TUGDboat, Volume 42 (2021), No. 2

The WEB to CWEB conversion of TEX
Martin Ruckert

Abstract

This paper describes several aspects of the conver-
sion of TEX’s source code from WEB, based on Pas-
cal, to CWEB based on C with web2w. It emphasizes
those aspects that are relevant for obtaining a trans-
lation that can truly be regarded as source code and
lends itself to modifications.

1 The advantages of CWEB

In the realm of programming environments, the C
language enjoys very good support. Since the CWEB
system of structured documentation [1] generates
#line directives, this support extends also to pro-
grams written in CWEB. Figure 1 shows a debug
session with the CWEB version of TEX where a break-
point was set on the 1ine_break function. After the
run command, TEX asks for input and then stops in
the CWEB file at the start of the 1ine_break func-
tion. After a right click on “final_widow_penalty”
in the source window, the debugger displays a menu
that offers to display the variable in the data win-
dow. The traditional web2c translator expands WEB
code to Pascal before translating to C. The debug-
ger then shows fully expanded code in the source
window as shown in figure 2.

Another advantage of the CWEB version of TEX
is the simple tool chain. From a ctex.w source
file, ctangle ctex.w produces ctex.c, and gcc -o
ctex ctex.c produces the ctex executable; no ad-
ditional conversion commands are needed. For ex-
perimenting with your own TEX, ctex.w can be
modified — preferably with a change file—and the
debugger has no difficulties switching the source win-
dow between ctex.w and the change file as needed.

2 From web2w version 0.4 to 1.0

In the last three years, the development of the HINT
project would not have been possible without the
CWERB version of TEX’s source code produced with
web2w version 0.4 [3]. During development, some
shortcomings have become apparent, which I ad-
dress in the new version 1.0 as described below.

2.1 Creating a header file

Combining TEX’s source code with C code residing
in separate source files frequently requires access to
TEX’s functions and variables through “extern” dec-
larations. Further, because of TEX’s extensive use
of macros, any substantial reuse of TEX’s code also
requires reusing TEX’s macros. For this purpose,
the new converter can optionally create a header

doi.org/10.47397/tb/42-2/tb131ruckert-cweb

F DDD: fhome/ruckert/hint/web2 wictex. w [F‘
File Edit View Program Commands Staius Source Data Help

()“fwmal,wwdw,pemalty_’ PN h S VA= RS -

Lodkup Findis Break Uatch Print DEpay ot Moo polo S8t Uhagp

1. final_widow_penalty|
151

6014 @y @t\4@>@<Declare subprocedures for |1ine_break |@>@;

6015 static void Tine_break(int @!final_widow_penalty)

T16 {a+

B017 @<Local wvariables for Tine breaking@>@;

6018 pack_begin_line=mode_line; /*this is for over/underfull box messages®/
8019 @<Cet ready to start line breaking@>;

6020 @<Find cptimal breakpoints@s;

6021 @<Break the paragraph at the chosen breakpoints, justify the resulting

Reading symbols from /home/ruckert/hint/web2w/testing/ctex. . .done.
(gdb) break 1ine_break

Breakpoint 1 at 0x419013: file ctex.w, line 16018.

(gdb) run

Starting program: /home/ruckert/hint/web2w/testing/ctex

This is TeX, Version 3.14159265 (HINT) (no format preloaded)
**E&plain \input hello

(hello. tex

Breakpoint 1, line_break (final_widow_penalty=150) at ctex.w:16016
(gdb) graph display final_widow_penalty

ThE

|1 Display 1: final_widow_penal ty (enabled, scope 11ne_break)

Figure 1: Debugging CWEB code with GNU ddd:
true source code.

1030 void
1031 zlinebreak (integer finalwidowpenalty)
32

1033 J% 30 31 32 33 34 35 22 */ Tinebreak_regmem
1034 boolean autobreaking ;
1035 halfword prevp =
1036 halfword g, r, s, prevs ;
1037 internalfontnumber f
1038 smallnumber j
1039 unsigned char ¢ ;
1040 packbeginline = curlist .mlfield ;
1041 mem [memtop — 3 J.hh .v.RH = mem [curlist .headfield J.hh .v.RH ;
1042 if ((curlist .tailfield »= himemmin))

{

1044 mem [curlist .tailfield].hh .w.RH = newpenalty (10000) ;
1045 curlist .tailfield = mem [curlist .tailfield 1.hh .v.RH ;

T
1047 else if (mem [curlist .tailfield J.hh.bO != 10)
{

1049 mem [curlist .tailfield].hh .v.RH = newpenalty (10000) ;
1050 curlist .tailfield = mem [curlist .tailfield 1.hh .v.RH ;
T

Figure 2: Debugging web2c code with GNU ddd:
fully-expanded code, difficult to read.

file containing TEX’s macros, TEX’s (Constants in
the outer block), its (Types in the outer block),
and finally a selection of “extern” declarations. The
names of the selected extern variables and functions
are taken from a text file given on the command
line. As a side effect, all the remaining functions
and global variables in TEX’s sources are then de-
clared “static”.

As an extreme example, assume that you want
to reuse TEX’s x_over_n function: you can create a
text file with a single line just containing the name
x_over_n and use it to convert tex.web to ctex.w.
Then run ctangle on ctex.w to get ctex.c and
ctex.h. The file ctex.h will then end with the line
“extern scaled x_over_n(scaled x,int n);”.

Because all the other functions and variables
of TEX are declared static, any decent C compiler
can figure out that almost all of these are dead vari-
ables and dead functions. Running “gcc -03 -c
ctex.c -o ctex.o” will therefore produce a sur-
prisingly small object file of just 1520 bytes. An-
alyzing the object file with GNU nm reveals:

The WEB to CWEB conversion of TEX

https://doi.org/10.47397/tb/42-2/tb131ruckert-cweb

140

Size Type Name

0000000000000001 b arith_error
0000000000000004 b rem
0000000000000089 T X_over_n

The object file contains two variables, one byte
for the boolean arith_error, four bytes for the inte-
ger rem, and 89 bytes for the function x_over_n. All
the rest has been removed by the compiler. You can
link ctex.o to your main program without incur-
ring any unnecessary overhead. If you want access
to arith_error and rem, just add two lines with
these names to your text file.

2.2 Eliminating the static string pool

Another spot that needed further attention is TEX’s
string pool. Strings enclosed in C-like double quotes
receive special treatment by tangle: the strings are
collected in a string pool file and replaced by string
numbers in the Pascal source. In ctangle no such
mechanism is available.

The previous converter replaced literal strings
by section names, which were then expanded to an
index in the str_start array. So

primitive("par",par_end,256) ;
became

primitive(<"par">, par_end, 256);
together with “<"par">=444" following in the ap-
pendix. With a suitable static initialization of the
str_start and str_pool array, this had the desired
effect and it was quite readable. For a limited sub-
set of the literal strings — those used exclusively for
printing —the converter took extra action to keep
them in the code as literal C strings. This had the
advantage that these strings were easier to change
when modifying the generated .w files.

When implementing the HINT viewer, however,
it turned out that TEX’s entire string pool was still
necessary for compilation; the code inherited from
TEX still contained a few references to the string
pool. This seemed unnecessary because the HINT
viewer does not use TEX’s control sequences or string
handling functions. When implementing version 1.0,
I started to further reduce the number of strings en-
tering the string pool until only the names of control
sequences remained in the string pool. With these
names, the first argument of the primitive function
remained a string number.

Defining new TEX primitives in change files is,
however, common for extensions of TEX, and with
ctex.w this had proved to be a bit cumbersome.
You could not just write

primitive(<"newname">, ...);
but also needed to define the section name such
that it would expand to a string number, which de-

Martin Ruckert

TUGDboat, Volume 42 (2021), No. 2

pended on the initialization of the str_start ar-
ray, which in turn depended on the initialization of
the str_pool array. A cumbersome and error-prone
process.

So in the end, I decided to eliminate the static
initialization of the string pool entirely. In version
1.0 the string pool is initialized at runtime with
the first 256 single character strings and the empty
string. All other strings are added during TEX’s ini-
tialization, for example by calling primitive ("par",
par_end, 256). The advantage is simplicity and
readability; the disadvantage is the overhead in time
and space because names of control sequences will
now exist twice: the static string that is the argu-
ment of “primitive” and its copy in the string pool.

Here is some data on the incurred overhead to
justify the decision: Version 0.4 already reduced the
initial number of strings in the string pool from 1044
to 730 and the initial size of the string pool from
22742 bytes to 4700 bytes. Further reductions in
version 1.0 left 611 strings with a total of 3701 bytes
in the string pool —still without simplifying the ad-
dition of new primitive control sequences. The next
logical step was abandoning the static initialization
of the string pool altogether. Two alternatives came
to my mind: removing the string pool completely or
switching to a dynamic initialization of the string
pool. I decided on the second alternative for the
following reasons:

e Dynamic initialization adds overhead in time
and space. The space overhead, however, is
small (about 1% of the executable’s size) and
the time overhead is incurred only in the INITEX
version of TEX.

e Dynamic initialization makes addition of new
string literals as simple as possible.

e Dynamic initialization simplifies the implemen-
tation of web2w.

e Keeping the string pool avoids changing TEX’s
data structures and algorithms.

2.3 64-bit memory words

The biggest problem with the previous ctex.w was
the limitation of a 16-bit pointer type, allowing ac-
cess to at most 2'0 of TEX’s memory words. To run
a typical ITEX job, loading only a few of the most
common packages, this is usually insufficient. And
for many people, TEX is just an abbreviation for
TEX. Hence, an implementation of TEX that is re-
stricted to 16-bit pointers is a nice research project
but is not suitable for processing practical KTEX
workloads.

Allocating bigger arrays is not the problem; the
problem is the storage space needed for the array

TUGDboat, Volume 42 (2021), No. 2

indices. Indices are stored in a halfword which
in version 0.4 was a uintl6_t. Two halfwords
make up a memory_word. These data structures
needed redefinition and it was unclear how the pack-
ing and unpacking of memory words would be af-
fected by the change. Still, I expected that changing
max_halfword should be feasible without creating
too many complications, because I remember having
seen in the 1970s a TEX implementation using 48-bit
words. Because TEX tests “if 2 * max_halfword
< mem_top - mem_min then bad:=41;”, the value
of 2 * max_halfword must not produce an over-
flow. So I changed the value of max_halfword to
Ox3FFF FFFF.

After that, web2w ran without complaint. My
patch file needed a few changes, such as replacing a
uint8_t by auint16_t at one place and a uint16_t
by a uint32_t at another place, until, to my own
surprise, the GNU C compiler would again compile
ctex.c without further errors or warnings and even
the infamous TRIP test had no objections.

2.4 Minor changes
2.4.1 C-style macros

Avoiding name conflicts with the long list of TEX’s
macros — including common names like “x0”, “day”,
“pop”, “link”, “next”, “name” — was a constant con-
cern when working on the HINT project. In the
C language, there is no separate name space for
macros, but it is common practice to avoid conflicts
between macros and variables, functions, or other
identifiers by using all uppercase names for macros.
So version 1.0 implements a command line option
that makes macro names use uppercase letters.

Changing all macro names to upper case does,
however, impact the visual appearance of the TEX
program considerably. Therefore this replacement is
optional.

The WEB system allows defining parameterized
macros using a single # sign to mark the insertion
point(s) for the parameter text. This does not pre-
vent you from passing multiple parameters because
commas are allowed in the parameter text. But
at every insertion point, the complete parameter
text—with all its commas—is inserted. To over-
come this restriction, TEX resorts to “tail calls” in
it macro definitions. An example is TEX’s definition
of char_info:

@d char_info_end (#)==#] .qqqq
@d char_info(#)==
font_info[char_base[#]+char_info_end

which is used as

char_info (f) (c)

141

The char_info macro ends with char_info_end,
the tail call, without specifying the parameter for it.

web2w is a source code converter. It strives to
produce readable source code as its output. While
Pascal does not know about macros, they are a com-
mon feature of C and there is a well-established way
of using them. So translating the above literally to
C does not yield code that has the right “look and
feel”. So, version 1.0 of web2w now implements the
unrolling of the tail calls and generates true C-style
macro definitions:

@d char_info(A, B) \
font_info[char_base[A]+B].qqq

which is used as
char_info(f, c)

As another improvement, web2w now counts the
number of uses and eliminates macro definitions that
are not or— as in the case of char_info_end — are
no longer used.

2.4.2 Placing the case keyword

Respecting the common coding style of C also de-
manded an improvement in the placement of C’s
case keyword. In the code for processing a liga-
ture or kern command, TEX uses case labels of the
form “qi(1),qi(5): ...” where the macro qi(A)
is defined as A+min_quarterword. From this, web2w
version 0.4 produce:

gi(case 1): qi(case 5): .
which is correct C code but looks odd. Finding the
right place for the case keyword is not trivial; for
example, it would be an error to place the keyword
before the “A” in the expansion text of macro qi.
Version 1.0 now produces the better-looking:

case qi(1): case qi(5):

2.4.3 Mixed arithmetic with signed and
unsigned integers

In Pascal, comparing of two integer expressions will
always return a correct value, because Pascal maps
both operands onto a common ordinal type, “large
enough” for both operands, before comparing them.

This is different in C, where the rules for im-
plicit type casting of operands are complicated and
comparing a signed and an unsigned integer might
not produce the expected outcome. Fortunately,
the C compiler will, with the right warnings en-
abled, emit complaints about signed/unsigned com-
parisons. Similar problems occur when signed and
unsigned integers are mixed in other arithmetic op-
erations. Version 0.4 tried to replace a Pascal sub-
range type with the smallest standard C integer type
that is large enough. So

The WEB to CWEB conversion of TEX

142

beta:1..16;
became uint8_t beta; and

shown_mode:-mmode. .mmode;
was converted to int16_t shown_mode;

The information about the true range of values
is unavoidably lost by this translation. Considering
the problems caused by the constant mix of differ-
ent integer types, it seems preferable to forgo the
approximation with the smallest possible C integer
type and choose a plain int wherever this is suf-
ficient. This is the approach taken by version 1.0
which eliminated all (if T can trust the compiler)
problems with mixed integer expressions.

3 ctex and TEX Live

While ctex.w is a complete and functional imple-
mentation of TEX, it does not offer the functionality
and amenities that users expect from a modern TEX
engine.

When running ctex, probably the first thing
you observe is that ctex will not search the “usual”
directories for TEX’s font metric files. As described
in The TgXbook, only the current directory and
the subdirectory TeXfonts are searched. The di-
rectories TeXformats and TeXinputs are searched
for formats and input files. You are probably also
accustomed to specifying input files and various op-
tions on the command line, but ctex will ignore your
command line and present you, after displaying the
banner, with a plain “**” prompt.

For a modern TEX engine, the kpathsearch li-
brary has become the standard to find all sorts of
TEX-related files, and the TEX Live distribution has
promulgated de facto standards on command line
functionality.

When you try to run IXTEX, sooner or later you
will also find out that quite a few IATEX packages
will assume that some primitive control sequences
are present that are not specified in The TEXbook
but are part of e-TEX.

The extensions of e-TEX are happily straight-
forward to obtain. Using the program tie, you can
apply etex.ch to tex.web and obtain etex.web.
Then apply web2w to get etex.w. To provide file
searching with the kpathsearch library and a us-
able command line, another change file, ktex.ch, is
part of the web2w distribution. It can be applied to
etex.w to obtain ktex.w.

To fully support ITEX even more primitive con-
trol sequences are necessary [2]. At the time of writ-
ing, another change file is in preparation to add
these control sequences to ktex.w. It is planned
that ktex.w will be part of the next TEX Live dis-
tribution.

Martin Ruckert

TUGDboat, Volume 42 (2021), No. 2

4 Conclusion

With web2w I have tried to achieve a source code
to source code translation of TEX that strives to
provide TEX source code in a form that is as close
as possible to Donald Knuth’s original source code
while at the same time is supported by modern pro-
gramming environments using the C programming
language. While there are still many improvements
to be made, ctex.w in its present form is well-suited
to compile, run, and interactively study TEX. It also
provides a good basis for conducting experiments
with TEX, trying new extensions of TEX, or using
parts of TEX in other software projects.

With ktex.w an extended TEX will be avail-
able that can cope with serious workloads. I have
developed ktex.w primarily for using it as a basis
for HiTEX, a new specialized TEX engine [4]. At the
outset, I had no plans for making ktex.w available
to the public, but while ktex is not intended for the
average TEX or KWTEX user, it may serve others as
a basis for their development of specialized versions

of TEX.

References

[1] Donald E. Knuth and Silvio Levy. The CWEB
System of Structured Documentation. Addison
Wesley, 1994. https://ctan.org/pkg/cweb.

[2] BTEX Project Team. ITEX news, issue 31,
February 2020. TUGboat, 41(1):34-38,
2020. https://tug.org/TUGboat/tb41-1/
tb1271tnews31.pdf. Section “KETEX
requirements on engine primitives”. See also:
latex-1 thread of April 20, 2021, “LaTeX
required primitives: some questions”, at
https://listserv.uni-heidelberg.de/
cgi-bin/wa?A0=latex-1.

[3] Martin Ruckert. Converting TEX from
WEB to cweb. TUGboat, 38(3):353-358,
2017. https://tug.org/TUGboat/tb38-3/
tbl120ruckert.pdf.

[4] Martin Ruckert. HINT: Reflowing TEX
output. TUGboat, 39(3):217-223, 2018.
https://tug.org/TUGboat/tb39-3/
tbl123ruckert-hint.pdf.

o Martin Ruckert
Hochschule Miinchen
Lothstrasse 64
80336 Miinchen
Germany
martin.ruckert (at) hm dot edu

https://tug.org/TUGboat/tb41-1/tb127ltnews31.pdf
https://tug.org/TUGboat/tb41-1/tb127ltnews31.pdf
https://listserv.uni-heidelberg.de/cgi-bin/wa?A0=latex-l
https://listserv.uni-heidelberg.de/cgi-bin/wa?A0=latex-l
https://tug.org/TUGboat/tb38-3/tb120ruckert.pdf
https://tug.org/TUGboat/tb38-3/tb120ruckert.pdf
https://tug.org/TUGboat/tb39-3/tb123ruckert-hint.pdf
https://tug.org/TUGboat/tb39-3/tb123ruckert-hint.pdf

	The advantages of CWEB
	From web2w version 0.4 to 1.0
	Creating a header file
	Eliminating the static string pool
	64-bit memory words
	Minor changes
	C-style macros
	Placing the case keyword
	Mixed arithmetic with signed and unsigned integers

	ctex and TeX Live
	Conclusion

