method to avoid altering
the symbol field. The resource command is:
\GlsXtrLoadResources[
selection=all,save-locations=false,
src={constants},sort=double,
symbol-sort-fallback=symbol+name,
sort-replace={{[^0-9\string\.\string\-]}{}}

]

The sort=double setting uses a double-precision float-
ing point comparator.

The second sub-block contains all of the picto-
graphs. I’ve now decided to order them according
to the character code of the closest matching Uni-
code symbol. This isn’t a problem for the card
suits as the TEX parser library recognises the com-
mands, but it doesn’t (currently) have support for
the marvosym commands. To handle them, I pro-
vide suitable definitions within @preamble. Using
\providecommand will ensure these definitions don’t
override the marvosym definitions within the docu-
ment. (Alternatively, write-preamble=false can be
used to prevent bib2gls from writing the contents
of @preamble to the .glstex file.)

For example, I can add the following to the
pictographs.bib file:
@preamble{"
\providecommand{\Email}{\symbol{"1F584}}
\providecommand{\Letter}{\symbol{"1F582}}
\providecommand{\Mobilefone}{\symbol{"1F581}}
\providecommand{\Telefon}{\symbol{"1F57F}}"}

Nicola L. C. Talbot

TUGboat, Volume 42 (2021), No. 2 201

Alternatively, this could be added to another file
called, say, marvosym.bib which can be loaded at
the same time as pictographs.bib:
\GlsXtrLoadResources[
selection=all,save-locations=false,
src={marvosym,pictographs},
symbol-sort-fallback=name,sort=letter-case

]

The sort=letter-case setting uses a case-sensitive char-
acter code comparison. Unlike the locale-sensitive
sort methods, there’s no attempt to detect word
breaks and no characters, such as punctuation, are
ignored.

This just leaves the terms and abbreviations:
\GlsXtrLoadResources[
selection=all,save-locations=false,
src={terms,abbreviations},
entry-type-aliases={homograph=entry},
symbol-sort-fallback=description,
field-concat-sep={.},
custom-sort-fallbacks={abbreviation=long+short,
homograph=name+description}

]

This is basically the same as the previous example
except that the constants.bib and pictographs.
bib files are omitted.

The result is shown in Figure 11. If grouping is
enabled (that is, if bib2gls is invoked with --group
or -g) then all the numerical sort methods (such
as sort=double) set the group label to glsnumbers
which has the title given by the language-sensitive
\glsnumbersgroupname. The character code sort
methods (such as sort=letter-case) will assign the
group based on the first character of the sort value.
For the case-sensitive comparator, this can result
in both lower and uppercase letter groups. Any
character that isn’t a letter (according to the Unicode
specifications) is assigned to the group glssymbols,
which has the title given by the language-sensitive
\glssymbolsgroupname.

Alternatively you can force all entries in a given
sub-block into a specific group with the group setting.
For example:
\glsxtrsetgrouptitle{mcons}

{Mathematical Constants}
\GlsXtrLoadResources[group={mcons},
src={constants},⟨other settings⟩

]
\glsxtrsetgrouptitle{icons}{Pictographs}
\GlsXtrLoadResources[group={icons},
src={pictographs},⟨other settings⟩

]

The sub-blocks can be reordered by simply rear-
ranging the \GlsXtrLoadResources commands. (If
you find yourself wanting to automatically order by

sub-block title then you should actually be using a
hierarchical glossary instead [6].)

The ability to provide bib2gls with commands
in the @preamble makes it easier to adjust the sort
value. For example, by providing the closest match-
ing Unicode value for symbols (as above) or by pro-
viding a command that allows you to omit or reorder
parts of the sort value. For example:
@preamble{"\providecommand{\sortart}[2]{#2}"}
@homograph{bravocry,name={bravo},

description={\sortart{a}{cry of approval}}
}

This command would also need to be defined in the
document:
\newcommand{\sortart}[2]{#1 #2}

So although it’s not possible to programmatically de-
fine entries (like the earlier \newconstant command)
the use of fallbacks, aliases and commands provided
in the @preamble allows a flexible approach that can
be customised on a per-document basis.

References

[1] D. Arseneau, M. Swift. The relsize package,
2013. ctan.org/pkg/relsize.

[2] M. Miklavec, T. Henlich, M. Vogel.
The marvosym package, 2012.
ctan.org/pkg/marvosym.

[3] W. Schmidt. The upgreek package, 2003.
ctan.org/pkg/upgreek.

[4] N. Talbot. Sample bib files.
dickimaw-books.com/latex/tugboat-bib2gls.

[5] N. Talbot. bib2gls: selection, cross-references
and locations. TUGboat 41(3), 2020. tug.org/
TUGboat/tb41-3/tb129talbot-bib2gls-more.
pdf.

[6] N. Talbot. Logical glossary divisions (type vs
group vs parent), 2020. dickimaw-books.com/
gallery/?label=logicaldivisions.

[7] N. Talbot. bib2gls: Command line application
to convert .bib files to glossaries-extra.sty
resource files, 2020. ctan.org/pkg/bib2gls.

[8] N. Talbot. The glossaries-extra package, 2020.
ctan.org/pkg/glossaries-extra.

[9] N. Talbot. The glossaries package, 2020.
ctan.org/pkg/glossaries.

⋄ Nicola L. C. Talbot
School of Computing Sciences
University of East Anglia
Norwich Research Park
Norwich NR4 7TJ
United Kingdom
https://www.dickimaw-books.com

bib2gls: sorting

https://ctan.org/pkg/relsize
https://ctan.org/pkg/marvosym
https://ctan.org/pkg/upgreek
https://dickimaw-books.com/latex/tugboat-bib2gls
https://tug.org/TUGboat/tb41-3/tb129talbot-bib2gls-more.pdf
https://tug.org/TUGboat/tb41-3/tb129talbot-bib2gls-more.pdf
https://tug.org/TUGboat/tb41-3/tb129talbot-bib2gls-more.pdf
https://dickimaw-books.com/gallery/?label=logicaldivisions
https://dickimaw-books.com/gallery/?label=logicaldivisions
https://ctan.org/pkg/bib2gls
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/glossaries

202 TUGboat, Volume 42 (2021), No. 2

A
ζ (3) (1.2020569) Apéry’s constant

B
bravo cry of approval
bravo a hired ruffian or killer

C
♣ club
λ (1.30357) Conway’s constant

D
diamond metastable allotrope of car-
bon

diamond four-sided shape with equal
sides

diamond jubilee sixtieth anniversary
♦ diamond

E
e (2.71828) Euler’s number

k email
B letter
γ (0.57721) Euler’s constant

G

eπ (23.140692) Gelfond’s constant
ϕ (1.61803) golden ratio

H

♥ heart
homographs
hypertext markup language (HTML)
the standard markup language for
creating web pages

I

i (
√

−1) imaginary unit

L

T telephone

M

mathematical markup language
(MathML) markup language for de-
scribing mathematical notation

N

NASA National Aeronautics and
Space Administration

O

Ofcom Office of Communications
Ofsted Office for Standards in Edu-
cation

1 one

P

H mobile phone
π (3.14159) ratio of circumference of
a circle to its diameter

R
√

2 (1.41421) Pythagoras’ constant

S

sample
♠ spade
scalable vector graphics (SVG) XML-
based vector image format

X

extensible hypertext language
(XHTML) XML version of HTML

extensible markup language (XML) a
markup language that defines a set
of rules for encoding documents

Z

0 zero

1

Figure 7: Default sorting (see p. 197)

Symbols

0 zero
1 one√

2 (1.41421) Pythagoras’ constant

B

bravo a hired ruffian or killer
bravo cry of approval

C

♣ club

D

♦ diamond
diamond jubilee sixtieth anniversary
diamond four-sided shape with equal
sides

diamond metastable allotrope of car-
bon

E
e (2.71828) Euler’s number
k email
extensible hypertext language
(XHTML) XML version of HTML

extensible markup language (XML) a
markup language that defines a set
of rules for encoding documents

eπ (23.140692) Gelfond’s constant
H

♥ heart
homographs
hypertext markup language (HTML)
the standard markup language for
creating web pages

I
i (

√
−1) imaginary unit

L
B letter

M
mathematical markup language
(MathML) markup language for de-
scribing mathematical notation
H mobile phone

N
NASA National Aeronautics and
Space Administration

O
Ofsted Office for Standards in Edu-
cation

Ofcom Office of Communications

S

sample
scalable vector graphics (SVG) XML-
based vector image format

♠ spade

T

T telephone

Greek

γ (0.57721) Euler’s constant
λ (1.30357) Conway’s constant
π (3.14159) ratio of circumference of
a circle to its diameter
ϕ (1.61803) golden ratio
ζ (3) (1.2020569) Apéry’s constant

1

Figure 8: Sort suffix and fallbacks (see p. 198)

Symbols

γ (0.57721) Euler’s constant
♣ club
♦ diamond
k email
♥ heart
B letter
H mobile phone
♠ spade
T telephone
ζ (3) (1.2020569) Apéry’s constant
λ (1.30357) Conway’s constant√

2 (1.41421) Pythagoras’ constant
ϕ (1.61803) golden ratio
i (

√
−1) imaginary unit

e (2.71828) Euler’s number

eπ (23.140692) Gelfond’s constant
π (3.14159) ratio of circumference of
a circle to its diameter

B
bravo a hired ruffian or killer
bravo cry of approval

D
diamond four-sided shape with equal
sides

diamond metastable allotrope of car-
bon

diamond jubilee sixtieth anniversary
E

extensible hypertext language
(XHTML) XML version of HTML

extensible markup language (XML) a
markup language that defines a set
of rules for encoding documents

H
homographs
hypertext markup language (HTML)
the standard markup language for
creating web pages

M
mathematical markup language
(MathML) markup language for de-
scribing mathematical notation

N
NASA National Aeronautics and
Space Administration

O

Ofcom Office of Communications
Ofsted Office for Standards in Edu-
cation

1 one

S

sample
scalable vector graphics (SVG) XML-
based vector image format

Z

0 zero

1

Figure 9: Sort suffix marker and custom fallbacks (see p. 199)

Nicola L. C. Talbot

TUGboat, Volume 42 (2021), No. 2 203

Symbols

γ (0.57721) Euler’s constant
0 zero
ζ (3) (1.2020569) Apéry’s constant
λ (1.30357) Conway’s constant√

2 (1.41421) Pythagoras’ constant
ϕ (1.61803) golden ratio
1 one
i (

√
−1) imaginary unit

e (2.71828) Euler’s number
eπ (23.140692) Gelfond’s constant
π (3.14159) ratio of circumference of
a circle to its diameter

B

bravo a hired ruffian or killer
bravo cry of approval

C

♣ club

D

diamond four-sided shape with equal
sides

diamond metastable allotrope of car-
bon

♦ diamond
diamond jubilee sixtieth anniversary

E

k email
extensible hypertext language
(XHTML) XML version of HTML

extensible markup language (XML) a
markup language that defines a set

of rules for encoding documents

H

♥ heart
homographs
hypertext markup language (HTML)
the standard markup language for
creating web pages

L

B letter

M

mathematical markup language
(MathML) markup language for de-
scribing mathematical notation
H mobile phone

N

NASA National Aeronautics and
Space Administration

O

Ofcom Office of Communications
Ofsted Office for Standards in Edu-
cation

S

sample
scalable vector graphics (SVG) XML-
based vector image format

♠ spade

T

T telephone

1

Figure 10: Aliasing and concatenation (see p. 200)

Numbers

i (
√

−1) imaginary unit
0 zero
γ (0.57721) Euler’s constant
1 one
ζ (3) (1.2020569) Apéry’s constant
λ (1.30357) Conway’s constant√

2 (1.41421) Pythagoras’ constant
ϕ (1.61803) golden ratio
e (2.71828) Euler’s number
π (3.14159) ratio of circumference of
a circle to its diameter

eπ (23.140692) Gelfond’s constant

Symbols

♠ spade

♥ heart
♦ diamond
♣ club
T telephone
H mobile phone
B letter
k email

B

bravo a hired ruffian or killer
bravo cry of approval

D

diamond four-sided shape with equal
sides

diamond metastable allotrope of car-
bon

diamond jubilee sixtieth anniversary
E

extensible hypertext language
(XHTML) XML version of HTML

extensible markup language (XML) a
markup language that defines a set
of rules for encoding documents

H
homographs
hypertext markup language (HTML)
the standard markup language for
creating web pages

M
mathematical markup language
(MathML) markup language for de-

scribing mathematical notation

N

NASA National Aeronautics and
Space Administration

O

Ofcom Office of Communications
Ofsted Office for Standards in Edu-
cation

S

sample
scalable vector graphics (SVG) XML-
based vector image format

1

Figure 11: Sub-blocks (see p. 201)

bib2gls: sorting

	Sorting with makeglossaries
	bib2gls fallbacks
	Examples
	Default sorting
	Sort suffix and fallbacks
	Sort suffix marker and custom fallbacks
	Aliasing and concatenation
	Sub-blocks

