
TUGBOAT

Volume 42, Number 1 / 2021

General Delivery 3 From the president / Boris Veytsman

4 Editorial comments / Barbara Beeton

R.I.P. Bob Morris; BaKoMa author has died;

J. W. Gibbs and why an annual lecture is named for him;

Jubilees to celebrate: Computers & Typesetting and 50 years of the ebook;

CTAN mirrors are now https; A self-published LATEX book and ebook

6 Hendrik Vervliet: 1923–2020 / Jacques André

7 The TEX tuneup of 2021 / Donald Knuth

10 TEX entomology in 2021 / Karl Berry

11 Hyphenation exception log / Barbara Beeton

12 Year 2020 at GUTenberg / Jérémy Just

Dreamboat 13 Lapses in TEX — a look backward / Barbara Beeton

Typography 18 Typographers’ Inn / Peter Flynn

20 Interview with Amelia Hugill-Fontanel / David Walden

LATEX 34 The DuckBoat — Beginners’ Pond: Crazy Little Thing Called Glue /

Carla Maggi

40 Creating document commands: The good, the bad and the ugly / Joseph Wright

41 \NewDocumentCommand versus \newcommand versus . . . / Joseph Wright

Surveys 44 Comparison of OpTEX with other formats: LATEX and ConTEXt / Petr Oľsák

Fonts 50 GUST e-foundry font projects, closing report 2019–2020 / Jerzy Ludwichowski

52 The NewComputerModern font family / Antonis Tsolomitis

56 An attempt at creating font transitions / S.K. Venkatesan

60 Scaled fonts and glyphs / Hans Hagen

65 Some fonts with recent TEX support / Karl Berry

Macros 66 Improvements to the generalized mediation macros in The METAFONTbook /

Hu Yajie

Graphics 67 Animating Fourier series decomposition of a character with LuaTEX and MPLIB

/ Maxime Chupin

Software & Tools 72 Working remotely from an island: arara and other tools / Island of TEX

74 LuaMetaTEX programming features / Hans Hagen

81 UTF-8 installations of CWEB / Igor Liferenko

Reviews 83 Book review: Learning LATEX , Second Edition, by David F. Griffiths and

Desmond J. Higham / Boris Veytsman

Abstracts 84 Die TEXnische Komödie: Contents of issues 4/2020–1/2021

85 Zpravodaj : Contents of issue 2020/3–4

Cartoon 85 Comic: font or dog breed? / John Atkinson

Hints & Tricks 86 The treasure chest / Karl Berry

TUG Business 2 TUGboat editorial information

2 TUG institutional members

88 TUG 2021 election report

92 Spending MacTEX funds / Richard Koch

93 TUG financial statements for 2020 / Karl Berry

Advertisements 94 TEX consulting and production services

96 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2021 dues for individual members are as follows:

Trial rate for new members: $30.
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options are described
at tug.org/join.html.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
libraries and other organizations or individuals for
whom memberships are either not appropriate or
desired. Subscriptions are delivered on a calendar
year basis. The subscription rate for 2021 is $115.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted membership
rate, site-wide electronic access, and other benefits.
For further information, see tug.org/instmem.html
or contact the TUG office.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: April 2021]

Printed in U.S.A.

Board of Directors

Donald Knuth, Ur Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Rosendahl∗, Vice President
Karl Berry∗, Treasurer
Klaus Höppner∗, Secretary
Barbara Beeton
Johannes Braams
Paulo Cereda
Kaja Christiansen
Ulrike Fischer
Jim Hefferon
Taco Hoekwater
Frank Mittelbach
Ross Moore
Norbert Preining
Will Robertson
Herbert Voß
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board.html for a roster of all past and
present board members, and other official positions.

Addresses

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
tug.org

tug.org/TUGboat

Electronic Mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Volunteer technical support:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2021 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the
authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another

language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

dear barbara
i awoke this morning with the realization that TeX was
created for on-lion publishing
don
[maybe i should go back to sleep]

Don Knuth
email, 5 Apr 2002

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 42, NUMBER 1, 2021

PORTLAND, OREGON, U.S.A.

TUGboat editorial information

This regular issue (Vol. 42, No. 1) is the first issue of
the 2021 volume year. The deadline for the second is-
sue in Vol. 42 (the TUG’21 conference proceedings) is
August 15, 2021, and for the third issue is October 15,
2021. Contributions are requested.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(tug.org/store), and online at the TUGboat web site
(tug.org/TUGboat). Online publication to non-members
is delayed for one issue, to give members the benefit of
early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are assumed to be the experts. Ques-
tions regarding content or accuracy should therefore be
directed to the authors, with an information copy to the
Editor.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Robin Laakso, Office Manager

Boris Veytsman, Associate Editor, Book Reviews

TUGboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html

tug.org/consultants.html

2 TUGboat, Volume 42 (2021), No. 1

Submitting items for publication

Proposals and requests for TUGboat articles are grate-
fully received. Please submit contributions by electronic
mail to TUGboat@tug.org.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site, and are included in common TEX distributions.
We also accept submissions using ConTEXt. Deadlines,
templates, tips for authors, and more, are available at
tug.org/TUGboat.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make suitable arrangements.

Other TUG publications

TUG is interested in considering additional manuscripts
for publication, such as manuals, instructional materials,
documentation, or works on any other topic that might
be useful to the TEX community in general.

If you have such items or know of any that you
would like considered for publication, please contact the
Publications Committee at tug-pub@tug.org.

TUG

Institutional

Members

TUG institutional members

receive a discount on multiple

memberships, site-wide electronic

access, and other benefits:

tug.org/instmem.html

Thanks to all for their support!

Adobe Inc., San Jose, California

American Mathematical Society,

Providence, Rhode Island

Association for Computing

Machinery, New York, New York

Aware Software, Newark, Delaware

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic

Duke University Press,

Durham, North Carolina

Harris Space and Intelligence

Systems, Melbourne, Florida

Hindawi Foundation, London, UK

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

Nagwa Limited, Windsor, UK

Overleaf, London, UK

StackExchange,

New York City, New York

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

TEXFolio, Trivandrum, India

Université Laval,

Ste-Foy, Québec, Canada

University of Ontario,

Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

VTEX UAB, Vilnius, Lithuania

TUGboat, Volume 42 (2021), No. 1 3

From the president

Boris Veytsman

Large organizations employ full-time staffers dealing
with social media. The TEX Users Group is tiny, so
this work is done by volunteers in their free time. In
particular, one of my duties as TUG president is the
support of our Twitter account. (By the way, if you
do not follow @TeXUsersGroup, you may want to.) A
significant number of tweets are announcements from
CTAN: I forward the information about new TEX
packages and the updates for existing ones. While
it is easy enough to create an automatic Twitter
gateway to post CTAN announcements, I prefer to do
this manually; I enjoy starting my day with reading
and sharing the news about the community. CTAN

announcements are succinct and to the point— ideal
Twitter content.

The information about contributions includes
their licenses. Recently while posting it, I was star-
tled to see that the license for a new package bans
its commercial use, and decided to investigate. Gerd
Neugebauer helped me to collect the information
presented in Table 1. The LPPL seems to be the
most popular license: 56% of packages use it. While
the number of packages with “No commercial use”
in the license is small (only 2.2%), the appearance of
new packages under this is, in my opinion, troubling.

The free software community has a commitment
to lofty ideals, and someone might consider the com-
mercial use of our work “debasing” it. However, this
would be a wrong conclusion. Many important and
noble things are done by commercial entities with
a profit motive. I am writing this in the middle of
a pandemic, and our hope to overcome it is based
on the vaccines, developed in record time by com-
mercial companies with the clear intention to make
a profit in the process of saving people. If you are
a software author, do you really want to prevent
your work from being used for vaccine development?
Speaking about the TEX community, our software is
widely used by publishers around the world. Do we
consider the work of Johannes Gutenberg or Aldus
Manutius less worthy because it was done with the
need to make a living? On the other hand, there are,
unfortunately, many examples of quite bad things
done with motives other than direct profit.

Creative Commons guidelines helpfully explain
that the most common non-commercial license, CC-
NC, prohibits only the use “primarily intended for or
directed toward commercial advantage or monetary
compensation”, and a commercial entity might still
use software having an NC license if its primary

Table 1: CTAN package licenses (March 19, 2021)

License Packages

LPPL, all versions 3448
GPL, all versions 748
Public domain or CC0 300
Open Font licenses (SIL, GFL, GFSL) 157
MIT license 125
BSD licenses, all versions 76
Knuth license 55
Free Documentation License 23
LGPL, all versions 22
Apache license 20
Perl Artistic license, all versions 12
CC BY 12
CC BY-SA, all versions 17
ISC license 2
Open Publication license 1
Other free licenses 353
‘Collection’ or ‘Digest’ license tag 24
No commercial use, all licenses 139
License that prevents distribution 73
No source available 29
Shareware 24
Unknown status 553

intention is different. However, the cost of possible
litigation makes the use of this software rather risky
for a commercial entity in all cases. The even more
helpful explanation that a non-profit organization
can be in violation if its intentions are wrong makes
it risky for non-commercial entities as well.

Our flagship distribution, TEXLive, does not
include non-commercial software. As a non-profit,
we probably have the right to distribute it (but see
above). However, we want to create a TEX distri-
bution that anybody can just use, without evaluat-
ing thousands of licenses for the included packages.
Moreover, we want anybody to be able to redistribute
it, for example, by selling computers with TEXLive
among the preloaded software packages. Thus by
using a restrictive license, you prevent your package
from being included in TEXLive and significantly
decrease the number of its users.

To tell the truth, I see only one use case for a non-
commercial license: if you plan to separately license
your software to commercial entities and charge them.
However, this seems to be a rather rare situation for
the TEX world.

I think that from an ethical and practical stand-
point it makes most sense to follow Knuth’s example
and distribute your software under a non-restrictive
license.

⋄ Boris Veytsman
president (at) tug dot org

doi.org/10.47397/tb/42-1/tb130pres

From the president

4 TUGboat, Volume 42 (2021), No. 1

Editorial comments

Barbara Beeton

R.I.P. Bob Morris

Bob Morris was one of the crew sent to Stanford
by the AMS in July 1979 for the purpose of learn-
ing TEX, developing the AMS-TEX macros, and from
there, communicating this new tool to the mathemat-
ical community as the mechanism for producing the
publications in which they broadcast their research.
This included the birth of the TEX Users Group in
1980 and active participation in the governance of
TUG for several years.

Bob passed away on February 6, after a life
filled with many adventures in digital typography,
including leading research in this discipline at the
University of Massachusetts, Boston. An interview
with Dave Walden on the TUG web site1 provides
details of these activities as well as his earlier back-
ground.

He is remembered by those who knew him as a
source of interesting ideas and a strong determina-
tion that something started should be investigated
thoroughly.

His daughter Rachel remembers him thus,

In life, my dad enjoyed taking things apart
to discover how to put them back together
better, whether physical or metaphysical. He
was a philanthropist, a world traveler, an avid
reader of non-fiction and science fiction, en-
joyed a wide array of music, and dabbled in
hobbies through the years, such as photog-
raphy, ceramics, playing Go, and ham radio
(which he gave up once Morse code was, to
his disappointment, no longer required). He
was proud that his Erdős number is three.

BaKoMa author has died

It was reported that Basil K. Malyshev passed away
in 2019, but nothing more is known. Malyshev was
best known in the TEX world for creating an exten-
sion of TEX that incorporated a WYSIWYG GUI,
emulating MS Word.

A Russian physicist, Malyshev developed a wide
array of TEX-related software, including a font con-
verter to translate Metafont output to Type 1. All
his software was released as shareware. The BaKoMa
web site2 remains intact, as do the packages posted
to CTAN, and more information about the software
and fonts can be found there.

1 tug.org/interviews/morris.html
2 www.bakoma-tex.com

J. W. Gibbs and why an annual lecture

is named for him

J(osiah) Willard Gibbs was a professor of mathe-
matical physics at Yale University in the late 19th
century. Yale awarded Gibbs the first American doc-
torate in engineering in 1863. In 1866, he traveled to
Europe, where he attended lectures in mathematics
and physics. After several years, he returned to Yale,
and spent the rest of his career there. He developed
theories affecting physics, chemistry, mathematics
and, perhaps best remembered today, applications
of thermodynamics.

He submitted manuscripts reporting his work
to a łlocalž journal, with this result.3

Back in 1873, Gibbs had little idea of the epic
consequences of his papers. Modest and unas-
suming, he sent his work to the little-known
Transactions of the Connecticut Academy of

Arts and Science, which had no readership out-
side Yale. Moreover, because Gibbs’s papers
were longer than the articles usually published
by the Transactions and because they con-
tained mathematical formulas, their typeset-
ting costs exceeded the publication’s budget.
To cover these, the editorial committee had to
obtain donations from other faculty members
and local businessmen. One committee mem-
ber, A. E. Verrill, later recalled that they had
long discussions about the merits of Gibbs’s
papers even though no one on the committee
understood them. łYet we all believed what
Gibbs wrote must be of intrinsic value in his
branch of science. Therefore, we raised the
money and printed each paper as it came in.ž

(What are the chances that an editorial committee
today would have such faith in the value of a first
manuscript, even one by an author at their own
institution?)

Gibbs’s work was appreciated in both the U.S.

and Europe, and in 1901 he was awarded the Copley
Medal, the oldest and most prestigious award of the
Royal Society of London. (Other recipients of this
medal include Benjamin Franklin, Charles Darwin,
and Albert Einstein.4)

In 1923, the Council of the American Mathe-
matical Society established the Josiah Willard Gibbs

3 Paul Sen, Einstein’s Fridge: How the Difference

between Hot and Cold Explains the Universe, Scribner: An

imprint of Simon & Schuster, Inc., New York, 2021. Quoted

with permission.
4 The list of recipients is stunning:

britannica.com/science/Copley-Medal

doi.org/10.47397/tb/42-1/tb130beet

tug.org/interviews/morris.html
http://www.bakoma-tex.com
https://britannica.com/science/Copley-Medal
https://doi.org/10.47397/tb/42-1/tb130beet

TUGboat, Volume 42 (2021), No. 1 5

Lectureship, łin order to show the public some idea
of the aspects of mathematics and its applications.ž5

Don Knuth was the Gibbs Lecturer in 1978,
when he lectured on łComputers in the service of
mathematicsž. An important point made in that
lecture was the characterization of mathematics com-
position as łpenalty copyž, on account of the difficulty,
and for that reason, the high cost. Thus began the
public journey of TEX.

Jubilees to celebrate: Computers &

Typesetting and 50 years of the ebook

The end of December 2020 marked the delivery of
the accumulated bug reports to Don Knuth for the
periodic tuneup of the TEX/METAFONT complex.
Don’s report appears later in this issue.

In addition to the release of the updated soft-
ware, included in TEXLive 2021, this update has
resulted in the preparation of a ł35th Jubilee Editionž
of all five books comprising Computers & Typeset-

ting. The new editions haven’t yet been announced
on the usual web sites, but stay tuned.

Another jubilee was announced on the Project
Gutenberg mail list: 50 years of electronic books.
An illustrated history can be viewed at:
geekupdated.com/50-years-of-ebooks-

illustrated-history/

CTAN mirrors are now https

As of approximately 20 April 2021, the CTAN fea-
ture that automatically chooses a nearby mirror is
now available through https, as well as http. The
new address is https://mirror.ctan.org. Previ-
ously, redirection was available only through http:

//mirror.ctan.org (which still works).
Whether the multiplexer is accessed through

https or http, the mirror chosen will always be
accessed through https. If you are a CTAN mirror
administrator (current or prospective), please ensure
that your mirror is available via https. See ctan.

org/mirrors for the current list of mirrors, and
general information about CTAN mirroring.

TEX Live incorporates a copy of the mirror list,
which is updated every day or two. This is used for
the network updates via tlmgr. The TL list filters
out those mirrors which are more than 36 hours stale
(which are relatively few), since it’s not useful to
access old mirrors for current updates.

5 ams.org/meetings/lectures/meet-gibbs-lect

A self-published LATEX book and ebook

Dan Grec, an inveterate traveler and travel book
author, has described his łjourneyž producing his
book, The Road Chose Me,6 in an essay on the web
page devoted to his travels.

Not wanting to go through the hassle of dealing
with publishers, he decided to take the self-publishing
route. Since he started out as a software engineer,
he was used to (and not intimidated by) computer
lingo, and chose LATEX as the main input medium.

One significant attraction to self publishing is
also its biggest downside: It’s all up to you as the
author!

He lists three goals for the result:

• The result should look professional, an effect he
did not find satisfied by Word.

• The same source files should produce both the
print book and the epub file.

• The whole process had to be automated.

After ła bunch of researchž, he settled on LATEX:

The more I dug into it, the more I realized
it’s a full-blown programming language, and
it would certainly give me the pixel-perfect
layout control I was looking for, [. . .]

Searching further, he came across Pandoc, łoften
called the swiss army knife of document converters.ž
That is what he decided to use for the conversion
from LATEX to an industry standard epub file. He
did consider using Markdown, though he doubts that
it can provide the fine control provided by LATEX.

The remainder of the essay presents the details
of constructing the book, including technical physical
details of the book layout and relevant examples of
the code used. Whenever something confusing is
encountered, an explanation is forthcoming.

Not all was smooth sailing Ð several later addi-
tions indicate changes in the production ŕow when
certain online facilities became unavailable due to
renaming or for other reasons. But LATEX itself re-
mained stable.

The clarity of the presentation and explanations,
and the subject matter of the book itself lead me
to think that I would enjoy reading it, something I
intend to consider seriously.

Thanks to Paul Campbell for calling this to my
attention.

⋄ Barbara Beeton

https://tug.org/TUGboat

tugboat (at) tug dot org

6 theroadchoseme.com/how-i-self-published-a-

professional-paperback-and-ebook-using-latex-and-

pandoc

https://geekupdated.com/50-years-of-ebooks-illustrated-history/
https://geekupdated.com/50-years-of-ebooks-illustrated-history/
https://mirror.ctan.org
http://mirror.ctan.org
http://mirror.ctan.org
https://ctan.org/mirrors
https://ctan.org/mirrors
https://ams.org/meetings/lectures/meet-gibbs-lect
http://theroadchoseme.com/how-i-self-published-a-professional-paperback-and-ebook-using-latex-and-pandoc
http://theroadchoseme.com/how-i-self-published-a-professional-paperback-and-ebook-using-latex-and-pandoc
http://theroadchoseme.com/how-i-self-published-a-professional-paperback-and-ebook-using-latex-and-pandoc

6 TUGboat, Volume 42 (2021), No. 1

Hendrik Vervliet: 1923–2020

Jacques André

In the previous issue of TUGboat, Charles Bigelow
reviewed two books by Hendrik D.L. Vervliet.1 Alas,
Hendrik Vervliet passed away on August 5th, 2020,
at the age of 96.

In his career, Vervliet was a professor and li-
brarian of the University of Antwerp as well as pro-
fessor of book and library history of the University
of Amsterdam. However, he worked mainly at the
Museum Plantin-Moretus at Antwerp where he was
still present a very few years ago: he never stopped
working and, despite age and illness, was still writing
papers, most recently on Granjon’s civilité types,2

his first love.
Vervliet was particularly known for his work

on the sixteenth-century typefaces in France, Bel-
gium and the Netherlands. Besides the two books on
Granjon reviewed by Bigelow, his major books are,
from my point of view:3 French Renaissance printing

types: a Conspectus (London, U.K.: The Bibliograph-
ical Society/ Printing Historical Society; New Castle,
Delaware: Oak Knoll Press, 2010; bibsoc.org.uk/
publications/vervliet_printing_types) and its
complementary collection of essays, The palaeotypog-

raphy of the French Renaissance: Selected papers

on sixteenth-century typefaces, two volumes (Lei-
den: Koninklijke Brill NV, 2008; brill.com/view/
title/17788).

The Conspectus is a meticulous catalogue of the
four hundred and nine typefaces cut in sixteenth-
century France. Each typeface is illustrated with an
image of the characters at actual size, with examples
of use in context, date of occurrences, and bibliogra-
phy (an example page, cropped to the text, is shown
below). This is done with Vervliet’s customary rigor:
precise measurement of a type with the x-height, the
height of capital letters and the height of 20 solid

1 Charles Bigelow, ‘Book reviews: Robert Granjon,

letter-cutter, and Granjon’s Flowers, by Hendrik D.L.
Vervliet’, TUGboat Vol. 41 (2020), No. 3, pp. 355–357;
tug.org/books/tb129reviews-vervliet.html

2 Hendrik DL Vervliet, ‘Danfrie Reconsidered.
Philippe Danfrie’s (d. 1606) Civilite Types’,
The Library, Vol. 21, Iss. 1, March 2020, pp. 3–45;
academic.oup.com/library/article/21/1/3/5809221

3 About these books, more valuable opinions by
historians of types can be found, e.g.: James Mosley,
‘Review of The Palaeotypography . . . ’, The Library,
Vol. 12, Iss. 2, June 2011, pp. 175–178;
doi.org/10.1093/library/12.2.175; also,
William Kemp and Henri-Paul Bronsard, ‘The Types of
the French Renaissance’, The Papers of the Bibliographical

Society of America, Vol. 106, No. 2, June 2012, pp. 231–256;
jstor.org/stable/10.1086/680637

text lines (a concept adapted from the old method of
Proctor-McKerrow and which allows determination
of the body size). These parameters minimize the er-
rors of attribution of types, which are rather frequent.
Remember, for instance, that Claude Garamont de-
signed about two dozen Roman types with more or
less the same appearance: without precise measure-
ments, how could you distinguish them? Vervliet
was an entomologist or a paleontologist! In fact, he
defined himself as a palaeotypographer, and already
some historians of type use his method. The history
of types restarts on a good track.

I have been in touch with Hendrik for about
twelve years and I always have been fascinated by his
rigor together with his kindness. He always answered
my questions and quite often went to the Plantin
Museum to send me scans.

His passing has been as discreet as he was during
all his life. However, he was a great man. Fortunately
his printed work will remain. No valuable work on
European typography can ignore his writings.

⋄ Jacques André

http://jacques-andre.fr

An example page from Vervliet’s Conspectus.

doi.org/10.47397/tb/42-1/tb130andre-vervliet

Jacques André

The TEX tuneup of 2021

Donald Knuth

This is the promised sequel to previous reports from
2008 [3] and 2014 [4]. Once again I’m immensely
grateful to everybody who contributed potential er-
rata to the “core” of TEX and METAFONT, and to
the wonderful team of experts— led this time by
Karl Berry—who checked their input carefully and
filtered it down to a list of issues that definitely de-
manded attention. According to our longstanding
plan, I received that list on 31 December 2020.

Karl will write separately about his role as a
meta-filter. Let me just remark that, when I did
the previous round of maintenance seven years ago,
I had to deal with “more than two dozen potentially
troublesome topics” [4]. This time the number was
more than 250(!).

As in 2008 and 2014, both TEX and METAFONT

have changed slightly and gained new digits in their
version numbers. But again there’s good news, be-
cause the changes are essentially invisible. I can’t
resist quoting once more from [3], because it reflects
my unwavering philosophy (see [2]):

The index to Digital Typography lists eleven
pages where the importance of stability is
stressed, and I urge all maintainers of TEX
and METAFONT to read them again every few
years. Any object of nontrivial complexity
is non-optimum, in the sense that it can be
improved in some way (while still remaining
non-optimum); therefore there’s always a rea-
son to change anything that isn’t trivial. But
one of TEX’s principal advantages is the fact
that it does not change—except for serious
flaws whose correction is unlikely to affect
more than a very tiny number of archival
documents.

Users can rest assured that I haven’t “broken” any-
thing in this round of improvements. Everyone can
upgrade or not, at their convenience.

TEX Version 3.141592653

Let’s get down to specifics. The new version of TEX
differs from the old one in five not-completely-trivial
ways, mostly having to do with corrections to TEX’s
attempts at recovering from errors.

The first two of these anomalies were found by
Xiaosa Zhang and reported last summer on tex.

stackexchange [5, 6]. He discovered a sneaky com-
bination of keystrokes with which last year’s TEX
permitted you to get into \batchmode while contin-
uing to interact at the terminal(!). Furthermore, he

TUGboat, Volume 42 (2021), No. 1 7

found that TEX’s exit-and-edit option—typing ‘E’
in response to an error prompt—was sometimes of-
fered when it shouldn’t have been, at times when an
input file wasn’t actively being read.

Both of those bugs could crash the system. So
those two doors are now closed.

Another strange interaction had been noticed in
2017 by Udo Wermuth, who found that TEX could
mysteriously seem to stop dead in its tracks while
\tracingparagraphs was active. (The reason was
that TEX had found and reported an error, which
went into the transcript file. TEX was silently wait-
ing for Udo to respond to that message, not realizing
that messages are not echoed to the user’s terminal
while paragraphs are being traced.) In the future,
TEX will not remain silent; the user will see the error
message and be asked to respond.

Late last year Udo was bitten by quite a dif-
ferent sort of bug. This one has nothing to do with
interaction, and it might possibly have occurred
to others in some “real” runs of TEX during the
past 35 years or so (although I doubt it): Previ-
ous versions of TEX have mistakenly allowed the
〈replacement text〉 of a macro to begin just after,
say, ‘#\bgroup’— contrary to a rule that’s stated
clearly in the fine print of The TEXbook [A, bottom
of page 275].

Henceforth TEX shall rigidly enforce that rule.
Anybody who previously had written

\def\cs#1#\bgroup hi#1}

will now get an error message. And they should now
write

\def\cs#1\bgroup{hi#1\bgroup}

if they want to reproduce the former behavior.
Finally, on 22 October 2020, Bruno Le Floch

reported what might well turn out to be the his-
toric “final bug in TEX.” Again it’s about macros.
Suppose you’ve asked for nine parameters, specify-
ing them one by one as #1 through #9. Then you’re
not supposed to say ‘#’ again until finishing off the
〈parameter text〉, because #9 is TEX’s upper limit.
However, maybe you’re feeling naughty and actually
do type ‘#’ improperly; TEX will complain:

! You already have nine parameters.

And its help message used to say

I’m going to ignore the # sign you just used.

Which was true. But henceforth the help message
will state the new truth, which is that TEX will also
ignore the next thing that follows the bad #. From
now on, bad stuff won’t be able to get through and
foul things up.

doi.org/10.47397/tb/42-1/tb130knuth-tuneup21

The TEX tuneup of 2021

All five of the bugs mentioned above are big
ticket items, worth 0x$80.00 ($327.68) at the Bank
of San Serriffe [1], because they exposed serious (al-
though rarely tweaked) deficiencies in TEX’s imple-
mentation. Besides those, TEX 3.141592653 also in-
corporates a number of other comparatively minor
bugfixes. For example, with previous versions you
could really screw up the end of your transcript file
by saying \newlinechar=‘p.

Plain TEX has also changed in a minor way, for
consistency: It now ensures that \muskip255 and
\toks255 are available as “scratch registers” (never
allocated by \newmuskip or \newtoks). The new
incarnation defines \fmtversion as 3.1415926535.

The least trivial of these additional changes
are noted in updates to TEX: The Program [B],
which now can be found in PDF form on the web-
page [9] and in a file called errata.tex. They ap-
pear also in files called errorlog.tex, tex82.bug,
and plain.tex. But the full truth resides, as al-
ways, in the updated master source file tex.web.
All five of those key files continue to appear on-
line in directory systems/knuth/dist of the CTAN

archive [7].
The error log of TEX began in 1978, and its first

14 years are documented in [8, Chapters 10 and 11].
The next several years are covered in [2, Chapter 34],
ending with bug #933, dated 10 March 1995 and
found by Peter Breitenlohner. And hey, who knows,
the log may at last have gained its final entry—
which is #957.

While I was preparing this round of updates, I
was overjoyed to see how well the philosophy of lit-
erate programming has facilitated everything. This
multifaceted program was written 40 years ago, yet I
could still get back into TEX’s darkest corners with-
out trouble, just by rereading [B] and using its index
and mini-indexes! I can’t help but ascribe most of
TEX’s success to the fact that it has enabled literate
programming.

METAFONT Version 2.71828182

And what about TEX’s partner? I almost thought
that METAFONT’s version number should stay at
2.7182818, because the outputs of the newly up-
graded program don’t differ from what would have
been obtained last year except in trivial ways. For
example, some of the help messages are now slightly
different.

However, the two TEX bugs found by Xiaosa
Zhang apply also to interaction with METAFONT.
Therefore I now believe, in view of [6], that the his-
toric “final bug in METAFONT” was found on 03
July 2020, although he was actually using TEX.

8 TUGboat, Volume 42 (2021), No. 1

TEXware and METAFONTware

I made minor updates to the master web files for
more than a dozen other programs, mostly to cor-
rect spelling errors, to add Oxford commas, and to
make them more consistent with each other. Doug
McKenna and David Fuchs found two obscure bugs
in TANGLE and WEAVE that hadn’t been noticed
since the early 80s(!). Here is a current list of all the
web files for which I have traditionally been respon-
sible:
name current version date

dvitype.web 3.6 December 1995
gftodvi.web 3.0 October 1989
gftopk.web 2.4 January 2014
gftype.web 3.1 March 1991
mf.web 2.71828182 January 2021
mft.web 2.1 January 2021
pltotf.web 3.6 January 2014
pooltype.web 3.0 September 1989
tangle.web 4.6 January 2021
tex.web 3.141592653 January 2021
tftopl.web 3.3 January 2014
vftovp.web 1.4 January 2014
vptovf.web 1.6 January 2014
weave.web 4.5 January 2021

Typographic errors and other blunders

So far I’ve only been discussing anomalies that were
detected in the software. But of course people have
also reported problematic aspects of the documen-
tation—which may actually be the hardest thing to
get right. Although The TEXbook [A] has been un-
der intense scrutiny for almost forty years, readers
from around the world have continued to find signif-
icant ways to improve it, for instance by amending
the answers to some of the more difficult exercises.

The most important new changes to The TEX-

book involve the way it describes the intricate de-
tails of spacing within math formulas. My origi-
nal discussion of “Inner atoms” was unfortunately
quite wrong; yet apparently nobody noticed those
mistakes until December 2018, when Sophie Alpert
identified some key inconsistencies in Appendix G.
Several pages of fine print needed to change, and
of course I’m happy to have the true story finally
nailed down.

Other significant amendments include more
precise syntax regarding things like discretionaries,
hyphens, and patterns. Many enhancements have
also been made to the index. Altogether, it has
turned out that at least 93 of The TEXbook’s 483
pages have been improved in some way (about 19%).

And The 89:;<=>:book has improved even
more—on 128 of its 361 pages (35%). A typo was

Donald Knuth

even found in its Table of Contents! Two of the
leading contributors to this bug hunt, Hu Yajie and
Udo Wermuth, must surely rank among the abso-
lutely top proofreaders of the world, possibly of all
time. In particular, Yajie not only suggested many
mutually orthogonal ways to apply spit and polish
to this multidisciplinary book, but also helped me
to straighten out the formal syntax of METAFONT’s
expressions.

Computers & Typesetting Jubilee

One of the highlights of my life took place on 21 May
1986, when Addison–Wesley arranged for an all-day
event [10] at Boston’s Computer Museum, to cele-
brate the completion of TEX and METAFONT. It was
the first time I’d gotten a glimpse of the books [A,
B, C, D, E], which were literally “hot off the press.”
And my fondest recollection from that day was the
beaming face of A–W’s cofounder, Mel Cummings,
as he held those five volumes in his hands with ob-
vious pride and satisfaction. He had spent his life
in the printing industry, and devoted it to produc-
ing technical books of the finest quality; so I was
delighted to see his delight.

Having just looked again at each of the 2668
pages in those volumes, I can’t help but feel a re-
flected glow of pride from being associated with this
extraordinary collaborative undertaking, especially
now that it has reached a new peak of perfection. It
seems fair to say that these books represent a sig-
nificant milestone in the history of typography, as
they self-describe every detail of the computations
that went into their own composition. “If copies of
these books were sent to Mars, the Martians would
be able to use them to recreate the patterns of 0s
and 1s that were used in the typesetting.”[10]

Therefore I’m extremely pleased to announce
that Addison–Wesley has just published brand new
printings of Volumes A, B, C, and D, dated Febru-
ary 2021, a “35th Jubilee Edition” that contains all
of the refinements that were introduced during this
tuneup. At last the i’s have all been really prop-
erly dotted and the t’s have all been really properly
crossed! (The 2017 printing of Volume E remains
up to date.)

Conclusion

The TEX family of programs seems to be nice
and healthy as it continues to approach perfec-
tion. Chances are nil that any documents produced
by previous versions of TEX or METAFONT will be
affected by the changes in the new versions. Volun-
teers have been stalwart contributors to this success
in optimum ways.

Stay tuned for The TEX Tuneup of 2029?!

TUGboat, Volume 42 (2021), No. 1 9

References

[1] The Bank of San Serriffe, account balances.
https://www-cs-faculty.stanford.edu/

~knuth/boss.html

[2] Donald E. Knuth, Digital Typography

(Stanford, California: Center for the Study
of Language and Information, 1999),
xvi + 685 pages. (CSLI Lecture Notes, no. 78.)
The second printing (2012) contains numerous
corrections.

[3] Donald Knuth, “The TEX tuneup of
2008,” TUGboat 29:2 (2008), 233–238.
tug.org/TUGboat/tb29-2/tb92knut.pdf.

[4] Donald E. Knuth, “The TEX tuneup
of 2014,” TUGboat 35:1 (2014), 5–8.
tug.org/TUGboat/tb35-1/tb109knut.pdf.

[5] , https://tex.stackexchange.com/
questions/551313 (27 June 2020).

[6] , https://tex.stackexchange.com/
questions/552166 (03 July 2020).

[7] CTAN: Comprehensive TEX Archive Network,
https://ctan.org/.

[8] Donald E. Knuth, Literate Programming

(Stanford, California: Center for the Study
of Language and Information, 1992),
xvi + 368 pages. (CSLI Lecture Notes, no. 27.)

[9] Computers & Typesetting, https://www-cs-
faculty.stanford.edu/~knuth/abcde.html.

[10] Barbara Beeton, Peter Gordon, and Donald
Knuth, “Computers & Typesetting coming
out party,” TUGboat 7:2 (June 1986), 93–98.
tug.org/TUGboat/tb07-2/tb15knut.pdf.
(My remarks have also been reprinted, with
amendments, as Chapter 28 of [2].)

[A] Donald E. Knuth, The TEXbook (Reading,
Mass.: Addison–Wesley, 1984), x + 483 pages.
Also published as Computers & Typesetting,
Volume A. Currently in its 35th printing
(paperback, 2017) and 23rd printing
(hardcover, 2021).

[B] Donald E. Knuth, Computers & Typesetting,
Volume B, TEX: The Program (Reading,
Mass.: Addison–Wesley, 1986), xvi+594 pages;
fifth printing (1994), xvi + 600 pages.
Currently in its 11th printing (hardcover, 2021).

[C] Donald E. Knuth, The 89:;<=>:book

(Reading, Mass.: Addison–Wesley, 1986),
xii + 361 pages. Also published as Computers

& Typesetting, Volume C. Currently in its
14th printing (paperback, 2017) and 10th
printing (hardcover, 2021).

The TEX tuneup of 2021

[D] Donald E. Knuth, Computers & Typesetting,
Volume D, 89:;<=>:: The Program

(Reading, Mass.: Addison–Wesley, 1986),
xvi + 560 pages; third printing (1991),
xvi + 566 pages. Currently in its 9th printing
(hardcover, 2021).

[E] Donald E. Knuth, Computers & Typesetting,
Volume E, Computer Modern Typefaces

(Reading, Mass.: Addison–Wesley, 1986),
xvi + 588 pages. Currently in its 8th printing
(hardcover, 2017).

⋄ Donald Knuth

www-cs-faculty.stanford.edu/~knuth

10 TUGboat, Volume 42 (2021), No. 1

TEX entomology in 2021

Karl Berry

Our peerless Ur-Wizard asked me to write a few
words about the filtering and testing process for this
year’s TEX tuneup, which I am glad to do.

First, I am beyond grateful to the many other
people who volunteered to help with the job, and
without whom it would have been an impossible
task: for TEX, Donald Arseneau and David Fuchs;
for METAFONT, Bogus law Jackowski, Piotr Strzel-
czyk, and Jerzy Ludwichowski; and for everything,
Barbara Beeton, who was Don’s entomologist “from
the beginning” until this cycle. She still read every
bug that came in, and provided much useful history
and advice. For many years, Peter Breitenlohner,
who sadly passed away in 2015, and Chris Thompson
were also key members of the group of vetters.

As some sort of bonus to the hundreds of bug
reports for TEX & METAFONT that I sent to Don this
year, I also sent a dozen or so reports on CWEB, for
which I relied on Andreas Scherer to confirm and
elaborate. Andreas is the creator and maintainer of
the cwebbin descendant of CWEB now used in TEX
Live; as has been more widely announced elsewhere,
Don asked Andreas to take over as the maintainer
of the official CWEB as well.

How bugs are reported: Anyone can send re-
ports either to the public mailing list tex-k@tug.org
(lists.tug.org/tex-k), or to me personally if they
want to retain privacy. This is described both on
Don’s web page (www-cs-faculty.stanford.edu/

~knuth/abcde.html#bugs) and on the general infor-
mation page I created for bugs in TEX & METAFONT,
tug.org/texmfbug. This worked out well, with a
number of incoming reports on tex-k being answered
by people other than me, a most welcome outcome.

After some initial triage by me (some reports
had been fixed in later printings, etc.), I sent reports
to the appropriate vetters for discussion. Many could
be easily confirmed, such as obvious typos — but
even there, one of us typically searched all the books
and other WEB sources for the same typo, since so
much material is copied around the TEX system.
Occasionally these searches resulted in bug reports
for the few .web files not maintained by Don, notably
Oren Patashnik’s BibTEX and Tom Rokicki’s PKtype
and PKtoGF, which I directed accordingly.

Other reports took hours of analysis to deter-
mine the root cause, and/or the details of what we
could sensibly suggest to Don, if anything. The cham-
pion in this regard was perhaps Sophie Alpert’s bug
about the treatment of Inner atoms in The TEXbook,
which Don mentioned in his report. Here, we enlisted
Udo Wermuth’s expert help in checking if we were
on the right track with the myriad issues that arose.

One of the most useful checks for all code (as
opposed to textual) bugs was possible due to David
Fuchs, who has implemented a complete build sys-
tem, including a runtime library, which can com-
pile and run all of the original WEB sources without
any change (files) whatsoever. This made it pos-
sible to definitively determine whether some par-
ticular strange behavior was due to the Web2C
or other infrastructure, or was truly in the origi-
nal source. DRF discusses the system in his arti-
cle published in TUGboat 41:1, also available at
tug.org/texmfbug/fuchs-knuthbug.html.

Thanks to Robin Laakso in the TUG office and
long-time TEX colleague Oleg Katsidatze, the original
printed reports with Don’s handwritten comments
have recently been sent back to everyone who pro-
vided physical addresses. In case of physical mail
being lost, we have a scan of all the paper and can
resend copies.

Looking ahead, I plan to record new confirmed
incoming bugs, to be reviewed in the next tuneup,
at tug.org/texmfbug/newbug.html, so potential re-
porters can more easily check for known bugs. A
sibling page, tug.org/texmfbug/nobug.html, lists
a few especially noteworthy non-bugs; it’s not practi-
cal to list every declined report, but publicly listing
the most significant ones seems worthwhile.

In the \end, coordinating these bug reports has
given me a whole new level of appreciation for the
TEX system. Don, thank you for creating it, and
giving it to the world.

⋄ Karl Berry

karl (at) freefriends dot org

https://tug.org/texmfbug

doi.org/10.47397/tb/42-1/tb130berry-filter

Hyphenation exception log

Barbara Beeton

This is a brief update of the list of words that TEX
fails to hyphenate properly for U.S. English. The
full list last appeared in TUGboat 16:1, starting
on page 12, with periodic updates, most recently
in TUGboat 39:2, p. 152. The complete list is given
at tug.org/TUGboat/Contents/listtitle.html
#hyphenationexceptionlog.

The full list, updated through the end of 2020,
is posted on CTAN at ctan.org/pkg/hyphenex,
and in the TEX Live package hyphenex. The TEX-
usable output is the file ushyphex.tex.

The full list has been rearranged, adding a third
group, devoted to chemistry and related disciplines.
The rationale for this revision is that the vocabulary
for this area is common internationally, and the hy-
phenation (since it is based on etymology) is likely
to be the same or very similar regardless of language,
allowing this material to be reused easily.

The reference used to check these hyphenations
is Webster’s Third New International Dictionary,
unabridged, although we very occasionally omit or
add breaks to the dictionary’s on semantic grounds.
Boundless thanks to Win Treese, lover of dictionar-
ies, and owner of the paper edition of the Third, who
has checked items since I lost access to the copy at
AMS on my retirement and then to those at libraries
closed on account of the coronavirus.

Hyphenation for other languages

Hyphenation patterns and rules used by babel and
polyglossia are maintained by a group of volun-
teers who are receptive to problem reports and new
submissions. Please see tug.org/tex-hyphen for
information and contact.

The list—English words

ar-eas areas

cauliflower cau-li-flow-er
colophon col-o-phon
cricket cric-ket

eggshell egg-shell
elec-troen-cephalo-gram elec-tro-en-cephalo-gram
epigraphs epi-graphs

grapheme graph-eme

graphemic gra-phe-mic
graphetic gra-phe-tic

grapholin-guis-tic grapho-lin-guis-tic

home-o-mor-phi-cally ho-meo-mor-phi-cally
in-terele-ment inter-ele-ment

legacy(ies) le-ga-cy(ies)
legate leg-ate
lega-tion le-ga-tion

TUGboat, Volume 42 (2021), No. 1 As of 15 April 2021 11

Lu-a-TeX Lua-TeX

Lu-aLa-TeX Lua-LaTeX
macros mac-ros

MakeIn-dex Make-Index
markup mark-up

passover pass-over
polyvinyl poly-vinyl
potato po-ta-to

prepend(s,-ed,-ing) pre-pend(s,-ed,-ing)

provider pro-vi-der
scriptscript script-script

steril-ity ste-ril-i-ty

stylesheet style-sheet
the-sis(es) thesis(es)

ther-mal ther-mal

tiger ti-ger
tran-spile(s,d) trans-pile(s,d)

tran-spiler trans-pi-ler
tran-spiling trans-pil-ing

Names and non-English words

used in English text

Ar-bor-Text Arbor-Text
Athens Ath-ens

Granjon Gran-jon
Hewlett Hew-lett

Joseph Jo-seph
Max-i-m-il-ian Max-i-mil-ian

Mesopotamia(n) Mes-o-po-ta-mia(n)

Monaco Mon-aco
Mon-tag-nard Mon-ta-gnard

Packard Pack-ard

Pak-istan Paki-stan
Phineas Phin-eas

Pho-to-shop Photo-shop
Robe-spierre Robes-pierre
Schol-ar-TeX Scholar-TeX

ToUni-code To-Unicode

Venezuela Ven-e-zu-e-la
Wingdings Wing-dings

Xe-rox Xerox
polyvinyl poly-vinyl

Words used in chemistry and similar fields

ac-etaminophen acet-a-mi-no-phen
acetyl-cholinesterase ace-tyl-cho-lin-ester-ase
acetyl-choline ace-tyl-cho-line

acetyl-glu-cosamine ace-tyl-glu-cos-amine

adeno-syl-me-thio-n-ine ade-no-syl-me-thi-o-nine
paradichlorodiphenyl-trichloroethane

para-dichloro-diphenyl-trichloro-ethane

⋄ Barbara Beeton

https://tug.org/TUGboat

TUGboat (at) tug dot org

doi.org/10.47397/tb/42-1/tb130hyf

Hyphenation exception log

12 TUGboat, Volume 42 (2021), No. 1

Year 2020 at GUTenberg

Jérémy Just

Abstract

Starting in January 2020, the French-speaking TEX
users group underwent a crisis that could have led to
its dissolution. A vote rejected the idea of disman-
tling the association, but the past months left scars.

1 Context

The year 2020 has been stressful for many out-of-
human-control reasons, due to the Covid-19 pan-
demics. Since the beginning of this period, I’ve been
pleased to see people investing their forced spare
time in new team projects, proactively looking for
the satisfaction of pursuing a common objective with
their fellows, remotely. I did get involved in such
new team projects myself, translating documenta-
tion, providing help to LATEX newcomers and solving
problems with TikZ. I personally feel this involve-
ment, this feeling of “working together”, has been
instrumental in getting through this period with a
healthy mind.

I’ve been taking care of GUTenberg, the French-
speaking TUG, for quite a long time now, but sur-
prisingly, my work for GUTenberg, this year, is not
part of this satisfying involvement, even though it
kept me busy for most of my spare time, and even
more. The GUTenberg association underwent a crisis
triggered by a small group of people. It is now mostly
solved in itself, but it has apparently put an end to
the friendly working atmosphere that had been the
rule for years in the association.

2 The crisis

In mid-January 2020, five persons paid their mem-
bership fees on the same day, and then gathered with
three others to send an email to our public discus-
sion list, asking for the dissolution of the association.
Five were inactive members of the board; some of
them had not paid any membership fees since 2008
or 2012.

There followed a storm of messages on our mail-
ing list, some of them very constructive, others con-
taining near-insults.

In spite of the urgent need for a General Meet-
ing (GM), it was as difficult as in previous years to
agree on a date to hold it. The GM was finally held
on November 14th, by teleconference. 35 persons
attended it.

This meeting was a long-awaited opportunity to
chat about our views for GUTenberg. We had some
great moments of sincerity during the meeting, for

example when some members of the board explained
that they had constituted a “shadow cabinet” (these
are their words) and had been coordinating to block
on purpose any project. As the former president who
had to face this situation, I really appreciated finally
having an explanation for all those blocks.

The question of the dissolution had been asked
in advance to our 104 current members, through
an electronic vote. Out of 54 persons who voted,
5 were in favour of the dissolution of GUTenberg,
and 49 were against it.

We also had to renew the whole board of admin-
istrators. Elections at GUTenberg have long been
a mere formality, as there are usually fewer candi-
dates than the twelve open seats. People volunteer
because they want to help on a specific project led by
the association, or just because they’re interested in
helping in the general management of the association.
But this year, seven candidates applied months be-
fore the GM and constituted an electoral list, asking
voters not to vote for anyone other than them (some
had co-signed the email that triggered the crisis, and
had set up the “shadow cabinet”).

In the end, we managed to fill the twelve seats
of the board and, more importantly, to have new
persons elected. That’s a personal point of view, but
I consider it very important to regularly welcome
newcomers onto the board, for the association to
stay representative of the current community.

A more extensive report of our GM can be found
in La Lettre GUTenberg no41 (in French):
www.gutenberg.eu.org/Lettre-GUTenberg

3 And now?

A few months have now passed since the General
Meeting. I must admit that the atmosphere among
the board is far from the friendly one that we had
when the board was working smoothly.

I feel (personal point of view again) that new-
comers haven’t been integrated, and that too many
discussions take place outside of our discussion list.
An association cannot work based on exclusion.

I’m really worried about the future of GUTen-
berg. It’s one thing to see 49 persons voting against
a dissolution. It’s a completely different problem to
have the association doing things in the interest of
the LATEX community.

The best I can do is urge the community to
gather around projects, and see how GUTenberg can
provide support.

That being said, I can already see one project
for which our General Meeting has been beneficial:
we’ve been hosting a French-speaking LATEX FAQ on
our server for years (the project started in 2011). The

doi.org/10.47397/tb/42-1/tb130just-gut

Jérémy Just

https://www.gutenberg.eu.org/Lettre-GUTenberg
https://doi.org/10.47397/tb/42-1/tb130just-gut

TUGboat, Volume 42 (2021), No. 1 13

wiki was running at a low pace, with limited feedback
from its users. But since last fall, we’re seeing a
dramatic increase in its activity plots, with more
active contributors, and more significant updates to
the contents (see the plots below)!

For those interested, the URL of the FAQ is:
faq.gutenberg.eu.org

I sincerely hope this project will be followed by
others!

4 Acknowledgements

I would like to thank all the members of the inter-
national LATEX community who have asked for some
news from GUTenberg, all year long. And more
specifically, I gratefully acknowledge the support we
received from Arthur Rosendahl, Robin Laakso and
Barbara Beeton (Barbara also kindly asked me to
write this report for TUGboat).

⋄ Jérémy Just

Lyon, France

jeremy (at) jejust dot fr

https://www.gutenberg.eu.org

ORCID 0000-0003-0842-9808

0

200

400

600

800

1,000

1,200

Total pages

Pages

in French

FaQ
LaTEX

O

P
a
g
e

c
o
u
n
t

General Meeting

0

10

20

30

A
c
ti

v
e

a
u
th

o
r
s

20
17

-0
1

20
18

-0
1

20
19

-0
1

20
20

-0
1

20
21

-0
1

10
0

10
2

10
4

Date

N
u
m

b
e
r

o
f

e
d
it

s
p
e
r

w
e
e
k

Lapses in TEX—a look backward

Barbara Beeton

TEX has now been used “in the wild” for over 40 years,
so it’s possible to look back and examine this tool
and its ecosystem to see what decisions might have
been made differently to avoid problems that still ex-
ist today. Some deficiencies are the result of limited
hardware or facilities (such as Unicode) that did not
exist at the time when TEX was created (1978–79).
However, others could reasonably have been imple-
mented differently within the existing limitations,
and these are what will be examined here.

By what authority?

Why can I claim authority to examine this topic?
I was sent to Stanford in the summer of 1979 to

learn TEX under the tutelage of the TEX Project. In
preparation for this assignment, I collected a number
of “good bad examples”, problems that had actually
occurred in publication production at the American
Mathematical Society (AMS). In the event, these
examples proved to be well chosen; a number of them
appear in Appendix D of The TEXbook [5], and the
command \firstmark was newly created to address
an unmet need, evidenced by the insertion of its
syntax handwritten by Don Knuth in my copy of the
ur-TEX manual.

For many years, I was Don’s bug collector (or
“TEX entomologist” as I preferred), distributing re-
ports to individuals whom Don recognized as suffi-
ciently knowledgeable to determine whether a prob-
lem was or was not a bug, communicating their
analysis to the submitter, organizing the reports for
communicating to Don on his predetermined sched-
ule, and in turn communicating Don’s response to
the submitter of the first report. The bug collecting
function was turned over to Karl Berry with the
completion of the 2014 review cycle.

Initial conditions and philosophy

The rationale behind the creation of TEX has been
thoroughly covered in Knuth’s 1978 Gibbs Lecture [4].
The first implementation in SAIL was eagerly adopted
by some local academics and visitors to Stanford who
had access to the requisite hardware. But it soon
became apparent that a portable implementation
would serve a much larger audience who needed this
tool, so a widely available subset of Pascal was chosen
for TEX82, and a new tool, WEB, was developed that
would make it possible to code the program and
publish it in an intelligible “public” form that could
be read and understood by a technically literate
audience (TEX: The Program [6]).

doi.org/10.47397/tb/42-1/tb130beeton-lapses

Lapses in TEX—a look backward

14 TUGboat, Volume 42 (2021), No. 1

We must recognize that the original target for
TEX’s output was print. TEX predates the World
Wide Web, Unicode, and the high-resolution screens
attached to very fast processors that have made it
possible for someone to read a document directly
from the electronic representation. In order to meet
these “new” requirements most effectively, the docu-
ment structure needs to be preserved in the final
electronic form. Several elements important to this
goal will be evident in what follows.

8-bit limitation

It’s a bit unfair to fault this limitation, since Unicode
didn’t exist until 1987, long after Knuth had returned
to his work on The Art of Computer Programming.
TEX78 was based on 7-bit fonts; the basic ASCII

arrangement was carried into TEX82, still with seven
bits “live”, although eight bits were built into the
code structure, and full eight-bit input support was
added in 1989.

A 256-character font encoding was devised in
1990 at a TEX meeting in Cork [2]. This arrange-
ment didn’t match any of the standard 8-bit Euro-
pean encodings; however, an attempt was made to
accommodate all the accented letters, variants and
digraphs required for Western European languages.
Input encodings were then developed to permit direct
input of these alphabetic characters from keyboards
that provided them.

It was possible within this limitation to imple-
ment Cyrillic for most Slavic languages, with input
based on the Mathematical Reviews transliteration, a
rather complex ligaturing mechanism, and requiring
only a few control sequences [1, p. 17]. Other alpha-
betic fonts created for this “unextended” version (as
reported in TUGboat) were Vietnamese, Hebrew,
modern Greek, Arabic, Croatian glagolitic, Ethiopic,
and the International Phonetic Alphabet (IPA).

With the introduction of X ETEX in 2005 and
LuaTEX at about the same time, input was opened up
to accept Unicode natively, and support was provided
for OpenType and TrueType fonts. For the basic TEX
engine (with LATEX preloaded) \inputenc{utf8}

was implemented, but input of accented letters is
converted to the \cs⟨letter⟩ form for processing, and
TEX fonts are still limited to 256 characters.

For languages where the input order of charac-
ters does not necessarily match the display order,
8-bit input is insufficient. Supporting this would
have required extensive (breaking) changes to the
program, exceeding Don’s requirements. An “early”
extension to TEX, Omega [3], was first presented
in 1994, but has since been abandoned. Nonlinear
composition requirements are now implemented by

font-shaping mechanisms, not by the main composi-
tion engine (cf. [8]).

Limitation of the character box

The “shape” of a TEX character is defined as a rect-
angle (or a parallelogram for sloped characters) with
the origin at the baseline on the left side (for left-to-
right scripts) and a width measured at the baseline.
TEX uses only the metrics. While this simplicity per-
mits efficient calculation of necessary values for line
and paragraph breaking, without adjustments the
spacing of adjacent characters may not be optimal,
regardless of the quality of their design.

This model is most appropriate for Western al-
phabetic languages, which typically have reliably
“restricted” shapes, even taking diacritics into con-
sideration. Font-shaping mechanisms developed to
handle more complex scripts have been mentioned
in the previous section.

Within the existing design, two adjustments are
provided, recorded in the .tfm files used by TEX82:
explicit kerning and the “italic correction”, a value
indicating the overhang of a tall sloped letter. There
is no corresponding adjustment for the left-hand side,
which results in the following suboptimal appearance,
depending on the letter beginning a new line:

Watch the left margin.
This is one example.

The normal flush left margin.
What about this?

One last line.
Hermann Zapf’s microtypography addressed this.

In the Computer Modern fonts no kerning is
specified between any lowercase letter and a follow-
ing uppercase. Since CamelCase was not in heavy
use when TEX was created, we ignore this omission
here. But kerning between an uppercase letter and a
following lowercase is also nearly nonexistent, leading
to the unfortunate spacing of the combination “Av”,
among others, which could have been avoided.

Let’s look at the situation where punctuation
follows uppercase. This too is unkerned, and can
yield particularly unsightly results in bibliographies,
which are often overrun with initials (and not easily
managed). Some examples, showing manual adjust-
ments that have been used in this issue:
P.O. Box P.O. Box

P.O. Box P.\thinspace O.~Box

W.J. Martin W.J. Martin

W.J. Martin
W\kern-.05em.\kern.07em J\kern.01em. Martin

In math, the situation is somewhat different.
While in text the spacing of adjacent letters is set
based only on their origins and width, in math the

Barbara Beeton

TUGboat, Volume 42 (2021), No. 1 15

italic correction is always applied, increasing inter-
character spacing. This is particularly noticeable in
sub- and superscripts:

AxB AfB PxQ PfQ

This can be adjusted manually by applying a negative
or positive thin space, and Knuth in The TEXbook

recommends manual attention. But this can get
tiring, and some instances can be missed in proof-
reading, leading to inconsistent appearance.

A recent post on tex.stackexchange.com1 con-
tained a repetitious example of bad spacing that was
easily addressed by an ad hoc definition.

(

∂f0

∂ηt

) (

∂f0

∂ηt

)

This definition is applied in the obvious location.

\def\partialf{\partial\mkern-2mu f}

$$ \biggl(

{ \partial f^0 \over \partial \eta_t }

\biggr)

$$

Another tex.stackexchange post2 asks for “op-
tically balanced space” in expressions such as the
following.

ei · ej ̸= ei × ej ̸= ei ∧ ej ̸= ei ⊗ ej

Compare the more uniform spacing of this expression,
where subscripts don’t disturb the “line”.

a · b ̸= a× b ̸= a ∧ b ̸= a⊗ b

The requested spacing is not possible without know-
ing more details about the shapes of all characters
that can appear in math expressions. (Whether or
not such a request is reasonable or desirable has been
asked in a comment to the request. This question
will be ignored here.)

Limitations imposed by the line-breaking

algorithm

Baselines aren’t “frozen” until the end of a paragraph,
and it’s bad style to break a page between text and
a display, so in effect, the display is part of the
preceding paragraph. If a display is set in a font
size different from (usually smaller than) that of the
preceding paragraph, the wrong baselines are applied
to that text.

It’s possible to adjust this manually, but many
(most?) people are unaware of it, and scrunched
paragraphs can be seen in otherwise fine math papers.
Look at this paragraph; the display that follows is
set in \footnotesize.

a+ b = c

d+ e = f

1 https://tex.stackexchange.com/q/592191
2 https://tex.stackexchange.com/q/581045

Even if the text following the different-sized display
doesn’t start a new paragraph, the normal baselines
are restored. This code produced the example:

\begingroup \footnotesize

$$

\eqalign{

a + b &= c \cr d + e &= f \cr }

$$

\endgroup

Line breaking by paragraph places some limita-
tions on desirable formatting.

• If a paragraph is broken at the end of a page,
and a different page width is wanted on the next
page, that change can’t be applied automati-
cally.

• Sometimes, a by-line view is preferable to a by-
paragraph view, for example, to facilitate com-
munication of editorial suggestions. A change
in line width affects line numbers. (Line num-
bers are required, for example, for some legal
documents.)

• It’s not easy to reflow material for, e.g., screen
presentations.

Two-dimensional material vs. “the grid”

In addition to the baseline anomaly shown above,
the design of TEX makes it difficult to maintain uni-
form baselines throughout a document. Historically,
printers have tried to achieve layouts in which lines
of type match up on the front and back of a page;
this was particularly important on thin paper, where
what’s on the other side might “read through” if it
is set between the lines on the reading side. This
uniform spacing is known as “grid typesetting”.

Uniform baselines aren’t difficult to achieve with
straight text, but several forms of printed material
are by definition two dimensional—most notably
math, chemical structures and music. Forcing them
onto a grid can result in either squeezing or inserting
excess space, degrading comprehensibility.

A few TEX practitioners have devised means
to achieve grid layout, but in the presence of espe-
cially complex math structures, the problem may be
intractable.

A fraction anomaly

In math processing, the gap between a fraction line
and the numerator or denominator is defined to be
the same height as the thickness of the fraction line;
this is governed by the setting of font dimension 8 in
the math extension (family 3) .tfm file (rule 10 in
Appendix G of The TEXbook. with its application
to fractions explained in rule 15). If for some reason

Lapses in TEX—a look backward

16 TUGboat, Volume 42 (2021), No. 1

the fraction line is made thicker, the gap quickly
becomes too large.

The (primitive) command \abovewithdelims

demonstrates the problem. An alternative is implied
by the description of the command \above, which ac-
cepts just a ⟨dimen⟩. The example in The TEXbook

shows 1pt as the dimension, and this looks promis-
ing, but as it turns out, this is treated in the same
way as \abovewithdelims, so if a larger dimension
is specified, the gap expands accordingly.

af

fa

af

fa

af

fa

af

fa

Ideally, the gap should either increase more slowly, or
require an explicit setting. It’s likely that the need to
accommodate such a situation was never predicted;
it’s quite rare. But when it does occur, the result is
a distinct surprise, and a search for documentation
doesn’t find any.

This code produces the example shown above:

$$

{af \over fa} \qquad

{af \abovewithdelims.. 3pt fa} \qquad

{af \above1pt fa} \qquad {af \above4pt fa}

$$

Hyphenation discrimination

All permissible hyphenation points are weighted the
same, but in English (as in many languages), it is
often better to preferentially hyphenate a compound
word at the junction of its lexical elements. This is
especially important in chemical and similar terms.

For example, let’s adopt a convention that a hy-
phen shows the position of a normal hyphen, while an
equals sign shows the location of a lexical (preferable)
breakpoint, separating elements of a compound.
pho-to=syn-the-sis

pa-ra=di-chlo-ro=ben-zene

(Aside: All proper breakpoints in “photosynthesis”
are identified by TEX’s (U.S.) hyphenation algorithm,
but only the last in “paradichloroben-zene”.)

The dictionary used for developing the U.S. pat-
terns has hyphenation indicated at only one level,
so this limitation is not surprising. But the dictio-
nary underlying the British patterns records two
levels, based primarily on etymology, but also on
syllabification. (The U.S. patterns, based on pronun-
ciation, sometimes coincide with etymology, but it’s
not guaranteed. Technical terms are more likely to
be hyphenated according to etymology.)

A two-level mechanism is even more desirable
for agglutinative languages like German, and alterna-
tive mechanisms have been devised where necessary,

but this would have been simpler had a two-level
mechanism been included in the design.

Finally, if a text is to be properly reconstructed
from the printed output, it must be possible to dis-
tinguish between hyphens that are inherent in the
text and those introduced by the hyphenation rou-
tine. This information is lost after composition, and
failure to restore it properly may change the mean-
ing. In addition, inclusion of language markers in
the output would be a useful adjunct here.

Missing spaces

In the original design of TEX output, only characters
and their (relative) positions are present. The space
character is absent; what is seen on a page is the
illusion of a space, provided by the gap separating
not-quite-adjacent glyphs. This is not remedied by
PDF, and spaces can be lost when text is cut-and-
pasted, unless the gap exceeds a certain minimum
width.

But a different approach might have been taken,
namely the marking of word boundaries. Nelson
Beebe states that this “could have been trivially in-
cluded in the original SAIL version with no significant
memory increase.” The presence of such markers
could support checking for delimiter balancing, spell-
ing, grammar and syntax, all of which are best done
on the typeset form, not the input.

One way! Do not back up!

TEX input is processed in a one-way stream, with no
provision made for backtracking. This means that it
may be impossible to trap and save the last character
or token in a string without parsing the whole string
or otherwise predefining some particular feature that
can be used to isolate it. (It is possible to apply
special processing to the last line of a paragraph,
calling on \lastskip, \lastbox, etc.)

One situation requiring special treatment of a
single terminal character is the different shape of a
terminal sigma in Greek (ς vs. σ). In one approach,
the letter ‘c’ is input following a final sigma, and
the two letters are ligatured to produce the desired
shape. A different mechanism, ⟨boundarychar⟩, was
added with the 8-bit update, but its application is
not entirely trivial, and most users understandably
prefer a more explicit solution.

Where is the origin?

TEX itself completely avoids discussing page dimen-
sions. The imaging software assumes \hoffset=0pt,
\voffset=0pt, extending downward. This is oppo-
site from what is assumed for traditional printing,
where the origin is at the bottom left and extends

Barbara Beeton

TUGboat, Volume 42 (2021), No. 1 17

upward. The printing devices available when TEX
was developed were (and most devices today still
are) unable to print at the absolute edge of the out-
put medium; this was often blocked by the gripping
mechanism, and although it was only a small fraction
of an inch, it might not have been the same for all
devices, so the origin couldn’t be set at zero. Instead,
an easy to remember value for a position inside of
this limit was assigned: 1in,1in from the upper left
corner, a setting that is a source of consternation for
the myriad TEX users located in regions using the
metric system.

What is the origin of this one-inch origin?
In the U.S., paper was usually assumed to be

lettersize, 8.5 by 11 inches, and a common size for
the text block was \hsize=6.5in by \vsize=8.9in,
which results in one-inch side and top margins and a
1.1 inch bottom margin (into which a page number
is often dropped) when a full page is centered. This
value was selected for the fixed origin, in order to
provide a consistent value for the software. David
Fuchs, developer of the earliest output device driver,
was (to the best of my memory) the person who
established the value.

The inherent ability of laser printers to print on
different paper sizes is limited by driver support, and
nonstandard dimensions are blocked or lost. pdftex
introduced primitives for page dimensions and sev-
eral different page boxes required by PDF, but even
when laser printers became generally available, the
1-inch value was retained for the sake of backward
compatibility.

One last thing to think about

When TEX was created, the only way to read a TEX
document was on paper or from the source file. But
since then, considerable software has emerged for
PDF text analysis, optical recognition from scanned
text, etc. In order to reliably locate and recover
raw text from such “final” electronic documents,
it’s necessary to be able to disambiguate different
columns on a page, recognize page numbers, and
record similar identifying information. TEX contains
nothing to make such recognition easy, or even in
some cases possible. It was undoubtedly premature
to think of such details in 1980, but they should be
considered for the future.

Acknowledgments

Several people who were there at the beginning, or
at least have been involved with TEX for a very
long time, have contributed their knowledge to this
effort, both by providing missing information and by
otherwise keeping me honest.

Chief among these contributors is David Fuchs.
Nelson Beebe added points that were overlooked in
the limited environment of 1980, but which could
have been implemented within those limitations had
they been foreseen. Karl Berry, as ever, politely
called attention to my logical inconsistencies. Phil
Taylor commented from a British point of view, help-
ing to tidy up bits that might not be understood the
same way on opposite sides of the pond.

Finally, Don Knuth was asked to read and com-
ment. (If Don hadn’t created TEX, there would have
been no reason for this essay.) His comment was:
“All these things and more will be fixed in * as soon
as the implementation team is ready.” [7]

References

[1] B. Beeton. Mathematical symbols and Cyrillic
fonts ready for distribution (revised). TUGboat

6(3):124–126, 1985.
tug.org/TUGboat/tb06-3/tb13beetcyr.pdf

[2] Extended TEX font encoding scheme—Latin.
TUGboat 11(4):516, 1990.
tug.org/TUGboat/tb11-4/tb30ferguson.pdf

[3] Y. Haralambous, J. Plaice. First applications
of Ω: Greek, Arabic, Khmer, Poetica,
ISO 10646/UNICODE, etc. TUGboat

15(3):344–353, 1994. tug.org/TUGboat/

tb15-3/tb44haralambous-omega.pdf

[4] D.E. Knuth. Mathematical typography.
Bull. Amer. Math. Soc 1(2):337–372, March
1979. https://www.ams.org/journals/bull/
1979-01-02/S0273-0979-1979-14598-1/

S0273-0979-1979-14598-1.pdf

[5] D.E. Knuth. The TEXbook. Addison-Wesley,
Reading, Massachusetts, 1984. Volume A of
Computers & Typesetting.

[6] D.E. Knuth. TEX: The Program.
Addison-Wesley, Reading, Massachusetts,
1986. Volume B of Computers & Typesetting.

[7] D.E. Knuth. An earthshaking announcement.
TUGboat 31(2):121–124, 2010.
tug.org/TUGboat/tb31-2/tb98knut.pdf

[8] S. Matteson. The road to Noto. TUGboat

41(2):145–154, 2020. tug.org/TUGboat/

tb41-2/tb128matteson-noto.pdf

⋄ Barbara Beeton

https://tug.org/TUGboat

tugboat (at) tug dot org

* [A bell rings at this point.]

Lapses in TEX—a look backward

18 TUGboat, Volume 42 (2021), No. 1

Typographers’ Inn

Peter Flynn

Page numbering revisited

In my last column [2] I mentioned retroőtting page
numbers from the PDF back into a web version of
a document, and said it was relatively trivial with
TEX. Daniel Nemenyi of KCL emailed me to ask how,
so I had to dig out the code and see.

I know others have done this, but I don’t know
if anyone has documented it anywhere. What we
implemented was for a client using XML, generating
one transformation to X ELATEX for creating PDF, and
another to HTML for their in-house web site. The
code is not proprietary but I can’t extract it directly
without exposing a lot of their in-house naming, so I
rewrote a short version for Daniel.

The implementation was done using the fwlw

package (which makes catchwords available for each
page: the őrst and last words on the page plus the
őrst word of the next page). With this, we modiőed
the \pagestyle provided to typeset the catchwords
at the bottom of the page, in white, so they were not
visible, and separated them by an otherwise unused
delimiter so we could extract them reliably: we used
the ASCII decimal 172 (0xAC) character (¬) or NOT
symbol (see Figure 1).

\documentclass{article}

\usepackage{lipsum,fwlw}

\usepackage{xcolor}

\makeatletter

\def\ps@pagerange{\let\@mkboth\@gobbletwo

\let\@oddhead\@empty\let\@evenhead\@oddhead

\def\@oddfoot{\rlap{\color{white}%

Page=\thepage¬First=\usebox\FirstWordBox¬%

Last=\usebox\LastWordBox¬%

Next=\usebox\NextWordBox¬}%

\hfil\thepage\hfil}%

\let\@evenfoot\@empty

\let\chaptermark\@gobble

\let\sectionmark\@gobble

\let\subsectionmark\@gobble

}

\makeatother

\pagestyle{pagerange}

\begin{document}

\lipsum[1-100]

\end{document}

Figure 1: Minimum worked example to expose

catchwords for retrieval.

For the extraction we used pdftotext, a freely-
available utility which creates a plaintext version of
a PDF document. In this, page-breaks are signalled

with an ASCII decimal 12 (0x0C) character, which is
the Control-L or FF (FormFeed). In this example, the
few lines immediately above each of the page-breaks
contains the page number preceded by the delimited
string we deőned in \ps@pagerange in Figure 1.

In Figure 2 you can see two fragments of the
output, the őrst from page 1 and the second from
page 16 showing a problem where the page number
occasionally gets imbrangled in the ‘Next’ catchword.
This has not been resolved.

lorem lorem, interdum eu, tincidunt sit amet,

Page=1¬First=¬Last=amet,¬Next=laoreet¬

1

^Llaoreet vitae, arcu. Aenean faucibus pede eu

ante, Praesent enim elit, rutrum

tempus magna. Aliquam ut purus. Proin tellus.

Page=16¬First=amet,¬Last=tellus.¬Next=

16

Vestibulum¬

^LVestibulum ante ipsum primis in faucibus

Figure 2: Text fragments of output from Figure 1 at

pages 1 and 16.

Now that the data is plaintext, you can use
the standard grep and awk text utilities (or Perl,
or Python, or Lua, or whatever is your favourite
scripting language du jour) to pull out the lines with
the delimited page number, őrst, last, and next words.
You can then programmatically step through each
page number and locate the span of text delimited
by the First and Last words, using the Next word as
a cross-check.

The tricky bit is application-dependent: you
then need to be able to reliably read your source text
programmatically, őnd the őrst word on a page, scan
forward to the last, check the following word is the
next value, and then do whatever is needed to insert
the page number at whatever point is appropriate
for your document.1

In the case in point, the production text was
stored as XML, so the delimiters they used for the
line of data embedded in the PDF were actually <

and > characters, so the extracted fragments were
already XML. That way the lines extracted from the
text őle were used in XSLT to identify each location
in the XML source, push the page numbers into

1 Daniel did suggest it might be more tractable to write the
page-break data to a separate external őle rather than embed-
ding it: I’d be interested to hear from anyone implementing
this.

doi.org/10.47397/tb/42-1/tb130inn

Peter Flynn

TUGboat, Volume 42 (2021), No. 1 19

a Processing Instruction, and cyclically check the
accuracy each time the őle was processed. If the
source is LATEX, it might be more problematic to
process.

It’s not 100%, of course: it will be thrown by őg-
ures, tables, and math occurring at a page boundary,
which our client didn’t use. But the small number
of corrections beats doing it by hand.

Type 1 (PostScript) fonts

Some of you may by now have seen Adobe’s announce-
ment2 that it will end support for Type 1 (PostScript)
fonts on 31st January 2023 in all its products (e.g.
InDesign, Illustrator, Photoshop, etc.).

If you open a document containing unembedded
Type 1 fonts with an Adobe product after that date,
the fonts will not be recognised, and will be classed
as ‘Missing’ even if you have the font őles installed
in your operating system. In addition, your installed
Type 1 fonts will no longer appear in the Fonts menu
and there will be no way to use them in Adobe’s
software.

However, PostScript and PDF documents with
embedded Type 1 fonts will continue to display as
normal, so they will still be readable with Acrobat
Reader, but they will not be editable and will not
work in other Adobe products.

So what’s this all about? To be fair, Type 1 fonts
are Adobe’s invention (back in 1984), so they can call
the shots. When PostScript printers arrived, they
came with the built-in Adobe ‘35’ popular fonts3 that
have dogged DTP ever since (a much wider choice
was distributed later). Those 35 fonts became so
ingrained that software producing PostScript (and
later, PDF) only needed to reference the font by
name, with no need to embed it in the document,
because it could be guaranteed to be available on all
printers via drivers like Ghostscript. It’s also why
so many packages that create formatted output, like
statistical and numerical analysis programs, generate
PostScript and PDF output without the need to
embed the fonts. Plus they were seen as ‘free’Ð in
a world where font piracy is rampant, many users
became accustomed to the idea that [these] fonts
‘just came with’ every operating system and software
suite.

But the world has moved on since then, and font
technology has advanced hugely. TEX has moved
on too, from providing only Computer Modern and

2 https://helpx.adobe.com/ie/fonts/kb/

postscript-type-1-fonts-end-of-support.html
3 These are: Avant Garde, Bookman, Courier, Helvetica,

New Century Schoolbook, Palatino, Σψµβολ (Symbol), Times

New Roman, Zapf Chancery, and Zapf ✤❉■❇❂❁▼▲ (Dingbats).

other METAFONT fonts (Type 3), to updated Type 1
versions as well as the Adobe ‘35’ and other Type 1
fonts generously donated to the cause. You could
buy or download additional Type 1 fonts and install
them for use with TEX. And now we can use any
OpenType or TrueType font via X ETEX, LuaTEX,
and friends, including the TEX Gyre fonts (open
source equivalents of the Adobe ‘35’).

Does it matter to us? Well, yes . . . some. We
need to be aware that in the long term, Type 1 is
going to become a dead end. For now, if you have old
PostScript or PDF documents for which no source is
available, they will continue to display. If you want
to continue generating PostScript or PDF documents
using the Type 1 fonts that come with TEX distribu-
tions, or others you have bought or downloaded, feel
free to do so: your output documents will continue to
be displayable. TEX itself is unaffected, and so far as
I have been able to őnd out, neither is software from
other suppliers, so you can continue using Type 1
fonts in TEX, and in many other non-Adobe systems.

So what’s to do? The easy answer is, switch to
X ETEX or X ELATEX or LuaTEX or one of the other
variants that support OpenType or TrueType fonts.
I made that switch a couple of years ago and have
not regretted it [1]. But there are still a lot of LATEX
packages that depend on PostScript fonts or graphics
for other reasons, and if you use them, you may need
to stick with pdflatex for a while yet.

Afterthought

I couldn’t trace the quotation ‘There is not in exis-
tence a page with a rule on it that cannot be instantly
and obviously improved by taking the rule out.’ [3]
but Karl Berry pointed me at The TEXbook (end of
Chapter 21). I should have looked there őrst!

References

[1] P. Flynn. Typographers’ InnÐX ELATEX.
TUGboat 37(3), Sep 2016.
tug.org/TUGboat/tb37-3/tb117inn.pdf

[2] P. Flynn. Typographers’ InnÐTo print or not
to print. TUGboat 41(3), Dec 2020.
tug.org/TUGboat/tb41-3/tb129inn.pdf

[3] G.B. Shaw. On Modern Typography. The

Dolphin: A Journal of the Making of Books

4(1):80ś81, Fall 1940.

⋄ Peter Flynn

Textual Therapy Division,

Silmaril Consultants

Cork, Ireland

Phone: +353 86 824 5333

peter (at) silmaril dot ie

blogs.silmaril.ie/peter

Typographers’ Inn

20 TUGboat, Volume 42 (2021), No. 1

Interview with Amelia Hugill-Fontanel

David Walden

Amelia Hugill-Fontanel is the Associate Curator of
the Cary Graphic Arts Collection at the Rochester
Institute of Technology. Many TEX people first
“met” her through her TUG 2020 conference video
presentation on the evolution of type specimen books
(youtu.be/7Cm2AcQiUuk).

The interview took place via Zoom between
Walden in his home in East Sandwich, Massachusetts,
and Hugill-Fontanel in her home in Victor, New York.

David Walden, interviewer: Please tell me about
your youth.

Amelia Hugill-Fontanel, interviewee: I am from
Trenton, New Jersey. I was born in 1975, and I grew
up around Trenton. My parents divorced when I was
quite young. So, I’m very close to my mom, who
raised me and we lived in Trenton until about 1990.
She got remarried and her husband was from the
Rochester, New York, area. So we moved up to a
suburb of Rochester. I always thought I would go
back to the downstate area to be nearer to my mom’s
side of the family, but I always found a wonderful
place in Rochester, including in college. So I have
now lived the bulk of my life in the Rochester area.

D: Was art always a part of your life as a child or
did that come to you later, say in high school?

A: There are these great Dr. Seuss books. One was
called My Book About Me and it was a book that
you were actually encouraged to fill in. It asked you
questions. It had pictures like “Tell us who are the
people in your neighborhood?” and you’d go around
and interview people and write their names in the
blanks. There was one page that was “What do you
want to be when you grow up?”, and then there were
pictures of all these different professions like nurse
and doctor and mailman and secretary, teacher, all

these things, and then there was a write-in and you
were supposed to circle who you wanted to be and I
wrote— I came across this book not too long ago—
and I wrote in “artist”. So I was about eight years
old.

I never realized that it went that deep, but I’ve
always been drawing pictures ever since I was a kid,
and my mom was very encouraging—she took me to
a few extracurricular art classes. And then I think
when I got to high school, I realized that even though
I was academically strong in different fields, I always
gravitated towards art—different kinds of clubs, like
doing different kinds of set design for the theater.
I wasn’t interested in being on stage. I wanted to
draw the backdrops or design the T-shirt for the
environmental club.

So, I guess I always gravitated towards art. I
remember when I went to college— I went to SUNY

New Paltz, which is a state university in New York—
and the registration person asked me “What do you
want to major in?”, and I had never thought of it
before. Nowadays I think students are really keyed
in to what they want to major, but I just said “Art”,
and they put me down for studio art.

D: Did you have a good, or encouraging art teacher
in high school?

A: Yes. I went to a suburban high school in Roches-
ter, Fairport High School, and they had great art pro-
grams. One of my favorites was an artist-in-residence
program. So, it wasn’t just the art teacher who was
monitoring, but she brought in several working artists
from the community who made their livings from do-
ing different kinds of art. One was an airbrush artist.
Another was a jeweler, another a cartoonist. And so,
there were different blocks of classroom assignments
where you would work with these artists to create
work in different media that the high school teachers
themselves didn’t have experience with. This was
great exposure to seeing how people negotiated a
career in different media. It was very good.

D: Did you have other high school activities, music,
sports? You mentioned drama.

A: Well, like the kids in the back, like the stage-
hands and stuff like that. I did not enjoy dancing
and singing. They were usually musicals.

The other big formative experience in high school
was that I was good at the French language, and so
I did an exchange program. We had an exchange
student come and stay with us, my family. I was
able to go to France in my junior year in high school.
Ever since freshman year, I have always loved French,
and I’m still fluent in French. I took it all through
college and I’ve traveled there extensively.

doi.org/10.47397/tb/42-1/tb130hugill-fontanel-walden

David Walden

https://youtu.be/7Cm2AcQiUuk
https://doi.org/10.47397/tb/42-1/tb130hugill-fontanel-walden

TUGboat, Volume 42 (2021), No. 1 21

D: Where did you go for your exchange program in
France?

A: We went to Normandy. It was a small town on
the seaboard near Caen, which is one of the cities
that’s up north in France. subsequently, I married a
Frenchman.

D: Let’s move on to your postsecondary education.
You mentioned SUNY New Paltz. From looking at
your CV you weren’t there very long.

A: I went for a semester to SUNY New Paltz and
discovered it wasn’t quite for me at that time in my
life. It was downstate. I should have—hindsight is
20/20—and I should have given it a better chance
but my 18-year old self went back home after one
semester and I went to a community college, Monroe
Community College, in Rochester and I thought that
was going to be just one semester until I figured
things out. As it turned out, I stayed there and got
my associate’s degree. It was a really good place, an
excellent community college. They had great studio
art classes, good instructors. After that, I transferred
into Nazareth College.

I work in academia now, where the places where
you got your degrees or fellowships become impor-
tant, but I can’t say better things about my com-
munity college experience. If I hadn’t gone there, I
wouldn’t have been exposed to a slice of our popula-
tion in Rochester that I probably would have never
experienced at Nazareth College, which is a small
liberal arts college. I got to meet mothers who were
trying to go part time and get their degree. I got
to meet people who served in the military and were
working at college as part of their GI Bill benefits, all
different people, immigrants—there was a woman
from China who had married an American man and
she was trying to get better at English. It was a
great experience for me.

D: I can empathize. I went to UC Berkeley for one
term, tried to study architecture, discovered I wasn’t
going to be good at that. Like you, I went back home
and went to junior college for another year and a half
so that I could get qualified to go to the four-year
college.

A: Perfect. You kind of grow up just a little bit in
that spot.

D: Yes.

A: I worked hard. I worked a lot of different jobs. I
had a job as a cashier at a hardware store. I worked
in the bookstore. I worked in the counseling office at
the community college. So, I did a lot of work—work
in addition to trying to go to school.

D: Your CV says you got a BA from Nazareth Col-
lege. While you were there, were you already intern-
ing at Eastman House?

A: Yes. I had originally gone into . . . I can’t remem-
ber now what the degree was, the associate degree,
but it was mostly studio art classes. But as part of
that, we had an art history class at the community
college and I fell in love with art history. For every-
body else in the entire auditorium: the lights go off,
the slide projector goes up, and everybody is sleep-
ing. But I was rapt, learning about ancient Greece
and different kinds of cathedrals. I was completely
in love with art history and the professor was great
too. So, even though I still did a few studio classes
at Nazareth College, I focused more on art history.

I came out with an art history degree, with
a minor in studio art, because art history was just
transformative for me. It was a very small college and
there were only a few professors who were teaching
art history, but I took every single one of them
because I liked it so much. I realized that I got
more enjoyment from studying the history of art and
the causes, like the cultural causes, and writing about
art than I did from studio art. I couldn’t see myself
making a living from making things, making art;
having to support myself on that would be stressful
for me.

D: How did that lead to Eastman House?

A: One of the classes I took was something like con-
temporary art criticism, and the woman who was the
professor—her name was Judy Natal—was a pho-
tographer. She was a really interesting photographer
in her own personal practice, where she did photogra-
phy and a special process called photogravure, which
is a wonderful printing process. She would transfer
photographs to marble and sculpture. She was a
collected artist at Eastman Museum, and knew the
curator there. She recommended me for an intern-
ship. I wound up staying there more than a semester
and, wonderfully, got hired part-time right after my
bachelor’s degree to work on a cataloguing project
in their photography collection.

I was still working other jobs at the same time
as Eastman House because I couldn’t support myself
working only in the museum. I remember that at
one of those part-time jobs somebody asked me if
I wanted to go full-time; and I said “No, I need to
stick with Eastman as long as I can and see what
I can do to get in there.” Eventually, the curator
of photography hired me as her full-time assistant
curator.

D: Nice . . . some excellent training for the future.

A: Yes.

Interview with Amelia Hugill-Fontanel

22 TUGboat, Volume 42 (2021), No. 1

D: How did you end up going to RIT, and were you
already doing printing and that sort of thing, or just
art and cataloging?

A: Those transformative moments like the time at
Monroe Community College when I took the art
history class and knew I loved that . . . well, another
one of those times was at Nazareth in my senior year.
It was spring, and I was to be out of there in a couple
months. I took a digital art class. This was in 1997.
I think we were running a bunch of different software,
Photoshop 1.0, QuarkXPress 2, vector-based Adobe
Illustrator, and others. It was a class to learn those
software elements and learn just a little bit about
graphic design.

I used those skills at Eastman Museum to pre-
pare exhibitions. Hardly anyone else, just a very few
people, knew how to use QuarkXPress or knew how
to use Photoshop; and one of those people was the
graphic designer at the museum and the publication
staff. Because I had those skills, I could be a sort
of liaison between the graphic designers who were
designing books and the curatorial staff who were
doing the writing and actually selecting photos. I
began to see that it was going to be a long time and
a lot more education if I wanted to be a curator at a
museum, and I didn’t think that was for me at that
time.

So, I kind of threw in my cards: “I’d like to do
some graphic design or I’d like to study about art
book publication,” because at Eastman Museum, it
seemed like most of our work was focused on “Let’s
get the photographs ready for the exhibition and
write the labels and create the narrative of an ex-
hibition.” But along with that, you have to do all
the marketing of it. You have to photograph those
images and make sure they print correctly on the
poster and the book and the invitation. It seemed
like we were putting as much mental energy into
the reproduction of these museum artifacts, and I
thought that was really interesting.

Luckily RIT had a program called Graphic Arts
Publishing. In it you would learn not only the dif-
ferent software page layout programs but also the
reproduction processes and the typographic history
about graphic design and layout, and it was perfect
for me. So, that’s how I got into that.

D: At Eastman, did you also do catalogues for the
exhibits?

A: Yes, sometimes. I think the tipping point was
when we worked with the art book publisher Taschen.
It was the 50th anniversary of the museum. This is
the book, and I was the lowest on the totem pole.
Just about every single page has images upon images.

It was my job to get the physical photographs
out of the archive and take them to the photogra-
pher to make four by five-inch transparencies, color
transparencies, and then when we got the proofs
back from the actual printer, we would compare the
proofs with the transparencies. It was this amazing
on-the-job learning. That whole process was formal-
ized in my studies at RIT—that kind of art book
reproduction. It wasn’t just “Oh, we’re just going
to do this one-off.” I wanted to be part of more
productions like this.

D: Wonderful. You got an MS at Rochester. How
did you go from being a student to an employee?

A: All these happy accidents, I think. Hold on. I’m
just checking for my dog.

D: Are you, in fact, at RIT or are you at your
house?

A: I’m at my house. We’re working two days on
campus, three days remote.

So, the question was, how did I stay at RIT?
Well, great opportunities, being the right person
at the right time, I guess. As a graduate student,
I applied for a position as a graduate assistant at
the Cary Collection because I had been there on
a tour before I matriculated as a graduate student
and I thought then, “I would love to work here,”
and I think I presented myself as someone who had

David Walden

TUGboat, Volume 42 (2021), No. 1 23

Henry Noel Humphreys, The Origin and Progress of

the Art of Writing . . . , London: Day and Son, 1855.
An example of a fragile 19th century papier-mâché
binding from the Bernard Middleton Collection of
books on the History and Practice of Bookbinding.

museum experience, which would be useful to the
Cary Collection.

The curator then, David Pankow, hired me. I
have been an employee of the Cary since 1999, when
I finally matriculated as a grad student. David had
planned two big conferences. I don’t know why
he planned two conferences in a single year, the
year 2000. I was the graduate assistant, and worked
hard on those conferences to help pull them off. One
was called Bookbinding 2000, and it was to mark
the acquisition of Bernard Middleton’s book binding
collection which we still have. It’s a real jewel in
the collection. A lot of people came from all over
the world for that conference. The second was the
American Printing History Association’s conference
called Printing on the Digital Brink. David saw how
hard I worked, I think.

In the middle of this, David had always ex-
pressed that he had wanted to start a university
press at RIT because, looking at the programs, there’s
a wonderful program in photography; there was a
wonderful one in printing; there was another one in
graphic design. There really shouldn’t be any reason
why with all these resources and talents that the
university shouldn’t have a publishing program, a

formal one. So, he was able to do a proof of con-
cept. He was given permission by the Vice President
of Finance for two years to publish a few books. I
was hired as the production editor right out of grad
school to be the person to put those books into pro-
duction and to publish them. So, what is now called
RIT Press has been around since 2001, when I was
first hired. It was originally called RIT Cary Graphic
Arts Press because we focused on graphic arts publi-
cations that directly related to the Cary Collection
subject matter.

D: As the production editor, did you help with the
direction of the press or was it more you were doing
the mechanics and operations of the press?

A: It was such a small endeavor that it was a Jane-
of-all-trades situation. It was David Pankow, who
was the Director, who would choose most of the
content, but in terms of liaising with the authors and
the designers, getting print quotes and even shipping,
that’s what I did. Luckily, I had student assistants
to help.

In those early days, up until about 2004, we
only had one and a half full-time employees to run
this endeavor, and my director was the half time
because he was still running the Cary Collection too.
I learned so much—about how to do everything
related to the publication production, in terms of
filing for ISBNs and cataloguing data, how to work
with copy editors and authors and negotiate printing
costs.

It was also an exciting time, because a lot of
the new developments in digital printing of books
were coming along in those early 2000s. We were
able to do some innovative production that was on
the edge of how print-on-demand took off—trying
to push the envelope and see if we could get truly
good quality in terms of color digital images, printing
compared with traditional offset lithography.

D: Were you also helping with the marketing?

A: Yes. Sure. We would do like a prospectus sheet.
We would do mailings. I think I wrote most of the
original website.

D: Were you using some kind of website generation
program or did you write HTML in a plain text
editor?

A: Part of the allure of this university press is that
some of the services could be provided by the library.
So, we did have a web designer who was a library
web designer, but then he taught me how to load
new products on to the site and so, I was doing plain
text editing of HTML to get those images and items
up and uploading new PDFs every time the order

Interview with Amelia Hugill-Fontanel

24 TUGboat, Volume 42 (2021), No. 1

form changed. We didn’t have any kind of online
ordering at that time. You had to call and give me
your credit card or send in a check by mail.

D: You were the production editor for how long?

A: Until 2008.
I had my first son in 2004 and I had my second

son in 2008 and I realized that it was too much.
It was too much to be a mom and to work full
time. It’s a credit to my former boss, David Pankow,
that when I said “I can’t continue on this way with
this new baby on the way. I need to quit,” and he
said “Hold it. Hold it. Let’s find another solution.”
He very kindly did a search for my replacement as
production editor, which really needed to be a full-
time position, and I became more of just a financial
manager, business manager, which was a part-time
position. So, while my second son was a baby, for
about a year, I continued in that way, which was
wonderful. It was great that he made that happen.

D: When your son got older, did you became even
more part-time or less part-time?

A: More full-time. In 2009 the library gave David
a new part-time assistant curator position; and he
asked me to be in that position.

D: When did you start being on the adjunct faculty
and teaching courses?

A: Let’s see . . . I think that was about 2003.

D: While you were still with the press?

A: Yes. That was great—a way to apply what
I had learned in terms of production and design
and software. I was teaching photography students
essentially how to learn these software tools and
present their work. I remember a lot of arguments.
They’re photo students. They love Photoshop, and
I’d say “Okay, I need your resume,” and I’d show
them how to use Adobe InDesign, and they’d argue
with me: “Why use this? We know Photoshop.
Photoshop can handle text. We’re going to submit
it in this,” and I’d say “Okay, you do that.”

D: That’s not good. Photoshop doesn’t handle text
well.

A: Right.
I’d get them and I’d mark them up because

of course, if you’re a 19-year old student, there are
probably going to be a couple edits that need to
happen in your resume and they’d say “Now, I have
to go back in Photoshop and change everything,” and
I’d say “Do it in InDesign,” and they would. So, that
kind of nice conversion, this convincing them it’s okay
to use the right tool for the project at hand. You

need to use vector-based software for some things and
you need to use bitmap-based software for others.

D: You were an adjunct professor and then you had
a curatorial position and that’s basically what you’re
doing today.

A: Yes. Over the course of time, now it’s associate
curator. You know how these academic things work.
But what’s very nice is that I’m still a teaching
adjunct, except for this year in the pandemic. Now
I teach a letterpress printing class in the School of
Art. It’s just fantastic. I get not only art students—
it’s open enrollment with no prerequisites. I’ve had
engineers and software programming students take
my class.

D: Is your experience “drifting”—I don’t mean
that in a pejorative way— from starting college to
incrementally building this career useful experience
in guiding students in what they might do? Do they
come to you for such guidance?

A: I do write a lot of recommendations for stu-
dents. Usually they are students who are interested
in museum-based jobs or librarian-based jobs, going
for library school or library science positions.

I do think that the drift or the kind of haphaz-
ard—the not-straight line—path is a good model.
There are very few people who can be absolutely
assured that what they start on when they’re eigh-
teen years old is going to be where they’re going to
end up when they’re forty-five. We have a lot of
undergraduate students who finish and then are kind
of in a quandary about what to do next, and I say,
“You need to just work for a year before you go right
into grad school.” That’s what I did. I worked for
about two and a half years, and it gave me a really
better viewpoint of what adult life is and where I
want to put myself in that adult life. I think it’s
okay that I moved around.

D: My view is that it’s never too late to figure out
what you should be doing. New things will come up.

A: Yes. I love working on book production projects.
I really like graphic design, and I like to write, and I
like the process of putting a book together. And I
still do it all the time in my job as a curator, even
though I don’t do it for the ultimate goal of selling
a book. I prepare articles or I contribute to books.
I even print things as part of our programming at
RIT and the Cary Collection. So it never got away
from me. But I think that intense view of printing
something that is a thousand copies offset really
helps to plan even a small job that’s on a letterpress
machine.

David Walden

TUGboat, Volume 42 (2021), No. 1 25

D: Do you teach offset or roto?

A: At the School of Printing Management and Sci-
ences, where I got my master’s degree, they did teach
that. However, that school has undergone a lot of
change over the last twenty years. Part of it is that
it’s hard to convince people to spend a lot of money
on a private school education to become a printer.
Printing kind of suffers from being perceived as a
blue collar field. I don’t think it is. I think it’s
fascinating to be a printer.

The School of Printing was very well-attended
for many, many years, but when a lot of printing
went offshore because it became too expensive to
produce many books and various printed articles in
America, the students went away. So the School
of Printing has become a lot smaller at RIT, but
it’s also transformed. They are now aligned with
the Packaging Science Department, because we all
know that packaging is the most ubiquitous printing.
We see it all the time in the grocery store. And
there are fewer students, but they all do well in the
marketplace because they’re cross-trained in actual
production and in programming in terms of web
media and different kinds of graphic reproduction
processes. So there’s a lot more concentration on
digital scanning and analysis of digital imaging.

You asked me did they still teach offset and roto.
They teach offset. We used to have a gravure press
at RIT, but they don’t teach rotogravure anymore.
We have a flexographic press. They teach offset
lithography, screen printing, and a huge gamut of
digital printing.

D: You mentioned food packaging. I want to digress
a moment.

A: Sure.

D: I worked my way through college, four summers,
in a big printing plant which had a seventy-six-inch
(I think) Miehle four-color offset press. I was a helper.
I re-piled paper to go into the feeder and re-piled
printed sheets coming out and took them to a place
in the warehouse for the ink to dry. Another summer
I worked in the cutting shop next door where they
stamped a big sheet into, for instance, eight different
food-package boxes. I had a pneumatic chisel for
peeling apart the individual six-pack-of-beer cartons
which could then be glued next door in the gluing
plant. It was very interesting.

A: Amazing. I love that.

D: I loved it, and I thought, “If this college stuff
doesn’t work out, I’m going to spend my twenty
years here and become the lead pressman. It’s a
fascinating craft.”

A: That’s so interesting. In the past, the students at
the RIT School of Printing got jobs as plant managers
and scanning managers. RIT’s School of Printing is
an interesting story. It’s been around for almost a
hundred years, and it originally started as a trade
school, so it wasn’t always a degree-granting program.
Around the fifties and sixties, they started doing
degrees. There was always work for those School
of Printing grads, because part of the program was
funded by the Gannett Corporation. Gannett’s head-
quarters are here in Rochester, so an RIT School of
Printing grad was assured that they could get a job
at any Gannett newspaper around the country.

It’s very much changed now to be software-based,
multimedia-based. And that’s okay. A lot of people
have hard feelings about that, but I embrace that
change because I think still they’re teaching some
great things there, even if they no longer get to do
all the physical printing. I got to, as a student, be
on a web press and take the web press class where
you’d watch the splice, and it was terrifying but
exhilarating and fascinating. I love that.

D: Since this is an interview for the TEX Users
Group (tug.org), let me ask you a little bit about
TEX at this point. Did you know about TEX and
LATEX before you participated in TUG 2020?

A: Not really. I had heard of it from our mutual
friends, Chuck Bigelow and Kris Holmes of Lucida
fame (lucidafonts.com). But when we were prepar-
ing for the TUG conference that didn’t happen in
summer 2020 in Rochester, I had reached out to
colleagues who were in the Program of Imaging
Science and found out that they teach their stu-
dents—there’s undergrad, grad, and doctoral stu-
dents—everything is run in LATEX. They focus on
that. I think it’s a quiet thing that is not accentuated,
but when you start probing deep into a program you
find out, “Oh, it really is used widely,” especially in
their program.

D: Kris and Chuck have been well-known in the
TEX world ever since they were out there helping
Knuth start TEX back in, I guess, the late seventies.
What connection do you have with them at RIT?

A: I don’t remember what year it was. But Pro-
fessor Bigelow, Chuck Bigelow, was hired as the
Melbert B. Cary Professor at the School of Printing
at RIT. He and Kris moved to the Rochester area,
and that was our first introduction. That professor-
ship has always worked very closely with the Cary
Collection, the Cary professorship—we both get our
endowments from the same estate of Melbert B. Cary,
Jr., and his wife, Mary Flagler Cary. And we’re both
dedicated to printing history and typography, etc.

Interview with Amelia Hugill-Fontanel

tug.org
https://lucidafonts.com

26 TUGboat, Volume 42 (2021), No. 1

Hermann Zapf, Calligraphic teaching sheet from his
summer classes at RIT, 1979. Demonstration of stroke
sequence, stress angles, and forms of calligraphic
letters. Chalk on blue paper. One of many Zapf items
in the Cary Collection.

So Professor Bigelow would bring his classes to
Cary and be such a wonderful collaborative partner.
Kris Holmes was also teaching calligraphy at RIT.
We have an extensive calligraphy collection at the
Cary, so she would bring her students for different
kinds of guest visits so that they could see original
calligraphy, especially from Hermann Zapf who, of
course, was the instructor of both Chuck and Kris at
RIT in the 1970s. They took Professor Zapf’s class
in calligraphy.

So that’s how I got to know them and know them
well. Then, in 2010, the Cary Collection, Professor
Bigelow, and a couple other departments on campus
put on The Future of Reading conference. Kris
was a speaker and Chuck was part of the planning
committee. Ever since then we’ve been such lovely
colleagues and good friends.

D: Zapf, of course, was another person who helped
Knuth create TEX. He helped Knuth get his type
designs right.

More generally, what do you see as the value to
RIT or to Cary or yourself of having the sequence
of Alexander Lawson, Zapf, Frank Romano, Bigelow
and the other Cary Professors?

A: It’s always been this opportunity for a renowned
practitioner in publishing or typography or graphic
arts to be a professor at RIT and influence the stu-
dents.

The way we operate in terms of acquisitions and
programming— in my position at the Cary Collec-
tion, if a book comes up for possible acquisition, the
first question we ask is, “How are we going to teach
with it? How are the students going to learn from
it?” It’s a very student-centered way of acquiring

materials for educational purposes. I think having
the Cary Professor in that position at RIT is in the
same spirit. How can students benefit from having
such a prolific or successful practitioner be a leader
and a model for them in their classes? That’s how I
would view the Cary Professorship.

D: I want to cover a bit more about the Cary Collec-
tion (tug.org/TUGboat/tb39-3/tb123walden-cary.
pdf) and this may be a good time. Might you recount
the story of Lawson’s involvement in the creation of
the Cary?

A: Oh, sure. It’s a great story.
The Cary Collection just celebrated its fiftieth

anniversary in 2019. So 1969 is when the collection
was officially deposited at RIT. But the great story is
that, a few years previous to that, the estate of Mary
Flagler Cary was announced that there was going to
be fifty million dollars available for New York State
educational purposes. One of the RIT School of
Printing alums, Herbert Johnson, who later became
one of the Cary Professors—he was a book designer
for Alfred Knopf—saw that announcement in the
New York Times, that this Cary Estate was going
to come up and interested parties should apply for
grants from this foundation. Johnson sent that notice
to Alexander Lawson, who was his former professor
in typography at the RIT School of Printing.

Johnson wrote to Lawson because RIT, in the
early sixties, had acquired a collection related to Fred-
eric Goudy called the Coggeshall Memorial Work-
shop. Coggeshall was a friend of Frederic Goudy
who had acquired a lot of his type and was planning
to write a biography, which unfortunately never got
done. So this Coggeshall/Goudy Collection was al-
ready at RIT, and using that collection, Professor
Lawson taught many students, including Herbert
Johnson. Goudy also had an association with Mel-
bert Cary, who was the husband of Mary Flagler
Cary. So, an RIT alum from the School of Printing
gets notice of this foundation, sends it to his former
professor, and then Lawson jumps on this. He talks
to one of the development vice presidents at RIT and
says, “Maybe we should make a proposal for some of
this foundation’s money, because we do have a Cary
association in the School of Printing.”

I have talked to some of the former trustees of
the Cary Foundation. One of them said that they
did a site visit to RIT and they were very impressed
with how the students who worked at the library
were so courteous and kind to them and directed
them appropriately. So that gives me pride, as a
library employee, that the library was looked upon
favorably for what would be a really substantial

David Walden

https://tug.org/TUGboat/tb39-3/tb123walden-cary.pdf
https://tug.org/TUGboat/tb39-3/tb123walden-cary.pdf

TUGboat, Volume 42 (2021), No. 1 27

Left: Trajan letters and their basic brush written kinetics. Right: Trajan alphabet. Both by Father Edward Catich.

gift from this foundation of funds to establish the
Cary Graphic Arts Collection. The library acquired
Melbert B. Cary’s book collection, which is about
2,500 books, but then also an endowment for the Cary
Professorship, and then another small endowment
for the Goudy Award, which is the annual award on
typography (en.wikipedia.org/wiki/Frederic_W.
_Goudy_Award).

That’s the long meandering way the collection
came to RIT. I like how it involves an alum, a current
professor, and this association that Melbert Cary had
with one of our substantial holdings, namely mate-
rials about Frederic W. Goudy, the type designer.
One thing I always mention about this in tours with
visitors is that I wish I could say that Melbert B.
Cary had made his millions and millions of dollars
from type founding; he was an importer of metal
type from Europe to the United States. He died
in 1941, and he did a lot to incorporate novel and
interesting avant-garde typefaces in the American
market from different foundries in Europe. But Cary
didn’t make his money there; he was married to an
heiress. Her last name was Flagler.

D: Flagler . . . like the places in Florida.

A: Yes, exactly. Her family was involved with oil,
real estate, and railroads. If you go to St. Augustine,
there’s a Flagler College. There’s a Flagler County in
Florida. Mrs. Cary was a Flagler, and that’s where
that foundation’s money came from. It was a very
interesting foundation. It was interested in the Cary
Collections which collected things about printing;
that came to RIT. They also collected medieval play-
ing cards that went to Yale University’s Beinecke
Library. And they also collected musical scores by
famous composers, like a score written by Mozart,
and that went to the Morgan Library in New York

City. The Mary Flagler Cary Charitable Trust also
gave a lot to music composition and philharmonia
and nature conservancy. So a lot of the different wet-
lands preservations have some kind of Cary grants
associated with them.

D: Another question about acquisitions of the Cary.
You have a set of Father Edward Catich’s alphabet
stones at the Cary. How did those come to be at the
Cary and what is their significance to the Cary or
the college?

A: Father Catich was a priest from Iowa. He taught
calligraphy there and was a scholar of the Latin
alphabet. In 1976 he was invited, as the Goudy
Award winner, to come to RIT to give the Goudy
award lecture, and also to do classes with students.
Because of that association—I’d have to look up
whether he donated or if RIT bought them—he
provided several significant things, including three
slate-carved alphabet stones. Two of them are based
on the kinetics of the Trajan Column in Rome, which
is the first century inscription.

D: What do you mean by “kinetics” of the column?

A: Catich studied the ductus, or sequence, of the
strokes made by hand, and then chisel, to carve the
Trajan inscription. So the kinetics I believe refers to
the human movements needed to make the letters.

The Trajan Column is considered to be one
of the most beautiful inscriptional alphabets that
was ever made, from the Roman Empire. Father
Catich carved two stones that were based on the
Trajan Column. There’s also a third stone, of his own
alphabet, which he designed, called Petrarch, which
is also a Roman inscriptional style alphabet (all can
be viewed at digitalcollections.rit.edu/luna/
servlet/s/b430ql).

Interview with Amelia Hugill-Fontanel

en.wikipedia.org/wiki/Frederic_W._Goudy_Award
en.wikipedia.org/wiki/Frederic_W._Goudy_Award
https://digitalcollections.rit.edu/luna/servlet/s/b430ql
https://digitalcollections.rit.edu/luna/servlet/s/b430ql

28 TUGboat, Volume 42 (2021), No. 1

Left: a book from the Vincent FitzGerald / Rumi exhibition.
Right: Flatland by Edwin Abbott, from the Landmarks of Printing History exhibition,
in collaboration with the RIT photography department.

Another marvelous artifact that we acquired
from Father Catich was an original rubbing of the
Trajan Column. Father Catich, because he was a
priest, was able to get permissions in Rome that
other people wouldn’t be able to leverage. He was
able to make several rubbings of the Trajan Column,
on scaffoldings up there, and they’re in different
collections around the country.

RIT has one of them, and I teach with it every
month, it seems. In a typical year, we see all the
sections of students who are studying typography,
and it is an essential resource that I gesture to on
the wall and ask students to deeply analyze the
letter forms that are evident in that rubbing. It’s so
essential to us, how we teach. It’s so much better
than a slide of it.

D: You have a long list of exhibitions you have
been involved with. TUGboat production editor
Karl Berry especially noted your exhibition called
“The Light of the Sublime: The Works of Rumi”.
Will you please speak a little about how that exhibit
came about, perhaps, as an example of how exhibits
come about more generally.

A: Sure. We like to frame our exhibitions in ways
that would be educational for our students, and I
think the idea of that one came about because we
had been collecting at the Cary—David Pankow
initiated it— all the works of a publisher in New
York City called Vincent FitzGerald & Company. It
was kind of a livre d’artiste publications production
where you would invite an artist to respond to a
classic text in some way, create artworks for a book,
and then other artisans would work on the typog-
raphy and the illustration and the design and the
bookbinding. So every single book is very different in
a limited edition. They’re works of art, every single

one. Vincent FitzGerald was the orchestrator and
publisher of this.

So we have all these wonderful books. When
I started to think about this exhibition, I knew I
wanted to highlight the Vincent FitzGerald books,
because we had this great collection that we had
already been showing students. But I wanted to
respond to and physically focus on the works that
he published that were translations, or sometimes
bilingual publications, of the twelfth century mys-
tic, Rumi, who was Persian. Vincent FitzGerald is
dedicated to the works of Rumi, and he had a collab-
orator in an Iranian woman named Zahra Partovi,
who was the translator of the Rumi works. So it
was nice that when we started to think about this
exhibition to not only show off the publisher and
the visual works, but also focus in on an author that
was a little bit more diverse than a typical European
author—perhaps appealing in ways that the Cary
Collection hadn’t reached out before to the commu-
nity, to offer something that wasn’t so mainstream.
That’s how that exhibition came about.

I was proud of that exhibition because Vincent
FitzGerald and Zahra Partovi are still practicing
artists, and I got to visit them in New York City.
They even debuted one of their final works at the
Cary Collection during the exhibition opening (rit.
edu/carycollection/light-sublime).

By the time I had started working with the ma-
terial, they were more or less done with the book
projects, and Zahra had turned now to music com-
position, so we were able to have a visual light in-
stallation and we also had a harpist who performed
Zahra’s original composition that was based on an-
other quote by Rumi.

I found it exciting and a little bit terrifying,
because for most of our previous exhibitions, the

David Walden

https://rit.edu/carycollection/light-sublime
https://rit.edu/carycollection/light-sublime

TUGboat, Volume 42 (2021), No. 1 29

makers and the authors were all passed away. To
work with current artists is a whole other dimen-
sion of collaboration, trying to make sure that the
exhibition was appropriate for what they would like.

D: If that exhibition is representative, it seems that
creating an exhibition is a dynamic process and you
go wherever the materials and situation take you.

What do you see as the benefit of exhibitions
either to scholarship or the university or yourself?
You certainly seem to be involved in a lot of them.

A: We’re such a small staff in the Cary Collection,
that even if I’m not the primary curator for an exhibi-
tion, I usually act as the preparator for my colleagues
who do the intellectual work and the arrangement.
I have the hand skills to do a lot of matting and
framing. I learned a lot of that at Eastman Museum,
in fact.

I always feel that exhibitions are a springboard
for a whole bunch of different creative things that
could happen. You create an exhibition and you give
a tour to students about it and get them excited
about the things that are in the collection. Or you
create an exhibition and then you can invite a lecture
series about the different themes. When we commit
to an exhibition, it’s not just putting the things on
display for a short period of time. It brings into being
a place where we could talk about these concepts
and include in other programming. It could also be
publications that result in exhibitions.

Right now, I just had an exhibition meeting
with Steve Galbraith, who’s my supervisor now. We
were talking about how even in this time where there
are not a lot of people in our library because of the
pandemic restrictions of quarantine and social dis-
tancing, we’re still moving forward with exhibitions.
We’re going to shift in the next year and have them
be more online exhibitions. That’s a blessing and a
curse because I’d love to have people actually look
at the objects. On the other hand, the online exhibi-
tions are usually evergreen. So, I can turn to them
again and again in the future; for instance, point a
class to them, or build upon them in other ways. Say
I curate an exhibition about Goudy and then in two
years I do an interview with somebody about Goudy;
I can add that interview to that exhibition. It could
grow in a way that those ephemeral or timely exhibi-
tions can’t. So, I view them as part of our outreach
and part of our educational program.

D: Online exhibits are terrific for those of us who
can’t visit the Cary.

A: Yes. I’m a bit sad because the next exhibition
that I was supposed to work on heavily was one of
our graphic design archive designers. His name was

George Giusti. He was a graphic artist who did a lot
of editorial design, covers for magazines for example,
but he also was a sculptor. We have about 50 of
his sculptures, and I was envisioning this fantastic
exhibit, where we’re usually putting up pictures or
books and prints and things, very flat things, this
was going to be a sculptural exhibition. After talking
with Steve just now, I think it’s going to be online,
at least for this next year and then hopefully in 2022
we can have a physical exhibition.

D: I hope in 2022 I can travel to the Cary again. I
was looking forward to going to the Cary this past
summer for the TUG conference.

A: Yes. I planned another conference in the interim
here for the Hamilton Wood Type and Printing Mu-
seum in Wisconsin, and it was a joint conference with
the American Printing History Association, and we
had it just this last weekend, November 5th through
the 8th, and even though it was online, we had more
participation than we ever could have in the physical
space. So, there’s a little bit of a silver lining and,
again, everything was recorded.1

D: I’ll look forward to it. In a message you said you
were embedded in the American Printing History As-
sociation and the Hamilton Wood Type and Printing
Museum. What do you mean by embedded?

A: It seems like all my volunteering time goes there.
And that’s okay because I think both organizations
serve the Cary Collection well too. We’re all good
collaborators, all interested in preserving, printing
artifacts and graphic design.

D: What kind of volunteering do you do for them?

A: I’m the Vice President of Programs for the Amer-
ican Printing History Association (APHA); their web
site is printinghistory.org. I organize the confer-
ences and also a lecture series that we have every year
called the Lieberman Lecture. I’m also on the board
of the Hamilton Wood Type and Printing Museum
(woodtype.org).

As a board member, we have a chance to choose
what best suits us in terms of our talents, how to
serve on that board, serve the museum, and so. A
year ago or a year and a half ago, I said, “I want to
be completely selfish and put all the people that I
really care about and I find interesting in printing
history in the same room. So, we should have a joint
conference.” So, that’s how that association between
the two organizations got started and we had hoped
that it would be in-person, but that didn’t happen,
but still, I think it was a strong alliance between the
two places.

1 Videos are online at woodtype.org/pages/wayzgoose.

Interview with Amelia Hugill-Fontanel

https://printinghistory.org
https://woodtype.org
https://woodtype.org/pages/wayzgoose

30 TUGboat, Volume 42 (2021), No. 1

Left: 18th century-style “common press”. Right: Inked type on the small aluminum press.
Both built by RIT students.

D: Earlier you also mentioned “Hands-on letter-
press teaching and learning across curricula”. What
do you mean by “learning across curricula”?

A: A good friend of mine, who was previously on the
APHA board, said that book arts education is really
like a foundation of liberal arts; there is something
to be acquired in almost every field, from learning
about how to make a book, how to write a book,
how to edit a book, and by extrapolation I think
you can move that on to the earliest productions of
books and that’s the process of letterpress printing,
the oldest commercial printing process in our culture.
Today, a lot of contemporary letterpress work is very
art-centered, but from Gutenberg’s time up through
the 20th century, letterpress was used to print in
every discipline. If you were looking at a math book,
it was letterpress printed.

The impact that this printing process had had
on every discipline of human intellectual thought is,
I think, rather astounding; when I couch it that way,
we see a lot of different classes in the Cary. It’s not
just the graphic designers who are studying typogra-
phy. We see mechanical engineers who want to know
how the printing presses work. They’re completely
invested in how the compound lever structures work
in a hand press. Steve, my colleague, regularly sees
the History of Math students in his teaching because
we have such great books with mathematical tenets

in them from the Renaissance era. We see a lot of
students from the History of Music class because we
have musical scores and calligraphic things. In one of
the videos that I recently produced to teach this on-
line, I make a statement that printing history is our
shared history. It can be integrated in all curricula
in all disciplines (youtu.be/05RUA1ScXH0).

D: I first heard your name in 2018 when I visited
the Cary, and Steve or Kris said, “Here’s our press
that Amelia renovated, and out here in the hall is a
wooden Gutenberg-like press that our students built,
and here’s this little aluminum press that you can
make for something like $30.” How did you learn the
mechanics of all of this, restoring presses, guiding
students building new presses and so on?

A: The foundation was laid with my former boss
David Pankow; he’s such a polymath. He’s a great
librarian and curator and editor and teacher; but
when he was hired to be the librarian for the Cary
Collection in the 1970s, he applied himself immedi-
ately as an employee of RIT and took printing classes.
He learned printing while on the job, and then as
presses were donated or discarded by the School
of Printing because they weren’t high-tech enough,
David would often take those technology items into
our collection—he began acquiring printing presses
for the Cary Collection. So in the same way as our
collection has grown since 1969 from 2,500 books

David Walden

https://youtu.be/05RUA1ScXH0

TUGboat, Volume 42 (2021), No. 1 31

Antiphonarium fragment, ca. 1430.

to 45,000 in many different disciplines, the printing
technology collection has also grown.

Learning how to take care of the press, the
correct way to print with some of our irreplaceable
type, that foundation was laid with David. I also
learned so much from him about restoration. While
I was an employee, he restored several presses, and
then I learned from other people in our field, and
the field has grown and especially through all the
online forums we can gain access to people all over
the place; that has really helped. If I have a question
about the mechanics of something, I can cast wide
to people who will have known or have experience
with that kind of object.

D: In the Fine Books interview that you gave,2

I read that you have a personal printmaking practice
that uses vintage printing presses. Do you still have
that, and what kind of presses do you have?

A: Yes, I do. I have enough presses for it to be
annoying when we have to move them. It’s like my
vocation has become my avocation; even when we’re
on vacation, we seek out printing presses and things
like that or printing places. At any rate, I personally
have a Chandler & Price old style printing press,

2 finebooksmagazine.com/blog/bright-young-

librarians-amelia-hugill-fontanel

which is a foot treadle platen press from the late
1800s, and I also have a Vandercook 99, which is a lit-
tle proof press. And then a stand of wood type and a
stand of metal type—not too much. But my current
partner, my life partner Richard Kegler, the head
of P22 Type Foundry (p22.com), has a much more
substantial letterpress studio. So, I’m able to go in
his area and use his automatic presses and type too.

D: The interview reported this was a business. Is
it art printing or commercial printing?

A: It’s more artistic, and I don’t sell things very
often at all. If I do make something available, often
I donate it because I have such a good livelihood
at RIT. I’d rather donate time or energy to other
associations. I have sold a couple. For one I did
sell recently, I donated the proceeds to GirlTrek, a
non-profit that cultivates healthy lifestyles for Black
women (girltrek.org).

D: You mentioned that you had a couple of children.
Are they old enough to help you in this printing
business or do they have any interest in printing?

A: My older son just turned 17. They are old
enough, and they’ll do something if I cajole them
enough. One son I have trained since he was about
eight years old to do wood type restoration; he
knows how to clean wood type and just this last
year through the pandemic, we did some printing of
it and he seemed to be semi-interested in it, but not
with a full heart like me.

D: You mentioned that you look up printing presses
while on vacation. What printing museums do you
particularly recommend that someone should go to?

A: One big one is the Museum of Printing in Haver-
hill, Massachusetts, that’s run by Frank Romano. It
is an excellent place to go, especially if you want to
learn about like that unsung period of phototypeset-
ting that people forget about.

Oh, hi. Here’s my dog.

D: What’s the dog’s name?

A: The dog’s name is Phin, which is short for
Phineas Gordon. George Phineas Gordon was the
inventor of the platen press.

Another museum is in LA—the International
Printing Museum—and that one is run by Mark
Barbour, again, a huge, comprehensive, really amaz-
ing place. There’s another in Toronto that is a sales
floor and museum called the Howard Iron Works.
And then, of course, the place that I really love is
Hamilton Wood Type and Printing Museum, in Two
Rivers, Wisconsin. If you’re a Green Bay fan, it’s
about 45 minutes south of Green Bay. It has the
largest collection of wood type in North America.

Interview with Amelia Hugill-Fontanel

https://finebooksmagazine.com/blog/bright-young-librarians-amelia-hugill-fontanel
https://finebooksmagazine.com/blog/bright-young-librarians-amelia-hugill-fontanel
https://p22.com
https://girltrek.org

32 TUGboat, Volume 42 (2021), No. 1

D: For a person who gets interested in typography
or printing but wants to learn more about it, not
become an expert like you are, just know a bit more,
are there books or short courses or online courses
or videos? How would you recommend somebody
go about learning more about printing and printing
history and typography?

A: Perhaps the easiest and probably the most ac-
cessible way right now, if you don’t want to purchase
books, is to get on the mailing lists of a few places
around the country that are doing some very nice
online lectures that relate to graphic arts and ty-
pography. For instance, the Hoffmitz Milken Center,
which is at Cal Arts in California. They have a cen-
ter dedicated to typography and some of the lectures
coming out of there are top notch. The Type-at-
Cooper Program, which is at Cooper Union in New
York City, has also been having some great lectures.
And now that we’ve been through a suite of online
conferences, I expect a lot of YouTube-like channels
to open up with content from the conferences. There
was recently the ATypI Conference that was online,
so that probably will be coming up. That’s one way
to dip your toe without making a big commitment
in terms of expanding your library.

Of course there are great books out there on
those topics. One of the books that a new student
of typography might read— it might feel a little
outdated, but I still like it— is Alexander Lawson’s
Anatomy of a Typeface.

I like it because, of course, Professor Lawson did most
of his research at RIT, and he was an important fac-
ulty member in our history. The book also contains
nice concise chapters about the classic typefaces that
we see revived on our computers. There’s a chapter
about Garamond and there’s one about Bodoni. If
you want just a little snippet about those, I think
Lawson’s book is a good place to start. There’s

Wells Book Arts Summer Institute, July 14, 2014, Kris
Holmes’ class “Calligraphy and Digital Type Design”.

plenty more current scholarship on any one of those
type designers, but I think that he definitely covers
a lot of the bases in terms of classical typography
through history.

D: Have you done type design yourself?

A: No. I was so happy in 2015 to be able to take a
class with Kris Holmes at Wells College Book Arts
Summer Institute. It was a great class because we
learned calligraphy in the morning from Kris and
then it was type design in the afternoon from her. I
knew going into that class that I was there to soak it
up because although I teach students of calligraphy,
I had never done any calligraphy and similarly I
teach students who are studying type design and
typography, but hadn’t done it myself. So, I needed
to put my toe in that water in order to have a little
bit more understanding about what I was teaching
and it was fantastic. It was such a treat to absorb
Kris’ amazing knowledge and her skill in both fields.
I’m sure if I practice the way she does, I would have
a chance, but I’m not great.

D: The digital humanities you mentioned, what are
those?

A: It’s an evolving field. It has a deference to classic
fields like history and sociology and English, I think,
and different kinds of social sciences, but wants to
enmesh the power of digital technologies so that they
can do kinds of new visualizations or new kinds of
publication that were not possible before without
this kind of tech coming into it. That’s not the
official definition, just my perspective on it. We’ve
been privileged to be able to think about it at RIT

because a couple years ago, the university started a
digital humanities program and we’ve had some great
professors come in. I think the Cary is one of the

David Walden

TUGboat, Volume 42 (2021), No. 1 33

places that is fodder for digital humanities students
to do their projects on. So, that’s a really nice thing,
to see our collections viewed in a different way.

D: The next time someone can visit the Cary, are
there particular parts to the collection you think that
they should seek out? Do you have favorite parts
yourself?

A: Each time somebody walks in, we do a little ref-
erence interview, like “What do you like? What can
I show you?” and it’s different for every single person.
But one place we lead people to because it has such
great visual impact is our press room—it happens
that I’m the manager of that collection—to talk
about letterpress printing technologies because it’s
so impressive. These are big machines that are often
also decorative. So, people get impressed by that.

At the same time, I can fall in love with a tiny
little miniature book too. It just depends on what
somebody wants to look at. Often we get a visit from
a student who walks in, an undergraduate student,
who doesn’t necessarily know what they want to look
at. They’re just beginning their education. They’re
just beginning to formulate the questions for the
things that they want to study. Often they say,
“Oh, I just want to look around.” Well, they don’t
necessarily know what they’re looking for, right?
So, depending on what’s on the table at any given
moment, I’ll try to engage them and say “Oh, my
gosh. We just got this collection of posters from this
collective that solicited posters from artists from all
over the country. Would you like to look at that?” So,
that’s a nice, nonconfrontational way to get students
engaged with our collections. On any given day, there
might be something new on the table that somebody
could look at.

D: What is the point of view of the Cary or RIT

about digitizing things and then putting it online?
You have a massive website. Some places historically
don’t want to put their stuff on the web. They want
to somehow charge for access. What is the philosophy
at your place?

A: Open access as much as we can. I’m so thankful
to work with such a talented team in our library,
library-wide. I’m part of this digital initiatives team,
and over the last two years we’ve formulated a work-
flow to efficiently digitize stuff. This has served us
so well in terms of education in the pandemic. If our
students couldn’t get in to see the original things,
at least we could point them to a digital surrogate.
So, that has worked well and it’s a way that we
can engage with people that can’t come to the Cary
Collection, even if we weren’t in this limited patron
model right now during quarantine. For instance, I

could send a link off to somebody who’s in England
and engage with them in a conversation about our
items from afar.

D: Do you have plans for coming scholarly or graph-
ical projects you want to tell us about in advance?

A: Just today my supervisor, Steve Galbraith, who
is the head curator, and I, decided to start planning
an online exhibition with a lot of digital humanities
kind of integration about the Kelmscott-Goudy print-
ing press. That’s the printing press that was first
owned by William Morris and printed “The Kelm-
scott Chaucer”. It was used for that book. Next year
is the 125th anniversary of the book. As a result of
this anniversary and some collaborative work with
the American William Morris Society, we’re hope-
fully going to have a very robust digital exhibition
about the Kelmscott. Steve and I were saying today
that the moss doesn’t grow under our feet ever. Even
with fewer students on campus, there’s a lot going on.

I’m also going to contribute to a book. There
was a conference called Post-Digital Letterpress Print-
ing that was hosted in Portugal in January 2020
(pdlp.fba.up.pt), and I was able to participate in
that conference3 and they’re doing a proceedings.
So, I’m excited to contribute to the proceedings for
that conference. It was a nice small conference where
you were able to talk to every single person there.
Sometimes big conferences are overwhelming, but
this was a good one. It was before we could not
travel anymore; we just squeaked it in.

D: Maybe next year or the year after that, the TEX
Users Group Conference can plan again to come to
RIT, and we can see each other in person.

A: That would be lovely. And in the meantime,
please feel free to reach out if you have a ques-
tion about anything in the Cary. We’d love to hear
from TUGboat readers (rit.edu/carycollection/
contact-and-visit).

D: For now let me say thank you so very, very much
for taking the time to do this interview— for being
willing to talk to the TEX users’ world.

⋄ David Walden
tug.org/interviews

[Editor’s note: Images in this interview are courtesy
of the RIT Cary Graphics Arts Collection or Amelia
Hugill-Fontanel. Some images have been cropped for
presentation.]

3 Amelia’s talk is online now at youtu.be/S1ldj5LMv8Y.

Interview with Amelia Hugill-Fontanel

https://pdlp.fba.up.pt
rit.edu/carycollection/contact-and-visit
rit.edu/carycollection/contact-and-visit
https://youtu.be/S1ldj5LMv8Y

34 TUGboat, Volume 42 (2021), No. 1

The DuckBoat—Beginners’ Pond:

Crazy Little Thing Called Glue

Herr Professor Paulinho van Duck

Abstract

In this installment, Prof. van Duck will explain what
glue is and will suggest some tips and tricks to avoid
bad spacing in your document.

1 Covid is mean!

Hi, (LA)TEX friends,
As you well know, 2020 was a painful year. The

virus has brought too much sadness worldwide, and
the economic consequences of the pandemic are seri-
ous.

It is not easy to talk to you in the usual joyful
mood, but The Show Must Go On, so let us try to
find some not-so-negative aspects of the situation.

Firstly, while you (humans) were confined to
your houses, we (animals) could visit places before
unreachable for us. My fellow ducks of Sempione
Park in Milan, for example, took a walk into Cador-
na Station, a commuter station usually very crowded
(if you are wondering if they named the station after
the general who lost the battle of Caporetto: yes, it
is; strange things happen in Italy, quack!).

Secondly, people had time for reading. During
the first lockdown, all shops but pharmacies and gro-
cery stores were closed. After it, the first commercial
activities people wanted to be reopened were chil-
dren’s clothing stores, hairdressers, and bookshops!

I hope this habit will remain in the future.
Lastly, many events happened online. Needless

to say, it is not the same as being at them live, but
it gave you the possibility to attend them even if
they were far away. I was happy to follow the 2020
TEX Users Group meeting. It would not have been
possible if it had not been online.

This time, I will show you how to avoid awful
spacing between your documents’ words, lines, or
elements.

Barbara Beeton suggested this topic to me, in-
spired by the TEX.SE question How can I visualize

glue? 1 and its brilliant answer by Donald Arseneau.
The subject is vast and complex, I will be neither

rigorous nor exhaustive, but I would like to give some
little tips & tricks to newbies.

I also take this opportunity to thank Barbara for
her advice and corrections. Of course, all remaining
errors are my own.

1 https://tex.stackexchange.com/questions/552527/

how-can-i-visualize-glue

2 Quack Guide No. 6: The glue

The basic elements of a (LA)TEX document are boxes

and glue. Every character or image is a box, but
also a line of text, a table, or a minipage are boxes
(which contain other boxes). The glue is the empty
space between them: between words, between lines,
between the text and an image or a table, and so on.

This spacing is not fixed; it may vary, according
to the situation, to form a line or a page more pleasing
to the eye.

Indeed, every glue is defined by three dimensions:
a natural size; a stretchability, the basis for how much
the natural size can be enlarged; and a shrinkability,
how much it can be compressed.

For this reason, Prof. Knuth [2] said it would
be more accurate to use the term “spring” instead of
“glue”, but the latter is a long-established tradition,
and he did not change it.

TEX does not treat stretchability and shrinkabil-
ity in the same way. While shrinkability represents
a limit, that is, TEX will not shrink more than what
is specified, this is not true for stretchability.

For instance, in the case of a vertical glue, if
\flushbottom is in effect (see below), and if apply-
ing the maximum specified stretchability a page
ends up being too short, then the places where
stretch is allowed will be stretched in proportion
to what is specified.

Let us see a practical example. Imagine you are
writing your text on straight lines, like children at
primary school do. The vertical distance between
two of these lines within a paragraph is set by:
\baselineskip = ⟨size⟩ plus ⟨stretchability⟩

minus ⟨shrinkability⟩
The previous is plain TEX syntax. You can also use
it in LATEX directly or through the command:
\setlength{\baselineskip}{⟨size⟩

plus ⟨stretchability⟩
minus ⟨shrinkability⟩}

In both cases, the plus and minus parts are optional.
If you do:

\setlength{\baselineskip}{20pt

plus 6pt minus 4pt}

the distance between your lines will normally be 20pt.
If necessary, TEX will reduce the spacing to a mini-
mum of 16pt. Stretching the spacing is similar, but
there is no limit to how far the glue will be stretched.
Both stretching and shrinking are calculated taking
into account other glue on the page. For instance,
if there is one glue item with plus 6pt and another
with plus 2pt, the former will expand three times
as fast as the latter.

doi.org/10.47397/tb/42-1/tb130duck-glue

Herr Professor Paulinho van Duck

https://tex.stackexchange.com/questions/552527/how-can-i-visualize-glue
https://tex.stackexchange.com/questions/552527/how-can-i-visualize-glue
https://doi.org/10.47397/tb/42-1/tb130duck-glue

TUGboat, Volume 42 (2021), No. 1 35

The stretching and shrinking does not normally
apply to the last page of an article or chapter, which
(in practice) is always ended with \vfill (which
adds a vertical filling space till the end of the page).

If you are interested in the subject, check the
TEX.SE post What is glue stretching? 2 for more.

For a list of the LATEX default lengths, see the
LATEX/Lengths page of Wikibooks,3 and the TEX.SE

post Lengths and when to use them.4

However, you do not usually need to set these
lengths; your documentclass already does it for you.

TEX is one of the best programs— if not the

best— to manage the glue. But sometimes the auto-
matic result may not be what you would like. Let
us see how to remedy this.5

As general advice, I recommend making your
refinements when you have completely finished your
writing. Otherwise, you may have to redo them. It
can be an excellent way to procrastinate, quack!

2.1 Horizontal glue

The classical situations where you need to adjust the
horizontal spacing are when you get the warnings
Underfull \hbox or Overfull \hbox.

Newbies often consider these messages a sort of
mystery and ignore them.

On the contrary, their meaning is evident if you
look at a line as a box: an underfull horizontal box
is a line that is too empty; an overfull horizontal box
warns you that your text goes beyond the margin (of
your page, or your column table, you name it).

The Underfull \hbox usually appears when
your paragraph is too narrow and TEX cannot cor-
rectly distribute the words in one or more lines in
the paragraph.

To improve this, it is usually best to use ei-
ther \raggedright or (from the ragged2e package)
\RaggedRight.

For example, compare the columns of the fol-
lowing table. The first one is an ordinary p column;
since it is too narrow, there is too much space be-
tween the words, and an Underfull \hbox appears.
The second and the third are ragged right; note

2 https://tex.stackexchange.com/questions/64756/

what-is-glue-stretching
3 https://en.wikibooks.org/wiki/LaTeX/Lengths or

also other sites: http://www-h.eng.cam.ac.uk/help/tpl/

textprocessing/squeeze.html.
4 https://tex.stackexchange.com/questions/41476/

lengths-and-when-to-use-them
5 I found some of the following explanations and

suggestions on https://latexref.xyz/ and

https://www.guitex.org/home/it/forum/5-tex-e-

latex/102632-spazi-verticali-in-eccesso.

that \RaggedRight allows for hyphenation whereas
\raggedright does not.

Choose the one your text fits better with.

Ordinary
p column

With
\raggedright

With
\RaggedRight

Most Italians
do not like
pineapple
pizza

Most Italians
do not like
pineapple
pizza

Most Ital-
ians do not
like pineapple
pizza

...

\usepackage{ragged2e}

...

\begin{tabular}{p{2.2cm}

>{\raggedright\arraybackslash}p{2.2cm}

>{\RaggedRight\arraybackslash}p{2.2cm}}

\toprule

Ordinary \verb|p|~column &

With \cs{raggedright} &

With \cs{RaggedRight} \\

\midrule

Most Italians do not like pineapple pizza&

Most Italians do not like pineapple pizza&

Most Italians do not like pineapple pizza\\

\bottomrule

\end{tabular}

To cope with overfull horizontal boxes, firstly,
you have to identify where they are. With the draft
option, they are highlighted by black rectangles.

The fixing depends on the kind of bad box. Let
us examine some common cases.

It may happen your text contains a word LATEX
is not able to hyphenate. If so, you can specify how
to divide it with the command \-.

In the following example, the minipage width is
too narrow to contain “Paulinho”, and since LATEX
does not know how to hyphenate it, the first case
gives an Overfull \hbox. If you indicate how to do
it, the warning disappears.

\fbox{\begin{minipage}{9mm}\RaggedRight

Paulinho is a drake

\end{minipage}}\hspace{1cm}

\fbox{\begin{minipage}{9mm}\RaggedRight

Pau\-li\-nho is a drake

\end{minipage}}

Paulinho
is a
drake

Pau-
linho
is a
drake

Other common examples of unbreakable ele-
ments are urls. If you would like to divide them, you
could use the package xurl (or url or hyperref),
see also the TEX.SE post Forcing linebreaks in \url.6

6 https://tex.stackexchange.com/questions/3033/

forcing-linebreaks-in-url

The DuckBoat—Beginners’ Pond: Crazy Little Thing Called Glue

https://tex.stackexchange.com/questions/64756/what-is-glue-stretching
https://tex.stackexchange.com/questions/64756/what-is-glue-stretching
https://en.wikibooks.org/wiki/LaTeX/Lengths
http://www-h.eng.cam.ac.uk/help/tpl/textprocessing/squeeze.html
http://www-h.eng.cam.ac.uk/help/tpl/textprocessing/squeeze.html
https://tex.stackexchange.com/questions/41476/lengths-and-when-to-use-them
https://tex.stackexchange.com/questions/41476/lengths-and-when-to-use-them
https://latexref.xyz/
https://www.guitex.org/home/it/forum/5-tex-e-latex/102632-spazi-verticali-in-eccesso
https://www.guitex.org/home/it/forum/5-tex-e-latex/102632-spazi-verticali-in-eccesso
https://tex.stackexchange.com/questions/3033/forcing-linebreaks-in-url
https://tex.stackexchange.com/questions/3033/forcing-linebreaks-in-url

36 TUGboat, Volume 42 (2021), No. 1

Also inline math or verbatim expression may
cause overfull horizontal boxes.

In general, you may try to adjust your spacing
using \sloppy, which practically allows the space
within words to be infinitely stretched. However,
since that command may likely ruin the word spacing
in the already well-distributed paragraphs, it is not
advisable to use it for all your document. You may
use the environment sloppypar, which acts only on
the text within it.

A more convenient parameter, added in TEX3,
to modify the stretching is
\emergencystretch = ⟨dimen⟩
which is similar to \sloppy but does not ruin good
paragraphs.

You may try setting \looseness=1 to distribute
the words of a paragraph more loosely (it may expand
the paragraph one line) or \looseness=-1 to squeeze
them.

You can also force a line break manually with the
command \newline. The following example shows
how it differs from \linebreak:

This line is broken\newline with

\verb|\newline|.\par

This line is broken\linebreak with

\verb|\linebreak|.

This line is broken
with \newline.

This line is broken
with \linebreak.

Remember never to use \\ to break a line. You
should use \\ only in tabular, array, or similar
environments to end the rows or in some math envi-
ronments with alignments.

In the previous code, I also used \par to create
a new paragraph, but the usual way is to leave a
blank line.

If your problem is a too-large image, you can
resize it with the appropriate options of the macro
\includegraphics from the graphicx package.

You can use width=⟨wdim⟩ and height=⟨hdim⟩
(if only one of them is set, the other is scaled to keep
the aspect ratio) or you can scale your image by a
given factor, using scale=⟨factor⟩.

If you are creating your image yourself, using
TikZ or another graphics package, the best prac-
tice should be to draw it directly with the correct
dimensions.

The graphicx package provides \resizebox (re-
size to a width) and \scalebox (resize to a scaling
factor). You can use them if you have a too-large

table, but it is not advisable. In this case, it’s usually
better to choose a smaller font, starting with \small.

Sometimes, you may think to redesign your ta-
ble. The following, for example, is too large for the
minipage where it is placed:

\fbox{\begin{minipage}{6cm}\centering

\begin{tabular}{cc}

A very long title & Another very long title\\

\midrule

d & u\\

c & k\\

\end{tabular}

\end{minipage}}

A very long title Another very long title

d u

c k

but, instead of resizing it, you can change the column
definition to allow for a manual line break:

\newcolumntype{M}[1]{%

>{\centering\arraybackslash}m{#1}}

...

\fbox{\begin{minipage}{6cm}\centering

\begin{tabular}{*2{M{2.5cm}}}

A very long title & Another very long title\\

\midrule

d & u\\

c & k\\

\end{tabular}

\end{minipage}

A very long title
Another very
long title

d u

c k

There are also situations where there are no
errors or warnings but the spacing is not correct
anyway.

For instance, compare

Prof. van Duck with\par

Prof.\ van Duck.

Prof. van Duck with
Prof. van Duck.

In the first line the spacing between “Prof.” and
“van” is too much because TEX interprets the dot as
the end of a sentence, not as an abbreviation. To
correct it, just put a \ (a backslash and a space)
after the dot.

By the way, the space after the period is set
according to the US typesetting rule. If you do not

Herr Professor Paulinho van Duck

TUGboat, Volume 42 (2021), No. 1 37

like it or there is a different rule in your country, you
could use \frenchspacing. Look at the following
example:

Note the space after the dot. Here\par

{\frenchspacing

Note the space after the dot. Here}

Note the space after the dot. Here
Note the space after the dot. Here

In addition to \ , there are many commands for
explicitly setting horizontal spacing. For a detailed
list, see the TEX.SE post What commands are there

for horizontal spacing? 7

Last but not least, I would like to talk about
spurious spaces. They are unwanted spaces that
appear when you least expect them, but it usually
is your fault, quack!

Even the most expert TEXnicians may fall into
the trap. There is an instructive article by prof.
Enrico Gregorio on this topic [1].8

Suppose you are writing a thesis about queen
Elizabeth I, and you would like to create a macro
for her name, with the symbol ~ between “Elizabeth”
and “I”, to avoid them being separated onto different
lines. In the following simple example, the macro
\eliwrong creates a spurious space, clearly visible if
you compare it with \eligood.

Someone says the greatest kings of England
were queens, Elizabeth I and Victoria.

Someone says the greatest kings of England
were queens, Elizabeth I and Victoria.

\newcommand\eliwrong{

Elizabeth~I}

\newcommand\eligood{% <-- note the %

Elizabeth~I}

Someone says the greatest kings of England

were queens, \eliwrong\ and Victoria.\par

Someone says the greatest kings of England

were queens, \eligood\ and Victoria.

Note also the \ after the macros (for example,
\eligood\), which is needed to add a space if no
punctuation mark is following. But if eligood ends
a sentence (e.g., if we had written “Victoria and

\eligood.”), the capital “I” would cause the space
to be only a normal interword space instead of recog-
nized as ending a sentence. To fix it, add \@ before
the period: “\eligood\@.”.

7 https://tex.stackexchange.com/questions/74353/

what-commands-are-there-for-horizontal-spacing
8 And a funny video: https://youtu.be/jGAiF2LBLuY

Remember, when you go to a new line in a .tex

file, you are putting a space in your final output
document. People accustomed to ordinary word
editors or programming languages usually find it
strange and forget to add the % sign when needed.

TEX ignores what is written after a percentage
sign and also ignores the leading spaces of a line.

Therefore, pay attention when you put a com-
ment at the end of a line; you may make a space
disappear (of course, there are cases where this be-
havior is convenient, as above, in the definition of
the macro \eligood).

Here:% This is a comment

a space is missing\par

Here: % This is a comment

a space is present

Here:a space is missing
Here: a space is present

2.2 Vertical glue

Having adjusted the horizontal glue, let us move on
to the vertical.

Many LATEX document classes use the declara-
tion \flushbottom when the text is two-sided. In-
deed, it makes all the pages of the same height,
adding some vertical space if necessary. Usually, this
is pleasant to the eye because the left page looks
equal to the right one.

Nevertheless, if your pages have many math
formulae, tables, figures, and not only plain text,
\flushbottom may add too much vertical glue.

If this exceeds the allowed stretchability, you
may get the warning Underfull \vbox.

Sometimes, you may have widows and orphans,
typographical terms to indicate respectively a single
ending line at the beginning of a page or a single
opening line at the end of a page. There is an inter-
esting article by Frank Mittelbach [4] on this topic.

Let us see how to solve the problem.
First of all, you can use \raggedbottom. It does

not add extra vertical space to your page. Of course,
the downside is that your pages will have different
heights, and they could look bad if they are facing
pages of a two-sided document.

You may use \raggedbottom, also temporarily,
to see if any of your pages are too empty and then
adjust them. There are many ways to do it.

You may modify some vertical glues, refining
their stretchability or shrinkability. For instance,
you can adjust the space between paragraphs with
\parskip.

The DuckBoat—Beginners’ Pond: Crazy Little Thing Called Glue

https://tex.stackexchange.com/questions/74353/what-commands-are-there-for-horizontal-spacing
https://tex.stackexchange.com/questions/74353/what-commands-are-there-for-horizontal-spacing
https://youtu.be/jGAiF2LBLuY

38 TUGboat, Volume 42 (2021), No. 1

You may also increase (or decrease if the param-
eter is negative) the space after a specific paragraph
with \vspace{⟨length⟩}. If you place this command
in the middle of a paragraph, it is deferred until
after the paragraph ends. The space is not added
if it is at the beginning of the page, among other
places. There is also a starred version of the com-
mand, \vspace*{⟨length⟩}, which adds the space
also if it is at the top of the page, or would otherwise
be ignored.

Of course, there are many more commands for
vertical spacing; for a list, see https://latexref.

xyz/Spaces.html.
If you are not constrained to some typesetting

rules, you may try to (slightly) increase or decrease
your textheight; geometry is the recommended
package for this.

You can even change the height of a single page
with \enlargethispage⟨size⟩. The size could also
be negative, for example

\enlargethispage{-\baselineskip}

reduces the current page by a line. There is also
a starred version of the command that shrinks the
glue between your page elements, if possible, to make
room for the indicated size.

Moreover, you can suggest to (LA)TEX where
a page break should be encouraged or discouraged,
respectively, with the macros \pagebreak[⟨num⟩]
and \nopagebreak[⟨num⟩].

The optional parameter ⟨num⟩ is the sugges-
tion’s strength. It may vary from 1 (weak) to 4
(mandatory, the default).

Note that these commands apply to the next
new line with respect to the point where they are
positioned.

For example, suppose this is a paragraph at the

end of a page. If you put a \verb|\pagebreak|

here: \pagebreak it will not break the page

there but after the end of the line where

it appears.

End of the current page:

For example, suppose this is a paragraph
at the end of a page. If you put a \pagebreak

here: it will not break the page there but after

Beginning of the next page:

the end of the line where it appears.

A more abrupt command is \newpage, which
ends the current page immediately and does not
vertically stretch it. Note that a new paragraph is

started on the new page. Hence, you should use
the command at the end of a paragraph. If you
would like to use it in the middle, as in the following
example, you should add \noindent, if needed, to
avoid the possible paragraph indentation.

If you put a \verb|\newpage| here:\newpage

\noindent the page breaks at once.

If you put a \newpage here:

the page breaks at once.

Analogously to \newpage, also \clearpage and
\cleardoublepage end the current page at once.
The latter creates a blank page, if needed, to start
the new page always as an odd page; it is used in
two-sided documents. If your document has two
columns per page, they eventually leave an empty
column, whereas \newpage does not.

Another difference with \newpage is that they
also typeset all the floating environments present
in the float queue (see below). Hence, you can use
these two commands to print all your floats before a
certain point if you need this.

If we had to make a ranking of things that shock
beginners, floating environments undoubtedly win
the gold medal.

The standard ones are table and figure, but
there are others, and you can also create your own
floating environment, for example, with the package
float.

The adjective “floating” always reminds me of a
delicious French dessert, poison for diabetics, named
ı̂le flottante. It is an iceberg of meringue that sails
on an ocean of custard.

The newbie-astonishing property of these en-
vironments is just that they wander about in your
document as the meringue glides on the custard.
With ordinary word processors, tables and figures
usually remain where you put them.

Of course, this is a plus of (LA)TEX, because
it places floating elements professionally. Look at
any textbook of yours. You will see that figures
and tables are generally not positioned where they
are referenced, but at a specific place on the page.
The text references them with a number (one of the
reasons why I love (LA)TEX is exactly its efficient and
straightforward way of referencing objects).

The positioning mechanism is quite complex and
usually not immediately grasped by beginners. On

Herr Professor Paulinho van Duck

https://latexref.xyz/Spaces.html
https://latexref.xyz/Spaces.html

TUGboat, Volume 42 (2021), No. 1 39

this topic, I recommend you to read a detailed and
clarifying article by Frank Mittelbach [3].

In brief, the floating environments have an op-
tional parameter that specifies where to place the
float. It may contain the characters: h for here; t and
b for top and bottom of the page; p for a float page;
and a ! that indicates some positioning restrictions
should be ignored.

LATEX tries to place the float where specified. If
it does not succeed, the float is put in a queue which
is disposed of on the next page, if possible, or at
the end of the document, or when a \clearpage is
encountered.

The first “strange” thing (to newbies) is that
the position specifiers’ order is irrelevant. If you
write ht or th it is the same. It does not mean
that, in the first case, “here” is tried first and, in the
second, “top” is the first option. It only means that
(LA)TEX will not place the floats at the “bottom” or
in a “page”, at least not at first.

The second is that h does not mean “absolutely
here” but more or less “the float will be placed at
the end of the paragraph where it is mentioned, if
possible.”

After getting over the shock, newbies try with
every means to make the floats not floating, for ex-
ample, using the position specifier H from the float
package. But if you do not want your figures or ta-
bles to float, simply do not use floating environments,
quack!

The command
\captionof⟨float type⟩ [⟨list entry⟩]{⟨heading⟩}
from package caption (or capt-of) allows you to
have consistent numbering and labeling without us-
ing floats. The parameter ⟨float type⟩, that is figure,
table, etc., is mandatory; ⟨list entry⟩ is optional and
represents what you want to put in the list of figures,
tables, etc.

In the following example, I use a center en-
vironment, which does not float. You may use a
minipage with an appropriate alignment as well.

By the way, remember never to use a center

environment within a floating environment, because
it would add extra vertical space, use \centering

instead.9

...

\usepackage{caption}

...

\listoffigures

See Figure \ref{fig:my}, for example:

\begin{center}

9 https://tex.stackexchange.com/questions/

23650/when-should-we-use-begincenter-instead-of-

centering/23653

\includegraphics[width=3cm]{example-image}

\captionof{figure}[An image]

{An example image}\label{fig:my}

\end{center}

List of Figures

1 An image 39

See Figure 1, for example:

Image

Figure 1: An example image

3 Conclusion

While I was writing this article (January 2021),
other bad news reached me. With sadness in my
heart, let me remember Gustavo Mezzetti, a brilliant
TEXnician and TEX.SE friend, author of the gorgeous
halloweenmath package. He generously helped many
people also on the guIt Forum, with the nickname of
letteracdp (taken from a documentclass he wrote
years ago).

Ciao GuM, we will miss you!

References

[1] E. Gregorio. Recollections of a spurious space
catcher. TUGboat 36(2):149–161, 2015. https:

//tug.org/TUGboat/tb36-2/tb113gregorio.pdf

[2] D.E. Knuth. The TEXbook, vol. A of Computers and

Typesetting. Addison-Wesley, Reading, MA, USA,
1986.

[3] F. Mittelbach. How to influence the position
of float environments like figure and table in
LATEX? TUGboat 35(3):248–254, 2014. https:

//tug.org/TUGboat/tb35-3/tb111mitt-float.pdf

[4] F. Mittelbach. Managing forlorn paragraph lines
(a.k.a. widows and orphans) in LATEX. TUGboat

39(3):246–251, 2018. https://tug.org/TUGboat/

tb39-3/tb123mitt-widows.pdf

⋄ Herr Professor Paulinho van Duck
Quack University Campus
Sempione Park Pond
Milano, Italy
paulinho dot vanduck (at)

gmail dot com

The DuckBoat—Beginners’ Pond: Crazy Little Thing Called Glue

https://tex.stackexchange.com/questions/23650/when-should-we-use-begincenter-instead-of-centering/23653
https://tex.stackexchange.com/questions/23650/when-should-we-use-begincenter-instead-of-centering/23653
https://tex.stackexchange.com/questions/23650/when-should-we-use-begincenter-instead-of-centering/23653
https://tug.org/TUGboat/tb36-2/tb113gregorio.pdf
https://tug.org/TUGboat/tb36-2/tb113gregorio.pdf
https://tug.org/TUGboat/tb35-3/tb111mitt-float.pdf
https://tug.org/TUGboat/tb35-3/tb111mitt-float.pdf
https://tug.org/TUGboat/tb39-3/tb123mitt-widows.pdf
https://tug.org/TUGboat/tb39-3/tb123mitt-widows.pdf

40 TUGboat, Volume 42 (2021), No. 1

Creating document commands: The good,

the bad and the ugly

Joseph Wright

Creating document commands in LATEX has tradition-
ally involved a mix of \newcommand, semi-internal
kernel commands (like \@ifnextchar and \@ifstar)
and low-level TEX programming using \def. As part
of wider efforts to improve LATEX, the team have
over the past few years developed ideas for creating
document commands in the package xparse. In a
parallel article (on \NewDocumentCommand, on the
following pages), I’ve looked at how the xparse ideas
compare to the abilities of other packages.

The aims of xparse have always been two-fold:
to provide a clear way to create new commands, and
to provide a language to describe existing ones. It
is also intended to be as flexible as possible, so it
doesn’t impose artificial restrictions on syntax. That
comes at a cost, however: it can be (ab)used to create
commands that do not fit into the standard LATEX
pattern.

The LATEX kernel now integrates most, though
not all, of xparse into the kernel. That means the core
ideas are available out-of-the-box. This seems like a
good time, therefore, to look at the best ways to use
the abilities of xparse in making document commands.
I won’t look at the full detail, but rather pick out how
to, and how not to, create good document commands.

1 The Good

The LATEX kernel is very careful to have consistent
syntax for document commands. It uses only a small
number of the possible argument types, which I’ll
describe in xparse terms:

• Mandatory (m) arguments in braces.

• Optional (o/O{<default>}) arguments in [],
which may have a default; in xparse terms we
can tell the difference between a missing optional
argument and one given with an empty [] pair.

• An optional star (s).

• Picture co-ordinates (r()), which are split into
x and y, so in xparse terms subject to
\SplitArgument.

Most of the time, the LATEX kernel makes argu-
ments long, which is shown as + in xparse syntax.

A star is always used as the first argument after
a command, so in some ways it looks like part of
the command name itself. Optional arguments are
almost always given before mandatory ones, and
most of the time there is only one. Where two are
used, for example with \makebox, it’s because the

second is strictly dependent on the presence of the
first.

Following the kernel, signatures (argument de-
scriptions) such as:

s o m

s O{<default>} m m

o m m

are ‘good’. You can use something like

s +m O{0} +o +m

(with optional arguments after a mandatory one; this
is the syntax of \newcommand!) if you are careful, but
think very carefully.

There’s one syntax that’s not from the kernel
but is recommended where it applies: the beamer

overlay syntax, which is d<> in xparse terms. This
always comes first (other than a star), and is best re-
served for the ‘on X slides of Y’ idea in presentations
(doesn’t have to be using beamer).

xparse lets us create arguments using _ and ^,
similar to TEX’s core math mode syntax. Most of the
time, this should be reserved for math mode where
you need to emulate the TEX syntax but for some
reason need to grab the arguments yourself. This is
done using e{^_}.

2 The Bad

The above already shows we have quite a few com-
binations available. Things go bad when too many
combinations are used. For example:

• Multiple optional arguments where the second
or subsequent ones don’t strictly depend on the
earlier ones.

• Optional arguments using tokens other than []

(or <> for overlays).

• Testing for tokens other than * as ‘a special case’
(think things like +).

Almost always, complex setups using these types
of combination mean you need to rethink the syntax.
In particular, multiple optional arguments tend to
be much better replaced by using a keyval approach.

3 The Ugly

Some ideas in xparse won’t be making it to the kernel:
these are definitely the Ugly. They’ll stay in a stub
xparse for historical reasons, and as they do describe
some syntax choices people have made, but in truth,
they should be avoided:

• Optional groups (g) in braces; breaks the LATEX
conventions badly.

• Arguments up to a left brace (l); useful at a low
level, but not in a document command.

doi.org/10.47397/tb/42-1/tb130wright-goodbad

Joseph Wright

TUGboat, Volume 42 (2021), No. 1 41

• Arguments up to a token (u); widely used in
programming, but again not in document com-
mands.

You might wonder why they are all there in the
first place: these were part of the more experimental
work in xparse, and those particular experiments have
shown we don’t want to enable such syntaxes even
for emulating existing commands.

4 A Fistful of Tokens

There are of course places where you need to go
outside of the xparse structures, particularly when
parsing specialist data. The popular TikZ graph-
ics system is one example; linguistic glosses are an-
other. But these are restricted contexts, normally
used within a dedicated environment where it is clear
that the ‘usual’ rules do not apply. Basically, if you
do this, you are on your own, so be sure to check the
balance of consistency versus compactness.

5 For a Few Tokens More

Using xparse syntax makes it much easier to have a
clear break between interface and implementation.
As such, the fact that it’s got more going on ‘beneath
the hood’ is worth it: it’s a lot easier to track what’s
happening. The move into the kernel will make
using xparse descriptions even easier to exploit, so it’s
important that users defining their own commands
give a little thought to the syntax they choose.

⋄ Joseph Wright

Northampton, United Kingdom

joseph dot wright (at)

morningstar2.co.uk

\NewDocumentCommand versus \newcommand

versus . . .

Joseph Wright

Creating new document commands in LATEX has
traditionally been the job of \newcommand. This lets
you create a command with mandatory arguments,
and also support a first optional argument. However,
it can’t create more complex commands: LATEX uses
stars, multiple optional arguments, and plenty more.
To define commands using such syntaxes, the kernel
itself uses lower-level TEX programming. But this
is opaque to many users, and a variety of packages
have been created to ease the burden.

Over the last decade, the LATEX team have de-
veloped xparse, a generic document command parser,
as a way to unify many ideas and provide a single
consistent way to create document commands. The
bulk of that code has now been moved to the LATEX

kernel, and in a parallel article (starts on the preced-
ing page) I’ve provided some ideas about how best
to exploit that.

In this article, I want to look at a related issue:
why to use this ‘xparse’ approach, and how it com-
pares to existing solutions, both in the LATEX kernel
and the wider package sphere. Here, I’m going to
avoid talking about ‘simple’ shortcuts (things such as
\newcommand\myname{Joseph}): these are best left
to \newcommand. Instead, I want to deal with com-
mands which take arguments and have some element
of ‘programming’ to them.

What I’ll seek to highlight here is that using
\NewDocumentCommand, we get a single consistent
and reliable way to create a variety of commands.
There’s no need to worry about clashes between
approaches, and it all ‘just works’.

1 Preliminaries: Protected commands and

optional arguments

Before we start, a couple of things are worth mention-
ing. First, there is the idea of ‘protected’ commands.
In some places, we need commands not to ‘expand’
(turn into their definition). With a modern TEX
system, that can be arranged by the engine itself
(pdfTEX or similar), using ε-TEX’s \protected prim-
itive (built-in). The LATEX kernel doesn’t use that
mechanism in \newcommand, but lots of other tools
do. I’m going to assume that we want to make protec-
ted commands unless I mention otherwise. Almost
always, unless you are creating a ‘shortcut’ for some
text, you want your commands to be protected.

The second thing to note is that TEX itself has
no concept of optional arguments, so they are al-
ways arranged using some clever look-ahead code.
In xparse, nested optional arguments are handled
automatically, but again, \newcommand and similar
do not do that.

2 The kernel: versus \newcommand

The kernel’s \newcommand can, as I’ve said, create
commands with multiple mandatory arguments but
with only one optional one. A simple example:

\newcommand\foo[3][default]{%

Code perhaps using #1 and

definitely using #2 and #3%

}

We can of course create an equivalent command using
\NewDocumentCommand:

\NewDocumentCommand\foo{+O{default} +m +m}{%

Code perhaps using #1 and

definitely using #2 and #3%

}

doi.org/10.47397/tb/42-1/tb130wright-newdoccmd

\NewDocumentCommand versus \newcommand versus . . .

42 TUGboat, Volume 42 (2021), No. 1

You may notice that I’ve used +m for both of the
mandatory arguments, as that matches \newcommand:
the arguments can accept paragraphs (is \long, in
TEX terms). With \newcommand, all arguments either
accept \par or do not: with \NewDocumentCommand

we can select on a per-argument level what happens.
The optional argument with a default works

using O{default}, and the result will be the same
functionality as \newcommand. We gain the idea that
nested optional arguments are parsed properly, some
better error messages if we use \foo incorrectly, and
an engine-robust definition of \foo.

We can’t do a lot more with \newcommand, so
rather than try to show other \NewDocumentCommand
features here, we’ll first consider how we might make
more complex syntaxes using just the classical LATEX
kernel.

3 . . . versus \def: The primitive

Using the TEX primitive \def, plus the kernel in-
ternal commands \@ifstar and \@ifnextchar, we
can construct more complex syntaxes. For example,
let’s create the syntax for \section: a star, an op-
tional argument and a mandatory one. I’ll assume
we have @ defined as a letter here. I’m also going
to pass the presence of a star as the text true or
false, as it makes things clearer.

\newcommand\section{%

\@ifstar

{\section@auxi{true}}

{\section@auxi{false}}%

}

\def\section@starred#1{%

\@ifnextchar[%]

{\section@auxii{#1}}

{\section@auxii{#1}[]}%

}

\long\def\section@auxii#1[#2]#3{%

% Here:

% #1 is "true"/"false" for a star

% #2 is the optional argument

% #3 is the mandatory argument

}

As you can see, this is a bit tricky already, and
it doesn’t cover the case where we want to have the
optional argument default to the mandatory one,
when it’s not given. It also doesn’t allow for nested
optional arguments, and it’s not engine-robust. We
might of course use more complex paths for the star:
we could have independent routes.

Using \NewDocumentCommand, things are much
easier:

\NewDocumentCommand\section{s +O{#3} +m}{%

% Here:

% #1 is "true"/"false" for a star

% #2 is the optional argument

% #3 is the mandatory argument

}

The minor difference now is that #1 is a special
token that we can test for truth using \IFBooleanTF.
I’ve also allowed for the optional argument picking
up the mandatory one (#3), when it’s not given.

We could make more complex examples, but the
bottom line is: using \NewDocumentCommand, we are
going to have simple one-line interface descriptions,
and the behind-the-scenes TEX argument parsing is
hidden away.

4 . . . versus \newrobustcmd: etoolbox

The etoolboxpackage offers \newrobustcmd as a com-
plement to \newcommand. It provides exactly the

same interface as \newcommand, except it uses ε-TEX
to make engine-protected commands. Here’s an in-
terface point of view, there’s nothing new here.

5 . . . versus \newcommandtwoopt: twoopt

The twoopt package supports a syntax similar to
\newcommand but for creating two optional argu-
ments. We’ll take an example from its documenta-
tion:

\newcommandtwoopt\bsp[3][AA][BB]{%

\typeout{\string\bsp: #1,#2,#3}%

}

This is reasonably clear: we have an optional argu-
ment #1, and optional argument #2 and a mandatory
argument #3. The two optional arguments each here
have a default.

How does this look with \NewDocumentCommand?

\NewDocumentCommand\bsp{+O{AA} +O{BB} +m}{%

\typeout{\string\bsp: #1,#2,#3}%

}

You’ll see that we stay consistent here: the same syn-
tax is used to create one, two or even more optional
arguments. I wouldn’t recommend using multiple
optional arguments in most cases, but when we do,
it’s a lot easier using \NewDocumentCommand.

One thing that \NewDocumentCommand can do,
but twoopt cannot, is create optional arguments that
are not in the first or second positions. With two-

opt, that would require either the TEX coding we’ve
already seen, or using a different tool again.

Joseph Wright

TUGboat, Volume 42 (2021), No. 1 43

6 . . . versus \withsuffix: suffix

The suffix package allows one to extend an existing
command to look for an optional token (‘suffix’)
immediately after the command name. Taking a
simple example from StackExchange (https://tex.
stackexchange.com/a/4388), we start with

\newcommand\foo{blah}

\WithSuffix\newcommand\foo*{blahblah}

which translates to

\NewDocumentCommand\foo{s}{%

\IFBooleanTF{#1}

{blah}

{blahblah}

}

This means we only need one line for the inter-
face set up, and don’t need, for example, to split
up grabbing optional arguments into two different
places (as in the previous example with \section).

7 . . . versus \newcommandx: xargs

The xargs package is perhaps the most complete ap-
proach to extending \newcommand as far as optional
arguments are concerned. It provides \newcommandx,
which has the same syntax as \newcommand but
where the second optional argument is a key–value
list, which then describes which arguments are op-
tional, and what their defaults are. Taking an ex-
ample from the documentation:

\newcommandx*\coord[3][2=1,3=n]{%

(#2_{#1},\ldots,#2_{#3})}

would create a command with two optional argu-
ments, #2 and #3 (each with defaults), leaving #1

mandatory. Translating into \NewDocumentCommand

syntax might make that clearer!

\NewDocumentCommand\coord{m O{1} O{n}}{%

(#2_{#1},\ldots,#2_{#3})%

}

The xargs package has the idea of usedefault,
which allows [] to be the same as [default]. That’s
not something xparse does, as it is pretty confusing:
what happens when you want an empty optional
argument? This links to something I’ve said be-
fore: avoid consecutive optional arguments unless

the second is dependent on the first.

8 . . . versus newcommand.py: newcommand

Stepping outside of TEX itself, Scott Pakin’s Py-
thon script newcommand.py provides a description
language somewhat like xparse, and converts this into
a ‘template’ of TEX code, allowing a ‘fill in the blanks’
approach to creating commands. It can cover several
of the ideas that xparse can, including a few that will

not be migrated to the LATEX kernel. It can also set
up a command taking more than 9 arguments, but
that’s always going to be tricky as a user.

What is important is that using a script means
we have to work in two steps, and it’s hard to see
what’s happening from the TEX source. It also
doesn’t offer anything that the kernel doesn’t already
do: no protected commands, no nested optional ar-
guments, no improved error messages. So in many
ways this is using techniques we’ve already seen, just
made a little more accessible, at least if you have
Python installed.

9 . . . versus \NewEnviron: environ

As well as document commands, the xparse syntax
can be used to create document environments: the
same relationship we have between \newcommand and
\newenvironment. What people sometimes want to
do is grab an entire document environment body and
use it like a command argument. Classically, one
does that using the environ package. Again, taking
an example from the documentation:

\NewEnviron{test}{%

\fbox{\parbox{1.5cm}{\BODY}}\color{red}

\fbox{\parbox{1.5cm}{\BODY}}%

}

would grab all of the body of the environment test
and typeset it twice, the first time in red. That is,
the environment body is saved as \BODY.

Using \NewDocumentEnvironment, we have a
syntax similar to \newenvironment

\NewDocumentEnvironment{test}{+b}{%

\fbox{\parbox{1.5cm}{#1}}\color{red}

\fbox{\parbox{1.5cm}{#1}}%

}{}

with the argument grabbed in the normal way as
(here) #1. We can therefore have ‘real’ arguments
first, then grab the body.

10 Summary

Using the tools set up in \NewDocumentCommand, we
can have a consistent way of creating a wide range
of document commands. Rather than use a mixture
of tools, from the kernel, the TEX engine, and the
package sphere, it is far preferable to use the single
interface of \NewDocumentCommand for defining new
commands today.

⋄ Joseph Wright

Northampton, United Kingdom

joseph dot wright (at)

morningstar2.co.uk

\NewDocumentCommand versus \newcommand versus . . .

Comparison of OpTEX with other formats:

LATEX and ConTEXt

Petr Oľsák

Introduction

OpTEX [1] was introduced in an article [2] in the pre-
vious issue of TUGboat. It is a macro package that
creates a format for LuaTEX. Its features are com-
parable with other formats like LATEX or ConTEXt.
One may ask why use a new format, particularly
when it requires a different markup syntax? I try to
answer this question here. I present a comparison
among the LATEX, ConTEXt, and OpTEX formats,
from various points of view.

Basic concept

LATEX. It was created in the 1980s as a real format,
i.e. the implementation of visual and typographical
aspects of the TEX output. Moreover, it provides
a markup language given in [3] which was intended
for the authors of (typical) scientific publications.
Authors are instructed: use this markup and don’t
worry about the typographical look of the output.
This look is implemented for you in the format.

A very important feature of LATEX is its mod-
ularity. There are macro packages that solve par-
ticular problems with the typesetting of documents
which can be loaded when the document is pro-
cessed. This concept has grown to a size which no-
body could have expected in the 1980s. Now, some
packages give authors an interface to set various ty-
pographical parameters of the typesetting too. So,
there is no single format of the output. But the pos-
sibility of controlling the visual aspect of the output
has no uniform strategy. It is spread among various
packages created by various authors.

LATEX introduces a new level of terminology,
syntax, etc., over the TEX primitive level. We are
not using control sequences (meaning macros, reg-
isters, . . .) in LATEX. There are commands and
newly introduced functions and variables here. But
the interpreter is TEX, so it reports (for example)
the message “undefined control sequence” and
the LATEX users may not know this term and they
may not understand such messages. For example,
a typical TEX message “missing \cr inserted” is
not understandable for average LATEX users because
they are using \\, not \cr.

The different LATEX syntax can be shown in the
following example. The setting to the register which

44 TUGboat, Volume 42 (2021), No. 1

controls the width of the typesetting area is docu-
mented as

\setlength{\textwidth}{13cm}

which would be \hsize=13cm at the TEX primitive
level. The primitive level is allowed in LATEX docu-
ments too, so we often see a mix of primitive syntax
and LATEX syntax in real-world documents.

In the last ten years, a new language level over
the primitive level has been developed, used, and
propagated by the LATEX team: expl3. It is intended
to be used by macro/package writers for LATEX. It
is even further from the TEX primitive level. For
example:

\tl_set:Nn \l_pkgname_hello_tl { Hello! }

is comparable to \def\hello{Hello!} from the
primitive point of view. Very special naming con-
ventions must be used here. And different termi-
nology is used: the \l_pkgname_hello_tl is not a
macro without parameters, but rather a variable.
The \tl_set:Nn is not a macro that expands to the
\def primitive, but rather a function.

ConTEXt. It was created and is still developed by
Hans Hagen (and colleagues). The first released ver-
sion was in 1994 (in Dutch) and the ConTEXt name
was given to the package in 1996. Now, we have a
development version ‘ConTEXt lmtx’ based on the
LuaMetaTEX engine (not included in TEXLive) and
the stable ‘ConTEXt mkIV’ based on the LuaTEX
engine. When I use the word ConTEXt in this ar-
ticle, I mean the stable ConTEXt, because I don’t
have experience with the development version.

ConTEXt is not only a format, it is a tool that
enables one to set the typesetting parameters con-
sistently and process the document. All features
used in typical present-day documents are supported
in one place without the need to load external and
third-party packages.

The settings of the typesetting parameters are
done with \setup... commands in key-value syn-
tax. So, new syntax over primitive TEX syntax is
created here. And the distance from this level of syn-
tax to the primitive level seems to be quite big. For
example, the primitive \hsize is set when a param-
eter width in a special context is used in ConTEXt.

ConTEXt is closely associated with MetaPost
for creating vector graphics which can be pro-
grammed and which “cooperate” with typesetting
material. LATEX and OpTEX more commonly use
TikZ for this, although all the formats support both
graphics packages, among others.

doi.org/10.47397/tb/42-1/tb130olsak-fmtcmp

Petr Oľsák

OpTEX. It was released in 2020 and the first stable
version dates from February 2021. It is the successor
of the OPmac macros [4, 5] specially designed as a
format for the LuaTEX engine.

OpTEX is similar to plain TEX but provides
myriad additional features needed when preparing
typical documents in PDF format. The list of fea-
tures is presented in the next section.

OpTEX does not try to define a new level of lan-
guage over the primitive level of TEX. It is intended
that if something is not supported in OpTEX macros
then the user works at the TEX primitive level (or
plain TEX or OpTEX basic macro API). For exam-
ple, when you want to set the width of the typeset-
ting area, use simply \hsize=13cm.

The macros are straightforward, they solve only
what is explicitly needed. They do not scan nor
manipulate with lots of parameters for setting ty-
pography. OpTEX generates a “default typography”
if nothing more is done. The main concept is: if
you want different typography or different behav-
ior, then copy appropriate macros from the OpTEX
kernel and make changes to them in your macro
file. For example, suppose you want to give a dif-
ferent look to section titles. Then copy the macro
_printsec from OpTEX and modify it. You can
see that the macro uses primitive commands for
typesetting: \hbox, \vbox, \kern, \vskip, \hskip,
\penalty, etc. You can use this box-penalty-glue
concept directly without any inserted inter-layer of
language. This is very natural in TEX and you can
use the full power of TEX.

We can summarize the basic concept of OpTEX
in two sentences: (1) We can return to the original
TEX principles. (2) Simplicity is power.

Kernel versus packages

LATEX. The features implemented directly in the
LATEX kernel (i.e. in the .fmt file) correspond to
the time of LATEX’s origin. There is no color sup-
port, no support for graphics insertions, no hyper-
link support, no Unicode font support, etc. All these
additional features are solved using external pack-
ages. So, document preambles contain plenty of
\usepackage commands to load additional macros.
Without them, you cannot solve typical problems
when processing today’s documents.

ConTEXt. It has an almost monolithic kernel that
implements all necessary features. There is a possi-
bility of “modules” in ConTEXt (something compa-
rable to LATEX packages) but they are not typically
used because virtually all features are present in the
kernel.

TUGboat, Volume 42 (2021), No. 1 45

OpTEX. The kernel implements:

• all macros from plain TEX,

• font selection system for Unicode fonts,

• Unicode math,

• color support including color mixing,

• graphic insertions,

• creating simple graphic elements,

• typesetting at absolute or relative positions,

• external and internal references and hyperlinks,

• automatic generation of a table of contents,

• generation of \cite references from .bib files,

• creating alphabetically sorted indexes,

• hyphenation for all available languages,

• switching between language-dependent phrases,

• footnotes and marginal notes,

• verbatim listings including syntax highlighting,

• PDF outlines in Unicode,

• creating tables with a new \table macro,

• creating slides for presentations,

• simple predefined styles “letter” and “report”,

• comfortable setting of page layout,

• printing “lorem ipsum dolor sit”,

• simple API for macro writers,

• loops and key-value syntax for macro writers,

• namespaces for users and macro writers.

Many other features can be implemented in a
small number of macro lines. They are listed in
the OpTEX tricks web page [6]. Other such fea-
tures will be added here if a user asks me to solve a
new problem. A user can copy the macro lines from
this web page to his/her macro file and (possibly)
modify them and use them. Almost every feature
listed here is typically comparable with using some
LATEX package, but is solved with more straightfor-
ward macros. For example, the feature comparable
with the import package is implemented by three
lines of macro code in OpTEX trick 0035. The LATEX
package import itself has 120 lines of macro code.

Some features take more than a few lines of
code. OpTEX supports loading macro packages too,
with a \load macro. For example, there are pack-
ages:

• qrcode calculates QR codes and prints them,
• vlna handles non-breakable spaces after Czech/
Slovak prepositions and other similar typo-
graphical features, using the luavlna package

• emoji enables printing of a large number of col-
orized emoticons from the special Unicode font.

Comparison of OpTEX with other formats: LATEX and ConTEXt

Documentation

LATEX. The LATEX project page [7] lists 8 files as
“general documentation” with 160 pages in total,
but this is not all. The mentioned documentation
describes LATEX kernel features. But users need to
use dozens of packages when an average document
is prepared. Each package has its documentation.
This represents hundreds or thousands of additional
documentation pages from various authors. The
documentation is of different ages in different styles.
It is difficult to recognize what is relevant and what
is obsolete. There exists a book [8] that summarizes
features of LATEX and of all typically used LATEX
packages but not every LATEX user has access to this
book. And features of recent versions of packages
may differ from those described in this book.

There is the LATEX doc system: the macro pro-
grammer can write code and technical comments to-
gether. You need to pre-process these sources to
get macro files usable when the format is generated
or documents are processed. This system is widely
used by LATEX package programmers.

ConTEXt. There are about 180 PDF files with
various ConTEXt documentation. It is not within
the power of the average user to know such a huge
amount of information and be able to select the
most important parts when starting with ConTEXt.
On the other hand, this illustrates that ConTEXt
covers a very large area of computer typesetting.

OpTEX. The main OpTEX manual [9] is divided
into two parts: user and technical documentation.
The first part has only 22 pages. There is a summary
of OpTEX markup at page 26. You can click on each
control sequence listed here and the relevant part of
user documentation is shown. You can click again on
a control sequence here and your PDF viewer jumps
to the second part with technical documentation and
with a detailed technical description of the macro
and with the macro source printed there.

The manual is created using OpTEX, of course.
When the technical part of the documentation is
processed, the actual OpTEX files with the macro
sources and with detailed comments are read. It
is similar to literate programming where technical
notes and code sources are together in a common
file. You don’t have to pre-process this file: the
files are ready to be read when OpTEX format is
generated and when the documentation is prepared.

Of course, if the user wants information beyond
document markup, then he or she must know the ba-
sics of TEX itself and plain TEX. This information is

46 TUGboat, Volume 42 (2021), No. 1

summarized in document [10] in 26 pages. More in-
formation about TEX math typesetting and Unicode
math is summarized in document [11] in 30 pages.

The three documents mentioned above [9, 10,
11] are sufficient to acquire all knowledge about
OpTEX and TEX. They are all that you need to
know when working with OpTEX documents. Of
course, you can get more information about the
TEX engine used by OpTEX: [12, 13, 14]. No other
documents are needed.

External programs

LATEX. When creating the reference list of \cited
records from a .bib file, LATEX needs an external
program (ancient BibTEX or newer Biber). Users
have to run this sequence: latex, biber, latex,
latex to get the correct reference list and \cite

numbers.
When creating an index, the external program

Makeindex or Xindy is used. The user must not for-
get to run makeindex followed by latex after final
corrections (just before sending to print) are done.

When printing a code listing with syntax high-
lighting, some LATEX packages use another external
program, such as a python script.

OpTEX. We don’t have to use any external pro-
grams when creating bibliography references, sort-
ing an index, or printing code listings with syntax
highlighting. All these tasks are done at the TEX
macro level.

OpTEX reads the .bib file directly and creates
the appropriate reference list. A bibliography style
(a simple macro file) is used to set the rules for print-
ing and sorting records. If all \cite commands are
before the reference list generated by \usebib, then
you need to run OpTEX only two times: the first
run accumulates all labels used in \cite commands,
and the records with these labels are read from the
.bib file. The reference list is created and labels are
connected to the generated numbers and saved to a
.ref file. The second run uses these label-number
pairs to print the numbers at the places where \cite
commands are used.

Index sorting is done by a merge sort algorithm
which is very efficient in the TEX macro expansion
language. The special two-pass algorithm is used
for similar phrases, which is configurable for almost
all languages. The sorting rules are applied by the
currently selected language.

The syntax highlighting of code listings is done
at the TEX macro level. It is configured in macro
files hisyntax-c, hisyntax-html, etc.

Petr Oľsák

Font selection system

LATEX. In the 1990s, the “New font selection
scheme” (NFSS) was designed, along with the
LATEX2ε release. The system allows the selection of
family, weight, shape, size, and encoding of the font
independently. It was designed for old fonts with a
maximum of 256 characters in the font. The NFSS

creates a new layer over the \font primitive. Spe-
cial internal names for font families were used and
declared in font definition files (.fd). Each newly
installed font was typically converted to various
8-bit encodings. The virtual fonts technique was
frequently used. This required a high level of un-
derstanding fonts in TEX, making font installation
almost impossible for average users.

When Unicode engines were released then a new
fontspec package for selecting Unicode fonts was
designed. It follows the principles given by NFSS but
adds new features to support Unicode text fonts.

OpTEX. The font selection system respects the ba-
sic plain TEX principle: you can select font variants
typically by \rm, \it, \bf and \bi selectors when
a font family is loaded by \fontfam. The variant
is selected with respect to the current “font con-
text” given by the current setting of font size and
more features given by “font modifiers”. The set
of font modifiers (for example \cond, \caps, \sans,
\bolder) depends on features provided by the se-
lected font family. Users can combine the font mod-
ifiers arbitrarily: the appropriate font is selected if
the font family provides it. The font families includ-
ing their modifiers are implemented in “font files”.
The log file shows the available font modifiers of the
selected font family. Users can create a font catalog
with simply \fontfam[catalog]\bye. All families
registered in font files are printed in this catalog;
see [15]. You can see all available families, modi-
fiers, and variants here. Font samples for each such
combination are shown.

Unicode fonts are preferred in OpTEX. An ap-
propriate Unicode math font is loaded automatically
too when \fontfam is used. The special font mod-
ifier \setff{...} sets an arbitrary OpenType font
feature if it is supported by the font.

Of course, OpTEX supports usage of the \font
primitive and allows you to simply incorporate the
font selector (declared by \font) into your macros
to enable scaling this font by the size context used
in the document. You need not declare a \font for
the same font repeatedly for all necessary sizes.

TUGboat, Volume 42 (2021), No. 1 47

Fragile commands in titles

LATEX. LATEX users know the term “fragile com-
mand” well. A macro used in the title of a section
or chapter can be broken when it is written to in-
ternal files used for generating the table of contents.
It has been over 20 years that (ε-)TEX has provided
the \detokenize and \scantokens primitives but
LATEX users are still fighting with fragile commands,
solving the problem with methods like using the
\protect macro or \DeclareRobustCommand which
adds a mysterious space to the end of the control
sequence name, making tracing more difficult.

OpTEX. There are no “fragile macros”. OpTEX
reads the titles for chapters and sections in verbatim
mode and re-tokenizes them when they are actually
used for printing. Moreover, the verbatim construc-
tions work in titles too:

\sec Title with ‘\this{‘ matter

The in-line verbatim is surrounded by ‘...‘ here.
As shown, unbalanced braces {} can be in the verba-
tim text. And this verbatim text is correctly printed
in the table of contents, headlines, and PDF outlines.
This is difficult in LATEX because the syntax for sec-
tion parameters is the text surrounded by balanced
braces {}. The title parameter in OpTEX is delim-
ited by the end of the line.

ConTEXt. The title parameter is surrounded by
braces {} similarly as in LATEX, so the example
above with \this{ cannot work as-is in ConTEXt.

Markup language

LATEX. Almost all user-level LATEX macros have
undelimited parameters, so users must use braces to
specify parameters of more than one token. LATEX’s
\newcommand does not allow declaring a macro with
delimited parameters. Brace pairs {} outside the
context of macro parameters (i.e. in the meaning
begingroup–endgroup) are not preferred in LATEX
markup language.

Writing the LATEX document often means cod-

ing the document. There are many nested LATEX
environments (a new syntactic concept in LATEX)
and {} braces. For example, Beamer documents are
more programming language than source text. The
author’s ideas (what’s intended to be displayed in
the Beamer presentation) disappear among the sur-
rounding code in source files.

There is no “standard LATEX markup language”
in the sense that if a program (other than TEX) un-
derstands this markup then it knows how to convert

Comparison of OpTEX with other formats: LATEX and ConTEXt

from or to this markup. We cannot suppose what
packages will be used, and they significantly affect
the tagging of the document.

OpTEX. The main credo is: the source files of the
document are created (typically) by humans, hu-
mans will read these sources and manipulate them.
Source files are intended primarily for humans, not
for machines. Machines must be programmed to re-
spect these principles.

This is why OpTEX tries to define a more
lightweight markup language. There are no highly
nested environments, there is a minimal number of
braces {}. Items in lists begin naturally with a *

character, titles are terminated by the end of the
line.

Many other relatively lightweight markup lan-
guages have been devised; Markdown, for example.
But we cannot have absolute control of “to PDF

processing” in Markdown. Maybe, an author can
initially prepare documents in Markdown, but the
result must be converted to a .tex format, which
could use the OpTEX format. A (human) typesetter
takes this .tex file and starts to program the ty-
pography of the document. It means that he or she
manipulates the .tex sources and adds more infor-
mation here and adds .tex macro files.

The .tex sources are “the heart” of the docu-
ment. They are what’s needed to archive documents
for future use (in the next edition, for example).
They can be processed for printing purposes to PDF

(by OpTEX) or they can be converted to other for-
mats (by other converters).

There is an OpTEX markup language standard
(OMLS) [16] which gives instructions for poten-
tial authors of converters from/to OpTEX format.
The standard specifies the syntax and semantics of
“known OpTEX tags”. Other tags can be ignored.
The OMLS covers tags that are used in typical tasks
when processing OpTEX documents.

ConTEXt. The markup language is somewhere be-
tween LATEX coding and OpTEX writing the docu-
ment. Tables, though, are created in a special way
not typical in TEX. They look like HTML code which
is far from a text intended for humans.

Hello world test

Create the following test file

\loggingall

\cslang % Czech hyphenation patterns

\fontfam[Adventor] % Unicode font family Adventor

Ahoj světe! % Hello world!

\bye

48 TUGboat, Volume 42 (2021), No. 1

and its counterparts in other two formats (LuaLATEX
and ConTEXt), i.e. loading the Unicode Adventor
family, selecting a language, and printing one sen-
tence. We count the number of lines in the .log

file when full tracing is activated by \loggingall

and the time spent when processing this document
without \loggingall (measured using the author’s
notebook). The following table summarizes the re-
sults:

OpTEX LuaLATEX ConTEXt

lines 1.8 K 3.6 M 231 K
time 0.5 s 1.0 s 1.1 s

We can see that LuaLATEX needs to do about
two thousand times more internal operations than
OpTEX to process this “Hello world” document.
LuaLATEX is slightly better than ConTEXt (although
ConTEXt was run with the --once option) in the
time measurement, because ConTEXt has an excep-
tionally large .fmt file and time is spent loading
and uncompressing this file. See the following table
which shows the size of .fmt files in the GNU/Linux
TEXLive distribution:

OpTEX LuaLATEX ConTEXt

.fmt size 750 KB 1.2 MB 11 MB

Note that OpTEX has a noticeably smaller for-
mat file than LuaLATEX although it implements not
only the comparable features of the LATEX kernel
but also a number of LATEX packages not included
in the kernel: xcolor, hyperref, url, listings,
biblatex, graphicx, geometry, amsmath, amsymb,
fontspec, unicode-math, cprotect, eqparbox,
tabularx, booktabs, keyval and more.

Why it is possible? OpTEX keeps its basic con-
cept “simplicity is power”.

Moreover, OpTEX does not create any auxiliary
file if it is not needed. When the example above was
processed, LATEX creates an unnecessary .aux file
and ConTEXt creates a .tuc file, but OpTEX creates
only .pdf and .log files.

When OpTEX needs an auxiliary file, then only
a .ref file is created where all needed information
is saved. We don’t need .toc, .lot, .lof, .nav,
.glo, .idx, .ind, .bbl and others that have been
used over the years.

Namespaces

LATEX. There is no user namespace. You cannot
tell users: “you can define and use an arbitrary con-
trol sequence with given naming scheme”. There is

Petr Oľsák

only the concept: “try it and maybe you will be
successful”. More precisely, the user can define an
arbitrary control sequence using \newcommand and
this macro ends with the error “control sequence de-
fined already” (in other words: “you are out of your
namespace”), or it is successfully defined.

LATEX packages commonly use internal names
containing the @ character. These names typically
begin with pkg@ where pkg is the name of the pack-
age. The expl3 language uses _pkg_ in the names
of control sequences too. This results in code where
we repeatedly see _pkg_, _pkg_, _pkg_ in practice,
despite various language features to attempt to re-
duce the need for the repetition. This reduces the
clarity of the code and reduces the concentration of
an eventual reader on the key topic of the code.

OpTEX. We can say to users: Your namespace
includes names with letters only. You can define
control sequences in this namespace and use them.
Moreover, some control sequences in your name-
space have pre-declared meanings (primitive, macro
from OpTEX, register or anything else). You can
use them. If you don’t know about the existence
of the meaning of a pre-declared control sequence
and you never use it with this meaning, then you
can re-define it without problems. For example,
\def\fi{finito} will work as you wish, if you never
use \fi in its primitive meaning.

How does it work? All primitive control se-
quences and internal macros in OpTEX have their
duplicates in the format _foo. For example, there
are control sequences \hbox and _hbox with the
same meaning. OpTEX macros use exclusively the
_foo form. This is the OpTEX namespace. Users
can utilize _foo sequences too without problems
in “read-only” mode and they can re-define such se-
quences when they know what they are doing.*

The packages for OpTEX have their own name-
space in the naming scheme _pkg_foo. But the

* Unfortunately, there is one exception to this princi-
ple of the user namespace: the control sequence \par is
hardwired in the TEX implementation. For example, it is
generated at each empty line. The OpTEX manual men-
tions this exception from the user namespace. I wrote
a patch to TEX, which enables to set any name to this
hardwired control sequence. Unfortunately, I sent this
patch after the deadline for TEXLive 2021, so we must
wait a while until it will be implemented in the TEX
engines. The patch is ready, documented, and tested
on my computer. When the patch is applied then this
footnote will be rendered obsolete, since there will be no
exceptions from the user namespace.

TUGboat, Volume 42 (2021), No. 1 49

package writer doesn’t have to write _pkg_ re-
peatedly in the internal macros because there is a
_namespace{pkg} declaration. If it is used then
the macro programmer can write \.foo, \.bar

in the code, and it is transformed to _pkg_foo,
_pkg_bar at the input processor level, when the
macro file is scanned.

Happy (Op)TEXing!

References

1. OpTEX web pages. petr.olsak.net/optex

2. P. Oľsák: OpTEX—A new generation of Plain
TEX. TUGboat 41:3, 2020, pp. 348–354.
tug.org/TUGboat/tb41-3/tb129olsak-optex.pdf

3. L. Lamport: LATEX: A document preparation

system. Reading, Mass.: Addison-Wesley, 1994.

4. OPmac web page. petr.olsak.net/opmac-e.html

5. P. Oľsák: OPmac: Macros for Plain TEX.
TUGboat 34:1, 2013, pp. 88–96.
tug.org/TUGboat/tb34-1/tb106olsak-opmac.pdf

6. OpTEX tricks.
petr.olsak.net/optex/optex-tricks.html

7. LATEX Project web pages.
https://www.latex-project.org/

8. F. Mittelbach et al.: The LATEX Companion.
Reading, Mass.: Addison-Wesley, 2004.

9. OpTEX manual.
petr.olsak.net/ftp/olsak/optex/optex-doc.pdf

10. P. Oľsák: TEX in a nutshell. 2020, 29 pp.
petr.olsak.net/ftp/olsak/optex/tex-nutshell.pdf

ctan.org/pkg/tex-nutshell

11. P. Oľsák: Typesetting Math with OpTEX.
petr.olsak.net/ftp/olsak/optex/optex-math.pdf

12. V. Eijkhout: TEX by Topic, 2007.
ctan.org/pkg/texbytopic

13. D. Knuth: The TEXbook. Reading, Mass.:
Addison-Wesley, 1984.

14. LuaTEX reference manual.
www.pragma-ade.com/general/manuals/luatex.pdf

15. Font catalog generated by OpTEX.
petr.olsak.net/ftp/olsak/optex/op-catalog.pdf

16. OpTEX markup language standard (OMLS).
petr.olsak.net/ftp/olsak/optex/omls.pdf

⋄ Petr Oľsák
Czech Technical University
in Prague
https://petr.olsak.net

Comparison of OpTEX with other formats: LATEX and ConTEXt

50 TUGboat, Volume 42 (2021), No. 1

GUST e-foundry font projects, closing
report 2019Ű2020

Jerzy Ludwichowski

1 For the record

The GUST e-foundryŠs set of interrelated projects
that are reported on here was conceived in 2015. A
leaĆet presenting the ideas and asking for Ąnancial
support was sent out to various TEX LUG boards
later that year. Support was offered in 2015 by NTG,
in 2016 by CSTUG and ConTEXt Group. DANTE e.V.
and TUG joined in 2017.

The ŞadvertisingŤ leaĆet mentioned above was
turned into a one page summary and published in
TUGboat, Volume 38 (2017), No. 2 as ŞGUST e-
foundry current font projectsŤ (tug.org/TUGboat/

tb38-2/tb119ludwichowski.pdf).
The official start of the project was never de-

clared, but it seems that 2017 is a good number.
However, work was being done already in 2016.

2 What was planned

The main goal of those projects was to add mathe-
matical, technical and geometrical symbols to all of
the TEX Gyre text fonts with the exception of TG

Chorus. TG Chorus was excluded as such symbols
seem of little use in a chancery font.

Further, several related ideas were coined:

• a sans-serif math OTF font, possibly based on
DejaVu, for use in headings;

• a heavy math OTF font, possibly based on TG

Termes, also for headings;

• a monospace text font with math symbols, for
use in text editors.

Two other goals were also set:

• enhancements to existing math fonts, like math
kerns, variant extra alphabets (e.g., calligraphic
or double-struck) implemented using the Şstylis-
tic setŤ features ss01Űss20;

• continuous, yearly maintenance reviews and, if
needed, releases of e-foundryŠs fonts with Ąxes.

3 Stage 1: What was done through 2018

The outcome of the part of the project that might
be called its Ąrst stage was described in the pa-
per by B. Jackowski, P. Pianowski, and P. Strzel-
czyk ŞTEX Gyre text fonts revisitedŤ, published both
in TUGboat, Volume 39 (2018), No. 3 (tug.org/

TUGboat/tb39-3/tb123jackowski-gyre.pdf) and
Die TEXnische Komödie, 30. Jahrgang, Heft 3/2018.

This is a crude summary of what was done (for
details see the article):

• devising the enhanced repertoire of glyphs;
• elements of MetaType1 (en.wikipedia.org/

wiki/METATYPE1) were reimplemented by re-
placing t1utils and some AWK and Perl scripts
with Python code interfacing to FontForge Ů
both more portable and easier to maintain;

• the internal structure of the TG fonts became
even more OTF-like:

Ů the ss10 feature allows the use of the orig-
inal math symbols if replacements are not
liked or needed; and

Ů the ŞanchorsŤ mechanism based on the
ccmp, mark and mkmk features is used to
place accents over glyphs in a precise way;

• the improved MetaType1 was used to extend
the list of glyphs of TG Adventor and TG Pag-
ella by over 850 items, which took the fonts to
version 2.501.

4 Stage 2: Algotype, the successor to
MetaType1, 2019Ű2020

After releasing the new versions of TG Adventor
and Pagella, the team decided to attempt a full
reimplementation of MetaType1.

It is important to notice that up to now, for
over 20 years, all of the many e-foundryŠs fonts were
produced with MetaType1. This program began in
late nineties of the twentieth century as a no-name
engine to create Adobe PostScript Type 1 outline
fonts for Janusz M. NowackiŠs efforts to revive the
traditional Polish type Antykwa Póştawskiego and
was reported at the Heidelberg EuroTEX Conference
in 1999 (ŞAntykwa Póştawskiego: a parameterized
outline fontŤ, https://jmn.pl/biblio/02ap.pdf).

A few years later OpenType became an ISO

standard (ISO Standard ISO/IEC 14496-22, Part 22:
Open Font Format, March 2007; updated 2019). Nat-
urally, the program by the name MetaType1 has
been adapted and OpenType versions could be in-
cluded in the TEX Gyre collection of fonts (released
in 2006Ű2007).

Another adaptation of MetaType1 became nec-
essary with the advent of OpenType Math fonts when
in 2010 Microsoft implemented math font support
into MS Office. MetaType1 proved itself by gener-
ating the TG Math fonts: Bonum, Pagella, Schola,
Termes and later DejaVu. The engine was also used
by the e-foundry team for Latin Modern fonts in
both Type 1 and OpenType formats, along with the
LM OpenType math font.

All of these changes, accumulated over so many
years, have lead inevitably to MetaType1 becoming
rather unwieldy and complex. In particular, port-
ing of the system became a nightmare, which was

doi.org/10.47397/tb/42-1/tb130ludwichowski-gust

Jerzy Ludwichowski

https://tug.org/TUGboat/tb38-2/tb119ludwichowski.pdf
https://tug.org/TUGboat/tb38-2/tb119ludwichowski.pdf
ss01
ss20
https://tug.org/TUGboat/tb39-3/tb123jackowski-gyre.pdf
https://tug.org/TUGboat/tb39-3/tb123jackowski-gyre.pdf
https://en.wikipedia.org/wiki/METATYPE1
https://en.wikipedia.org/wiki/METATYPE1
ss10
ccmp
mark
mkmk
https://https://jmn.pl/biblio/02ap.pdf
https://doi.org/10.47397/tb/42-1/tb130ludwichowski-gust

TUGboat, Volume 42 (2021), No. 1 51

experienced when Marek Ryćko had to step in for
Piotr Strzelczyk who left the team in early 2019 and
MetaType1 had to be installed from scratch in a
different environment.

This departure of Piotr Strzelczyk was a se-
vere blow and forced a drastic change in priorities:
nothing became more important than a reimplemen-
tation and redesign of the font production line. At
BachoTEX 2019, the article ŞRedesign of a MetaPost-
based font generating systemŤ by Marek Ryćko and
Bogusşaw Jackowski, presented by Marek Ryćko was
awarded the W.J. Martin Prize.

MetaType1 was rewritten in such a way that
only MetaPost and Python 3 (with some pieces of
Python 2 to communicate with the FontForge library)
are used. Moreover, a new way of conĄguring the
system was worked out Ů the conĄguration is now
governed by simple, universal data Ąles (in JSON

format). Exactly the same scripts can be run both
under GNU/Linux and Windows (no tests with Mac-
intosh were performed so far), which has solved the
portability problem.

The new engine is called Algotype. The name
tries to stress that fonts are being deĄned algorithmi-
cally. The Python part of Algotype is now available
at pypi.org.

The team will publish the Algotype system on
GitHub.

5 Current and future font works, 2021Ű

Immediate future:1

• Algotype is being used for production work al-
ready, but still requires further effort.

• Enhanced (see the ŞWhat was plannedŤ section)
TG text fonts Schola and Termes, processed with
Algotype, are close to being released together
with revised versions 2.501 of TG Adventor and
TG Pagella.

• A new release of the Latin Modern fonts with
corrections proposed by Frank Mittelbach at
BachoTEX 2019.

• 2021 should see the rest of the enhancements to
the TEX Gyre family, i.e., the new releases of
TG Bonum, TG Cursor and TG Heros.

The renewed team with Marek Ryćko hopes to
be able to tackle in the near future the remaining
tasks listed in section ŞWhat was plannedŤ, although
we cannot make promises.

1 It should be noted that the Ąrst three items would have

already happened if it were not for the COVID-19 pandemic

and Bogusşaw Jackowski being hospitalized for over a month

for a COVID-19 infection and then heart surgery.

6 Financing (support) up to date

The following donations to the project were received
and paid out up-to-date:

• ConTEXt Group: 1,500 EUR in the years 2017Ű
2019;

• CSTUG: 2,000 EUR in the years 2017Ű2018;

• DANTE e.V.: 7,000 EUR in 2018;

• NTG: 18,000 EUR in the years 2015Ű2020;

• TUG: 2,903 USD in 2017;

• individual persons: 1,960 PLN in the years 2017Ű
2019.

The total funding has amounted to 28,500 EUR,
2,903 USD and 1,960 PLN. Donations are always
welcome at tug.org/donate, as well as through the
other user groups.

The GUST e-foundry is deeply grateful to all its
supporters and promises to continue its best efforts.

7 Unrelated: Other GUST packages
updated

Bonus information not related to the e-foundry, al-
though many of the same people are involved: several
packages originating with GUST were updated for
the TEX Live 2021 release, for the Ąrst time in many
years: cc-pl, mex, pl-mf, plhyphen and lm.

The updates clarify the licensing (mostly public
domain), update the source encoding to UTF-8, and
other housekeeping matters. There are no notable
changes in functionality, except for lm: a bug, known
since 2015, was Ąxed in the Latin Modern LATEX
support.

8 Final remark: Feedback requested

The gentle readers of this report are kindly asked
for feedback: do you like/hate/see faults in/ask for
enhancements to/propose Ąxes to/. . . the works of
the GUST e-foundry, or other packages?

Please write! We will do our best to satisfy your
request.

⋄ Jerzy Ludwichowski
GUST, Poland
Jerzy.Ludwichowski (at) gust

dot org dot pl

GUST e-foundry font projects, closing report 2019Ű2020

http://pypi.org
https://tug.org/donate
cc-pl
mex
pl-mf
plhyphen
lm
lm

52 TUGboat, Volume 42 (2021), No. 1

The NewComputerModern font family
Antonis Tsolomitis

Abstract
We present the NewComputerModern font family
(NewCM for short), an extension of the default Com-
puter Modern fonts at (currently) 10pt for Unicode
TEX engines.

1 Introduction
Back in the mid-1980s you could hardly typeset any-
thing in a non-Latin language. Thanks to the work
of many people and the Babel package, TEX was ex-
tended so it could typeset Cyrillic, Greek and many
other scripts and languages that needed different
fonts and typesetting rules. For Greek in the early
nineties it was difficult just to type in Greek (it was
a pain merely to set up a Greek keyboard under
GNU/Linux even in the late nineties).

Things progressed over the years and the TEX
world gained the Unicode engines, promising to solve
access to thousands of glyphs outside the Latin
blocks. However, we are in 2021 and still: You install
a TEX system (any), you start a simple document,
you run xelatex or lualatex, you fire up your PDF
reader . . . And you realize that the old frustration is
still there. There is nothing in the PDF except Latin
glyphs.

After all these years I find this not satisfactory,
to say the least. There is no fallback mechanism (as
there is for Office apps) and the default fonts contain
only Latin glyphs (plus math). So, the user must
make choices. Select a Cyrillic font, a Greek font,
a Hebrew one etc. But the user must know how to
do it, and it is not trivial because s/he must find
fonts that match in style and weight; and if math is
needed the task is even more difficult.

NewCM was born with these thoughts in mind.
If TEX is Unicode-enabled, where is its default Uni-
code font? Should a default font support all the
planet’s languages? Most probably not. But why
not support at least the large communities of spoken
languages whose members have a proven interest for
their language being supported?

NewComputerModern is an attempt to expand
the Latin Modern (lm) fonts to common non-Latin
scripts, while keeping metric compatibility with lm.

2 The fontsetup package
So if one (i.e., me) merges in the glyphs from existing
fonts is he done? Not at all. Why? Because your
new font is not the default, and people will not easily
switch away from the system’s default. Now we are

at the same point. It is not easy to properly set up
fonts that support math too. What is needed is a
simple way to do that. A “one liner”. This need
gave birth to the fontsetup package: An easy way
to properly load fonts and matching accompanying
mathematics. The line
\usepackage[olddefault]{fontsetup}
will load all you need, from the font side, to typeset
in all languages covered by the lm fonts plus Cyrillic,
Greek, Hebrew and Cherokee. All with matching
math, sans serif and typewriter fonts. It will also
provide access to several other Unicode blocks such
as Braille patterns and more, to be discussed be-
low. Of course hyphenation and label strings must
be loaded for the main language (for example, the
xgreek package for Greek).

But why “olddefault”? What is “default” and
what are other options?
3 A Book weight for NewCM
An old problem of ComputerModern is the fact that
it is a light font. And this problem is the same with
Claudio Beccari’s Greek which was added in NewCM,
and Cyrillic from cmu, also added, because a goal
for those fonts was to match the weight of Knuth’s
original fonts.

To design heavier fonts from scratch would be
a huge undertaking, given the thousands of glyphs
involved. To do it automatically with a font editor is
known to create problems with the glyphs. But there
is a catch with that last sentence. We do not want
to create bold versions with the font editor. That
would be bad. We just need a little bit of heaviness
to be added so that the fonts look good at both
low and high resolutions; the existing bold can stay
untouched.

So this gave birth to NewCM Book weight. Was
it as simple as it sounds? No, because we need math
too. So the Book weight math font must carry all the
information needed to properly typeset math, and
this is many weeks of work for just one font. But in
the end, there we have it: this is the “default” version
of the fontsetup package. That is the Book weight
for NewCM, supporting all languages the project
supports, and all the features that will be presented
below. The amount of added “boldness” is such
that it matches in color with the GFSDidot family,
which I have used in my books in the past and which
looks good at both high resolution printing and low
resolution screens.

The fontsetup package has more options to
easily load many other font families with matching
math. Please check its documentation (ctan.org/
pkg/fontsetup).

doi.org/10.47397/tb/42-1/tb130tsolomitis-newcm

Antonis Tsolomitis

https://ctan.org/pkg/fontsetup
https://ctan.org/pkg/fontsetup
https://doi.org/10.47397/tb/42-1/tb130tsolomitis-newcm

TUGboat, Volume 42 (2021), No. 1 53

4 Bold Sans
The BoldSans in the lm and cmu fonts is merely a
stroke-extension of the Sans, with rounded corners.
NewCM provides a true BoldSans:

LM NewCM

XΞ XΞ
This currently covers Latin and Greek, but soon

it will cover Cyrillic too.

5 New languages added
Cyrillic has been added from the cmu package and
Greek monotonic and polytonic from Claudio Bec-
cari’s fonts.

Greek:
Θεώρημα 5.1 (Πυθαγόρειον) Ἐν τοῖς ὀρθογω-
νίοις τριγώνοις τὸ ἀπὸ τῆς τὴν ὀρθὴν γωνίαν ὑποτει-
νούσης πλευρᾶς τετράγωνον ἴσον ἐστὶ τοῖς ἀπὸ τῶν
τὴν ὀρθὴν γωνίαν περιεχουσῶν πλευρῶν τετραγώνοις.

Russian:
Я помню чудное мгновенье:
Передо мной явилась ты,
Как мимолетное виденье,
Как гений чистой красоты.

(Пушкинъ)
Hebrew and Cherokee were designed from scratch:

A few letters from Hebrew:
צּלּשּׂשׁוהדגבא

A few letters from Cherokee:
ᎣᎤᎹᏊᏐ ꭳꭴꭷꮂꮔꮿ

Back to Greek, Small Caps is included (in Mono
font too) and all polytonic accents of Greek. Ypoge-
grammeni is the default for all characters including
Small Caps and prosgegrammeni is offered as an
alternative shape in the ss01 lookup table:

ypogegrammeni prosgegrammeni
regular ᾋ ᾟ ᾯ ᾼῌῼ ᾋ ᾟ ᾯ ᾼῌῼ
sans ᾋ ᾟ ᾯ ᾼῌῼ ᾋ ᾟ ᾯ ᾼῌῼ
mono ᾋ ᾟ ᾯ ᾼῌῼ ᾋ ᾟ ᾯ ᾼῌῼ

The prosgegrammeni alternates can be accessed with
commands from the fontsetup package, either of:
\textprosgegrammeni{⟨text⟩}
{\prosgegrammeni ⟨text⟩}

6 More Unicode blocks
Braille, both 6dot (uni2801–uni283F) as well as 8dot
(uni2840–uni28FF) patterns are included in two ver-
sions. The Regular font provides the characters for
sighted persons (such as teachers) so they can easily
see which dots are on and which off. The Sans font
contains the true Braille characters. I decided to
have the sighted version in the Regular font since a
blind person does not need the real Braille pattern,
as those are produced by embossers. The Braille
patterns here are meant for use as fonts to typeset
text mainly for sighted persons.

6dot 8dot
Regular version ⠅⠆⠇⠝⠞ ⡂⡃⡄⡚⡛
Sans version ⠅⠆⠇⠝⠞ ⡂⡃⡄⡚⡛

IPA symbols are included, and following a sug-
gestion of Huanyu Liu the kerning found in the tipa
package has been added here and further improved.
Moreover the letters eth, eng, beta, theta and chi ex-
ist in IPA-style in the fonts and are accessible in the
ss05 lookup table since they have a different design
than the Latin and Greek letters. You can access this
lookup table using the \textipa and \textsansipa
commands of the fontsetup package.

Non-IPA IPA
Regular ð ŋ β θ χ ð ŋ β θ χ
Sans ð ŋ β θ χ ð ŋ β θ χ

7 Ligatures and stylistic alternatives
in Latin

The Serif font includes additional ligatures fb ffb ffh
ffj ffk fft fh fj ft fk, and the same with long-s instead
of f in the default liga table (in addition to the de-
fault fi fl ffi ffl ff). It also includes an alternative k
(in the cv01 table) and sp ch ck ct st in the dlig table.
Finally it also includes “end” versions for the letters
a, e, m, n and r in the cv02 table.

Regular k a e m n r sp ch ck ct st
cv01 k
cv02 a e m n r
dlig sp ch ck ct st

8 Archaic Greek writing for scholars
and others

The Sans Serif Regular font provides access to 6th
century BCE and 4th century BCE Greek capitals
in ss04 and ss03 lookups. The fontsetup package
provides commands such as:
\textivbce{}, \ivbce, \textvibce{}, \vibce.

The NewComputerModern font family

54 TUGboat, Volume 42 (2021), No. 1

6th century BCE:
ΜΗ∆ΕΙΣ ΑΓΕΩΜΕΤΡΗΤΟΣ ΕΙΣΙΤΩ

4th century BCE:
ΜΗΔΕΙΣ ΑΓΕΩΜΕΤΡΗΤΟΣ ΕΙΣΙΤΩ
Moreover, all fonts (except Mono and Math)

support Ancient Greek Numerals (the full Unicode
block of Greek digits u10140–u1018E is supported),
with most symbols designed from scratch (those that
did not exist in C. Beccari’s original fonts). A few
of the new symbols:

𐅋𐅌𐅍𐅏𐅯𐅴𐆉
The four numerals that already existed in this range
(that is u10144–u10147) in Beccari’s fonts have been
altered to a new design matching the style of cm
but also provide some Ancient Greek flair. The new
designs in Serifed and SansSerifed are:

𐅄𐅅𐅆𐅇 𐅄𐅅𐅆𐅇
The fontsetup package provides commands for all
of the above symbols. The commands follow the
Unicode name of each slot (minus the “Greek Acro-
phonic”). So the Unicode slot u1014F named “Greek
Acrophonic Attic Five Staters” can be accessed with
the command \atticfivestaters and gives 𐅏; and
the slot u10182 named “Greek Kyathos Base Sign”
can be accessed with the command
\greekkyathosbasesign and gives 𐆂.

9 Old Italic
The fonts also fully support the Old Italic Unicode
block (u10300–u1032F) in the Sans font. For ex-
ample, the slots u10307, u10310, u10312, u10314,
u1031F and u1032F are 𐌇𐌐𐌒𐌔𐌟𐌯.

10 Unicode Math coverage and options
NewCM provides full Unicode math support, that is
all mathematics Unicode slots presented in unicode.
org/charts/ in both Math weights, Regular and
Book. These blocks are:
Mathematical Symbols

Arrows (uni2190–uni21FF)
Supplemental Arrows-A (uni27F0–uni27FF)
Supplemental Arrows-B (uni2900–uni297F)
Supplemental Arrows-C (u1F800–u1F8FF)
Additional Arrows (uni2B00–uni2BFF)
Miscellaneous Symbols and Arrows

(uni2B00–uni2BFF)
Mathematical Alphanumeric Symbols

(u1D400–u1D7FF)
Arabic Mathematical Alphabetic Symbols

(u1EE00–u1EEFF)
Letterlike Symbols (uni2100–uni214F)

Mathematical Operators
(uni2200–uni22FF)

Basic operators: Plus, Factorial
(uni0000–uni007F)

Division, Multiplication (uni0080–uni00FF)
Supplemental Mathematical Operators

(uni2A00–uni2AFF)
Miscellaneous Mathematical Symbols-A

(uni27C0–uni27EF)
Miscellaneous Mathematical Symbols-B

(uni2980–uni29FF)
Floors and Ceilings (uni2308–uni230B)
Invisible Operators (uni2061–uni2064)

Geometric Shapes (uni25A0–uni25FF)
Additional Shapes (uni2B00–uni2BFF)
Box Drawing (uni2500–uni257F)
Block Elements (uni2580–uni259F)
Geometric Shapes Extended (u1F780–u1F7FF)⯚ Unfortunately, the unicode-math

package does not currently provide com-
mands for the hundreds of extra glyphs
that have been added in order to fully
cover the above Unicode ranges. The
user can consult the Unicode charts at
the above link and access the required
glyph with \char"# where # is the Uni-

code number of the slot the glyph belongs to. For
example, \char"2BDA will give the Hygeia symbol
(uni2BDA) the Rod of Asclepius as shown above.

10.1 Upright and extensible integrals
The Math fonts (both Regular and Book weights)
include upright integrals in the ss02 StylisticSet.

Normal integrals Upright integrals

∫∭ ∫∮𝑏𝑎 ∫∭ ∫∮𝑏𝑎
Use with
\setmathfont[StylisticSet=2]

{NewCMMath-Book.otf}
or
\setmathfont[StylisticSet=2]

{NewCMMath-Regular.otf}
or use the upint option of the fontsetup package;
for the Book weight:
\usepackage[upint,default]{fontsetup}
or for the regular weight:
\usepackage[upint,olddefault]{fontsetup}

Moreover, extensible integrals are supported by
the fonts but not by the Unicode TEX engines. The
following code is a trick so that extensible integrals

Antonis Tsolomitis

https://unicode.org/charts/
https://unicode.org/charts/

TUGboat, Volume 42 (2021), No. 1 55

can be constructed using LuaLATEX. The result is
shown at the end of the article. What the code
below does is define the slot uni222B (Integral) as a
delimiter. Then, this is extended as a delimiter with
the mechanism that the font provides.
\documentclass{article}
\usepackage[default]{fontsetup}
\begin{document}
\[
\Uleft\Udelimiter 0 0 "222B
\begin{pmatrix}

1
\end{pmatrix}
\Uright.
\rightarrow
\Uleft\Udelimiter 0 0 "222B
\begin{pmatrix}

1\\2
\end{pmatrix}
\Uright.
\rightarrow
\Uleft\Udelimiter 0 0 "222B
\begin{pmatrix}

1\\2\\3\\4
\end{pmatrix}
\Uright.
\rightarrow
\Uleft\Udelimiter 0 0 "222B
\begin{pmatrix}

1\\2\\3\\4\\5\\6
\end{pmatrix}
\Uright.
\]
\end{document}

10.2 Non-Unicode symbols
It seems that Unicode has forgotten to include slots
for the negation of uniform convergence. The fonts
include two extra slots for � and � that can be
accessed in math mode with the commands
\nrightrightarrows and \nleftleftarrows
of the fontsetup package.

Unicode seems to have also forgotten to include
MathSansGreek. These are included in the Math
fonts and they are and accessible with commands
such as \msansAlpha or \mitsansAlpha.���� ����
11 Future work
The immediate plans for NewCM are to provide the
fonts at 8pt and to provide support for accent (dia-
critics) stacking. Work on the 8pt version has already
begun. The 8pt size of the lm fonts looks lighter at
8pt than the 10pt font. This should not happen in

my opinion, so the 8pt design (set at 8pt) will match
the weight of the 10pt design in the latin glyphs too.
Nonetheless, metric compatibility will be preserved.

12 Thanks
There are many people I would like to thank who
have reported bugs of the fonts. Special thanks go to
Karl Berry, Claudio Beccari, David Carlisle, Robert
Alessi, Huanyu Liu and Manuel Boni for supporting
this project with their help and suggestions.⋄ Antonis Tsolomitis

Department of Mathematics
University of the Aegean
Karlovassi, 832 00 Samos
Greece
atsol (at) aegean dot gr
https://myria.math.aegean.gr/~atsol/

&Y�
�
Z Õ

cññ
d

Þßßß
à

�

�

�

�

áâââ
ã

Õ

cñññññ
d

Þßßßßßßßß
à

�

�

�

�

�

�

áââââââââ
ã

Õ

cññññññññññññññ
d

Þßßßßßßßßßßßßßßßßßßßßßßß
à

�

�

�

�

�

�

�

�

�

��

��

��

áâââââââââââââââââââââââ
ã

Õ

cñññññññññññññññññññññññññññññ
d

Þßßß
à

�

�

�

�

�

�

�

�

�

��

��

��

�

�

�

�

�

�

�

�

��

��

��

áâââ
ã

The NewComputerModern font family

56 TUGboat, Volume 42 (2021), No. 1

An attempt at creating font transitions

S.K. Venkatesan

Abstract

In this short note we discuss the abstract topological
aspects of fonts and how a simple homotopy defor-
mation can be created to transition a glyph in one
font to that of another font. We demonstrate inter-
esting transitions for some fonts from sans-serif to
serif using a JavaScript implementation of a simple
algorithm. We also discuss other cases which involve
deformations that map non-homeomorphic configu-
rations that involve catastrophic bifurcations.

1 Introduction

Donald Knuth in his METAFONT project [1] wanted
to initiate a framework for creating fonts through
computer programs. An essay in Douglas Hofs-
tadter’s book Metamagical Themas: Questing for

the essence of mind and pattern [2] challenges this
ambitious initiative and discusses it in great detail.
A simple question is, can a computer program au-
tomatically create hybrid fonts, for example, a new
font that is 30% like Helvetica and 70% like Times?
We answer this question using a simple algorithm
and demonstrate its ramifications for some fonts.

2 Algebraic topology of font glyphs and

their deformations

Topology is usually defined as the study of clay geom-
etry, explained through an example of a teacup being
topologically equivalent to a ring (the handle of the
teacup). The crucial idea is that you can remold the
clay without breaking it anywhere through any con-
tinuous deformation, unlike in Euclidean geometry
where lengths are also preserved.

Font glyphs are, for the most part, connected
compact two-dimensional manifolds with simply-con-
nected one-dimensional boundary curves. Although
most glyphs are simply-connected, there are also
some glyphs such as lowercase “i” and “j” that have
two disconnected pieces of manifold, due to the dot
that is disjoint from the main shape. In any case,
each connected piece is a connected compact two-
dimensional manifold with a boundary.

Typically, in the English uppercase alphabet,
C,E,F,G,H,I,J,K,L,M,N,S,T,U,V,W,X,Y,Z and in the
lowercase, c,f,h,k,l,m,n,r,s,t,u,v,w,x,y,z are glyphs
that are two-dimensional manifolds with a simply-
connected single boundary which can be homeo-
morphically mapped to a two-dimensional disc with
one-dimensional circle as its boundary (we could have
just as well used a square instead of circle, as they

are topologically equivalent). In this case, it is not
difficult to prove that any two such glyphs can de-
formed from one into another by a simple homotopy
deformation. In any case, we will be constructing an
algorithm that does this, so we prove it by example.

In other glyphs there are holes in the manifolds;
as in the case of O, Q, A, etc. In some cases, as in B,
there are two holes. So the glyphs can have more than
one boundary as well. But in all cases the boundary
is a simply-connected one-dimensional curve. As
a special trivial case of the Poincaré conjecture,1

we have that any simply-connected one-dimensional
curve is homeomorphically equivalent to a circle.
In fact, there is only one one-dimensional manifold
(without boundary), the circle.

3 Description of the algorithm used for

font deformation

We shall here briefly describe the first algorithm used
to map the glyph of one font into another.

3.1 Algorithm 1

Step 1 We center a font glyph into a standard font
box of 1em height.

Step 2 We identify the boundary curves of the font.

Step 3 We divide the curve into equal segments
along the path of the curve and create a fixed
number of an array of points.

Step 4 We reorder the points of the array so that
the one that is nearest to the origin appears
first.

Step 5 We do steps 1–4 for both the font glyphs.

Step 6 We now transition from one set of arrays to
another using a linear path in time, to show the
transition.

3.2 Algorithm 2

Steps 1–4 Follow as in Algorithm 1

Step 5 We first segment the sans-serif font glyph.

Step 6 We now segment the serif font glyph into
finer (typically 10 times more) segments than
the sans-serif font glyph.

Step 7 We now look for an orthonormal projection
(due to symmetry requirements we may have
to use x-projections and y-projections as well)
from sans-serif (as sans-serif is more regular-
shaped) font glyph onto serif font to locate the
one-to-one correspondence.

Step 8 Once the points have been paired we now
transition from one set of arrays to another using
a linear path in time, to show the transition.

1 It is no longer a conjecture, as Grigori Perelman
has proved the conjecture for the hitherto unproven
three-dimensional case [5].

doi.org/10.47397/tb/42-1/tb130venkatesan-transfont

S.K. Venkatesan

https://doi.org/10.47397/tb/42-1/tb130venkatesan-transfont

TUGboat, Volume 42 (2021), No. 1 57

3.3 Some hints on filling the area inside

the curve

The curve that has the longest length needs to be
filled inside, while the rest of the curves should not
be filled inside (except for the case of the dot for “i”
and “j”). In order to identify which piece of curve
maps into which, we use the length and the centroid
of the curves as the important parameters to guide
in our choice.

To identify that the dot in “i” and “j” needs to
be filled, we need to find out if the other curves are
inside the main curve or not, a non-trivial exercise.
In fact, it took more than a century to prove the Jor-
dan curve theorem [3], i.e., that a one-dimensional
closed curve embedded in a two-dimensional Eu-
clidean plane divides the plane into two disconnected
pieces (the inside and outside), but for approximately
convex shapes this identification is not that difficult.

4 The Demo site and JavaScript algorithm

The demo site is here:
cqrl.in/dev/font-transition-js.html

The JavaScript code, released under GPLv3, is
here: github.com/Sukii/font-transition

5 Transition from Linux Biolinum Regular

to Linux Libertine Regular

Now let us typeset some text with this transition
font to see if it is reasonable:

100% sans-serif:

70% sans-serif, 30% serif:

30% sans-serif, 70% serif:

100% serif:

6 The pessimism of Hofstadter and

the confidence of Knuth

It is true that there are limits to what is feasible;
for example, Einstein showed, using the principle of
relativity, that the speed of light limits the speed of
particles, as it would require infinite energy to cross
that barrier. However, we also know that quantum
tunnels break through such impossible barriers, as in
the case of the Hawking tunneling effect, by which
we are able to visualize black holes. More simply,
X-rays are not visible to human eyes but they can be
discerned through other means such as photographic
plates. So limits of human perception and achieve-
ments can be extended by other means, as we gain
better perception of the problems.

We have shown in this article, both theoreti-
cally and through demonstration of font transitions
that it is possible in some effective way to achieve
what Donald Knuth envisaged. In this article, we
restricted ourselves to transition from one font to
another only in the case where both are topologically
equivalent (i.e., homeomorphic), but it is possible
to go beyond that into other complicated designs
such as script fonts and gothic (Fraktur, etc.) fonts,
i.e., create a transition effect from a sans-serif font
glyph to a script or gothic font glyph. This can-
not be achieved by a simple homotopy deformation.
It requires creation of bifurcation effects and other
catastrophes studied by Rene Thom [4], V.I. Arnold
[5], and many others.

An attempt at creating font transitions

https://cqrl.in/dev/font-transition-js.html
https://github.com/Sukii/font-transition

58 TUGboat, Volume 42 (2021), No. 1

Instead of meandering into profundity, we shall
now discuss a concrete example. Consider the follow-
ing calligraphic character L:

L −→ L
generated using the calrsfs LATEX package. Let us
see what the transition from the sans-serif “L” in
Linux Biolinum to this script L might look like:

However, creating this transition was not as easy
as the previous cases. The “script L” has three
boundary curves while “sans-serif L” has only one
boundary curve. But, if we carefully observe the pen
stroke as it flows through the glyph, we can see it
is just one stroke but self-intersecting at two places.
This can be considered as a two-dimensional ribbon
embedded in (2+1)-dimension (like a twisting and
turning fly-over we see in big cities).

Unfortunately, the font files do not store this self-
intersecting curve. Instead, the font files stores it as
three boundary curves. In order to create the above
transition we exported the glyph from the font file as
three SVG curves, welded them together as a single
curve that self-intersects at two junctions but flows
unobstructed through the channels. Unfortunately,
if we try to import this back into FontForge as a
glyph and export it as a font, it doesn’t work.

This describes the flow of the pen in (2+1)-
dimension paper (the third dimension being time).
To explain this I always mention this joke: There
were once a big truck and a bus speeding along a
highway at the same physical point on the road but
didn’t collide. How is it possible? Answer: The bus
travelled in the morning, while the truck travelled
at night.

7 Evolution of a whale from a mouse-deer

Here we explain the complexity of morphing of one
glyph using the evolution of a land mammal (a mouse-
deer) into a whale, giving a classical Darwinian angle
to it:

In the above transition, one can observe that
all animals retain approximate left-right symmetry
in their external form. This left-right symmetry is
imposed by the Darwinian pressure on the external
form by the environment that punishes any left-right
asymmetry as it decreases survival fitness due to
impaired physical mobility. We shall see in the next
section how such symmetry conditions can be im-
posed on glyphs to preserve approximate left-right
symmetry in some characters in the transition states.

Insects possess some kind of left-right symmetry,
but not all life forms have left-right symmetry, e.g.,
amoeba, octopus, jellyfish or for that matter trees
and plants. In the zoo of Latin alphabets, only some
characters possess approximate left-right symmetry,
like H, A, M, W, but they each have their own unique
shape and some internal symmetry and aesthetics of
their own.

One can also employ these techniques to study
the evolution of scripts over time, e.g., the evolution
of Tamil script, as shown here
(wikipedia.org/wiki/Tamil_script):

S.K. Venkatesan

https://wikipedia.org/wiki/Tamil_script

TUGboat, Volume 42 (2021), No. 1 59

8 Machine learning approaches for fonts

An interesting broad question is whether one can
create entirely new fonts out of old ones, using ap-
proaches like genetic algorithms. Here we have shown
how one can create intermediate transition states
from two sans-serif/serif pairs. In theory, it is also
possible to create transition states using more than
two fonts as well, i.e.,

Fontnew = f(Font1,Font2,Font3, . . .)

One interesting problem that has been studied
well is the aspect of character recognition (OCR),
i.e., recognition of a glyph as an avatar of a partic-
ular character of a Latin alphabet. This in a way
recognizes in essence what a character is, but it is
more in relation to what other characters are and
does not capture the essence of what a character is.
The question is whether machine learning is capable
of doing this. Hofstadter [2] explains how this is a
notoriously difficult problem as there many avatars
like the Gothic black letters that are so different
in form.

As we showed here for the case of “Script L”, it
is possible to iron out some of the twists and turns of
the flow of the pen by studying them as regular man-
ifolds in (2+1)-dimension, that when projected onto
a two-dimensional paper produces self-intersecting
curves. We shall endeavor to bring out some of
the qualitative features of the alphabets and how
they can be defined using some abstract topologi-
cal concepts in mathematics in (2+1)-dimension in
future work.

Recent techniques in one-shot machine learning
techniques [7] also hold genuine promise. This uses
a function called “triplet loss” that trains on three
images: an anchor image, a positive image, and a
negative image. The neural network adjusts the
parameters so that the features for the anchor and
positive image are near while that of the negative
image is far off. However, as we mentioned there are

internal approximate symmetries (like the left-right
symmetry) that need to be discovered and preserved,
a genuinely difficult problem.

Of course, not all gyphs produced by an algo-
rithm through machine learning will be usable as
glyphs by humans. Some have ugly overlaps, as can
be easily discerned, but the interesting question is:
Is there always a perfect transition path from sans-
serif to serif that avoids those pitfalls? Felix Klein
wanted to define concepts of beauty through aspects
of geometrical symmetry in an object and recently
Roger Penrose also has been discussing these aspects
in physics as well. The interesting aspect of human
art (thinking of fonts and glyphs as an art form) is
that it contains within it seeds of that fundamental
question of what it is to be human. This may be
a philosophical question that lies outside the realm
of science, but our endeavor is to find those aspects
that lie within the capacity of a scientific enquiry
by trying to transcend human limitations through
machines.

References

[1] Knuth, Donald E. (1982) The Concept of a
Meta-Font, Visible Language, Vol. 16, No. 1,
pp. 3–27. visiblelanguage.herokuapp.com/
issue/61

[2] Hofstadter, D. (1996) Metamagical Themas:

Questing for the essence of mind and pattern.
Chapter 13: Comments on Donald Knuth’s
Article ‘The Concept of a Meta-Font’. Basic
Books.

[3] Alexander, J.W. (1920) A proof of Jordan’s
Theorem about a simple closed curve. Annals
of Mathematics, Vol. 21, No. 3, pp. 180–184.
doi.org/10.2307/2007256

[4] Thom, R. (1972) Structural Stability and

Morphogenesis. W.A. Benjamin.

[5] Arnold, V.I. (1984) Catastrophe Theory.
Springer-Verlag.

[6] Tao, T. (2006) Perelman’s proof of the
Poincaré conjecture: A nonlinear PDE
perspective. arxiv.org/abs/math/0610903
See also: claymath.org/millennium-
problems-poincar%C3%A9-conjecture/

perelmans-solution

[7] Dickson, B. (2020) What is one-shot
learning? bdtechtalks.com/2020/08/12/

what-is-one-shot-learning

⋄ S.K. Venkatesan

TNQ Technologies, Chennai

skvenkat (at) tnqsoftware dot

co dot in

An attempt at creating font transitions

https://visiblelanguage.herokuapp.com/issue/61
https://visiblelanguage.herokuapp.com/issue/61
https://doi.org/10.2307/2007256
https://arxiv.org/abs/math/0610903
https://claymath.org/millennium-problems-poincar%C3%A9-conjecture/perelmans-solution
https://claymath.org/millennium-problems-poincar%C3%A9-conjecture/perelmans-solution
https://claymath.org/millennium-problems-poincar%C3%A9-conjecture/perelmans-solution
https://bdtechtalks.com/2020/08/12/what-is-one-shot-learning
https://bdtechtalks.com/2020/08/12/what-is-one-shot-learning

60 TUGboat, Volume 42 (2021), No. 1

Scaled fonts and glyphs

Hans Hagen

1 History

The infrastructure for fonts makes up a large part of
the code of any TEX macro package. We have to go
back in time to understand why. When TEX showed
up, fonts were collections of bitmaps and measures.
There were at most 256 glyphs in a font and in order
to do its job, TEX needed to know (and still needs to
know) the width, height and depth of glyphs. If you
want ligatures it also needs to know how to construct
them from the input and when you want kerning
there has to be additional information about what
neighboring glyphs need a kern in between. Math is
yet another subtask that demands extra information,
like chains of glyphs that grow in size and if needed
even recipes of how to construct large shapes from
smaller ones.

Fonts come in sizes. Latin Modern and the
original Computer Modern, for instance, have quite a
few variants where the shapes are adapted to the size.
This means that when you need a 9pt regular shape
alongside a 12pt one, two fonts have to be loaded.
This is quite visible in math where we have three
related sizes: text, script and scriptscript, grouped
in so called families. When we scale the digit 2 to
the same height you will notice that the text, script
and scriptscript sizes look different (the last three
are unscaled):2 2 2 2 2 2 222 2 2 2

Plenty has been written (in various documents
that come with ConTEXt) about how this all works
together and how it impacts the design of the system,
so here I just give a short summary of what a font
system has to deal with.

• In a bodyfont setup different sizes (9pt, 10pt,
12pt) can have their own speciĄc set of fonts.
This can result in quite a number of deĄnitions
that relate to the style, like regular, bold, italic,
bold italic, slanted, bold slanted, etc. When
possible loading the fonts is delayed. In Con-
TEXt often the number of fonts that are actually
loaded is not that large.

• Some font designs have different shapes per
bodyfont size. A minor complication is that
when one is missing some heuristic best-match
choice might be needed. Okay, in practice only
Latin Modern falls into this category for Con-
TEXt. Maybe OpenType variable fonts can be
seen this way, but, although we supported that

right from the start, I havenŠt noticed much
interest in the TEX community.

• Within a bodyfont size we distinguish size vari-
ants. We can go smaller (x and xx), for instance
when we use sub- and superscripts in text, or
we can go larger, for instance in titles (a, b, c, d,
. . .). Fortunately most of the loading of these
can be delayed too.

• When instances are not available, scaling can
be used, as happens for instance with 11pt in
Computer Modern. Actually, this is why in
ConTEXt we default to 12pt, because the scaled
versions didnŠt look as nice as the others (keep
in mind that we started in the age of bitmaps).

• Special features, such as smallcaps or oldstyle nu-
merals, can demand their own deĄnitions. More
loading and automatic deĄnitions can be trig-
gered by sizes needed in, e.g., scripts and titles.

• A document can have a mixed setup, that is:
using different font designs within one document,
so some kind of namespace subsystem is needed.

• In an eight-bit font world, we not only have text
fonts but also collections of symbols, and even
in math there are additional symbol collections.
In OpenType symbols end up in text fonts, but
there we have tons of emojis and color fonts. All
has to be dealt with in an integrated way. And
weŠre not even talking of virtual fonts, (runtime)
MetaPost generated fonts, and so on.

• In traditional eight-bit engines, hyphenation de-
pends on a fontŠs encoding, which can require
loading a font multiple times in different encod-
ings. This depends on the language mix used.
A side point is that deĄning a European encod-
ing covering most Latin languages was not that
hard, especially when one keeps in mind that
many eight-bit encodings waste slots on seldom
used symbols, but by that time OpenType and
Unicode input started to dominate.

• In the more modern OpenType fonts combi-
nations of features can demand additional in-
stances: one can think of language/script com-
binations, substitutions in base mode, special
effects like emboldening, color fonts, etc.

• Math is complicated by the fact that in tradi-
tional TEX, alphabets come from different fonts,
which is why we have many so-called families;
a font can have several alphabets which means
that some mapping can be needed. Operating
on the size, shape, encoding and style axes puts
some demands on the font system. Add to this
the (often) partial (due to lack of fonts) bold
support and it gets even more complicated. In
OpenType all the alphabets come from one font.

doi.org/10.47397/tb/42-1/tb130hagen-scaled

Hans Hagen

https://doi.org/10.47397/tb/42-1/tb130hagen-scaled

TUGboat, Volume 42 (2021), No. 1 61

• There is additional math auto-deĄnition and
loading code for the sizes used in text scripts
and titles.

All this has resulted in a pretty complex sub-
system. Although going OpenType (and emulated
OpenType with Type 1 fonts as we do in MkIV)
removes some complications, like encodings, it also
adds complexity because of the many possible font
features, either dependent or not on script and lan-
guage. Text as well as math got simpler in the TEX
code, though that was traded for quite a bit of Lua
code to deal with new features.

So, in order to let the font subsystem not impact
performance too much, let alone extensive memory
usage, the ConTEXt font subsystem is rather opti-
mized. The biggest burden comes from fonts that
have a dynamic (adaptive) deĄnition because then
we need to do quite a bit of testing per font switch,
but even that has always been rather fast.

2 Reality

In MkIV and therefore also in LuaMetaTEX (LMTX)
more font magic happens. The initial node lists that
make up a box or paragraph can get manipulated in
several ways and often fonts are involved. The font
features (smallcaps, oldstyle, alternates, etc.) can be
deĄned as static (part of the deĄnition) or as dynamic
(resolved on the spot at the cost of some overhead).
Characters can be remapped, fonts can be replaced.
The math subsystem in MkIV was different right
from the start: we use a limited number of families
(regular, bold, l2r and r2l), and stay abstract till the
moment we need to deal with the speciĄc alphabets.
But still, in MkIV, we have the families with three
fonts.

In the LuaMetaTEX manual we show some math
magic for different fonts. As a side effect, we set up
half a dozen bodyfont collections: Lucida, Pagella,
Latin Modern, Dejavu, the math standard Cambria,
etc. Even with delayed and shared font loading, we
end up with 158 instances but quite a few of them
are math fonts, at least six per bodyfont size: regular
and bold (emboldened) text, script and scriptscript.
Of course most are just copies with different scaling
that reuse already loaded resources. In the Ąnal PDF

we have 21 subsetted fonts.
If we look at the math fonts that we use today,

there is however quite some overlap. It starts with a
text font. From that, script and scriptscript variants
are derived, but often these variants use many text
size related shapes too. Some shapes get alterna-
tives (from the ssty feature), and the whole clone
gets scaled. But, much of the logic of, for instance,
extensibles is the same.

A similar situation happens with large CJK fonts:
there are hardly any advanced features involved there,
so any size is basically a copy with scaled dimensions,
and these fonts can be truly huge!

When we talk about features, in many cases
in ConTEXt you donŠt deĄne them as part of the
font. For instance small caps can best be triggered
by using a dynamic feature: applied to a speciĄc
stretch of text. In fact, often features like superiors
of fractions only work well on characters that Ąt
the bill and produce weird side effects otherwise (a
matter of design completeness).

When the font handler does its work there are ac-
tually four cases: no features get applied (something
that happens with, for instance, most monospaced
fonts); base mode is used (which means that the TEX
machinery takes care of constructing ligatures and
injecting kerns); and node mode (where Lua handles
the features). The fourth case is a special case of
node mode where a different feature set is applied.1

At the cost of some extra overhead (for each node
mode run) dynamic features are quite powerful and
save quite a lot of memory and deĄnitions.2 The
overhead comes from much more testing regarding
the font we deal with because suddenly the same
font can demand different treatments, depending on
what dynamic features are active.3

Although the font handling is responsible for
much of the time spent in Lua, it is still reasonable
given what has to be done. Because we have an
extensible system, itŠs often the extensions that takes
additional runtime. Flexibility comes at a price.

3 Progress

At some point I started playing with realtime glyph
scaling. Here realtime means that it doesnŠt depend
on the font deĄnition. To get an idea, here is an
example (all examples are additionally scaled for
TUGboat):

test {\glyphxscale 2500 test} test

test test test
The glyphs in the current font get scaled hori-

zontally without the need for an extra font instance.
Now, this kind of trickery puts some constraints on
the font handling, as is demonstrated in the next
example. We use Latin Modern because that font
has all these ligatures:

1 We also have so-called plug mode where an external

renderer can do the work but that one is only around due to

some experiments during Idris HamidŠs font development.
2 The generic font handler that is derived from the Con-

TEXt one doesnŠt implement this, so it runs a little faster.
3 Originally this model was introduced for a dynamic para-

graph optimization subsystem for Arabic but in practice no

one uses it because there are no suitable fonts.

Scaled fonts and glyphs

62 TUGboat, Volume 42 (2021), No. 1

\definedfont[lmroman10-regular*default]%

e{\glyphxscale 2500 ff}icient

ef{\glyphxscale 2500 f}icient

ef{\glyphxscale 2500 fi}cient

e{\glyphxscale 2500 ffi}cient

efficient efficient efficient efficient
In order to deal with this kind of scaling, we

now operate not only on the font (id) and dynamic
feature axes, but also on the scales, of which we have
three variants: glyph scale, glyph xscale and glyph
yscale. There is actually also a state dimension but
we omit that for now (think of Ćagging glyphs as
initial or Ąnal). This brings the number of axes to
six. It is important to stress that in these examples
the same font instance is used!

Just for the record: several approaches to switch-
ing fonts are possible but for now we stick to a simple
font id switch plus glyph scale settings at the TEX
end. A variant would be to introduce a new mecha-
nism where idŠs and scales go together but for now I
see no real gain in that.

4 Math

Given what has been discussed in the previous sec-
tions, a logical question would be ŞCan we apply
scaling to math?Ť and the answer is ŞYes, we can!Ť.
We can even go a bit further and that is partly due
to some other properties of the engine.

From pdfTEX the LuaTEX engines inherited
character protrusion and glyph expansions, aka hz.
However, where in pdfTEX copies of the font are made
that carry the expanded dimensions, in LuaTEX at
some point this was replaced by an expansion Ąeld
in the glyph and kern nodes. So, instead of chang-
ing the font id of expanded glyphs, the same id is
used but with the applied expansion factor set in
the glyph. A side effect was that in places where
dimensions are needed, we call functions that calcu-
late the expanded widths on request (as these can
change during linebreak calculations) in combination
with accessing font dimensions directly. This level
of abstraction is even more present in LuaMetaTEX.
This means that we have an uniform interface to
fonts and as a side effect scaling need be dealt with
in only a few places in the code.

Now, in math we have a few more complications.
First of all, we have three sizes to consider and we
also have lots of parameters that depend on the
size. But, as I wanted to be able to apply scaling
to math, the whole machinery was also abstracted
in a way that, at the cost of some extra overhead,
made it easier to work with scaled glyph properties.
This means that we can stick to loading only one
bodyfont size of math (note that each math family

has three sizes, where the script and script sizes can
have different, Ąne tuned, shapes) and just scale that
on demand.

Once all that was in place it was a logical next
step to see if we could stick to just a single instance.
Because in LuaMetaTEX we try to load fonts effi-
ciently we store only the minimally needed informa-
tion at the TEX end. A font with no math therefore
has less data per glyph. Again, this brings some ab-
straction that helped to implement the one instance
mechanism. A math glyph has optional lists of in-
creasing sizes and vertical or horizontal extensibles.
So what got added was an optional chain of smaller
sizes. If a character has three different glyphs for
the three sizes, the text glyph has a pointer to the
script glyph which in turn has a pointer to the script-
script glyph. This means that when the math engine
needs a speciĄc character at a given size (text, script,
scriptscript) we just follow that chain.

In an OpenType math font the script and script-
script sizes are speciĄed as percentages of the text
size. When the dimensions of a glyph are needed, we
just scale on the Ćy. Again this adds some overhead
but IŠm pretty sure that no user will notice.

So, to summarize: if we need a character at
scriptscript size, we access the text size glyph, check
for a pointer to a script size, go there, and again
check for a smaller size. We use only what Ąts the bill.
And, when we need dimensions we just scale. In order
to scale we need the relative size, so we need to set
that up when we load the font. Because in ConTEXt
we also can assemble a virtual OpenType font from
Type 1 fonts, it was actually that (old) compatibility
feature, the one that implements Type 1 based on
OpenType math, that took the most time to adapt,
not so much because it is complicated but because
in LMTX we have to bypass some advanced loading
mechanisms. Because we can scale in two dimensions
the many (font-related) math parameters also need
to be dealt with accordingly.

The end result is that for math we now only
need to deĄne two fonts per bodyfont setup: regular
and bold at the natural scale (normally 10pt) and we
share these for all sizes. As a result of this and what
we describe in the next section, the 158 instances for
the LuaMetaTEX manual can be reduced to 30.

5 Text

Sharing instances in text mode is relatively simple,
although we do have to keep in mind that scaling
is an extra axis when dealing with font features:
two neighboring glyphs with the same font id and
dynamics but with different scales are effectively
from different fonts.

Hans Hagen

TUGboat, Volume 42 (2021), No. 1 63

Another complication is that when we use font
fallbacks (read: take missing glyphs from another
font) we no longer have a dedicated instance but use
a shared one. This in itself is not a problem but we
do need to handle speciĄed relative scales. This was
not that hard to patch in ConTEXt LMTX.

We can enforce aggressive font sharing with:

\enableexperiments[fonts.compact]

After that we often use fewer instances. Just
to give an idea, on the LuaMetaTEX manual we get
these stats:

290 pages, 10.8 sec, 292M lua, 99M tex, 158 instances

290 pages, 9.5 sec, 149M lua, 35M tex, 30 instances

So, we win on all fronts when we use this glyph
scaling mechanism. The magic primitive that deals
with this is named \glyphscale; it accepts a number,
where 1200 and 1.2 both mean scaling to 20% more
than normal. But itŠs best not to use this primitive
directly.

A speciĄc scaled font can be deĄned using the
\definefont command. In LMTX a regular scaler
can be followed by two scale factors. The next exam-
ple demonstrates this (as can be seen, the yoffset

affects the baseline):

\definefont[FooA][Serif*default @ 12pt 1800 500]

\definefont[FooB][Serif*default @ 12pt 0.85 0.4]

\definefont[FooC][Serif*default @ 12pt]

\definetweakedfont[runwider] [xscale=1.5]

\definetweakedfont[runtaller][yscale=2.5,

xscale=.8,yoffset=-.2ex]

\def\testtext{test test \runwider test test

\runtaller test test}

{\FooA \testtext}\par

{\FooB \testtext}\par

{\FooC \testtext}\par

test test test test test test
test test test test test test
test test test test test test

We also use the new \definetweakedfont com-
mand here. This example not only shows the two
scales but also introduces the offset.

In compact mode this is one font. Here is an-
other example:

\definetweakedfont[squeezed][xscale=0.9]

\startlines

$a = bˆ2 + \sqrt{c}$

{\squeezed $a = bˆ2 + \sqrt{c}$}

\stoplines 𝑎 = 𝑏2 +√𝑐𝑎 = 𝑏2 +√𝑐

Watch this:
\startcombination[3*1]

{\bTABLE

\bTR \bTD foo \eTD \bTD[style=\squeezed] $x = 1$

\eTD \eTR

\bTR \bTD oof \eTD \bTD[style=\squeezed] $x = 2$

\eTD \eTR

\eTABLE}

{local}

{\bTABLE[style=\squeezed]

\bTR \bTD $x = 1$ \eTD \bTD $x = 3$ \eTD \eTR

\bTR \bTD $x = 2$ \eTD \bTD $x = 4$ \eTD \eTR

\eTABLE}

{global}

{\bTABLE[style=\squeezed\squeezed]

\bTR \bTD $x = 1$ \eTD \bTD $x = 3$ \eTD \eTR

\bTR \bTD $x = 2$ \eTD \bTD $x = 4$ \eTD \eTR

\eTABLE}

{multiple}

\stopcombination

foo 𝑥 = 1
oof 𝑥 = 2 𝑥 = 1 𝑥 = 3𝑥 = 2 𝑥 = 4 𝑥 = 1 𝑥 = 3𝑥 = 2 𝑥 = 4

local global multiple

An additional style parameter is also honored:

\definetweakedfont[MyLargerFontA]

[scale=2000,style=bold]

test {\MyLargerFontA test} test

This gives:

test test test
Just for the record: the Latin Modern fonts,

when set up to use design sizes, will still use the
speciĄc size-related Ąles.

6 Hackery

You can use negative scale values, as is demonstrated
in the following code:
\bTABLE[align=middle]

\bTR

\bTD a{\glyphxscale 1000 \glyphyscale 1000 bc}d\eTD

\bTD a{\glyphxscale 1000 \glyphyscale-1000 bc}d\eTD

\bTD a{\glyphxscale-1000 \glyphyscale-1000 bc}d\eTD

\bTD a{\glyphxscale-1000 \glyphyscale 1000 bc}d\eTD

\eTR

\bTR

\bTD \tttf +1000 +1000 \eTD

\bTD \tttf +1000 -1000 \eTD

\bTD \tttf -1000 -1000 \eTD

\bTD \tttf -1000 +1000 \eTD

\eTR

\eTABLE

gives:

abcd abcd abcd abcd

+1000 +1000 +1000 -1000 -1000 -1000 -1000 +1000

Glyphs can have offsets and these are used for
implementing OpenType features. However, they are
also available on the TEX side. Take this example

Scaled fonts and glyphs

64 TUGboat, Volume 42 (2021), No. 1

where we use the new \glyph primitive (a variant of
\char that takes keywords):

\ruledhbox{

% left curly brace:

\ruledhbox{\glyph yoffset 1ex options 0 123}

\ruledhbox{\glyph xoffset .5em yoffset 1ex

options "C0 123}

\ruledhbox{oeps%

{\glyphyoffset 1ex \glyphxscale 800

\glyphyscale\glyphxscale oeps}oeps}

}

{ { oepsoepsoeps
This example demonstrates that the \glyph primi-
tive takes quite a few keywords: xoffset, yoffset,
xscale, yscale, left, right, raise, options, font

and id where the last two take a font identiĄer or font
id (a positive number). For this article itŠs enough to
know that the option indicates that glyph dimension
should include the offset. In a moment we will see
an alternative that doesnŠt need that.

\samplefile{jojomayer}

{\glyphyoffset .8ex

\glyphxscale 700 \glyphyscale\glyphxscale

\samplefile{jojomayer}}

{\glyphyscale\numexpr3*\glyphxscale/2\relax

\samplefile{jojomayer}}

{\glyphyoffset -.2ex

\glyphxscale 500 \glyphyscale\glyphxscale

\samplefile{jojomayer}}

\samplefile{jojomayer}

To quote Jojo Mayer:

If we surrender the thing that separates us from machines, we will be replaced by ma-
chines. The more advancedmachines will be, the more human we will have to become.
If we surrender the thing that separates us from machines, we will be replaced by machines. The more advanced machines

will be, the more human we will have to become. If we surrender the thing that separates us from
machines, we will be replaced by machines. The more advanced machines will be, the
more human we will have to become. If we surrender the thing that separates us from machines, we will be replaced by machines. The

more advanced machines will be, the more human we will have to become. If we surrender the thing that separates us from
machines, we will be replaced by machines. The more advanced machines will be, the
more human we will have to become.

Keep in mind that this can interfere badly with
font feature processing which also used offsets. It
might often work out okay vertically, but less well
horizontally.

The scales, as mentioned, works with pseudo-
scales but that is sometimes a bit cumbersome. This
is why a special \numericscale primitive has been
introduced.
1200 : \the\numericscale1200

1.20 : \the\numericscale1.200

Both these lines produce the same integer:
1200 : 1200

1.20 : 1200

You can do strange things with these primitives
but keep in mind that you can also waste the defaults.

\def\UnKernedTeX

{T%

{\glyph xoffset -.2ex yoffset -.4ex ŚE}%

{\glyph xoffset -.4ex options "60 ŚX}}

We use \UnKernedTeX\ and {\bf \UnKernedTeX} and

{\bs \UnKernedTeX}: the slanted version could

use some more left shifting of the E.

This gives the TEX logos but of course we nor-
mally use the more official deĄnitions instead.

We use TEX and TEX and TEX: the slanted version
could use some more left shifting of the E.

Because offsets are (also) used for handling font
features like mark and cursive placement as well
as special inter-character positioning, the above is
suboptimal. Here is a better alternative:
\def\UnKernedTeX

{T\glyph left .2ex raise -.4ex ŚE%

\glyph left .4ex ŚX\relax}

The result is the same:

We use TEX and TEX and TEX: the slanted version
could use some more left shifting of the E.

But anyway: donŠt overdo it. We have dealt
with such cases for decades without these fancy new
features. The next example shows margins in action:

<M> <M> <M>
raise 3pt raise -3pt

<M> <M> <M>
left 3pt right 2pt left 3pt right 2pt

<M> <M> <M>
left -3pt right -2pt left -3pt right -2pt

Here is another way of looking at it:

\glyphscale 4000

\vl\glyph ŚM\vl\quad

\vl\glyph raise .2em ŚM\vl\quad

\vl\glyph left .3em ŚM\vl\quad

\vl\glyph right .2emŚM\vl\quad

\vl\glyph left -.2em right -.2emŚM\vl\quad

\vl\glyph raise -.2em right .4emŚM\vl

M M M M M M
The raise as well as left and right margins are

taken into account when calculating the dimensions
of a glyph.

7 Implementation

Discussing the implementation in the engine makes
no sense here, also because details might change.
However, it is good to know that many properties
travel with the glyph nodes, for instance the scales,
margins, offsets, language, script and state proper-
ties, control over kerning, ligaturing, expansion and
protrusion, etc. The dimensions (width, height and

Hans Hagen

TUGboat, Volume 42 (2021), No. 1 65

depth) are not stored in the glyph node but calcu-
lated from the font, scales and optionally the offsets
and expansion factor. One problem is that the more
clever (and nice) solutions we cook up, the more it
might impact performance. So, I will delay some
experiments till I have a more powerful machine.

One reason for not storing the dimensions in
a glyph node is that we often copy those nodes or
change character Ąelds in the font handler and we
deĄnitely donŠt want the wrong dimensions there. At
that moment, offsets and margin Ąelds donŠt reĆect
features yet, so copying them is no big deal because
at that moment these are still zero. However, di-
mensions are rather character bound so every time
a character is set, we also would have to set the
dimensions. Even worse, when we can set them, the
question arises if they were already set explicitly. So,
this is a can of worms weŠre not going to open: the
basic width, height and depth of the glyph as spec-
iĄed in the font is used and combined with actual
dimensions (likely already scaled according the glyph
scales) in offset and margin Ąelds.

Now, I have to admit that especially playing
with using margins to glyphs instead of font kerns is
more of an experiment to see what the consequences
are than a necessity, but what would be the joy
of TEX without such experiments? And as usual,
in ConTEXt these will become options in the font
handler that one can enable, or not.

⋄ Hans Hagen

http://pragma-ade.com

Some fonts with recent TEX support

Karl Berry

(LA)TEX support for many new typeface families has
been created in recent years. Here is an extremely
terse visual overview of most of those appearing in
the past year or so. All the fonts are shown here at
their own nominal size of 10pt.

All the fonts shown here are available in Type 1
format. Almost all are also available in OpenType
or TrueType, but fonts available only in OpenType/
TrueType are omitted, regrettably.

Each of these families has its own set of addi-
tional variants (bold, bold italic, small caps, differ-
ent encodings, etc.). For more complete showings,
exact package invocations, the myriad other fonts
available, etc., please see the urls in the signature.

Serif

Clara: ABC FGHMQ abc fghlmq 012

ABC FGHMQ abc fghlmq 012

Domitian: ABC FGHMQ abc fghlmq 012

ABC FGHMQ abc fghlmq 012

ETbb: ABC FGHMQ abc fghlmq 012

ABC FGHMQ abc fghlmq 012

IbarraRealNova: ABC FGHMQ abc fghlmq 012

ABCFGHMQ abc fghlmq 012

MLModern: ABC FGHMQ abc fghlmq 012

ABC FGHMQ abc fghlmq 012

Spectral: ABC FGHMQ abc fghlmq 012

ABC FGHMQ abc fghlmq 012

TeXGyreScholaX: ABC FGHMQ abc fghlmq 012

ABC FGHMQ abc fghlmq 012

Sans serif

Archiv0: ABC FGHMQ abc fghlmq 012

ABC FGHMQ abc fghlmq 012

Arvo: ABC FGHMQ abc fghlmq 012

ABC FGHMQ abc fghlmq 012

Atkinson: ABC FGHMQ abc fghlmq 012

ABC FGHMQ abc fghlmq 012

Gudea: ABC FGHMQ abc fghlmq 012

ABC FGHMQ abc fghlmq 012

HindMadurai: ABC FGHMQ abc fghlmq 012

Inter ABC FGHMQ abc fghlmq 

Josefin: ABC FGHMQ abc fghlmq 012

Magra: ABC FGHMQ abc fghlmq 012

Nunito: ABC FGHMQ abc fghlmq 012

ABC FGHMQ abc fghlmq 012

0swald: ABC FGHMQ abc fghlmq 012

Slab serif and typewriter

AlfaSlabOne: ABC FGHMQ abc fghlmq 012

Cascadia Code: ABC FGHMQ abc fghlmq 012

Courier10Pitch: ABC FGHMQ abc fghlmq 012

ABC FGHMQ abc fghlmq 012

⋄ Karl Berry

https://tug.org/FontCatalogue

https://ctan.org/topic/font

doi.org/10.47397/tb/42-1/tb130berry-fontlist

Some fonts with recent TEX support

66 TUGboat, Volume 42 (2021), No. 1

Generalized mediation operation in

METAFONT

Hu Yajie

Abstract

The macros on page 299 of The METAFONTbook,
which generalize METAFONT’s mediation operation,
have some bugs which went unnoticed for years. This
article discusses how to fix the bugs, and some other
improvements to the macros.

1 The problem

METAFONT’s mediation operation allows us to write

• 1/3[z1,z2] for the point one-third of the way
from z1 to z2,

• 1/2[z1,z2] for the point midway between z1

and z2,

• .8[z1,z2] for the point eight-tenths of the way
from z1 to z2,

and, in general, t[z1,z2] stands for the point that
lies a fraction t of the way from z1 to z2.

Our goal is to extend METAFONT’s syntax so
that it will accept generalized mediation formulas like
1/2[z1,z2,z3] and .4[z1,z2,z3,z4], computed as
in the construction of Bézier curves (see Figure 1).

2 The original macros

Page 299 of The METAFONTbook gives some macros
that implement the generalized mediation operation.
The basic idea is to make [a macro that counts how
many comma-separated expressions follow, up to the
matching]. If there are fewer than three, as in any of

path p[][]a

x[n]

1/3[z1,z2]

we don’t need to do anything special, so we restore
the expressions in primitive brackets. Otherwise we
store away the expressions and make

[a,b,c] expand to Bernstein 3,
[a,b,c,d] expand to Bernstein 4,
. . .

The binary-operator-like Bernstein macro then ab-
sorbs the fraction to the left and computes the result
t[u1, . . . , un] =

∑

n

k=1

(

n−1

k−1

)

(1− t)n−ktk−1uk.

However, the METAFONTbook macros have two
bugs which can cause innocent commands like

draw flex((0,0),(100,100),(300,0));

to stop working. The first bug is easy to fix: rename
the private variable n to bn to avoid a name conflict
with the n in plain METAFONT’s flex routine. The
second bug is harder to find: the definition of flex

z1

z2

z3

z4

t[z1, z2]

t[z2, z3]

t[z3, z4]t[z1, z2, z3]

t[z2, z3, z4]

t[z1, z2, z3, z4]

Figure 1: The generalized mediation operation

says z_[incr n_], which usually increases n once.
But the [macro evaluates the expressions up to the
matching] twice, once to count their number and
once in primitive brackets, so n gets increased twice
and you get index mismatch errors. This bug can be
fixed by changing if bn_<3: [[[t]]] on line 6 to

if bn_=0: [[[]]]

elseif bn_=1: [[[u_[[[1]]]]]]

elseif bn_=2: [[[u_[[[1]]], u_[[[2]]]]]]

to reuse the result of the first-time evaluation.

3 The improved macros

While fixing the bugs, I also discovered some other
improvements to the METAFONTbook macros:

let [[[= [; let]]] =];

def [= for u = enddef;

def] = , hide(bn_ := 0; let v_ = \;):

if incr bn_ = 1: hide(def v_ = u enddef)

else: hide(expandafter def expandafter v_

expandafter = v_, u enddef) fi endfor

if bn_ < 3: [[[v_]]]

else: Bernstein bn_ fi enddef;

primarydef t Bernstein nn = begingroup

c_[[[1]]] := 1; for n = 1 upto nn - 1:

c_[[[n + 1]]] := t * c_[[[n]]];

for k = n downto 2: c_[[[k]]] :=

t[[[c_[[[k]]], c_[[[k - 1]]]]]]; endfor

c_[[[1]]] := (1 - t) * c_[[[1]]]; endfor

bn_ := 0; for u = v_: + c_[[[incr bn_]]] * u

endfor endgroup enddef;

The first improvement is that [and] are changed
to macros which expand separately; this allows the]
to be buried in another macro like]], a single token
which plain METAFONT expands to]]. The second
improvement is that the expressions between [and]

are now stored in a “list macro” instead of an array.
This makes the code simpler, readily adaptable to
new types like METAPOST colors, and diagnostics
with show and showdependencies more readable:

*show 2[a,b,c];

>> 4c-4b+a (formerly u_1 or %CAPSULE4691)

I gratefully thank Donald Knuth for suggesting that
I write this note.

⋄ Hu Yajie
https://github.com/dine2014

doi.org/10.47397/tb/42-1/tb130hu-bernstein

Hu Yajie

https://doi.org/10.47397/tb/42-1/tb130hu-bernstein

TUGboat, Volume 42 (2021), No. 1 67

Animating Fourier series decomposition of a
character with LuaTEX and MPLIB

Maxime Chupin

Abstract
In this article, we will see how, thanks to METAPOST

and MPLIB and LuaTEX, we can build an anima-
tion illustrating in a mechanical way the Fourier
decomposition of a closed contour.
This is a translation by the author of the original
article in French, published in La Lettre GUTenberg
number 41 [2] of the French TEX user group.

1 Introduction
The video artist 3Blue1Brown,1 mathematical pop-
ularizer on YouTube, has made a video illustrating
the Fourier decomposition of a closed path by an-
imations of gear mechanisms of circles put end to
end. The result is magnificent and bewitching (see
figure 1).

Figure 1: But what is a Fourier series? From thermal
transfer to drawings with circles from 3Blue1Brown on
YouTube.

It is not easy to describe these animations in
words, but the idea is to put circles of different diam-
eters with inscribed vectors that rotate at different
speeds end to end, and the end of this broken line
traces the closed curve (the music note in figure 1).

This viewing made me want to do this with our
favorite tools, specifically with LuaLATEX and META-
POST, itself included in LuaTEX via the MPLIB
library. I also thought it would be interesting to
make these animations with the outline of a glyph
of a character (of one part, i.e., connected). So I
started working on this project.

2 Mathematical principle
We therefore consider a closed curve in R

2 that can
be considered as a periodic function f : R 7→ C. The

1 youtube.com/watch?v=-qgreAUpPwM

period is considered to be equal to 1. Without going
into details, the Fourier series decomposition of f is:

∀t ∈ [0, 1], f(t) =

+∞∑
n=−∞

cn(f)ein2πt,

where
cn(f) =

∫ 1/2

−1/2

f(t)e−in2πtdt.

Numerically, we will work with discrete versions
of this decomposition in Fourier series. Consider two
integers N and M large enough and M even. In the
discrete world, we will no longer have the continuous
f function but samples along the path, which we
will denote by (f1, f2, . . . , fN) where the fi ∈ C. We
then have:

∀t ∈ [0, 1], f(t) ≃

M/2∑
n=−M/2

c̃n(f)ein2πt, (1)

where

c̃n(f) =

N∑
k=0

1

N
fk+1e−i 2nk

N . (2)

The M +1 c̃n(f) will be called the Fourier coefficients.
Geometrically, we can see the relation (1) as a

sum of vectors of R
2 (thus put end to end) with

norm the modulus of the complex number and, as
orientation, its argument.

Thus, when t runs through the interval [0, 1],
these vectors rotate and the end of the last vector
draws the closed curve2 that we have decomposed.

3 Get a set of points of R
2 of the contour

We must therefore construct, from the contour of a
glyph, the sequence (f1, f2, . . . , fN) presented above.

3.1 Thanks to METAPOST

First, we need to obtain a discretization of the closed
contour of a given glyph. METAPOST [5], with the
MetaFun [3] format, allows us to do this quite easily.
For the example, we will take the glyph f , 500 points
for the discretization, and a certain homothetic factor
set to 0.1 for the display.

The METAPOST code is the following:

fontmapfile "=lm-ec.map";
picture lettre; path contourLettre; path p;
lettre := glyph "f" of "ec-lmri10";
nbrPoints := 500; scale := 0.1;
beginfig(1);
for item within lettre:
contourLettre := pathpart item;
for i:=1 upto nbrPoints:
if i=1:
p := point i/nbrPoints along contourLettre;

2 Or rather an approximation of the contour of the glyph.

doi.org/10.47397/tb/42-1/tb130chupin-fourier

Animating Fourier series decomposition of a character with LuaTEX and MPLIB

https://youtube.com/watch?v=-qgreAUpPwM
https://doi.org/10.47397/tb/42-1/tb130chupin-fourier

68 TUGboat, Volume 42 (2021), No. 1

else:
p := p--(point i/nbrPoints

along contourLettre);
fi;

endfor;
draw p scaled scale;

endfor; endfig; end;

The result is shown below, using the luamplib pack-
age [4] to use METAPOST directly in this article.

We will not detail this code here. It seems a bit
complex but this is due to the METAPOST’s glyph
structure that (fortunately) allows having several
parts for a glyph. Although here we will consider only
letters with one (connected) part, we must adhere to
the general data structure. The thing to remember
is that we have METAPOST code which allows us to
obtain a set of points constituting a discretization of
the character glyph outline.

3.2 The list of points with Lua
The computation of the Fourier series decomposition
of this closed curve is theoretically possible in TEX,
but Lua [6] offers us more capabilities, more speed,
and easier coding.3 So, using LuaTEX, we want to
retrieve this list of points on the Lua side. Another
advantage is that, as we have already said, LuaTEX
includes METAPOST via the Lua library, MPLIB
(see [7]).

3.3 Search for font files
With METAPOST (or MPLIB), unfortunately we can
use only Type 1 fonts. There is a little subtlety
concerning the opening of the font file: METAPOST

asks for a ‘pfb’ file type, while kpse asks for a ‘type1
fonts’ file type. Taco Hoekwater, on the metapost@
tug.org mailing list, provided me with the search
function that handles this little problem:

local mpkpse = kpse.new('luatex', 'mpost')
local function finder(name, mode, ftype)
if mode == "w" then
return name

else
if ftype == 'pfb' then
ftype='type1 fonts'

3 At least, for me . . .

end
return mpkpse:find_file(name,ftype)

end; end

3.4 From METAPOST to a Lua table
Having passed this small technical difficulty, we will
present here a Lua function that allows us to build
a Lua table which contains the points generated by
METAPOST.
function getpathfrommp(s,nbrPoints,scale)
−− define a Lua function which retrieves the list of
−− nbrPoints points made from the outline of the
−− character s; scale is a homothety parameter

−− launch MetaPost session using our search function
local mp = mplib.new({find_file = finder,})
−− metafun Format
mp:execute('input metafun ;')
−− we store the output of the MetaPost code execution
local rettable; rettable = mp:execute(
'fontmapfile "=lm-ec.map";
picture lettre; path contourLettre;
lettre := glyph "' .. s .. '" of "ec-lmri10";
path p; beginfig(1);
for item within lettre:
 contourLettre := pathpart item;
 for i:=1 upto'.. nbrPoints ..':
 if i=1: p := point i/'..nbrPoints..' along

contourLettre;
 else: p:= p--(point i/'..nbrPoints..' along

contourLettre);fi;
endfor;
draw p scaled '..scale..';
endfor; endfig; end;') −− MetaPost code as above
output = {} −− initialization
−− if the MetaPost code execution went well
if rettable.status == 0 then
figures = rettable.fig −− figure list
figure = figures[1] −− first and only figure
local objects = figure:objects() −− object list
−− compose figure from the first and only object:
local segment = objects[1]
for point =1, #segment.path do
output[point] = {}
output[point].x = segment.path[point].x_coord
output[point].y = segment.path[point].y_coord

end
end
else print("error") end;
return output
end

To roughly explain the above code, the purpose
is to get the output of the execution of a code by
METAPOST (MPLIB here). This output has a Lua
structure (see the LuaTEX documentation [7], sec-
tion mplib). So we browse this structure to extract

Maxime Chupin

metapost@tug.org
metapost@tug.org

TUGboat, Volume 42 (2021), No. 1 69

the list of points we are interested in: first of all the
list of figures, which here is limited to a single one,
then inside the first figure, we look for the objects
which again are limited to a single object (our closed
curve), then we browse the path (METAPOST) of
the object, named here segment, and finally we re-
trieve the x and y coordinates that we store in our
output variable output. For a description of the Lua
functions allowing us to browse the structure of the
object produced by the execution of the METAPOST

code, please refer to the LuaTEX documentation.
We pass in three parameters: the character

whose outline we want to trace (s), the number
of points (nbrPoints), and the homothety (scale).
Our code is not robust, because if the glyph corre-
sponding to the character s is not connected, there
is a strong chance that the code will not work.

4 Fourier series decomposition with Lua
4.1 Call to an external library
The Fourier series decomposition is done with com-
plex numbers as presented previously. Complex num-
bers are not natively managed by Lua, but many
libraries are available on the Web that implement
computation functions on complex numbers. I chose
the complex.lua file available at lua-users.org/
wiki/ComplexNumbers.

To use this library, we need:
1. on the LATEX side, to load the luapackage-

loader package (see the end of this article for
the complete LATEX code);

2. on the Lua side, to call the file complex.lua via
the following code:

complex = require "complex"

4.2 Convert the list of coordinates of R
2 into

a list of complex numbers
To ease the computations, a function is created to
convert the list of coordinates obtained by the Lua
function getpathfrommp into a list of complex num-
bers. This is done by the following code, which needs
no further explanation.

function pathToComplex(path)
local complexPath
complexPath = {}
for i=1,#path do
complexPath[i]

= complex.new(path[i].x,path[i].y)
end
return complexPath
end

4.3 Implementation of Fourier coefficients
calculation

The computation of the Fourier coefficients c̃n(f)
of equality (2) is easily implemented with Lua, as
shown in the following code.

function cn(f,n)
local CN = complex.new(0.0,0.0)
local N = #f
for i=0,N-1 do
exposant = complex.new(0.0,-2.0*math.pi*n*i/N)
Exp = complex.exp(exposant)
CN = complex.add(CN,complex.mulnum(complex.mul

(f[i+1],Exp),1.0/N))
end
return CN; end

From this, we need to build the list
(c

−M/2, c
−M/2+1, . . . , c−1, c0, c1, . . . , cM/2),

which is done by the following Lua function:

function cnList(f)
local CNlist = {}
local M = #f
for i=0,M do
CNlist[i] = cn(f,math.floor(i-M/2))

end
return CNlist; end

5 Plot with mplibcode
Once all these code bricks are prepared, we just
have to implement the drawing with the help of the
mplibcode environment of the luamplib package [4]
(or we could use TikZ). This function has several
arguments:

• a discretized path, i.e., the set of coordinates
(x, y) of the contour of the glyph;

• its conversion into complexes (complexPath);
• a list of Fourier coefficients (cnList);
• a desired number of Fourier coefficients (M + 1

in the previous equations), i.e., the number of
circles and vectors drawn (nbrFourier);

• a time t ∈ [0, 1].

function coreDecomp(path, complexPath, cnList,
nbrFourier, t)

−− path: list of R^2 points
−− complexPath: complex list of these points
−− cnList: list of Fourier coefficients
−− nbrFourier: number of Fourier coefficients
−− initialization
local str
local cnListRotated = {}
local zero = math.floor(#cnList/2)
local NFourier = math.floor(nbrFourier/2)

Animating Fourier series decomposition of a character with LuaTEX and MPLIB

http://lua-users.org/wiki/ComplexNumbers
http://lua-users.org/wiki/ComplexNumbers

70 TUGboat, Volume 42 (2021), No. 1

cnListRotated[zero] = cnList[zero]
−− multiplication by e^{2i k pi t}
for k=1,zero do
cnListRotated[zero+k] = complex.mul(

cnList[zero+k],complex.exp(complex.new(0.0,
k*2*math.pi*t)))

cnListRotated[zero-k] = complex.mul(
cnList[zero-k],complex.exp(complex.new(0.0,

-k*2*math.pi*t)))
end
−− beginning of mplibcode
local str = "\\begin{mplibcode}\nverbatimtex
 \\leavevmode etex; beginfig(1);"
−− MetaPost code of the glyph to draw
local mpCodeLetter = mpCodePath(path)
str = str..mpCodeLetter −− concatenation
−− complex current point at which
−− we draw the next circle
local currentC = complex.new(0,0)
−− add the drawing of the circle and the vector
str = str .. mpCodeCircle(cnListRotated[zero],

currentC)
currentC = complex.add(currentC,

cnListRotated[zero])
for i=1,NFourier do −− for all Fourier coeff
str = str..mpCodeCircle(cnListRotated[zero+i],

currentC)
currentC = complex.add(currentC,

cnListRotated[zero+i])
str = str..mpCodeCircle(cnListRotated[zero-i],

currentC)
currentC = complex.add(currentC,

cnListRotated[zero-i])
end
str = str.."endfig;\n\\end{mplibcode}\n"

.."\\newpage" −− closing
return str; end

To help in reading this code: cnListRotated[i]
corresponds to the terms in the sum (1) of c̃n(f)e2ikπt,
since the multiplication by e2ikπt can be seen as a
rotation in the complex plane.

The main purpose of this function is to con-
struct a string containing the mplibcode that will
be sent to LATEX via the Lua tex.sprint() function.
The coreDecomp function above calls two other Lua
functions that produce the METAPOST code of the
drawing:

• the function mpCodePath(path), which takes as
argument the list of the contour points of the
glyph and draws the glyph;4

• the function mpCodeCircle(cn,shift), which
takes as argument a coefficient of Fourier cn
(after rotation) and an R

2 shift which is the
4 There is also a frame drawn around it to make sure that

all images have the same size and thus be able to chain the
images to produce an animation.

end of the broken line where the vector and the
circle must be drawn.
The code for these two functions is below. They

mainly consist of the concatenation of strings to
produce METAPOST code.
function mpCodePath(path)
−− plot the path contour
local str = ""
str = str.."path p; p:="
for i=1,#path do
str = str.."("..string.format("%f",path[i].x)

..","..lstring.format("%f",path[i].y)

..")--"
end
str = str.."cycle; draw p;\n"
str = str.."pair ll,lr,ur,ul; ll:=llcorner p;"

.."ur:=urcorner p; lr:=lrcorner p;"

.."ul:=ulcorner p;\n"
str = str.."Wdth := abs(xpart lr - xpart ll);"

.."Hght := abs(ypart ul- ypart ll);"

.."prcW := 0.8; prcH := 0.3;\n"
str = str.."draw (ll+(-prcW*Wdth,-prcH*Hght))"

.."--(lr+(+prcW*Wdth,-prcH*Hght))"

.."--(ur+(+prcW*Wdth,+prcH*Hght))"

.."--(ul+(-prcW*Wdth,+prcH*Hght))"

.."--cycle;\n"
return str; end

function mpCodeCircle(cn,shift)
−− draw the circle and the vector corresponding to
−− the Fourier coefficient centered at points shift
local str
local abs,arg
abs,arg = complex.polar(cn)
str = "draw fullcircle scaled "

..string.format("%f",2*abs).."shifted ("

..string.format("%f",shift[1])..","

..string.format("% f",shift[2])

..") withcolor (0.7,0.7,0.7);\n"
str = str.."drawarrow ((0,0)--("

..string.format("%f",cn[1])..","

..string.format("%f",cn[2]).."))shifted("

..string.format("% f",shift[1])..","

..string.format("%f",shift[2])

..") withpen pencircle scaled 1pt "

.."withcolor (0.7,0.3,0.3);"
return str; end

5.1 Generate images for any t ∈ [0, 1]

To create the animation, we generate the images with
a discretization of the time interval [0, 1]. This can
be done with the following function.
function plotDecompAnim(letter,nbrPoints,

nbrFourier,scale,nbrFrame)
−− letter: character that we want to decompose
−− nbrPoints: number of points in discretization

Maxime Chupin

TUGboat, Volume 42 (2021), No. 1 71

−− nbrFourier: number of Fourier coefficients
−− scale: homothetic coefficient
−− nbrFrame: frame number
local str
local path = getpathfrommp(letter,nbrPoints,

scale)
local complexPath = pathToComplex(path)
local cnList = cnList(complexPath)
for frame=0,nbrFrame-1 do
t = frame/nbrFrame
str = coreDecomp(path,complexPath,cnList,

nbrFourier,t)
tex.sprint(str)

end
end

The Lua functions presented are all put in a
single Fourier.lua file.

6 Animations and code
Once all these Lua functions are implemented, we
just have to load them and call the Lua function
plotDecompAnim using the command \directlua,
as shown in the following code.

\documentclass{article}
\usepackage{luapackageloader}
\usepackage{luamplib}
\directlua{dofile("Fourier.lua")}
\pagestyle{empty}
\begin{document}
\directlua{

plotDecompAnim("f",300,50,0.26,360)
}
\end{document}

To conclude, we have considered only three files:
the LATEX file above fourier.tex, the Fourier.lua
file which contains all our Lua functions presented
here, and the complex.lua file retrieved from the
web. To compile and produce the PDF, which con-
tains as many pages as there are images, we put these
three files in the same directory and run lualatex
on our fourier.tex file:
$ lualatex fourier.tex

If you read this article as a PDF file with Acro-
bat Reader, you will be able to see the generated
animation (cf. figure 2) with the animate package [1].
Otherwise, all the code and the animation are visible
and downloadable here:
fougeriens.org/~mc/?page=exemples&dir=fourier

Figure 2: Animation

References
[1] A. Grahn. The animate package, 2020.

https://ctan.org/pkg/animate.
[2] Association GUTenberg. La Lettre GUTenberg

numéro 41, Décembre 2020. https://www.
gutenberg.eu.org/IMG/pdf/lettre41.pdf.

[3] H. Hagen. Metafun. http://www.pragma-ade.
com/general/manuals/metafun-p.pdf, 2020.
v. 2.11.3.

[4] H. Hagen, T. Hoekwater, et al. The luamplib
package. https://ctan.org/pkg/luamplib,
2020. v. 2.11.3.

[5] J.D. Hobby, MetaPost Development
Team. MetaPost, a user’s manual. https:
//ctan.org/pkg/metapost, 2019. v. 2.0.

[6] R. Ierusalimschy. Programming in Lua.
Lua.org, 2016.

[7] LuaTEX development team. LuaTEX Reference
Manual. http://www.luatex.org/svn/trunk/
manual/luatex.pdf, March 2020. v. 1.12.

⋄ Maxime Chupin
29 rue Pierre et Marie Curie
91400 Orsay
France
mc (at) melusine dot eu dot org
https://fougeriens.org/~mc/

Animating Fourier series decomposition of a character with LuaTEX and MPLIB

฀

https://fougeriens.org/withtilde%20mc/?page=exemples&dir=fourier
https://ctan.org/pkg/animate
https://www.gutenberg.eu.org/IMG/pdf/lettre41.pdf
https://www.gutenberg.eu.org/IMG/pdf/lettre41.pdf
http://www.pragma-ade.com/general/manuals/metafun-p.pdf
http://www.pragma-ade.com/general/manuals/metafun-p.pdf
https://ctan.org/pkg/luamplib
https://ctan.org/pkg/metapost
https://ctan.org/pkg/metapost
https://Lua.org
http://www.luatex.org/svn/trunk/manual/luatex.pdf
http://www.luatex.org/svn/trunk/manual/luatex.pdf

72 TUGboat, Volume 42 (2021), No. 1

Working remotely from an island: arara and

other tools

Island of TEX (developers)

Abstract

Over the last two years, the Island of TEX has comple-
mented the TEX ecosystem with some auxiliary tools.
This article is a short review of the last year’s (more
or less) achievements and a preview of upcoming
changes.

1 Providing a home for TEX-related

projects

In 2019, the Island of TEX started as a small group of
two friends trying to improve the TEX ecosystem (cf.
fig. 1). What started as small steps towards a new
arara release with some little side-projects became a
more and more interesting place to stop by in 2020.

Figure 1: The Island of TEX logo.

The last year started off in full preparation of
releasing arara version 5 in due time for the TEX Live
2020 pretest. A new arara version, new problems.
Software engineering becomes “fun” as soon as users
are concerned, yet we are determined to help our
users. More about where this view got us and arara

in a later section.
Apart from our flagship project, the island fo-

cused on new frontiers over the whole last year.
Therefore, we

• stabilized TEXplate,

• created an archive for stale TEX related projects
(containing only a backup of the εXTEX reposi-
tory for now) to preserve history,

• migrated checkcites, a tool to check for missing
or unused references, to the island,

• published the new albatross tool, and

• worked on publicity.

Of our efforts, three projects received a fair share
of attention: our Docker images, the new TEXdoc

online tool and the shiny little albatross. Let us
drop some words about each of these projects before
looking at arara and the future.

2 New tools for a modern TEX ecosystem

In TUGboat 40:3,1 we introduced the island’s Docker
images for easily reproducible builds as well as a
semi-official response to the need for continuous inte-
gration (CI). Our images were among the first using
vanilla TEX Live, providing the required tools for
running software included in TEX Live (Java Virtual
Machine (JVM), Python, etc.). Additionally, we pro-
vide TEX Live releases from 2014 on and let the user
decide whether they want to pull all the documenta-
tion and source files into their CI configuration.

With attention came the idea to more officially
publish our images as texlive/texlive, which we
gladly did. Now we are managing the Docker Hub
releases at https://hub.docker.com/r/texlive/

texlive. Although unnoticed at first, we even saw
DANTE e.V., the German-speaking TEX user group,
basing their Docker images on ours.

Apart from applications in CI, the Docker im-
ages have lured us into creating another tool based
on them. TEXdoc online, which we introduced in
TUGboat’s previous issue,2 is now the software run-
ning https://texdoc.org, the successor to https:

//texdoc.net (which now redirects), thanks to Ste-
fan Kottwitz. We have incorporated a few improve-
ments, among others HTTPS support. You can easily
host your own instance.

After finishing TEXdoc online to a production-
ready degree, the island turned to the development
of another handy tool, albatross. This command
line tool, with a silly yet adorable name, solves a
very common problem: finding (system) fonts that
provide a certain glyph. Users may provide the
glyphs themselves—e.g, ß—or their corresponding
Unicode code points in hexadecimal notation—e.g,
0xDF. Currently, it is a thin wrapper around fc-list

but there are plans to make it even more useful. As
it is in TEX Live, you should give it a shot.

3 arara—feeling at home on the island

In 2019, arara, the cool TEX automation tool, was
one of the first new citizens of the Island of TEX.
It moved just in time to work on a new version,
version 5. This version was special in many ways,
first and foremost as it followed its predecessor after
such a short period of time.3 Behind the scenes, we
finished a major rewrite of arara, mainly working
on features from user feedback, especially directory
support and the processing of multiple files.

1 tug.org/TUGboat/tb40-3/tb126island-docker.pdf
2 tug.org/TUGboat/tb41-3/tb129island-texdoc.pdf
3 Some members of the TEX community at StackExchange

might remember that working on arara version 4 was one of

Paulo’s major distractions while writing a never-ending thesis.

doi.org/10.47397/tb/42-1/tb130island-tools

Island of TEX (developers)

https://hub.docker.com/r/texlive/texlive
https://hub.docker.com/r/texlive/texlive
https://texdoc.org
https://texdoc.net
https://texdoc.net
https://tug.org/TUGboat/tb40-3/tb126island-docker.pdf
https://tug.org/TUGboat/tb41-3/tb129island-texdoc.pdf
https://doi.org/10.47397/tb/42-1/tb130island-tools

TUGboat, Volume 42 (2021), No. 1 73

After releasing version 5 for the TEX Live 2020
pretest, we got hooked by the idea of aligning release
schedules of arara with TEX Live releases. So we had
big plans and started to work on version 6 right after
releasing version 5. We might have been a bit too
ambitious, though, as we received some complaints
about a non-working version 5 from our users. Some-
how, they caught our failure to test the new release
on some versions of Windows. Well, everything has
been fixed and we were able to move on.

Approximately three quarters of 2020 remained
and we tried to make version 6 shine through an
enhanced feature set and optimized workflows. Some
new features we want to highlight:4

• Preambles (think of that as the commands arara
will execute on that file) have received new
options. Among others, you may now define
your workflows using preambles and set a global
default preamble. That way, you may now
even call arara on files without those special
arara comments (directives) and make our tool
(auto)magically execute your default preamble.
Users wanted to be able to switch their editor’s
default compiler to arara, even for files without
explicit statements, and now they can.

• You may pass parameters from the outside into
your build flow. Call arara as

arara -P jobname=thesis file.tex

and you can receive that parameter within your
arara rules and directives like this (line breaks
added for TUGboat formatting; this directive
should be on one line):

% arara: pdflatex: { options: [

"-jobname=@{getSession()

.get("arg:jobname")}"] }

Multiple users have requested being able to
parametrize their directives, so we finally man-
aged to implement it.

• We added eight new rules and improved the rule
format. The most frequent requests we receive
are about supporting new tools in our rule set.
We gladly add more TEX tools to arara, so if you
are missing something feel free to contact us.

• For quite some time, arara has been a very pow-
erful tool and has been criticized for being so
powerful. We now implemented a first draft of
a safe mode that restricts arara in some of the
more harmful execution steps. Do not expect
real safety, though. This is going to take more
work to prevent obvious malicious behaviour.

4 A detailed discussion of new features is in our

blog post about arara’s new release on its website at

https://islandoftex.gitlab.io/arara/.

• One of the most prominent problems with arara

has been the lack of good introductory material,
especially as the manual has grown. Hence,
we now provide a quick start guide for new
users. If you do not use arara yet, maybe this
guide is for you. Interested? Simply run texdoc

arara-quickstart on your local system.

The above is only a short excerpt of the change
log but probably the most important changes for
users. So to come back to the initial statement:
version 6 is a major milestone in many ways but most
importantly because the technical improvements of
version 5 allowed us to implement so many features
our users have been waiting for (sometimes for years).

4 Perspectives

The Island of TEX will continue to work on improving
the TEX ecosystem in 2021. We hope to be as pro-
ductive as we were in 2020. So let us try to outline
our near-term goals.

First of all, we want to improve albatross and
checkcites to make them even more useful. For the
latter that will most probably include a rewrite. Any-
way, these small helpers are what makes the daily
TEX workflow a bit more fluent so we will try to
gather new ideas for little new helpers. We have wel-
comed a new member to the island, who will reveal
his first IoT tool soon.

However, the major plans and projects are set-
tled around arara. In the long run, we want the tool
to provide far more than just a CLI tool for compil-
ing TEX. We have plans for a documented API for
defining TEX flows that is not as latexmk-centred as
some of the existing APIs floating around and some
kind of arara daemon that will be able to translate
multiple documents in parallel.

Furthermore, most of our tools are written in
Kotlin and therefore rely on the JVM. With the
so-called Kotlin multiplatform projects (MPP), we
will try to get closer to native performance. Among
others, this could also be useful in scenarios where a
computer (or cloud service for that matter) with a
TEX Live installation may not run a JVM.

To wrap this up, we have many plans and hope
to realize as much as possible. If you are interested
in helping us develop ideas or even implementing
some code: visas for the island are free and easy to
get, so feel free to reach out.

⋄ Island of TEX (developers)
https://gitlab.com/islandoftex

Working remotely from an island: arara and other tools

https://islandoftex.gitlab.io/arara/

74 TUGboat, Volume 42 (2021), No. 1

LuaMetaTEX programming features

Hans Hagen

1 Introduction

Sometimes you can read (or hear) comments about
TEX not being a real programming language or the
wish for it to be more like a typical procedural lan-
guage. A discussion about this is somewhat pointless
because it relates to experiences and preferences.
Also, when we mention TEX, we are talking about an
interpreter, a language, a set of macros and in prac-
tice, about an ecosystem, simply because all kinds
of resources are involved Ů especially the ecosystem
is one reason why a successor is not showing up.

So, when we discuss the language aspect, it
concerns a macro language and that is for a good
reason: one can mix content and operations on that
content in one document source. That source is
interpreted and processed as it goes. This is contrary
to a procedural language, where one explicitly has
to push content into some procedure. These are a
bit of a mix, e.g., webpage templates where some
elements are snippets of programs and a preprocessor
assembles the result.

\def\MyMacroA#1{This or #1!}

\def\MyMacroB{that}

\MyMacroA{\MyMacroB}

Here the last line will result in ŞThis or that!Ť
ending up in the output. But it must be noted that
\MyMacroB is passed as a token, and only in the body
of the macro does it get expanded into ŞthatŤ.

\edef\MyMacroC{\MyMacroB}

The code above deĄnes a new macro with the
expanded text as body. To expand or not, that is
often the question. Now compare this code with the
following:

function MyFunctionA(one)

return "This or " .. one .. "!"

end

function MyFunctionB()

return "that"

end

function MyFunctionC(one)

return "This or " .. one() .. "!"

end

MyFunctionA("that")

MyFunctionA(MyFunctionB())

MyFunctionC(MyFunctionB)

The Ąrst function expects a string and returns a
concatenation. The second function returns a string.
The Ąrst call gets a string passed and the second
one too because we call that function. But the third
call passes the function itself, which is why the third

function has to call it explicitly in the function body.
It is this property that, in my opinion, complicates
matters when you want to do typesetting in such
a language: the more you nest the more dangers
there are for asynchronous side effects. This can be
understood from the following example:

function MyFunctionA(one)

print("A")

return "This or " .. one .. "!"

end

function MyFunctionB()

print("B")

return "that"

end

MyFunctionA(MyFunctionB())

Here we print B before we print A. Now, one
can certainly argue that in spite of this, functions
are easier to understand than macros (which can
also have surprising side effects). Indeed, when one
works on an abstract document tree where content
is fetched from, say, a database that might be true
but most TEX users mix content and operations.

In the following sections I will introduce some of
the additional features that LuaMetaTEX provides.
They are the result of experiencing many years of
macro writing and the wish to come up with read-
able code using native features of the language when
possible. Of course in ConTEXt we have a high level
interface for dealing with typographical constructs
and properties but deep down the code looks less
clear. Putting layer upon layer doesnŠt help much
either, so we donŠt go that route. Using funny char-
acters like !?@_: doesnŠt make things look better
either. We do have lots of so-called low-level macros
but it doesnŠt make much sense to come up with a
pseudo-programming layer while in fact the engine
could make better facilities available; so that is the
route we follow. After decades it had become clear
that none of the successor TEX variants have Ąlled in
the gaps in this way, so at some point I decided that
LuaMetaTEX should do it (at least for ConTEXt).

While ConTEXt MkII was written for the more
traditional engines pdfTEX and X ETEX, MkIV targets
LuaTEX. It resulted in a rewrite of many components
and a freeze of MkII. It made no sense to cripple
ourselves so in the end we went further than originally
expected. Then, when LuaMetaTEX development
started, again a rewrite happened, but this time
the reason was to make the code base a bit more
efficient (less indirectness) by using extended native
functionality. Apart from other beneĄts of this new
engine, it gives a bit nicer code and the fewer layers
we have the better. This is why ConTEXt LMTX

doi.org/10.47397/tb/42-1/tb130hagen-prog

Hans Hagen

https://doi.org/10.47397/tb/42-1/tb130hagen-prog

TUGboat, Volume 42 (2021), No. 1 75

(a.k.a. MkXL) again has a split-off code base so that
MkIV is not harmed. All that said, I do admit that,
lacking other TEX challenges, it is also fun to explore
new venues.

2 Conditions

It must be said that when one goes even a little
beyond simple TEX programming, one could indeed
wish for a bit more comfort. Take this:

\def\MyMacro#1#2%

{\ifdim#1<#2\relax

less%

\else\ifdim#1=#2\relax

equal%

\else

more%

\fi\fi}

One needs to keep track of the nesting here in
order to have the right number of \fiŠs.

\def\doifelse#1#2#3#4%

{\edef\a{#1}\edef\b{#1}%

\ifx\a\b#3\else#4\fi}

The temporary macros are needed in order to
be able to compare the expanded meanings. But
when #3 and #4 are macros that look ahead you can
imagine that when they see \else or \fi things can
get confused. Compare this to:

function doifelse(a,b,c,d)

if a == b then

c()

else

d()

end

end

Here the compiler creates code that calls either
c or d without them having to bother about leaving
the condition. In TEX-speak we would need to have
something like this:

\def\firstoftwoarguments #1#2{#1}

\def\secondoftwoarguments#1#2{#2}

\def\doifelse#1#2#3#4%

{\edef\a{#1}\edef\b{#1}%

\ifx\a\b

\expandafter\firstoftwoarguments

\else

\expandafter\secondoftwoarguments

\fi}

And when you try that with the Ąrst example
where we had a nested condition you can imagine that
it quickly starts looking complex. Another aspect of
the last macro is that it uses two temporary macros
that better have names that donŠt clash, so the ones
we choose here are pretty bad. I will come back to
dealing with that later.

One gets accustomed to this and often this kind
of code is hidden from the user so only macro writers
are victims here. But, being one myself, the question
is, can we make the code look nicer? LetŠs redo the
Ąrst example with LuaMetaTEX:

\def\MyMacro#1#2%

{\ifdim#1<#2\relax

less%

\orelse\ifdim#1=#2\relax

equal%

\else

more%

\fi}

Many programming languages have something
like elseif but because TEX has quite a number of
different tests, \elseifdim makes no sense but the
more generic \orelse does. We can even think of:

\def\MyMacro#1#2%

{\ifcmpdim#1#2\relax

less%

\or

equal%

\else

more%

\fi}

And because LuaMetaTEX provides this test, one
obstacle is gone. (Aside: if the \relax is not desired
in the expansion, \dimexpr can be used:

\ifdim\dimexpr#1\relax=\dimexpr#2\relax

This is supported in all engines except the origi-
nal TEX. There are yet more possibilities in Lua-
TEX and LMTX that we wonŠt go into here, like
\beginlocalcontrol.)

We leave it to the reader to come up with a
traditional TEX implementation of this:

\def\MyMacro#1#2%

{\ifcmpdim#1#2\relax

\expandafter\firstofthreearguments

\or

\expandafter\secondofthreearguments

\else

\expandafter\thirdofthreearguments

\fi}

And how nice it would be to be able to do this:

\def\doifelse#1#2%

{\iftok{#1}{#2}%

\expandafter\firstoftwoarguments

\else

\expandafter\secondoftwoarguments

\fi}

And so, LuaMetaTEX has such a primitive test.
Keep in mind that deĄning \iftok as a macro is
possible here but that wonŠt work well nested, even
with \orelse:

LuaMetaTEX programming features

76 TUGboat, Volume 42 (2021), No. 1

\iftok{.}{.}

\orelse\iftok{..}{..}

\orelse\iftok{...}{...}

\fi

When a condition succeeds or fails TEX enters
fast scanning mode to skip over the branch that is
not used. For that it needs to know if a token is a
test, which is why deĄning \iftok as a macro is no
help. We could Ćag a macro as a test and I actually
played with this, but it means that we need to test
a macro property independent of the current con-
dition handler and that is something for later. As
an intermediate solution we have an \ifcondition

primitive that is seen as a condition when fast scan-
ning happens and as a no-op when a condition is
expected in which case the following macro has to
expand to a condition itself. Something like this:

\ifcondition\mytest{.}{.}

\orelse\ifcondition\mytest{..}{..}

\orelse\ifcondition\mytest{...}{...}

\fi

Because we have Lua there are also ways to let
Lua functions behave like if tests but that is beyond
this overview, since it goes beyond the macro lan-
guage. In ConTEXt we use this feature to implement
some bitwise operations and tests.

In the engine we provide this repertoire of tests:
\if, \ifcat, \ifnum, \ifdim, \ifodd, \ifvmode,
\ifhmode, \ifmmode, \ifinner, \ifvoid,
\ifhbox, \ifvbox, \ifx, \iftrue, \iffalse,
\ifcase, \ifdefined, \ifcsname, \iffontchar,
\ifincsname, \ifabsnum, \ifabsdim, \ifchknum,
\ifchkdim, \ifcmpnum, \ifcmpdim, \ifnumval,
\ifdimval, \iftok, \ifcstok, \ifcondition,
\ifflags, \ifempty, \ifrelax, \ifboolean,
\ifmathparameter, \ifmathstyle, \ifarguments,
\ifparameters, \ifparameter, \ifhastok,
\ifhastoks and \ifhasxtoks.

Some of these are variants of \ifcase, needed
when there are more than two outcomes possible.
In addition there are \unless, \else, \or, \orelse

and \orunless. The new primitives are discussed in
documents that come with the ConTEXt distribution.

With respect to testing arguments, you can also
use the pseudo-counter \lastarguments (watch the
ŚlastŠ in the name) and somewhat less efficient but
more reliable \parametercount instead as these are
indicators of the number of passed commands.

3 Protection

In the previous section we mentioned that using
auxiliary macros is tricky because they can clash
with existing macros. In fact, this is true for any
macro! I therefore decided to do what has been

on the agenda for a while: add a mechanism that
protects against overload. This is still experimental
and the impact on users can only be tested after most
ConTEXt users have switched to LMTX, which may
take a while. This also means that it will take a while
before the related primitives are considered stable
(although IŠm sure not much will change). LetŠs take
a previous example:

\permanent\def\firstoftwoarguments #1#2{#1}

\permanent\def\secondoftwoarguments#1#2{#2}

\permanent\protected\def\doifelse#1#2%

{\iftok{#1}{#2}%

\expandafter\firstoftwoarguments

\else

\expandafter\secondoftwoarguments

\fi}

Here the three macros are deĄned as permanent.
The test itself is protected against expansion (which
it has always been so we keep that). Depending on
the value of the \overloadmode variable (discussed
below) a user will get a warning or fatal error. By
default there is no checking (but I might give the
\immutable preĄx, also discussed below, an Şalways
check for itŤ property).

The whole repertoire of preĄxes related to over-
load protection is given in the following table.

frozen a macro that has to be redeĄned in
a managed way

permanent a macro that had better not be
redeĄned

primitive a primitive that normally will not
be adapted

immutable a macro or quantity that cannot be
changed, it is a constant

mutable a macro that can be changed no
matter how well protected it is

instance a macro marked (for instance) to be
generated by the user interface

overloaded when permitted the Ćags will be
adapted

enforced all is permitted (but only in zero
mode or ŚinitexŠ mode)

aliased the macro gets the same Ćags as the
original

For the Ąrst Ąve the primitive state has no re-
lated preĄx primitive; it is set by the engine itself.
Maybe someday I will decide to permit deĄning prim-
itives, which would take hardly any code to imple-
ment. Permanent macros are (as shown) those that
we donŠt want users to redeĄne, and frozen ones are
mildly protected. They can be redeĄned when the

Hans Hagen

TUGboat, Volume 42 (2021), No. 1 77

\overloaded preĄx is used. A mutable macro can al-
ways be redeĄned, think of temporary macros, while
an immutable can never be redeĄned. The instance
property is just a signal that weŠre dealing with an
instance, which can be handy when we trace. The
\aliased preĄx will copy properties, so this:

\aliased\let\forgetaboutit\relax

makes \forgetaboutit a reference to the current
meaning of \relax (because that is what \let does)
but also protects it like a primitive (because that is
what \relax is).

The \enforced preĄx is special. It only has a
meaning inside a macro body or token register and
it gets converted in a (hidden) \always preĄx when
in so-called ini mode (when the format is made).
This permits system macros to overload in spite of
heavy protection against it. Think of macros like
\NC where the meaning can differ depending on the
kind of table mechanism used, or \item which can
differ by environment. We can protect these against
overloading by the user but still redeĄne them. Of
course, when the overload mode is zero, all can be
redeĄned.

The value of \overloadmode determines to what
extent a user will be annoyed when an existing macro
is redeĄned, as shown in the table below. That
can also be an instance deĄned by commands like
\definehighlight although these normally are just
\frozen \instance which means that a low level of
protection only issues a warning.

immut- perm- prim- frozen instance

able anent itive

1 warning ⋆ ⋆ ⋆

2 error ⋆ ⋆ ⋆

3 warning ⋆ ⋆ ⋆ ⋆

4 error ⋆ ⋆ ⋆ ⋆

5 warning ⋆ ⋆ ⋆ ⋆ ⋆

6 error ⋆ ⋆ ⋆ ⋆ ⋆

The even values (except zero) will abort the run.
A value of 255 will freeze this parameter. At level
Ąve and above the instance Ćag is also checked but
no drastic action takes place. We use this to signal
to the user that a speciĄc instance is redeĄned (of
course the deĄnition macros can check for that too).

4 Alignments

In ConTEXt many commands are deĄned using the
preĄx \protected, which is handy when they are
used in a context where expansion would not work
out well, like writing to Ąle or inside an \edef. How-
ever, this is impossible when we use the alignment
mechanism. This has to do with the fact that the
parser looks ahead to see if we have (for instance)
a \noalign primitive. And since the parser doesnŠt
look inside a \protected macro, this fails:

\protected\def\MyMacro{\noalign{\vskip 10pt}}

It also works out badly for macros that look for
arguments. A dirty trick is:

\def\MyMacroA{\noalign\bgroup\MyMacroB}

\def\MyMacroB{\dosingleempty\MyMacroC}

\def\MyMacroC[#1]{....\egroup}

This somewhat over the top approach can now
(in LuaMetaTEX) be simpliĄed to the following. LetŠs
also go crazy with preĄxes here:

\noaligned\permanent\tolerant\protected

\def\MyMacroA[#1]%

{\noalign\bgroup....\egroup}

For the record: in LuaMetaTEX the \noalign

construct can be nested which again simpliĄes some
(ConTEXt) code. Keep in mind that until now we
could do whatever we wanted in traditional TEX
speak, apart from making such macros \protected.

5 DeĄnitions

From the perspective of the above it will become
clear that in a system like ConTEXt quite a number
of deĄnitions are candidates for being Ćagged. You
also need to think of symbolic character names or
math symbols. For instance dimensions deĄned by
\dimendef also get a permanent status. This means
that one cannot redeĄne \scratchcounter but still
its value can be changed. At this moment I see
no reason to have a Ćag for preventing that (also
because it would add overhead), but it might become
an option some day.

However, there are often quantities that need
overload protection, such as constant values. This is
why we have:

\immutable \integerdef \plusone 1

\immutable \dimensiondef \onepoint 1pt

\immutable \gluespecdef \zeroskip 0pt plus0pt

minus0pt

\immutable \mugluespecdef \onemuskip 1mu

Those will never change and are a macro-like
variant of registers but with an efficient storage model
and behaving like a register. But one cannot use the
operators like \advance on them. Their intended
usage is as a constant.

Another deĄnition-related extension involves
\csname. In LuaTEX we introduced more robust
handling of \ifcsname as well as an extra accessor:

\ifcsname f o o\endcsname

\lastnamedcs % reference to the constructed \cs

\fi

as well as:

\begincsname f o o\endcsname

which doesnŠt deĄne \f o o as a ŞrelaxedŤ macro
when it doesnŠt already exist. Both \begincsname

LuaMetaTEX programming features

78 TUGboat, Volume 42 (2021), No. 1

and \lastnamedcs avoid a second name construc-
tion, as in:

\ifcsname f o o\endcsname

\csname f o o\endcsname

\fi

Keep in mind that these additions are a side
effect of control sequences being in UTF-8 format
so we want to avoid unnecessary construction of
temporary strings and related expansion.

Original TEX only has \csname; ε-TEX and Lua-
TEX added some companion primitives to that, and
LuaMetaTEX again extends the repertoire:

\letcsname f o o\endcsname\relax

\defcsname f o o\endcsname{...}

\edefcsname f o o\endcsname{...}

\gdefcsname f o o\endcsname{...}

\xdefcsname f o o\endcsname{...}

This saves passing some arguments to a helper
like \setvalue which is a bit more efficient and it
also saves a token. (The ConTEXt format Ąle became
quite a bit smaller when the extensions discussed here
were applied.) The \ifcsname primitive has been
made somewhat more efficient by honoring macros
that were deĄned as \protected which (we think)
means: donŠt expand me in those cases where it
makes no sense. So here we have an (in my opinion)
acceptable downward incompatibility with engines
that conform to ε-TEX.

There are a few more deĄnition related new
primitives, like:

% shortcut for \global\let:

\glet\MyMacroA\MyMacroB

% also works for registers:

\swapcsvalues\MyMacroA\MyMacroB

\futuredef\DoWhatever\MyMacro{...}

% \protected like this:

\expand\MyProtectedMacro

6 Arguments

LetŠs start with a teaser. A previous deĄnition
needed a helper to gobble one of two arguments.
The following does the same but it just gobbles and
doesnŠt store the argument, which is why we use #1

in both cases. This avoids storing token lists for the
unused arguments.

\permanent\def\firstoftwoarguments #1#-{#1}

\permanent\def\secondoftwoarguments#-#1{#1}

Because anything other than a digit after a #

triggers an error I saw no reason not to support some
more: it doesnŠt hurt downward compatibility, unless
you use TEX to generate error messages. Here is the
full list of extensions, of which I will discuss a few
(more can be found in the ConTEXt distribution and
source code).

+ keep the braces
- discard and donŠt count the argument
/ remove leading and trailing spaces and pars
= braces are mandatory
_ braces are mandatory and kept
ˆ keep leading spaces

1-9 an argument
0 discard but count the argument

* ignore spaces
: pick up scanning here
; quit scanning

We have a few useful characters left, such as <

and > so who knows what future extensions might
show up.

Delimited arguments are used frequently in Con-
TEXt; take this:

\def\MyMacro[#1][#2]{...}

Here the call is rather sensitive, for instance this
will fail:

\MyMacro[A] [B]

We can cheat and deĄne:

\def\MyMacro[#1]#2[#3]{...}

in which case #2 gets what sits between the brackets.
But still these two arguments have to be given. So,
in MkII and MkIV you will Ąnd indirectness like the
following:

\def\MyMacro{\dodoubleempty\doMyMacro}

\def\doMyMacro[#1][#2]{}

However, in LMTX you can Ąnd this alternative:

\tolerant\def\MyMacro[#1]#*[#2]{...}

The \tolerant will make the parser quit when
no match can be made and the #* will gobble spaces.
In fact, we often do this:

\tolerant\protected\def\MyMacro[#1]#*[#2]{...}

and if we want overload protection:

\permanent\tolerant\protected

\def\MyMacro[#1]#*[#2]{...}

The combination of \tolerant and \protected

with either expansion or not of a macro gives four
variants of low-level macro commands: normal, tol-

erant normal, protected and tolerant protected. In
LuaTEX that protection against expansion is imple-
mented in a more indirect way, just like in ε-TEX.
There we also have \long and \outer properties
so we have normal, long normal, outer normal and
long outer normal. Making protected against expan-
sion a native command would have given another
four command codes. Combining that with tolerant
would again double it so we then would end up with
16 command codes. But in LuaMetaTEX we dropped

Hans Hagen

TUGboat, Volume 42 (2021), No. 1 79

the long and outer properties. In ConTEXt we never
used outer and always want long anyway.

The reason for mentioning these details is to
make clear that the introduced overhead can be ne-
glected when we compare to LuaTEX, apart from
the fact that we gain from the expansion protection
being a Ąrst class feature now, macros without argu-
ments being stored more efficiently, the parser being
a little optimized and so on.

But of course the biggest beneĄt is that, when
we look at the example above, we avoid indirectness.
It looks nicer. It gives less clutter in tracing. It
takes fewer tokens in the format (where each token
takes eight bytes). It runs a little faster. It demands
no trickery. Take your choice. For the record: you
donŠt want to know what the set of \dodoubleempty

macros looks like, as they themselves use indirectness
and are highly optimized for performance.

The list of possible features has more than skip-
ping spaces. HereŠs another example:

\tolerant\def\MyMacro[#1]#;(#2){<#1#2>}

Here \MyMacro accepts [A] and then quits or
when not seen, checks for (A) and when not found is
still happy. So, either #1 or #2 has a value. How do
we know what arguments got grabbed? There are
several ways to Ąnd out:

\tolerant\def\MyMacro[#1]#;(#2)%

{\ifarguments

% zero arguments

\or

% one argument

\else

% two arguments

\fi}

This test uses the count from the last expansion
so if any macro expansion happens before the test
you can get the wrong value! The next test provides
feedback about what argument got a value:

\tolerant\def\MyMacro[#1]#;(#2)%

{\ifparameters

% all empty

\or

% first has value

\else

% second has value

\fi}

But still may not be enough so we can also
explicitly test for a parameter. But again be aware
of nesting:

\tolerant\def\MyMacro[#1]#;(#2)%

{\ifparameter#1\or

% first has value

\fi

\ifparameter#2\or

% second has value

\fi}

This is pretty robust but expands the arguments
in the test:

\tolerant\def\MyMacro[#1]#;(#2)%

{\unless\iftok{#1}{}%

% first has value

\fi

\unless\iftok{#2}{}%

% second has value

\fi}

When we use a colon instead of a semicolon the
parser knows where to pick up after a match fails:

\tolerant\def\MyMacro[#1]#:#2{...}

So, the argument between brackets is optional
and the single token or braced second argument
(turned into a token list) is mandatory.

The other extensions more or less speak for
themselves: they grab arguments and discard or
keep braces and such in cases where TEX would
treat them specially when storing or passing them
on. Speaking of braces, in spite of what one might
expect (assuming that braces are more a TEX thing
than brackets) the following two deĄnitions perform
equally well

\def\foo[#1]{} \foo[1]

\def\foo #1{} \foo{1}

but:

\def\oof[#1]{}

\def\foo{\dosingleempty\oof}

performs more than 5 times worse than this:

\tolerant\def\foo[#1]{}

So, the added overhead (and there is some, also
because we keep track of more) in the argument
parser gets compensated well by the fact that we
can avoid indirectness. The impact on an average
document probably goes unnoticed.

As with much in TEX you need to be aware of
(intentional) side effects. Take for instance:

\tolerant\def\foo#1[#2]#*[#3]{\edef\ofo{#1}}

\def\oof{\foo{oeps}}

That will probably not do what you expect. It
has to do with how TEX interprets spaces in the
context of argument parsing: they can become part
of the argument (here #1) so anything before the
Ąrst seen left bracket becomes the argumentŠs value.

\tolerant\def\foo#1#*[#2]#*[#3]{\edef\ofo{#1}}

\def\oof{\foo{oeps}}

This however works because the Ąrst #* direc-
tive stops scanning for the Ąrst argument and then
gobbles spaces when seen before continuing to look
for the bracketed arguments. So TEXŠs charm is still
there.

LuaMetaTEX programming features

80 TUGboat, Volume 42 (2021), No. 1

7 Introspection

Because macros have more properties and variation
in arguments the \meaning command has a compan-
ion \meaningfull that displays what preĄxes were
applied. The \meaningless variant only shows the
body.

Quite some effort went into normalizing the so-
called command codes. Primitives are grouped into
categories with similar treatments in order to keep
the main loop efficient. These codes also determine
the expansion contexts (think of usage in an \edef,
how they get serialized (for instance in messages), etc.
The char codes (called such because in most cases
tokens represent characters of some kind) distinguish
commands in these groups. Think of \def and \edef

being call commands with a different code. This
rather intrusive (internal) regrouping of primitives
was needed in order to get a more consistent Lua
token interface. So, for instance the codes are now
in consecutive ranges, registers are split into internal
and user variants, etc.

Also, memory management has been overhauled
so we have a more dynamic allocation of various data
structures (stacks, equivalents, tokens, nodes, etc.)
and we use the whole 64 bit memory word to save
some memory in places too. All this is the reason
why it is unlikely that much will get backported to
LuaTEX, also because in ConTEXt we now have a
special version for LuaMetaTEX: LMTX.

8 There is more

Here weŠve discussed only the primitives that make
the source look better while also being convenient.
But it is worth mentioning that there are primi-
tives like \toksapp and \etokspre that append and
prepend tokens to a register (there are eight variants).
There are ways to collect tokens for just before or
after a group ends. There are some new expansion
related primitives like \expandtoken that can be
used to inject a token with some speciĄc catcode,
just like one can deĄne active characters without the
need for dirty uppercase tricks.

The typesetting department also has extensions.
We can freeze paragraph properties, adjust math
parameters locally, normalize lines so that at the
Lua end we know what to expect (think of consis-
tent presence of left and right skip, left and right
shape related properties, left and right parĄll skips,
indentation being glue, etc.). Hyphenation can be
controlled in more detail too, and left and right side
ligatures and kerns can be inĆuenced in the running
text and go with glyphs. Talking of glyphs, there
are advanced scaling options as well as support for

inĆuencing placement in the running text, which per-
mits more efficient font handling. Boxes have more
properties too: they can have offsets, an orientation,
etc. which makes implementing vertical typesetting
a bit easier. Rules also have shifts. We can register
actions to be expanded at the end of a paragraph.
All this evolved over time and has been tested in
ConTEXt but will be applied more frequently after
the complete code split between MkIV and LMTX.
That process goes hand in hand with adapting to
the new situation, remove old (obsolete) variants,
removing still present experimental code, etc.

There is more but hopefully this gives an im-
pression of how substantial the LuaMetaTEX engine
differs (in added functionality) with its ancestors.
Maybe it looks a bit over the top, but I did actually
reject some ideas after experimenting with them. On
the other hand there are still some on the agenda.
For instance the engine can migrate and carry around
so-called deeply buried inserts pretty well now but
dealing with inserts could be made a bit easier (think
of columns). So, weŠre not done yet.

It should be noted that contrary to what one
might expect the code base is still quite okay and
the binary stays well below 3 MB. In the meantime
memory management is also improved and the format
Ąle got smaller. A lot of the internal reorganization
relates to the fact that we have a Lua interface and
exposing internals demands consistency, avoidance
of (often clever) tricks, more abstraction, etc.

It is also worth noting that we can only do
such a massive operation because users are willing to
test intermediate versions (sometimes on very large
projects) and because all changes in the code base
are meticulously checked by Wolfgang Schuster who
knows TEX and ConTEXt inside out. And of course
we have Mojca MiklavecŠs compile farm to keep it
available for all relevant platforms, where we use a
mix of gcc (also with cross compilation), clang and
msvc for various platforms, up to date. It deĄnitely
helps that compilation is fast (due to the refactored
code base) and that I can use Visual Studio to work
with the code.

In this summary I only covered some aspects
of TEX. Another important set of extensions con-
cerns the MetaPost library, where token scanners
are exposed, more advanced Lua calls are possible
and where no longer relevant bits of code have been
removed. And we use the latest and greatest Lua
5.4 Ů but discussing the implications of these is for
another article.

⋄ Hans Hagen

http://pragma-ade.com

Hans Hagen

UTF-8 installations of CWEB

Igor Liferenko

Abstract

We show how to implement UTF-8 support in CWEB

[1] by adding the arrays xord and xchr . Immedi-
ately after reading a Unicode character from an in-
put file, we convert it to an 8-bit character using
xord . On output the reverse operation is done us-
ing xchr . This allows us to leave core algorithms of
CWEB unchanged.

Incidentally, the described method allows to use
the extended character set [1] of CWEB: the char-
acters ‘↑’, ‘↓’, ‘→’, ‘≠’, ‘≤’, ‘≥’, ‘≡’, ‘∨’, ‘∧’, ‘⊂’, and
‘⊃’ can be typed as abbreviations for C language di-
graphs ‘++’, ‘--’, ‘->’, ‘!=’, ‘<=’, ‘>=’, ‘==’, ‘||’, ‘&&’,
‘<<’, and ‘>>’, respectively.

1. Initialization

(For brevity, in the diffs following, the original code
in the CWEB source is preceded with < characters,
and the new code with >. Both are sometimes re-
formatted for presentation in this article, and for
readability we sometimes leave a blank line be-
tween the pieces. The actual implementation uses
the change files comm-utf8.ch, cweav-utf8.ch and
ctang-utf8.ch, together with common-utf8.ch

[2].)

First, we add global arrays xord and xchr to
common.w [1]. We declare the size of the xord ar-
ray to be 216 bytes. This means that only values
from the basic multilingual plane (BMP) of Unicode
are permitted. We use the wchar_t data type for
characters in input files to accommodate Unicode
values.

Background: this predefined C type allocates
four bytes per character (on most systems). Char-
acter constants of this type are written as L’...’.

unsigned char xord[65536];

wchar_t xchr[256];

These same arrays must be used in cweave.w [1].

extern unsigned char xord[];

extern wchar_t xchr[];

In ctangle.w [1] only the xchr array is needed.

extern wchar_t xchr[];

We initialize the xord and xchr arrays in the
common init function of common.w. First, in xchr

we map all visible ASCII characters to themselves,
like this:

xchr[32] = ’ ’;

TUGboat, Volume 42 (2021), No. 1 81

Then we map the rest of the indexes of xchr to
127, which is the ASCII character code (DEL) that is
prohibited in text files.

for (i=0; i<32; i++) xchr[i]=127;

for (i=127; i<=255; i++) xchr[i]=127;

Elements in the xchr array are overridden using
the file mapping.w [2].

@i mapping.w

This file specifies the character(s) required for a par-
ticular installation of CWEB, for example:

xchr[0xf1] = L’ë’;

The initialization of xord comes next. All its
indexes are mapped by default to 127. Then we
make it contain the inverse of the information in
xchr .

for (i=0;i<=65535;i++) xord[i]=127;

for (i=0;i<=255;i++) xord[xchr[i]]=i;

xord[127]=127;

It remains to set the LC_CTYPE locale category. The
behavior of the C library functions used below de-
pends on this value.

setlocale(LC_CTYPE, "C.UTF-8");

Finally, we need the necessary headers.

#include <wchar.h>

#include <locale.h>

2. Input

For automatic conversion from UTF-8 to Unicode,
we change the input ln function to use fgetwc [3]
instead of getc. Also, ungetc is changed to ungetwc

[3] and EOF must be replaced with WEOF [3] (for this,
int is changed to wint_t [3]).

< int c;

> wint_t c;

< while (k<=buffer_end && (c=getc(fp))

< != EOF && c!=’\n’)

> while (k<=buffer_end && (c=fgetwc(fp))

> != WEOF && c!=L’\n’)

< if ((c=getc(fp))!=EOF && c!=’\n’) {

> if ((c=fgetwc(fp))!=WEOF && c!=L’\n’) {

< ungetc(c,fp);

> ungetwc(c,fp);

< if (c==EOF && limit==buffer) return(0);

> if (c==WEOF && limit==buffer) return(0);

The conversion with xord is done immediately
after a character is read.

< if ((*(k++) = c) != ’ ’) limit = k;

> if ((*(k++) = xord[c]) != ’ ’) limit = k;

doi.org/10.47397/tb/42-1/tb130liferenko-cweb

UTF-8 installations of CWEB

3. Output

We use xchr and printf with %lc conversion speci-
fier for characters, printed on terminal during error
reporting.

< putchar(*k);

> printf("%lc",xchr[(unsigned char)*k]);

The term write macro uses the C library func-
tion fwrite to output a range of characters. We must
use xchr for each character (except the newline char-
acter), then convert it to UTF-8 via printf , using %lc
conversion specifier.

< @d term_write(a,b) fflush(stdout),

< fwrite(a,sizeof(char),b,stdout)

> @d term_write(a,b) do { fflush(stdout);

> for (int i = 0; i < b; i++)

> if (*(a+i)==’\n’) new_line;

> else printf("%lc",xchr[(unsigned char)

> *(a+i)]); } while (0)

In cweave.w all output to files is done via the
c line write macro. This uses the C library function
fwrite to output a range of characters. Since xchr

must be used for each character, we loop over this
range and convert each character to the external en-
coding and then to UTF-8 via fprintf, using the %lc
conversion specifier.

< fwrite(out_buf+1,sizeof(char),c,

< active_file)

> for (int i = 0; i < c; i++)

> fprintf(active_file, "%lc",

> xchr[(eight_bits) *(out_buf+1+i)])

Similarly, in ctangle.w, before outputting char-
acters in C string constants, convert each of them to
the external encoding and then to UTF-8 using the
%lc conversion specifier of fprintf .

< C_putc(a);

> fprintf(C_file,"%lc",xchr[(eight_bits)a]);

We do not use the translit array when out-
putting non-ASCII characters in C identifiers. So,
in ctangle.w we again convert each such charac-
ter to the external encoding and then to UTF-8 via
fprintf using the %lc conversion specifier.

< C_printf("%s",

< translit[(unsigned char)(*j)-0200]);

> fprintf(C_file, "%lc",

> xchr[(eight_bits) *j]);

For other output code no special treatment is
needed, since all other output data is in ASCII, which

82 TUGboat, Volume 42 (2021), No. 1

is part of UTF-8 (except file names, which are al-
ready in UTF-8).

4. The file name buffer

File names must be in UTF-8. So, before appending
characters to cur file name, we convert them to the
external encoding and then to UTF-8 via C library
function wctomb [3].

< *k++=*loc++;

> { char mb[MB_CUR_MAX]; int len =

> wctomb(mb,xchr[(unsigned char)*loc++]);

> if (k<=cur_file_name_end)

> for (int i = 0; i<len; i++) *k++=mb[i];

> else k=cur_file_name_end+1; }

5. Locale considerations

cweave.w uses the locale-dependent C library func-
tions islower , isupper and tolower (the former two
via xislower and xisupper macros respectively). But
since we are assuming the UTF-8 locale, instead of
these we must use iswlower , iswupper and towlower

from wctype.h [3]. The trick is to convert from the
internal encoding to the external encoding before
using these functions.

< xislower(*x)

> iswlower(xchr[(eight_bits)*p])

< xisupper(x)

> iswupper(xchr[(eight_bits) x])

For towlower the result must be converted back
from the external encoding to the internal encoding.

< c=tolower(c)

> c=xord[towlower(xchr[(eight_bits)c])]

References

[1] Knuth, D. and Levy, S. The CWEB System of
Structured Documentation, 1993.
ISBN 0-201-57569-8

[2] Source of the present implementation.
https://github.com/igor-liferenko/cweb

[3] Single Unix Specification. Introduction to
ISO C Amendment 1 (Multibyte Support
Environment).
https://unix.org/version2/whatsnew/

login_mse.html

⋄ Igor Liferenko

igor.liferenko (at) gmail dot com

Igor Liferenko

TUGboat, Volume 42 (2021), No. 1 83

Book review: Learning LATEX ,

Second Edition, by David F. Griffiths and

Desmond J. Higham

Boris Veytsman

David F. Griffiths and Desmond J. Higham,
Learning LATEX, Second Edition. SIAM, Philadelphia,
PA, USA, 2016, paperback, x+103pp., US$31.00,
ISBN 978-1-611974-41-6.

There are two kinds of textbooks. First, there are
formidable comprehensive books, covering all aspects
of the subject. Even taking such a multi-pound book
from its shelf is a hard task. An even harder task
is reading such a book from cover to cover; only
some courageous students can accomplish it. On the
other hand, there are relatively slim books discussing
the most important aspects of the topic and offering
a student the important first step that starts the
journey of a thousand li.

It is very difficult to write a book of the sec-
ond kind: it requires the cruel skill of paring many
pages of potential material, leaving only the essential
parts. On the other hand, these books, if done right,
have the important property of (near) immortality.
The fundamentals of a field are long lasting. While
the less essential material filling the thick volumes
quickly becomes obsolete, the dog-eared slim intro-
ductory books are transferred from generation to
generation, heavily read and consulted—until the
progress makes even them too old. Every practitioner
can name titles like these in their fields.

For several generations of LATEX users, the book
Learning LATEX by Griffiths & Higham was such a
title. Published in 1997, the green years of LATEX2ε,
this book has been an indispensable introduction to
the subject, treasured by its readers. The book was
reviewed on these pages in 2013 (TUGboat 34:2,
tug.org/books/reviews/tb107reviews-learnltx.

html) and I have had the occasion to note how little
in this book was obsolete.

The new edition is still slim, standing at 113
pages (compared to 94 pages in the first one). It adds
important material about the amsmath, beamer, and
a0poster packages, and the PDF typesetting workflow.
On the other hand, the comparison between LATEX2ε
and LATEX2.09 is, of course, dropped, as well as
the discussion of the slides document class. The
discussion of Internet resources is updated.

What has persisted between editions is the au-
thors’ keen understanding of the essential features
of LATEX. Of course, some aficionados might object
that their favorite parts did not survive the selection
(No tikz? Fonts are not discussed? No information
about Unicode engines?), but these objections, while
understandable, would be ill-advised. This is not a
book to make you a TEXnician (or LATEXnician); this
is the great introductory book to make you someone
who understands LATEX and can begin to find a way
in this wonderful world of computer typesetting.

As in the previous edition, the authors’ sense of
humor shines through the pages. The self-referential
examples (“Don’t overuse type-changing. It annoys

the reader. And loses impact.”), its funny Great

Moments in LATEX History (expanded and renamed
to LATEX through the years in the new edition) are
going to amuse new users as they did the previous
ones. By the way, an updated collection of great mo-
ments can be found at sinews.siam.org/Details-
Page/writing-learning-latex; my favorite is

2022: Under current social distancing rules, the
second component of every susceptible-infectious-
recovered (SIR) model must be typeset as
dI/dt = \beta I \qquad S - \gamma I.

I have no doubt this edition is going to be as
beloved by new generations of LATEX users as the
previous one was by the old ones.

⋄ Boris Veytsman
Systems Biology School, George

Mason University, Fairfax, VA
borisv (at) lk dot net

http://borisv.lk.net

ORCID 0000-0003-4674-8113

doi.org/10.47397/tb/42-1/tb130reviews-learnltx2

Book review: Learning LATEX , Second Edition, by David F. Griffiths and Desmond J. Higham

https://sinews.siam.org/Details-Page/writing-learning-latex
https://sinews.siam.org/Details-Page/writing-learning-latex
https://doi.org/10.47397/tb/42-1/tb130reviews-learnltx2

84 TUGboat, Volume 42 (2021), No. 1

Die TEXnische Komödie 4/2020Ű1/2021

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).
Non-technical items are omitted.

Die TEXnische Komödie 4/2020

Harald König, ConTEXt meeting 2020: 6.Ű12.
September in Sibřina nahe Prag [ConTEXt meeting
2020: 6Ű12 September in Sibřina near Prague];
pp. 12Ű19

The conference took place, as in 2018, at the
former and beautifully renovated farmhouse of the
Škoda family. It is a wonderful place of peace, where
we could be alone and pursue TEXniques and other
thoughts completely undisturbed.

Christoph Grüninger, GraĄsche Darstellung
dünnbesetzter Matrizen [Graphical visualisation of
sparse matrices]; pp. 20Ű26

Large, sparsely populated matrices occur in dif-
ferent Ąelds of mathematics and their applications,
for example in describing linear systems of equations.
The matrices are too large to be printed or to be
grasped by people in this form. Individual values
are not relevant; instead, what matters are the struc-
ture and size of nonzero entries. With a few lines of
TikZ code, graphical representations of large, sparse
matrices can be derived from external Ąles.

Wolfgang Beinert, Kolumnentitel [Column
headings]; pp. 27Ű34

ŞColumn headingŤ is a technical term in German
typography for a page (page number) with or without
associated text above, below or to the side of a
column (type column), or within a design grid, or in
classical handbooks and books of tables, outside a
type area.

Alexander Krumeich, Biber für Alpine Linux Ű
ein Docker-basiertes Buildsystem [Biber for Alpine
Linux Ů a Docker-based build system]; pp. 34Ű38

In March 2019 I started the attempt to create
a Docker image with TEX Live under Alpine Linux.
For the documentation platform n-doc we create an
environment in which the required programs and
installed TEX packages are linked. A particular chal-
lenge was to determine the size of the image, to
keep it small. Alpine Linux has proven to be a good
choice for this in the past, since the base image is
comparatively small: it is just under 5 MB in size,
whereas the common Ubuntu image at this time has
a size of over 80 MB.

Christine Römer, Neues in LATEX [News in
LATEX]; pp. 39Ű42

The article gives a summary of current LATEX
developments which are relevant for users. Updates
for developers are omitted.

Die TEXnische Komödie 1/2021

Axel Kielhorn, Änderungsdokumentation mit
ConTEXt [Change documentation with ConTEXt];
pp. 6Ű11

There are documents that have been Ąnalized
and Ů after being printed Ů do not change anymore.
But there are also documents that are constantly
changing, e.g., a speciĄcation document run through
several iteration steps. When a new version appears,
two questions arise: 1) What has changed?; 2) What
is the current status?

Ideally, a change index provides information here
and refers to the changed passages. Unfortunately,
the change index often says ŞVarious changesŤ and
you have to hold the printouts up to the light to
Ąnd the changes. The commands presented here are
intended to make it easier for the author to Ąnd a
good change index and also give the reader a quick
overview of the given old and new versions.

Manfred Kraft, Interlinearüersetzung mit
LATEX [Interlinear translations with LATEX];
pp. 12Ű16

For a number of years I have been translat-
ing Latin chemical and alchemical texts. For the
translation and its documentation I use LATEX with
Creutzig’s method of interlinear translation, for which
a table-like structure for the bilingual presentation
of a text is used. The foreign language and the Ger-
man text are written on a pair of lines. The top line
contains the foreign language text in normal type,
the bottom line contains the German word-for-word
translation in sans serif type. The words are set
left-justiĄed on top of each other in both lines.

Uwe Ziegenhagen, Ordnerrücken gestalten
mit ticket.sty [Creating folder backs with
ticket.sty]; pp. 17Ű19

In this article I would like to brieĆy introduce
you to an easy way to design folder spines and other
labels with ticket.sty.

Uwe Ziegenhagen, Ornamente in LATEX-
Dokumenten mit pgfornament [Ornaments in
LATEX documents with pgfornament]; pp. 20Ű22

I wanted nice looking certiĄcates of attendance
for a LATEX course I held, and used ornaments from
the pgfornament package to achieve this.

doi.org/10.47397/tb/42-1/tb130komo

TUGboat, Volume 42 (2021), No. 1 85

Wolfgang Beinert, Giessbach; pp. 23Ű25
ŞGiessbach’ is a German typographical term for

a sketchy, poorly executed justiĄcation that results
in whitespaces placed one below another, thus gener-
ating a small ŞriverŤ of blank space. In a Ągurative
sense, it looks like a pouring stream in the form of a
Şmountain stream with a waterfallŤ.

[Received from Luzia Dietsche and
Uwe Ziegenhagen.]

Zpravodaj 2020/3Ű4

Zpravodaj is the journal of CSTUG, the TEX user
group oriented mainly but not entirely to the Czech
and Slovak languages. The full issue can be down-
loaded at cstug.cz/bulletin.

Petr Sojka, Úvodńık [Introductory word];
pp. 105Ű107

In addition to introducing the content of this
Zpravodaj issue, the author talks about changes to
the CSTUG bylaws, about the Zpravodaj digitization
project, and about the former CSTUG president Karel
Horák.

Pavel Stř́ıž, Sbohem, drahý Karle, sbohem!
[Adieu, Monsieur Karel, adieu!]; pp. 108Ű117

Karel Horák departed from us on August 22,
2020 at the early age of 66.

Petr Sojka, Ondřej Sojka, Towards new
Czechoslovak hyphenation patterns; pp. 118Ű126

Space- and time-effective segmentation and hy-
phenation of natural languages stay at the core of
every document preparation system, web browser, or
mobile rendering system. Recently, the unreasonable
effectiveness of pattern generation has been shown Ů
it is possible to use hyphenation patterns to solve
the dictionary problem for a single language without
compromise.

In this article, we will show how we applied the
marvelous effectiveness of patgen for the generation
of the new Czechoslovak hyphenation patterns that
cover two languages. We show that the development
of more universal hyphenation patterns is feasible,
allows for signiĄcant quality improvements and space
savings. We evaluate the new approach and the new
Czechoslovak hyphenation patterns.

Keywords: hyphenation, hyphenation patterns, patgen,

syllabification, syllabic hyphenation, Czech, Slovak,

Czechoslovak patterns

Petr Olšák, OpTEX Ű pokračováńı maker
OPmac pro LuaTEX [OpTEX Ů successor of
OPmac macros for LuaTEX]; pp. 127Ű138

The article describes OpTEX Ů a LuaTEX for-
mat based on plain TEX and OPmac. This macro
package was introduced in TUGboat and now it is
presented for Czech and Slovak users. The presenta-
tion is slightly different than in the cited article. For
example, the comparison with LATEX and ConTEXt
is mentioned here including benchmarks in tables 1
and 2.

Keywords: OpTEX, LuaTEX, TEX format

Jano Kula, ConTEXt Meeting 2020; pp. 139Ű146
This is a short report about the ConTEXt Meet-

ing 2020 in Sibřina near Prague.

Keywords: ConTEXt meeting

Taco Hoekwater, MetaPost deĄnitions;
pp. 147Ű167

The paper presents all syntactic rules for deĄni-
tions in MetaPost. It contains many good and bad
examples of deĄnitions.

Keywords: MetaPost, definitions

Peter Wilson, It Might Work X; pp. 168Ű176
This paper shows an example how to use a Lua

program to Ąnd the number of particular characters
in a given text Ąle. The second part of the paper
shows ways to change the page layout in LATEX, with
applications for typesetting a multi-page list of Ąg-
ures.

Keywords: Word counting, character frequency, Lua,

text file, page layout, quote environment, quotation

environment, changepage package, memoir class,

list of figures

[Received from Vı́t Novotný.]

Comic by John Atkinson (https://wronghands1.com).

doi.org/10.47397/tb/42-1/tb130zprav

Zpravodaj 2020/3Ű4

86 TUGboat, Volume 42 (2021), No. 1

TheTreasure Chest

These are the new packages posted to CTAN (ctan.org)
from October 2020–April 2021. Descriptions are based
on the announcements and edited for extreme brevity.
One general notice: the CTAN multiplexor among mir-
rors is now available through https://mirror.ctan.org;
previously it was only http.

Entries are listed alphabetically within CTAN di-
rectories. More information about any package can be
found at ctan.org/pkg/pkgname. A few entries which
the editors subjectively believe to be of especially notable
are starred (*); of course, this is not intended to slight
the other contributions.

We hope this column helps people access the vast

amount of material available through CTAN and the

distributions. See also ctan.org/topic. Comments are

welcome, as always.

⋄ Karl Berry
https://tug.org/TUGboat/Chest

fonts

Terse showings of some of these fonts, among others,
are given on p. 65 of this issue.

aesupp in fonts

Variant form of italic ‘æ’ for some fonts.
alfaslabone in fonts

The Alfa Slab One slab serif font.
archivo in fonts

The Archivo sans serif font family.
arvo in fonts

The Arvo slab serif font family.
atkinson in fonts

The Atkinson Hyperlegible family of fonts.
cascadia-code in fonts

The Cascadia Code monospaced font family.
eczar in fonts

The Eczar font family for Devanagari and
Latin.

gudea in fonts

The Gudea sans serif font family.
hindmadurai in fonts

The HindMadurai font family for Tamil.
inter in fonts

The Inter sans serif font family.
magra in fonts

The Magra sans serif font family.
mlmodern in fonts

Blacker Type 1 Computer Modern, with
multilingual support.

nunito in fonts

The Nunito sans serif font family.

oswald in fonts

The Oswald sans serif font family.
play-font in fonts

The Play sans serif font family.
rojud in fonts

Type 1 font for the 42 counties of Romania.
stepgreek in fonts

A Greek font in the Times/Elsevier style,
intended as a complement to STEP.

fonts/utilities

frimurer in fonts/utilities

Access to the frimurer cipher.

graphics

causets in graphics/pgf/contrib

Draw causal set (Hasse) diagrams.
figchild in graphics/pgf/contrib

Pictures for creating children’s activities.
mahjong in fonts/utilities

Typesetting mahjong tiles.
nl-interval in graphics/pgf/contrib

Represent intervals on the number line.
puyotikz in graphics/pgf/contrib

Board states of Puyo Puyo games.
pxpic in fonts/utilities

Draw pictures pixel by pixel.
sankey in graphics/pgf/contrib

Draw Sankey flow diagrams.
syntaxdi in graphics/pgf/contrib

Railroad syntax diagrams.
tikz-among-us in graphics/pgf/contrib

Create some AmongUs characters.
tikz-bbox in graphics/pgf/contrib

Precise determination of bounding boxes,
including control points.

tzplot in graphics/pgf/contrib

Convenient abbreviations for TikZ graphs.

info

amiweb2c-guide in info

Installation guide for AmiWeb2c 3.1.
* knuth-pdf in info

PDF collection of typeset C/WEB sources and
errata in the TEX system, both original (with
section numbering unchanged) and change
files (for TEX Live).

startlatex2e in info

Getting started with LATEX2ε.

language/japanese

gckanbun in language/japanese

Kanbun typesetting for upLATEX and LuaLATEX.

fonts/oswald

TUGboat, Volume 42 (2021), No. 1 87

macros/latex/contrib

association-matrix in macros/latex/contrib

Create association matrices.
bithesis in macros/latex/contrib

Templates for the Beijing Inst. of Technology.
buctthesis in macros/latex/contrib

Beijing University of Chemical Technology
thesis template.

chifoot in macros/latex/contrib

Chicago-style footnote formatting.
color-edits in macros/latex/contrib

Colored edits for multiple-author documents.
datax in macros/latex/contrib

Import individual data points via pgfkeys.
dimnum in macros/latex/contrib

Commands for dimensionless numbers.
dynbrackets in macros/latex/contrib

Simplify syntax of dynamic math brackets.
easybook in macros/latex/contrib

Typeset Chinese books or notes.
easyfloats in macros/latex/contrib

Easier interface to insert figures, tables, etc.
econlipsum in macros/latex/contrib

Blind text generator for economics articles.
eq-fetchbbl in macros/latex/contrib

Match Biblical passages to verses for exerquiz.
eq-pin2corr in macros/latex/contrib

Add PIN security to exerquiz ‘Correct’ buttons.
foliono in macros/latex/contrib

Use folio numbers instead of page numbers.
froufrou in macros/latex/contrib

Fancy section separators.
graphpaper in macros/latex/contrib

Generate various types of graph paper.
gridpapers in macros/latex/contrib

Graph paper backgrounds and color schemes.
highlightlatex in macros/latex/contrib

Syntax highlighting extended from listings.
hindawi-latex-template in m/l/c

Template for Hindawi journals.
hitreport in macros/latex/contrib

Harbin Institute of Technology Report template.
jupynotex in macros/latex/contrib

Include whole or partial Jupyter notebooks.
langsci-affiliations in macros/latex/contrib

Collect and order authors and affiliations.
lectureslides in macros/latex/contrib

Combine individual PDF files into one.
matapli in macros/latex/contrib

Class for the French journal MATAPLI.
mindflow in macros/latex/contrib

Add memo section separated from main text
for ideas or annotations.

mluexercise in macros/latex/contrib

Exercises/homework at the Martin Luther
University Halle-Wittenberg.

muling in macros/latex/contrib

M.A. thesis class for the Dept. of Linguistics,
University of Mumbai.

ninecolors in macros/latex/contrib

Select colors with proper WCAG color contrast.
* numerica in macros/latex/contrib

Numerically evaluate mathematical expressions,
implemented in LATEX.

orcidlink in macros/latex/contrib

Insert hyperlinked ORCID logo.
orientation in macros/latex/contrib

Set page orientation with Dvips/Ghostscript
(ps2pdf).

pbalance in macros/latex/contrib

Balance last page in two-column mode.
* pdfmanagement-testphase in m/l/c

Load new backend-independent LATEX interface
to handle many PDF feature; please test now,
to ease incorporation into core LATEX.

principia in macros/latex/contrib

Typeset the Peanese notation of Principia
Mathematica.

profcollege in macros/latex/contrib

Support for French math teaching for students
11–16 years old.

scrlayer-fancyhdr in macros/latex/contrib

Combining fancyhdr with scrlayer.
skeldoc in macros/latex/contrib

Placeholders for unfinished documents.
skills in macros/latex/contrib

Create proficiency tests.
suppose in macros/latex/contrib

Abbreviate the word ‘Suppose’ for math usage.
twemojis in macros/latex/contrib

Use Twitter emojis as graphics.
utfsym in macros/latex/contrib

Provide Unicode symbols via hex code.

m/l/c/beamer-contrib/themes

beamertheme-trigon in m/l/c/b-c/themes

Modern, elegant, customizable Beamer theme.
beamerthemelalic in m/l/c/b-c/themes

Beamer theme for LALIC.

macros/latex/contrib/biblatex-contrib

biblatex-license in m/l/c/biblatex-contrib

Add license data to a bibliography.

macros/luatex/generic

chinese-jfm in macros/luatex/generic

JFM files for Chinese typesetting with luatexja.

macros/luatex/generic/chinese-jfm

88 TUGboat, Volume 42 (2021), No. 1

luakeys in macros/luatex/generic

Lua module for parsing key–value options.

macros/luatex/latex

innerscript in macros/luatex/latex

Handle script spacing more like text math,
and treat \mathinner as \mathord.

lua-typo in macros/luatex/latex

Highlighting typographical flaws.
newpax in macros/luatex/latex

Handle PDF annotations, preserving links.
semesterplanner in macros/luatex/latex

Create semester plans/timetables.
uninormalize in macros/luatex/latex

Unicode normalization support for LuaLATEX.

macros/plain

xintsession in macros/plain/contrib

Interactive calculation sessions, supporting
arbitrary precision, polynomials, etc.

macros/unicodetex/latex

aalok in macros/unicodetex/latex

Class for the Marathi journal Aalok.
beaulivre in macros/unicodetex/latex

Class to typeset books, using colorist.
colorist in macros/unicodetex/latex

Base for articles or books with a colorful
design.

einfart in macros/unicodetex/latex

Class to typeset articles, using minimalist.
lebhart in macros/unicodetex/latex

Class to typeset articles, using colorist.
minimalist in macros/unicodetex/latex

Base for articles or books with a simple design.
quran-bn in macros/unicodetex/latex

Bengali translations for the quran package.
simplivre in macros/unicodetex/latex

Class to typeset books, using minimalist.

macros/xetex/latex

xesoul in macros/xetex/latex

Use the soul package with X ELATEX.
zbmath-review-template in macros/xetex/latex

Template for a zbMATH Open review.

support

albatross in support

Find fonts that contain a given glyph.
ltx2mathml in support

Convert subset of LATEX math to MathML.

TUG 2021 election report

Nominations for TUG President and the Board of
Directors in 2021 have been received and validated.
Because there is a single nomination for the office
of President and because there are not more nom-
inations for the Board of Directors than there are
open seats, there is no requirement for a ballot this
election.

For President, Boris Veytsman was nominated.
As there were no other nominees, he is duly elected
and will serve for a two-year term.

For the Board of Directors, the following indi-
viduals were nominated:

Karl Berry, Johannes Braams, Kaja Christiansen,
Klaus Höppner, Frank Mittelbach, Ross Moore,
Arthur Rosendahl.

As there were not more nominations than open posi-
tions, all the nominees are duly elected to a four-year
term. Thanks to all for their willingness to serve.

Terms for both President and members of the
Board of Directors will begin at the Annual Meeting.

Board members Taco Hoekwater, Will Robert-
son, and Herbert Voß have decided to step down at
the end of this term. All have been TUG board mem-
bers for many years, and their dedication and service
to the community are gratefully acknowledged.

Election statements by all candidates are given
below. They are also available online, along with
announcements and results of previous elections.

⋄ Barbara Beeton

for the Elections Committee

tug.org/election

Boris Veytsman

(Candidate for TUG President.)

I was born in 1964 in Odessa, Ukraine and have
a degree in Theoretical Physics. I am a Principal
Research Scientist with Chan Zuckerberg Initiative
and an adjunct professor at George Mason University.
I also do TEX consulting for a number of customers
from publishers to universities to government agen-
cies to non-profits. My current CV is available at
http://borisv.lk.net/cv/cv.html.

I have been using TEX since 1994 and have been
a TEX consultant since 2005. I have published a

doi.org/10.47397/tb/42-1/tb130elec

TUG 2021 election

https://ctan.org
https://mirror.ctan.org
http
https://ctan.org/pkg/
https://ctan.org/topic
https://ctan.org/pkg/aesupp
https://ctan.org/pkg/alfaslabone
https://ctan.org/pkg/archivo
https://ctan.org/pkg/arvo
https://ctan.org/pkg/atkinson
https://ctan.org/pkg/cascadia-code
https://ctan.org/pkg/eczar
https://ctan.org/pkg/gudea
https://ctan.org/pkg/hindmadurai
https://ctan.org/pkg/inter
https://ctan.org/pkg/magra
https://ctan.org/pkg/mlmodern
https://ctan.org/pkg/nunito
https://ctan.org/pkg/oswald
https://ctan.org/pkg/play-font
https://ctan.org/pkg/rojud
https://ctan.org/pkg/stepgreek
https://ctan.org/pkg/frimurer
https://ctan.org/pkg/causets
https://ctan.org/pkg/figchild
https://ctan.org/pkg/mahjong
https://ctan.org/pkg/nl-interval
https://ctan.org/pkg/puyotikz
https://ctan.org/pkg/pxpic
https://ctan.org/pkg/sankey
https://ctan.org/pkg/syntaxdi
https://ctan.org/pkg/tikz-among-us
https://ctan.org/pkg/tikz-bbox
https://ctan.org/pkg/tzplot
https://ctan.org/pkg/amiweb2c-guide
https://ctan.org/pkg/association-matrix
https://ctan.org/pkg/bithesis
https://ctan.org/pkg/buctthesis
https://ctan.org/pkg/chifoot
https://ctan.org/pkg/color-edits
https://ctan.org/pkg/datax
pgfkeys
https://ctan.org/pkg/dimnum
https://ctan.org/pkg/dynbrackets
https://ctan.org/pkg/easybook
https://ctan.org/pkg/easyfloats
https://ctan.org/pkg/econlipsum
https://ctan.org/pkg/eq-fetchbbl
exerquiz
https://ctan.org/pkg/eq-pin2corr
exerquiz
https://ctan.org/pkg/foliono
https://ctan.org/pkg/froufrou
https://ctan.org/pkg/graphpaper
https://ctan.org/pkg/gridpapers
https://ctan.org/pkg/highlightlatex
listings
https://ctan.org/pkg/hindawi-latex-template
https://ctan.org/pkg/hitreport
https://ctan.org/pkg/jupynotex
https://ctan.org/pkg/langsci-affiliations
https://ctan.org/pkg/lectureslides
https://ctan.org/pkg/matapli
https://ctan.org/pkg/mindflow
https://ctan.org/pkg/mluexercise
https://ctan.org/pkg/muling
https://ctan.org/pkg/ninecolors

TUGboat, Volume 42 (2021), No. 1 89

number of packages on CTAN and papers in TUG-

boat. I have been a Board member since 2010, Vice-
President since 2016, and President since 2017. I
am an Associate Editor of TUGboat and support
tug.org/books/.

I consider my main goal as TUG President to
keep TUG and TEX relevant in the changing world
of typesetting. We are transitioning from the “user
group” model: a mutual help association of users of
an arcane software—to the model of a tech society
entrusted with the support, advocacy and preserva-
tion of an important piece of publishing and com-
munication infrastructure. The Board is working on
this, and I try to help in the effort. We coordinate
the work of developers and support important forums
for developers and users: TUGboat and conferences.
Our flagship publication, TUGboat, is now assigning
DOIs to its papers, and TUG is a member of Crossref.
We joined Open Software Initiative as an affiliated
member. I have spent some effort in increasing TUG
presence in social media. We started to apply for
grants and received the first one for the accessibility
initiative.

I am honored by the trust of TEX community
and hope it allows me to continue this work.

Karl Berry

(Candidate for TUG Board of Directors.)

TEX biography: I served as TUG president from
2003–2011 and was a board member both before
and after being president. I am running again for a
position on the board.

I’m one of the primary system administrators
and webmasters for the TUG servers, and the pro-
duction manager for our journal TUGboat. I co-
sponsored the creation of the TEX Development Fund
in 2002.

On the development side, I’m currently the edi-
tor of TEX Live, the largest free software TEX distri-
bution, and thus coordinate with many other TEX
projects around the world, such as CTAN, LATEX,
and pdfTEX. I developed and still (co-)maintain
Web2c (Unix TEX) and its basic library Kpathsea,
Eplain (a macro package extending plain TEX), and
other projects. I am also a co-author of TEX for

the Impatient, an early comprehensive book on plain
TEX, now freely available. I first encountered and
installed TEX in 1982, as a college undergraduate.

Statement of intent: I believe TUG can best
serve its members and the general TEX community

by working in partnership with the other TEX user
groups worldwide, and sponsoring projects and con-
ferences that will increase interest in and use of TEX.
I’ve been fortunate to be able to work pro bono on
TUG and TEX activities the past several years, and
plan to continue doing so if re-elected.

Johannes Braams

(Candidate for TUG Board of Directors.)

Biography: I encountered TEX and friends some-
time around 1985 when it was installed on our re-
search VAX. It didn’t take long for me to get hooked
on LATEX and I started to think about and work
on multilingual support, later to be known as babel.
Besides that I have been active on quite a number
of activities:

• For TEX and the TEX User Group

– Co-founder and board member of the NTG,
the Dutch-speaking TEX User group

– As chairman of NTG I have served on the
board of directors in 1994/1995 as special
director for the NTG

– designer of a couple of PhD-theses

– Original author of the babel language sup-
port system

– Member of the LATEX3 team, author of one
of the chapters in the LATEX Companion

– author, co-author or maintainer of a couple
of publicly available LATEX packages and
classes

• Professionally

– System administrator for VAX/VMS and
Unix systems

– Manager of a team of System administra-
tors

– Functional administrator of one of the large
administrative systems of KPN (PTT Tele-
com back then)

– Project manager for various IT-projects
within KPN for about 18 years

– Consultant in the area of cyber security in
Industrial Control Systems since 2015

Statement: In the last couple of years I have
been coming back into the TEX-community. I would
very much like to keep serving this wonderful commu-
nity by continuing my role in the board of directors

TUG 2021 election report

tug.org/books/

90 TUGboat, Volume 42 (2021), No. 1

of TUG. I think TEX should and will be alive and
well for many years to come, as the quality of type-
setting that can be achieved by using TEX is still
unsurpassed.

Kaja Christiansen

(Candidate for TUG Board of Directors.)

I was born in Warszawa, Poland and live in the
city of Aarhus, Denmark. I heard about TEX for
the first time in the fall of 1979. In Palo Alto at
the time, I wanted to audit courses at Stanford and
my top priority was lectures by Prof. Donald Knuth.
That, I was told, was not possible as Prof. Knuth was
on leave due to work on a text processing project. . .
This project was TEX! Back home, it didn’t take
long till we had a runnable TEX system in Denmark.

I have served as a Board member since 1997,
co-sponsored the creation of the TEX Development
Fund and have been the chair of TUG’s Technical
Council since 1999. I am also a member of the Bur-
sary and Election committees and served as TUG
vice-president from 2003–2011. I share system ad-
ministrator’s responsibilities for the TUG server and
TUG’s web site, and actively contributed to several
earlier versions of TEXlive. Finally, I am a board
member of the Danish TEX Users Group (DK-TUG)
and served as the president of DK-TUG in 2002–
2011.

Statement: TEX and friends are the only soft-
ware I know of that, after 30+ years, is not only alive
and well, but also the best typesetting system to pro-
duce beautiful books and papers. In my rôle as a
member of the board, my special interests have been
projects of immediate value to the TEX community,
among them system administration, TEX Live and
TUGboat.

Klaus Höppner

(Candidate for TUG Board of Directors.)

Biography: I got a PhD in Physics in 1997.
After several years in the control systems group of an
accelerator center in Darmstadt, I’ve been working at
an accelerator for cancer therapy in Heidelberg. My
first contact to LATEX was in 1991, using it frequently
since then.

I have been preparing the CTAN snapshot on
CD, distributed to the members of many user groups,
from 1999 until 2002. I was the local organizer of
TUG2015 and was heavily involved in the organi-
zation of several DANTE conferences and EuroTEX
2005. I’ve been a member of the TUG board since
2005 and was a member of the DANTE board un-
til 2016, including terms acting as president, vice
president, and treasurer.

Statement: As in the past, I want to be the
voice of European users, in particular those who
need characters with funny accents. Last year was
troublesome to the whole world, and the TEX com-
munity was heavily affected, too. I’m glad that TUG
managed to hold the first online international TEX
conference, and these days show that organization
of users in groups and the cooperation between the
groups is essential.

Frank Mittelbach

(Candidate for TUG Board of Directors.)

I came in contact with TEX in the mid-eighties
and over the years TEX, LATEX and typography in
general became a very important part of my life. In
1990 I took over the maintenance and further devel-
opment of LATEX from Leslie Lamport and together
with a small number of people (most notably David
Carlisle, Chris Rowley and Rainer Schöpf at that
time) we designed and implemented what became
LATEX2e in 1994—the LATEX you still essentially use

TUG 2021 election

TUGboat, Volume 42 (2021), No. 1 91

today (even though it has undergone smaller modifi-
cations and improvements through by now 25 further
releases).

Despite all predictions made during the last
decades, TEX and LATEX are alive and kicking as
proven by their (still?) strong use in various ways
around the world.

Nevertheless the world has changed and is chang-
ing further and in that changing world user groups
like TUG need to find their place and possibly rein-
vent themselves by redefining and reshaping their
role. With my work on the TUG board I would like
to help in that process and ensure a future for high
quality typography as provided by TEX.

Ross Moore

(Candidate for TUG Board of Directors.)

I would like to continue to serve on the TUG
Board. Having been active in the TEX community
for roughly 25 years, writing code for packages, I’ve
been attending TUG meetings on-and-off since 1997.
As well as the past 4 years, previously I had been a
board member, but with a short break 2015–2016.

Since 2017 I’ve been working, as promised then,
on developing a LATEX implementation of ‘Tagged
PDF’, primarily for technical documents implemen-
tation in (both hard and soft) scientific fields, as well
as more generally.

A motivation for this is the document “Infor-
mation and Communication Technology (ICT) Fi-
nal Standards and Guidelines” which was published
into the US Federal Register, effectively becoming
law. As well as much else, it outlines “standards
for electronic and information technology developed,
procured, maintained, or used by Federal agencies
covered by section 508 of the Rehabilitation Act of
1973, as well as guidelines for telecommunications
equipment [. . .] intended to ensure that information
and communication technology covered by the respec-
tive statutes is accessible to and usable by individuals
with disabilities.” It specifies that “authoring tools
capable of exporting PDF files must conform to PDF
1.7 [. . .] and be capable of exporting PDF files that
conform to PDF/UA-1.”

While documents produced by TEX-based soft-
ware are compatible with PDF 1.7, it is certainly
not the case that they conform to PDF/UA, which
requires producing ‘Tagged PDF’. Thus if LATEX or

other TEX-based software can be used within US
government agencies only as part of a processing
chain requiring other software to complete the fi-
nal document. This is not how we normally work
with TEX. Furthermore, the PDF 2.0 standard, also
based upon ‘Tagged PDF’, was finally published in
December 2020, after several years in development.

Over the past 12 years (or more), I have given
talks at annual TUG meetings, both in-person and
online, demonstrating PDF features that tagging
allows, produced using an extended version of pdf-
TEX. Currently I’m working on a set of LATEX macros
that produce valid ‘Tagged PDF’ documents simul-
taneously satisfying PDF/UA and PDF/A-3a, hence
meeting the accepted WCAG 2.0 Accessibility stan-
dards. Examples, using different LATEX document
classes and built with the current pdfTEX, can be
found on my web page http://maths.mq.edu.au/

~ross/TaggedPDF/. These developments need to be
further enhanced to become de rigeur for the way
we use TEX and LATEX.

As a Director of TUG, this outlines an agenda
that I’ll be supporting.

Arthur Rosendahl

(Candidate for TUG Board of Directors.)

Biography: I first joined TUG in 2005 and have
been a member of the board for the past four years.
My interest in TEX started during my university
years when, being a student of mathematics and
physics, I had to use it for typesetting reports. I
was prompted to dive deeper because of my interest
in languages and writing systems, and soon got pas-
sionate about it (see my entry in the TUG interview
corner for excruciating details).

Statement: Today, I am active in TEX devel-
opment as the maintainer of various packages and
programs related to multilingual typesetting (poly-
glossia, hyph-utf8, X ETEX), and I regularly give talks
at conferences and write articles in journals. I am
on the board of several TEX users groups, founded
the ConTEXt group, and have contributed to promot-
ing TEX which in my opinion is, still today, one of
the best typesetting systems available. I am truly
amazed at how vibrant our user community is.

I’ve been vice president of TUG since 2017, and
in 2021 I’m in charge of organising our yearly confer-
ence, which again will be online. If I am reelected to
the TUG board, I will do my best to represent that
community in all its diversity and foster the use of
TEX and Metafont in the 21st century.

http://maths.mq.edu.au/~ross/TaggedPDF/
http://maths.mq.edu.au/~ross/TaggedPDF/

92 TUGboat, Volume 42 (2021), No. 1

Spending MacTEX funds

Richard Koch

1 The creation of MacTEX

At the 2005 TUG conference in Chapel Hill, North
Carolina, Wendy McKay organized a lunch for Mac
users and essentially willed MacTEX into existence
then and there. She declared a “MacTEX group”
with no official membership or rules; apparently we
became charter members, and development began.
On the form to join or renew membership with TUG,
Wendy requested a special line for contributions to
MacTEX, as already existed for LATEX and a few
other projects.

2 Spending the MacTEX Fund

Contributions to the fund were slow at first, but it
has grown to several thousand dollars, and today is
one of the most popular funds administered by TUG.

As the fund grew, TUG directors suggested that
we find ways to spend the money. My immediate
reaction was that we should use it to hire program-
mers to fix a few thorny issues that had come up
in the Mac world. This suggestion was immediately
shot down when TUG folks pointed out that a thou-
sand dollars is an impressive contribution, but will
pay a programmer’s salary for only a week (or less).
Gradually I learned that the TEX world is an open
source miracle, created by thousands of men and
women whose only reward is the gratitude of the
people using their software. We cannot afford to hire
programmers, but we can use the fund to smooth a
few bumps along the way.

3 Specifics

Jonathan Kew originally wrote X ETEX for the Mac-
intosh. X ETEX could use ordinary Mac fonts directly
because Apple had a special framework to handle
fonts, and the tables in TEX for kerning and the like
could be replaced by calls to that framework. Later
Kew extended X ETEX to work on most platforms;
then his day job changed and he had less time for
TEX.

All was well until Apple decided to rewrite the
font framework for a new version of MacOSX. The
framework used by Kew became “deprecated”. Both
old and new frameworks were shipped, but eventually
the deprecated framework would be dropped and
X ETEX would stop working on the Macintosh. What
to do?

We struggled with this problem for years. Then
Khaled Hosny miraculously appeared. He typeset
Arabic using X ETEX, and understood X ETEX inter-

nals, but he didn’t own a Macintosh. So we bought
one for him using money from the fund. Soon X ETEX
used the new font library. Problem solved!

4 LaTeXiT and TEX Live Utility

The MacTEX installer includes the widely used GUI

programs ‘LaTeXiT’ by Pierre Chatelier and ‘TEX
Live Utility’ by Adam Maxwell. Three years ago,
Apple started requiring that install packages be nota-
rized. Any application in a notarized package must
be signed by an Apple developer and adopt a hard-
ened runtime. It costs $100 a year to be an Apple
developer, and adopting a hardened runtime requires
XCode running on recent hardware. Chatelier and
Maxwell objected to that $100 per year on principle
and were happy with their current machines. So the
programs had to be omitted from recent releases of
MacTEX.

We offered to buy new hardware and pay the
developer fee out of the fund, but both programmers
were reluctant. We kept trying, and eventually, as the
need for their programs never lessened, the authors
relented. As of 2021, their programs are back in
MacTEX, and have code with both ARM and Intel
hardware support, thanks to the fund.

5 Bringing people to TUG conferences

In a small number of cases we paid TUG conference
fees for users, and in one case we paid transportation
fees from France to the US. That participant was
Bruno Voisin, who was and is extremely active on
Mac mailing lists. We wanted to meet him.

This was a wise use of money: Bruno is respon-
sible for the Ghostscript we ship each year with
MacTEX, including compilation instructions for CJK

fonts in the Far East (working with Norbert Prein-
ing), and keeping track of Ghostscript’s new trans-
parency operators (with Herbert Schulz). Now the
MacTEX build instructions for Ghostscript have fold-
ers labeled “Bruno-Preining Email” and “Bruno Con-
tributions” and a document named “How to Compile
Ghostscript” with instructions from Bruno which I
mechanically follow to create the package.

6 Lesson

In the open source world, my colleagues and I in the
MacTEX group do not know how to invent tasks and
hire people. But if others are already doing the work,
we may be able to smooth a rough spot or two using
generous contributions so many people have made
to the MacTEX Fund. Thanks to all!

⋄ Richard Koch

koch (at) uoregon dot edu

https://tug.org/mactex

doi.org/10.47397/tb/42-1/tb130koch-mactex

Richard Koch

https://doi.org/10.47397/tb/42-1/tb130koch-mactex

TUGboat, Volume 42 (2021), No. 1 93

TUG financial statements for 2020

Karl Berry, TUG treasurer

The financial statements for 2020 have been reviewed
by the TUG board but have not been audited. To-
tals may vary slightly due to rounding. As a US

tax-exempt organization, TUG’s annual information
returns are publicly available on our web site: https:
//tug.org/tax-exempt.

Revenue (income) highlights

Membership dues revenue was essentially the same
in 2020 compared to 2019. We ended the year with
1,189 members (23 fewer than 2019). The 2020 on-
line conference had a net gain of about $3,700, due
to generous donations and few expenses. Contribu-
tions were down about $2,000, and other categories
were slightly down. Overall, 2020 income was up
about 2%.

Other highlights; the bottom line

TUGboat production cost was up a little, due to page
count. Postage-related expenses increased; other
categories remained about the same.

The bottom line for 2020 was strongly negative,
about $7,300, though still an improvement over 2019.

Balance sheet highlights

TUG’s end-of-year asset total is up by around $3,000
(2%) in 2020 compared to 2019, due primarily to
conference and committed fund donations.

Committed Funds are reserved for designated
projects: LATEX, CTAN, MacTEX, the TEX develop-
ment fund, and others (https://tug.org/donate).
Incoming donations are allocated accordingly and
disbursed as the projects progress. TUG charges no
overhead for administering these funds.

The Prepaid Member Income category is mem-
ber dues that were paid in earlier years for the current
year (and beyond). The 2020 portion of this liabil-
ity was converted into regular Membership Dues in
January of 2020. The payroll liabilities are for 2020
state and federal taxes due January 15, 2021.

Upcoming

For 2020, we have reduced the electronic membership
discount to $30, closer to the actual cost reduction
of not shipping physical benefits. All other rates and
fees remain the same. We hope to gain members this
year; ideas are always welcome!

⋄ Karl Berry, TUG treasurer

https://tug.org/tax-exempt

TUG 12/31/2020 (vs. 2019) Revenue, Expense

Dec 31, 20 Dec 31, 19

ORDINARY INCOME/EXPENSE

Income

Membership Dues 76,030 76,125

Product Sales 3,761 5,238

Contributions Income 11,830 13,995

Annual Conference 3,721 (2,685)

Interest Income 1,430 1,934

Advertising Income 305 345

Total Income 97,078 94,952

Cost of Goods Sold

TUGboat Prod/Mailing (20,312) (18,836)

Software Prod/Mailing (2,256) (2,194)

Members Postage/Delivery (2,759) (2,236)

Lucida Sales to B&H (1,525) (1,965)

Member Renewal (356) (420)

Total COGS (27,208) (25,651)

Gross Profit 69,870 69,301

Expense

Contributions made by TUG (2,000) (1,000)

Office Overhead (12,830) (13,642)

Payroll Expense (64,135) (63,091)

Interest Expense 0 (24)

Total Expense (78,965) (77,757)

Net Ordinary Income (9,095) (8,850)

OTHER INCOME/EXPENSE

Prior year adjustment 1,475 (78)

NET INCOME (7,620) (8,535)

TUG 12/31/2020 (vs. 2019) Balance Sheet

Dec 31, 20 Dec 31, 19

ASSETS

Current Assets

Total Checking/Savings 174,197 171,560

Accounts Receivable 275 280

Total Current Assets 174,472 171,840

LIABILITIES & EQUITY

Current Liabilities

Committed Funds 57,652 47,270

Administrative Services 1,447 1,498

Prepaid Member Income 9,185 9,175

Payroll Liabilities 1,211 1,301

Total Current Liabilities 69,495 59,244

Equity

Unrestricted 112,596 121,131

Net Income (7,620) (8,535)

Total Equity 104,977 112,596

TOTAL LIABILITIES & EQUITY 174,472 171,840

doi.org/10.47397/tb/42-1/tb130treas

The information here comes from the consultants
themselves. We do not include information we
know to be false, but we cannot check out any of
the information; we are transmitting it to you as it
was given to us and do not promise it is correct.
Also, this is not an official endorsement of the
people listed here. We provide this list to enable
you to contact service providers and decide for
yourself whether to hire one.

TUG also provides an online list of consultants
at tug.org/consultants.html. If you’d like to be
listed, please see there.

Dangerous Curve

+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX
fine typography specs beyond those of the average
LATEX macro package. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your
typical TEX and LATEX typesetting needs.
We have been typesetting in the commercial and

academic worlds since 1979.
Our team includes Masters-level computer

scientists, journeyman typographers, graphic
designers, letterform/font designers, artists, and a
co-author of a TEX book.

Dominici, Massimiliano

Email: info (at) typotexnica.it

Web: http://www.typotexnica.it
Our skills: layout of books, journals, articles;
creation of LATEX classes and packages; graphic
design; conversion between different formats of
documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for
documents in Italian, English, or French. Let us
know the work plan and details; we will find a
customized solution. Please check our website
and/or send us email for further details.

94 TUGboat, Volume 42 (2021), No. 1

TEXConsultants

Latchman, David

2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman (at)

texnical-designs.com

Web: http://www.texnical-designs.com
LATEX consultant specializing in the typesetting of
books, manuscripts, articles, Word document
conversions as well as creating the customized
LATEX packages and classes to meet your needs.
Contact us to discuss your project or visit the
website for further details.

Monsurate, Rajiv

India
Email: tex (at) rajivmonsurate.com

Web: https://www.rajivmonsurate.com
I have over two decades of experience with LATEX
in STM publishing working with full-service
suppliers to the major academic publishers. I’ve
built automated typesetting and conversion
systems with LATEX and rendered TEX support for
a major publisher.
I offer design, typesetting and conversion

services for self-publishing authors. I can help with
LATEX class/package development, conversion tools
and training for publishers and typesetters for
book and journal production. I can also help with
full-stack web development.

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Personalized, professional TEX and LATEX
consulting and programming services.
I offer 30 years of experience in programming,

macro writing, and typesetting books, articles,
newsletters, and theses in TEX and LATEX:
Automated document conversion; Programming in
Perl, Python, C, R and other languages; Writing
and customizing macro packages in TEX or LATEX,
knitr.

If you have a specialized TEX or LATEX need,
or if you are looking for the solution to your
typographic problems, contact me. I will be happy
to discuss your project.

Veytsman, Boris

132 Warbler Ln.
Brisbane, CA 94005
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net
TEX and LATEX consulting, training, typesetting
and seminars. Integration with databases,
automated document preparation, custom LATEX
packages, conversions (Word, OpenOffice etc.) and
much more.

I have about two decades of experience in TEX
and three decades of experience in teaching &
training. I have authored more than forty packages
on CTAN as well as Perl packages on CPAN

and R packages on CRAN, published papers in
TEX-related journals, and conducted several
workshops on TEX and related subjects. Among
my customers have been Google, US Treasury,
FAO UN, Israel Journal of Mathematics, Annals of
Mathematics, Res Philosophica, Philosophers’
Imprint, No Starch Press, US Army Corps of
Engineers, ACM, and many others.

We recently expanded our staff and operations
to provide copy-editing, cleaning and
troubleshooting of TEX manuscripts as well as
typesetting of books, papers & journals, including
multilingual copy with non-Latin scripts, and more.

TUGboat, Volume 42 (2021), No. 1 95

Warde, Jake

90 Resaca Ave.
Box 452
Forest Knolls, CA 94933
+1 650-468-1393
Email: jwarde (at) wardepub.com

Web: http://myprojectnotebook.com
I have been in academic publishing for 30+ years.
I was a Linguistics major at Stanford in the
mid-1970s, then started a publishing career. I
knew about TEX from editors at Addison-Wesley
who were using it to publish beautifully set math
and computer science books.

Long story short, I started using LATEX for
exploratory projects (see website above). I have
completed typesetting projects for several journal
articles. I have also explored the use of multiple
languages in documents extensively. I have a
strong developmental editing background in STEM

subjects. If you need assistance getting your
manuscript set in TEX I can help. And if I cannot
help I’ll let you know right away.

TUG 2021

online

August 5–8, 2021

tug.org/tug2021

15th ConTEXt Meeting

Bassenge, Belgium

Sept. 20–25, 2021

meeting.contextgarden.net

2021

Apr 30 Frederick W. Goudy Award Presentation
and Lecture (online),
Cary Graphic Arts Library,
Rochester Institute of Technology,
Rochester, New York.
www.rit.edu/events/goudy-award-

presentation-and-lecture

May 3 – 5 Association Typographique Internationale
(ATypI) type technology forum (online),
www.atypi.org

Jun 30 –
Jul 2

Nineteenth International Conference
on New Directions in the Humanities,
“Critical Thinking, Soft Skills,
and Technology”,
Universidad Complutense Madrid, Spain.
(May be held online.)
thehumanities.com/2021-conference

Jul 10 Preprints due for TUG 2021 program

Jul 12 – 16 International Society for the History and
Theory of Intellectual Property (ISHTIP),

12th Annual Workshop, “Landmarks of
Intellectual Property” (online),
Bournemouth University, UK.
www.ishtip.org/?p=1027

Jul 20 – 21 Centre for Printing History & Culture,
CPHC/Print Networks Conference,
“A visitor attraction: printing
for tourists” (Webinar),
Appleby-in-Westmorland, Cumbria, UK.
www.cphc.org.uk/events

Jul 26 – 30 SHARP 2021, “Moving texts:
From discovery to delivery”.
Society for the History of Authorship,
Reading & Publishing. Hosted virtually
by the University of Muenster.
www.sharpweb.org/main/conferences

Aug 2 – 6 Balisage: The Markup Conference
(online). www.balisage.net

96 TUGboat, Volume 42 (2021), No. 1

Calendar

TUG 2021 online

Presentations covering the TEX world

Aug 5 Workshops and tours.

Aug 6 – 8 The 42nd annual meeting of the
TEX Users Group.
tug.org/tug2021

Aug 9 – 13 SIGGRAPH 2021 (online).
s2021.siggraph.org

Aug 15 Final papers due for TUG 2021

proceedings

Aug 18 – 22 TypeCon 2021,
Philadelphia, Pennsylvania.
typecon.com

Sep 10 The Updike Prize for Student Type Design,
application deadline, 5:00 p.m. EST.
Providence Public Library,
Providence, Rhode Island.
prov.pub/updikeprize

Sep 18 DANTE 2021 Herbsttagung,
Saarbrücken, Germany.
www.dante.de/veranstaltungen/

herbst2021

Sep 20 – 25 15th International ConTEXt Meeting,
“Expanding orbits”, Bassenge, Belgium.
meeting.contextgarden.net/2021

Oct 1 – 3 Oak Knoll Fest XXI,
“Women in the Book Arts”,
New Castle, Delaware.
www.oakknoll.com/fest

Oct Association Typographique Internationale
(ATypI) annual conference (online),
Paris, France. www.atypi.org

2022

Summer Digital Humanities 2022, Alliance of
Digital Humanities Organizations,
Tokyo, Japan. adho.org/conference

Owing to the COVID-19 pandemic, schedules may change. Check the websites for details.

Status as of 15 April 2021

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 42 (2021), No. 1

Introductory
6 Jacques André / Hendrik Vervliet: 1923–2020

• memorial and summary of work of this noted scholar of typography
4 Barbara Beeton / Editorial comments

• typography and TUGboat news
10 Karl Berry / TEX entomology in 2021

• filtering the incoming bugs for DEK’s 2021 tune-up
65 Karl Berry / Some fonts with recent TEX support

• terse showings of some fonts appearing on CTAN in the last year
18 Peter Flynn / Typographers’ Inn

• Page numbering revisited; Type 1 (PostScript) fonts; Afterthought
12 Jérémy Just / Year 2020 at GUTenberg

• association is preserved by vote, but the need for more cooperation remains
3 Boris Veytsman / From the president

• license usage on CTAN; dangers of non-commercial licensing
20 David Walden / Interview with Amelia Hugill-Fontanel

• discussion with the associate curator at RIT’s Cary Graphic Arts Collection, cary.rit.edu

Intermediate
86 Karl Berry / The treasure chest

• new CTAN packages, October 2020–April 2021
50 Jerzy Ludwichowski / GUST e-foundry font projects, closing report 2019–2020

• status of OpenType TEX Gyre fonts, including math, and new Algotype font production software
34 Carla Maggi / The DuckBoat — Beginners’ Pond: Crazy Little Thing Called Glue

• specifying and fixing spacing, horizontal and vertical; and floats
52 Antonis Tsolomitis / The NewComputerModern font family

• OpenType fonts greatly extending Latin Modern, with complete coverage of Unicode math
40 Joseph Wright / Creating document commands: The good, the bad and the ugly

• best practices for using \NewDocumentCommand from xparse

Intermediate Plus
13 Barbara Beeton / Lapses in TEX — a look backward

• alternatives to past decisions that could have alleviated current problems
67 Maxime Chupin / Animating Fourier series decomposition of a character with LuaTEX and MPLIB

• building an animation of a character’s outline with Lua(TEX) and MetaPost
72 Island of TEX / Working remotely from an island: arara and other tools

• build tool arara, font finder albatross, texdoc online
44 Petr Oľsák / Comparison of OpTEX with other formats: LATEX and ConTEXt

• differing concepts, implementations, usage of three formats
41 Joseph Wright / \NewDocumentCommand versus \newcommand versus . . .

• extended comparison of the xparse \NewDocumentCommand to traditional alternatives

Advanced
74 Hans Hagen / LuaMetaTEX programming features

• advances and extensions in TEX programming in the lmtx engine
60 Hans Hagen / Scaled fonts and glyphs

• engine extensions in lmtx for dynamic glyph scaling
66 Hu Yajie / Improvements to the generalized mediation macros in The METAFONTbook

• meeting the generalized mediation macro challenge in Appendix D of The METAFONTbook
7 Donald Knuth / The TEX tuneup of 2021

• the 2021 updates to TEX, METAFONT, vols. A–E, et al.
81 Igor Liferenko / UTF-8 installations of CWEB

• changing cweave and ctangle to read/write the Unicode BMP

56 S.K. Venkatesan / An attempt at creating font transitions
• an example of mathematically interpolating between sans serif and serif fonts

Reports and notices
2 Institutional members

11 Barbara Beeton / Hyphenation exception log
• update for missed and incorrect U.S. English hyphenations; see ctan.org/pkg/hyphenex

83 Boris Veytsman / Book review: Learning LATEX, Second Edition, by David F. Griffiths and Desmond J. Higham
• learning LATEX by example, updated

84 From other TEX journals: Die TEXnische Komödie 4/2020–1/2021; Zpravodaj 2020/3–4
85 John Atkinson / Comic: font or dog breed?
88 TUG Elections committee / TUG 2021 election report
92 Richard Koch / Spending MacTEX funds
93 Karl Berry / TUG financial statements for 2020
94 TEX consulting and production services
96 Calendar

