
TUGboat, Volume 41 (2020), No. 3 329

Distinguishing 8-bit characters and Japanese
characters in (u)pTEX

Hironori Kitagawa

Abstract
pTEX (an extension of TEX for Japanese typesetting)
uses a legacy encoding as the internal Japanese en-
coding, while accepting UTF-8 input. This means
that pTEX does code conversion in input and output.
Also, pTEX (and its Unicode extension upTEX) dis-
tinguishes 8-bit character tokens and Japanese char-
acter tokens, while this distinction disappears when
tokens are processed with \string and \meaning,
or printed to a file or the terminal.

These facts cause several unnatural behaviors
with (u)pTEX. For example, pTEX garbles “ſ ” (long s)
to “顛” on some occasions. This paper explains these
unnatural behaviors, and discusses an experiment in
improvement by the author.

1 Introduction
Since TEX Live 2018, UTF-8 has been the new default
input encoding in LATEX [8]. However, with pLATEX,
which is a modified version of LATEX for the pTEX
engine, the source
%#!platex
\documentclass{minimal}
\begin{document}ſ\end{document} % long s

gives an inconsistent error message [4] (edited to fit
TUGboat’s narrow columns):

! Package inputenc Error: Unicode character
顛 (U+C4CF) not set up for use with LaTeX.

Here “顛”, “ſ” and U+C4CF are all different characters.
The purpose of this paper is to investigate the

background of this message and propose patches to
resolve this issue. This paper is based on a cancelled
talk [6] in TEXConf 2019.1

In this paper, the following are assumed:
• All inputs and outputs are encoded in UTF-8.
• pTEX uses EUC-JP as the internal Japanese en-

coding (see Section 2.1).
• Sources are typeset in plain pTEX (ptex), unless

stated otherwise by %#!.
• The notation <AB> describes a byte 0xab, or a

character token whose code is 0xab.

2 Overview of pTEX
pTEX is an engine extension of TEX82 for Japanese
typesetting. It can typeset Japanese documents of

1 TEXConf 2019 (the annual meeting of Japanese TEX users,
texconf2019.tumblr.com) was canceled due to a typhoon.

professional quality [9], including Japanese line break-
ing rules and vertical typesetting.

pTEX and pLATEX were originally developed by
the ASCII Corporation2 [1]. However, pTEX and
pLATEX in TEX Live, which are our concern, are
community editions. These are currently maintained
by the Japanese TEX Development Community.3 For
more detail, please see the English guide for pTEX [3].

pTEX itself does not have 𝜀-TEX features, but
there is 𝜀-pTEX [7], which merges pTEX, 𝜀-TEX and
additional primitives. Anything discussed about
pTEX in this paper (besides this paragraph) also
applies to 𝜀-pTEX, so I simply write “pTEX” instead
of “pTEX and 𝜀-pTEX”. Note that the pLATEX format
in TEX Live is produced by 𝜀-pTEX, because recent
versions of LATEX require 𝜀-TEX features.

2.1 Input code conversion by ptexenc

Although pTEX in TEX Live accepts UTF-8 inputs,
the internal Japanese character set is limited to
JIS X 0208 (JIS level 1 and 2 kanjis), which is a
legacy character set before Unicode. pTEX uses
Shift_JIS (Windows) or EUC-JP (other) as the in-
ternal encoding of JIS X 0208.

In pTEX and related programs, the ptexenc
library [12] converts an input line to the internal
encoding. pTEX’s input processor actually reads
the converted result by ptexenc. A valid UTF-8
sequence which does not represent a JIS X 0208 char-
acter — such as <C5><BF> (“ſ”) or <C3><9F> (“ß”) —
is converted to ^^-notation, such as ^^ab.

On the other hand, an invalid UTF-8 sequence
is converted into <A2><AF> (an undefined code point
in EUC-JP) sometimes, in TEX Live 2019 or prior.
In TEX Live 2020, the sequence is always converted
into ^^-notation.

2.2 Japanese character tokens
pTEX divides character tokens into two groups: ordi-
nary 8-bit character tokens and Japanese character
tokens. The former are not different from tokens in
8-bit engines, say, TEX82 and pdfTEX. A ^^-notation
sequence is always treated as an 8-bit character.

A Japanese character token is represented by
its character code. In other words, although there
is a \kcatcode primitive, which is the counterpart
of \catcode, its information is not stored in tokens.
Hence, changing \kcatcode by users is not recom-
mended.

2 Currently ASCII DWANGO in DWANGO Co. Ltd.
3 texjp.org/. Several GitHub repositories:

github.com/texjporg/tex-jp-build ((u)pTEX),
github.com/texjporg/platex (pLATEX).

Distinguishing 8-bit characters and Japanese characters in (u)pTEX



330 TUGboat, Volume 41 (2020), No. 3

2.3 An example input
Now we look at an example. Our input line is
a<C3><9F><E6><BC><A2><C5><BF><C2><A7> (aß漢ſ§)

First, ptexenc converts this line into
a^^c3^^9f<B4><C1>^^c5^^bf<A1><F8>

which is fed to pTEX’s input processor. The final
character “§” is included in JIS X 0208.

From the result above, pTEX produces tokens
a11 <C3>12 <9F>12 漢 <C5>12 <BF>12 §

where漢 and§ are Japanese character tokens. From
this example, we can see that we cannot write “§”
directly to output this character in a Latin font (use
commands or ^^c2^^a7).

3 Stringization in pTEX
3.1 Overview
Names of multiletter control sequences, which in-
clude control sequences with single Japanese charac-
ter name, such as \あ, are stringized, that is to say,
they are stored into the string pool. Similarly, some
primitives, such as \string, \jobname, \meaning
and \the (almost always the case), first stringize
their intermediate results into the string pool, and
then retokenize these intermediate results.

Stringization of pTEX has two crucial points.
• The origin of a byte is lost in stringization. A

byte sequence, for example <C5><BF>, in the
string pool may be the result of stringization of
a Japanese character “顛”, or that of two 8-bit
characters <C5> and <BF>.

• In retokenization, a byte sequence which repre-
sents a Japanese character in the internal encod-
ing is always converted to a Japanese character
token. For example, <C5><BF> is always con-
verted to a Japanese token 顛.

These points cause unnatural behavior, namely bytes
from 8-bit characters becoming garbled to Japanese
character tokens. We look into several examples.

3.2 Control sequence name
Let’s begin with the following source:
\font\Z=ec-lmr10 \Z % T1 encoding
\expandafter\def\csname uſ\endcsname{AA}
\expandafter\def\csname u顛\endcsname{BB}
\def\ZZ#1{#1 (\string#1) }
\expandafter\ZZ\csname u^^c5^^bf\endcsname% (1)
\expandafter\ZZ\csname uſ\endcsname % (2)
\expandafter\ZZ\csname u顛\endcsname % (3)

With pTEX, (1)–(3) produces the same result
BB (\u顛)

This is because all of

\csname u^^c5^^bf\endcsname
\csname uſ\endcsname % ſ: <C5><BF> in UTF-8
\csname u顛\endcsname % 顛: <C5><BF> in EUC-JP

have the same name u<C5><BF> in pTEX, hence they
are treated as the same control sequence. Applying
\string to them, we get the same token list

\12 u12 顛

This explains the error message in the introduc-
tion. “顛 (U+C4CF)” in the message is generated
from

\expandafter\string
\csname u8:\string<C5>\string<BF>\endcsname

The inputenc package expects that applying \string
to the above control sequence produces

\12 u12 812 :12 <C5>12 <BF>12

but the result in pLATEX is

\12 u12 812 :12 顛

3.3 \meaning

The result of

\font\Z=ec-lmr10 \Z % T1 encoding
\def\fuga{^^c5^^bf顛ſ}\meaning\fuga

differs between plain TEX and plain pTEX:
plain TEX macro:->Å£éąŻÅ£
plain pTEX macro:->顛顛顛

Now we look at what happened with pTEX. The
definition of \fuga is represented by the token list

<C5>12 <BF>12 顛 <C5>12 <BF>12

This gives the following string as the intermediate
result of \meaning.

macro:-><C5><BF><C5><BF><C5><BF>

Retokenizing this string gives the final result
macro:->顛顛顛

which we have already seen.

3.4 A tricky application
The behavior described in Section 3.2 has a tricky
application: generating a Japanese character token
from its code number, even in an expansion-only
context. This can be constructed as follows:

%#!eptex
\font\Z=ec-lmr10 \Z % T1 encoding
\input expl3-generic % for \char_generate:nn
\ExplSyntaxOn
\cs_generate_variant:Nn \cs_to_str:N { c }

Hironori Kitagawa



TUGboat, Volume 41 (2020), No. 3 331

\cs_new:Npn \tkchar #1 {
\cs_to_str:c {
\char_generate:nn % upper byte
{ \int_div_truncate:nn { #1 } { 256 } }
{ 12 }

\char_generate:nn % lower byte
{ \int_mod:nn { #1 } { 256 } } { 12 }

}
}
\ExplSyntaxOff
\edef\A{\tkchar{`漢}\tkchar{`字}}
\meaning\A % ==> macro:->漢字

This \tkchar will be unnecessary as of TEX Live
2020, since the \Uchar and \Ucharcat primitives
were added into 𝜀-pTEX at that time.

4 Output to file or terminal
4.1 Output code conversion
As with input, pTEX does a code conversion from the
internal Japanese encoding to UTF-8 in outputting
to a file or the terminal. This is done in two steps:

• As with TEX82, pTEX uses the print proce-
dure for printing a string.4 In pTEX, a byte
is printable if and only if its value is between
32 (“␣”) and 126 (“~”), or it is used in the inter-
nal Japanese encoding (<A1>–<FE> in EUC-JP).

• pTEX uses the putc2 function instead of the
standard putc C function. putc2 is a variation
of putc with code conversion, and is defined in
ptexenc.

Hence pTEX may garble 8-bit characters, such as
<C5><BF>, into a Japanese character in output. We
look into two examples, one is of \write and the
other is of \message.

4.2 \write

With pTEX, the following source

\newwrite\OUT
\immediate\openout\OUT=test.dat
\immediate\write\OUT{顛ſß}
\immediate\closeout\OUT

produces a file test.dat, whose contents are

顛顛<C3>^^9f

Let’s look at what happened.
First, the argument of \write is (expanded to)

the following token list.

顛 <C5>12 <BF>12 <C3>12 <9F>12

4 In fact, slow_print is used for printing a string which
might contain unprintable characters. However, slow_print
calls print internally.

Then, pTEX prints this token list. Since <A1>–<FE>
are printable and <9F> is not, the putc2 function
receives the following string, one byte per call.

<C5><BF><C5><BF><C3>^^9f

Each <C5><BF> is converted to “顛” by putc2,
while the single <C3> remains unchanged. Hence the
final result is “顛顛<C3>^^9f”, as shown.

4.3 \message

\message is similar to \write, but differs in that it
stringizes its argument. Now consider an input line

\message{^^fe^^f3:𪚲:}

Here𪚲 (<F0><AA><9A><B2> in UTF-8) is a character
included in JIS X 0213, but not in JIS X 0208.

The argument of \message is (expanded to) the
following token list.

<FE>12 <F3>12 :12 <F0>12 <AA>12 <9A>12 <B2>12 :12

Then, this token list is stringized to

<FE><F3>:<F0><AA><9A><B2>:

This string is “printed” by print; since only <9A> is
unprintable, putc2 receives

<FE><F3>:<F0><AA>^^9a<B2>:

Now, putc2 converts <FE><F3> (an undefined
code point in EUC-JP) to the null character <00>,
and <F0><AA> to “險”. Hence the final result is

<00>:險^^9a<B2>:

4.4 Controlling printability
TEX82 and pdfTEX support TCX (TEX Character
Translation) files [2], which can be used to specify
which characters are printable. In fact, cp227.tcx
is activated in (pdf)LATEX and several other formats
in TEX Live, to make characters 128–255 and three
control characters printable. One can switch to a
different TCX file at runtime. For example, only
characters 32–126 are printable in

latex -translate-file=empty.tcx

However, pTEX was not expected to use TCX
files (no TCX files are activated in formats by pTEX
in default). inipTEX can make characters printable
by a TCX file, and that’s all. For example, to make
characters 128–255 printable in pTEX, one has to
make another format with appropriate option. There
is no method to make an arbitrary character, say
<A0>, unprintable when using this format.

Distinguishing 8-bit characters and Japanese characters in (u)pTEX



332 TUGboat, Volume 41 (2020), No. 3

5 upTEX
5.1 Overview
upTEX [10, 11] is a Unicode extension of pTEX by
Takuji Tanaka. upTEX is (almost fully) upward-
compatible with pTEX, so it is a very convenient
solution for converting existing documents to Uni-
code with minimal changes.

In upTEX, a Japanese character token is a pair
of the character code and \kcatcode. Furthermore,
\kcatcode controls whether a UTF-8 sequence pro-
duces a Japanese character token or a sequence
of 8-bit tokens. For example, <E9><A1><9B> (顛,
U+985B) in an input line is treated as three 8-bit
characters when \kcatcode"985B is 15, and as a
Japanese character otherwise.

5.2 No code conversion
Since upTEX’s internal Japanese character code is
Unicode (UTF-8 in the string pool), code conversion
by ptexenc has no effect. Hence the inconsistent
error message described in the introduction will not
be issued.

5.3 Retokenization and \kcatcode

In upTEX, \kcatcode is involved in the retokeniza-
tion process. Specifically, a UTF-8 sequence is con-
verted into a Japanese character token if and only
if its \kcatcode is not 15. This means that the
result of \meaning of the same macro depends on
\kcatcode settings, as in the following example.

%#!uptex
\font\Z=ec-lmr10 \Z % T1 encoding
%% default: \kcatcode"3042=17
\def\hoge{^^e3^^81^^82あ}
\kcatcode"3042=15
\meaning\hoge % ==> macro:->ãĄĆãĄĆ
\kcatcode"3042=17
\meaning\hoge % ==> macro:->ああ

The definition of \hoge is represented by the token
list

<E3>12 <81>12 <82>12 あ17

Hence the intermediate result of \meaning\hoge is

macro:-><E3><81><82><E3><81><82>

However, because the \kcatcode of “あ” is changed,
two calls of \meaning\hoge give different results.

We will see results of \string of multiletter
control sequences later.

6 Distinguishing bytes from 8-bit
characters and those from Japanese
characters

To resolve (u)pTEX’s behavior described so far, I
have been developing an experimental version5 of
(u)pTEX, where stringization and outputting retain
the origin of a byte — an 8-bit character (token) or
a Japanese one. I refer to these as “experimental”,
and (u)pTEX in TEX Live development repository as
“trunk”.

The implementation approach is to extend the
range of a “byte” to 0–511 (Table 1). A value between
0–255 means a byte from an 8-bit character (token),
and 256–511 means a “byte” from a Japanese one.

I tested a different approach, namely using <FF>
as a prefix to a byte 128–255 which came from an
8-bit character. But this approach caused confusion
with <FF>, so I gave up.

6.1 \write

For example, consider the source from Section 4.2:
\newwrite\OUT
\immediate\openout\OUT=test.dat
\immediate\write\OUT{顛ſß}
\immediate\closeout\OUT

with the experimental pTEX. When no TCX file is
activated, putc2 receives the string
<1C5><1BF>^^c5^^bf^^c3^^9f

because a Japanese token 顛 sends <1C5><1BF> to
putc2, and <80>–<FF> are not printable. Thus the
contents of the output test.dat are
顛^^c5^^bf^^c3^^9f

When cp227.tcx is activated, they become
顛ſß

because <80>–<FF> are printable in this case.

6.2 The string pool
Since the range of a “byte” is increased to 0–511,
the type of the string pool is changed to let each
element store a “byte”; concretely, to a 16-bit array.
For example, let’s reconsider the following source:
\font\Z=ec-lmr10 \Z % T1 encoding
\def\fuga{^^c5^^bf顛ſ}\meaning\fuga

With the experimental pTEX, the intermediate result
of \meaning\fuga is
macro:-><C5><BF><1C5><1BF><C5><BF>

Hence the result of \meaning\fuga is
5 github.com/h-kitagawa/tex-jp-build/tree/

printkanji_16bit. GitHub issue: [5]

Hironori Kitagawa



TUGboat, Volume 41 (2020), No. 3 333

Table 1: A “byte” in experimental (u)pTEX

“byte” 𝑐 0–255 256–511

origin an 8-bit character (token) a Japanese character (token)
printable characters 32–126 (“␣”–“~”)∗ all
“safe” printing of 𝑐 print(𝑐) print_char(𝑐) (not print)
putc2(𝑐, …) without code conversion with code conversion∗∗

retokenization an 8-bit character token 𝑐 a Japanese character token∗∗

∗ Web2C’s default; can be extended by a TCX file.
∗∗ With adjacent “bytes” which are between 256–511.

macro:->Å£顛 Å£
because only <1C5><1BF> is converted to a Japanese
character token 顛.

The change in the type for the string pool in-
creases the size of format files by about the total
length of strings, but the amount of increase is not
so large. For example, the platex-dev format is
increased by about 3.5 % (see table below). As of
TEX Live 2020, pdfTEX and (u)pTEX use compressed
format files, so the amount of increase on disk is
smaller.

platex-dev.fmt [kB] trunk experimental
uncompressed 10412 10774
compressed 2322 2380

I wanted to keep the modification as small and
simple as possible; so I left unchanged the structure
of the string pool, except for adding a “flag bit”.

6.3 Control sequence names in upTEX
In the experimental pTEX,
\csname uſ\endcsname
\csname u顛\endcsname

are treated as different control sequences. This is
because the name of the former is u<C5><BF>, while
that of the latter is u<1C5><1BF>. This behavior
seems to be natural.

However, the situation is more arguable between
the experimental upTEX and the trunk upTEX. For
example, let’s compare the results of (1) and (2) in
the following source by both versions of upTEX.
%#!uptex
\font\Z=ec-lmr10 \Z % T1 encoding
\def\ZZ#1{#1 (\string#1) }
\kcatcode"3042=15
\expandafter\def\csname あ\endcsname{AA}
\kcatcode"3042=17
\expandafter\def\csname あ\endcsname{BB}
\kcatcode"3042=17 \expandafter\ZZ

\csname あ\endcsname % (1)

\kcatcode"3042=15 \expandafter\ZZ
\csname あ\endcsname % (2)

Results are summarized in Table 2. One may feel
uneasy about both results.
trunk The results of \string for (1) and (2) differ,

while they represent the same control sequence
(as in Section 5.3).

experimental (1) and (2) represent different con-
trol sequences.

6.4 Input buffer(s)
I also introduced an array buffer2 as a companion ar-
ray to buffer , which contains an input line. buffer2[𝑖]
plays the role of the “upper byte” of buffer [𝑖]. Hence,
when (u)pTEX considers a byte sequence buffer [𝑖 . . 𝑗]
as a Japanese character, buffer2[𝑖 . . 𝑗] is set to 1.
This is needed when scanning a control sequence
name in order to distinguish a byte which consists a
part of a Japanese character from another byte.

Suppose that the category codes of <C5> and
<BF> are both 11 (letter), an input line contains

\<C5><BF>^^c5^^bf (\顛^^c5^^bf, \顛ſ) (1)

and pTEX is about to scan this control sequence (1).
Since (p)TEX converts ^^-notation in a control se-
quence name into single characters in buffer , the
contents of buffer become

\<C5><BF><C5><BF> (\顛顛)

Thus, the control sequence (1) cannot be distin-
guished from \顛顛 so far. However, the experi-
mental pTEX can distinguish the control sequence (1)
from \顛顛, because the contents of buffer2 differ (see
Table 3).

buffer2 is also useful in showing contexts in
upTEX. For example, let’s look the following input:

%#!uptex
\def\J{\kcatcode"3042=17 }
\def\L{\kcatcode"3042=15 }
\J あ\L あ\undefined あ\J あ

Distinguishing 8-bit characters and Japanese characters in (u)pTEX



334 TUGboat, Volume 41 (2020), No. 3

Table 2: Properties of \csnameあ\endcsname of TEX source in Section 6.3

trunk experimental\kcatcode
of “あ” name result of \TEST name result of \TEST

(1) 17 <E3><81><82> BB (\あ) <1E3><181><182> BB (\あ)
(2) 15 <E3><81><82> BB (\ãĄĆ) <E3><81><82> AA (\ãĄĆ)

Table 3: Contents of buffer and buffer2 when the experimental pTEX scans control sequences in an input line

\顛^^c5^^bf (\顛ſ) \顛顛
buffer \ <C5> <BF> <C5> <BF> \ <C5> <BF> <C5> <BF>
buffer2 0 1 1 0 0 0 1 1 1 1
name <1C5><1BF><C5><BF> <1C5><1BF><1C5><1BF>

With the experimental upTEX (and no TCX file), we
can know that the second “あ” is treated as three
8-bit characters from the error message. I hope this
will be useful in debugging.

! Undefined control sequence.
l.3 \J あ\L ^^e3^^81^^82\undefined

あ\J あ

The third and the final “あ” is not read by upTEX’s
input processor at the error. So they are printed as if
all UTF-8 characters gave Japanese character tokens.

7 Conclusion
The primary factor of the complications discussed in
this paper is that (u)pTEX are Japanese extension of
an 8-bit engine; this causes the same byte sequence
can represent different things, namely a sequence
of 8-bit characters (token) or Japanese characters.
Although my experiment does not get rid of this
factor (only ameliorates it), I hope that it is helpful.

I thank the executive committee of TEXConf
2019, which gave me the opportunity for preparing
the original talk, and the people who discussed the
topics of this paper with me, especially Hironobu Ya-
mashita, Takuji Tanaka, Takayuki Yato, and Norbert
Preining.

References
[1] ASCII Corporation. ASCII Japanese TeX

(pTeX) (in Japanese).
asciidwango.github.io/ptex/index.html.

[2] K. Berry, O. Weber. Web2c, for version
2019. tug.org/texlive/Contents/
live/texmf-dist/doc/web2c/web2c.pdf,
Feb. 2019.

[3] Japanese TEX Development Community. Guide
to pTEX and friends.
ctan.org/pkg/ptex-manual.

[4] JulienPalard. Inconsistent error message.
github.com/texjporg/platex/issues/84.

[5] H. Kitagawa. Distinction between a byte
sequence and a Japanese character token
(in Japanese). github.com/texjporg/
tex-jp-build/issues/81.

[6] H. Kitagawa. Distinction of Latin
characters and Japanese characters in
stringization of pTEX family (in Japanese).
osdn.net/projects/eptex/docs/tc19ptex/
ja/1/tc19ptex.pdf.

[7] H. Kitagawa. 𝜀-pTEX Wiki (in Japanese).
osdn.net/projects/eptex/wiki/FrontPage.

[8] LATEX Project Team. LATEX news,
issue 28. www.latex-project.org/news/
latex2e-news/ltnews28.pdf, Apr. 2018.

[9] H. Okumura. pTEX and Japanese Typesetting.
The Asian Journal of TEX 2(1):43–51, 2008.
ajt.ktug.org/2008/0201okumura.pdf

[10] T. Tanaka. upTeX, upLaTeX — unicode
version of pTeX, pLaTeX. www.t-lab.opal.
ne.jp/tex/uptex_en.html.

[11] T. Tanaka. upTEX — Unicode version of pTEX
with cjk extensions. TUGboat 34(3):285–288,
2013.
tug.org/TUGboat/tb34-3/tb108tanaka.pdf

[12] N. Tutimura. UTF-8対応 (4) — ptetex Wiki
(in Japanese). tutimura.ath.cx/ptetex/
?UTF-8%C2%D0%B1%FE%284%29.

⋄ Hironori Kitagawa
Tokyo, Japan
h_kitagawa2001 (at) yahoo dot

co dot jp

Hironori Kitagawa


