TUGboat, Volume 41 (2020), No. 3

337

Representation of macro parameters

Hans Hagen

When TEX reads input it either does something di-
rectly, like setting a register, loading a font, turning
a character into a glyph node, packaging a box, or it
sort of collects tokens and stores them somehow, in a
macro (definition), in a token register, or someplace
temporary to inject them into the input later. Here
we’ll be discussing macros, which have a special token
list containing the preamble defining the arguments
and a body doing the real work. For instance when
you say:

\def\foo#1#2{#1 + #2 + #1 + #2}

the macro \foo is stored in such a way that it knows
how to pick up the two arguments and when expand-
ing the body, it will inject the collected arguments
each time a reference like #1 or #2 is seen. In fact,
quite often, TEX pushes a list of tokens (like an argu-
ment) in the input stream and then detours in taking
tokens from that list. Because TEX does all its mem-
ory management itself the price of all that copying
is not that high, although during a long and more
complex run the individual tokens that make the
forward linked list of tokens get scattered in token
memory and memory access is still the bottleneck in
processing.

A somewhat simplified view of how a macro like
this gets stored is the following;:

hash entry "foo" with property "macro call" =>

match (# property stored)
match (# property stored)
end of match

match reference
other character
match reference
other character
match reference
other character
match reference 2

N R T

When a macro gets expanded, the scanner first
collects all the passed arguments and then pushes
those (in this case two) token lists on the parameter
stack. Keep in mind that due to nesting many kinds
of stacks play a role. When the body gets expanded
and a reference is seen, the argument that it refers
to gets injected into the input, so imagine that we
have this definition:

\foo#1#2{\ifdim\dimenO=0pt #1\else #2\fi}
and we say:
\foo{yes}{no}

Representation of macro parameters

338

then it’s as if we had typed:
\ifdim\dimenO=0pt yes\else no\fi

So, you’d better not have something in the ar-
guments that messes up the condition parser! From
the perspective of an expansion machine it all makes
sense. But it also means that when arguments are
not used, they still get parsed and stored. Imagine
using this one:
\def\foo#1{\iffalse#1\oof#1\oof#1\oof#1\oof#1\fi}

When TEX sees that the condition is false it
will enter a fast scanning mode where it only looks

at condition related tokens, so even if \oof is not
defined this will work ok:

\foo{!}
But when we say this:
\foo{\else}

it will bark! This is because each #1 reference will
be resolved, so we effectively have (line breaks in the
following are editorial)
\def\foo#1{\iffalse\else\oof\else\oof\else\oof

\else\oof\else\fi}
which is not good. On the other hand, since no
expansion takes place in quick parsing mode, this
will work:

\def\oof{\else}
\foo\oof

which to TEX looks like:
\def\foo#1{\iffalse\oof\oof\oof\oof\oof\oof\oof
\oof\oof\fi}

So, a reference to an argument effectively is just
a replacement. As long as you keep that in mind,
and realize that while TEX is skipping ‘if’ branches
nothing gets expanded, you're okay.

Most users will associate the # character with
macro arguments or preambles in low level align-
ments, but since most macro packages provide a
higher level set of table macros the latter is less well
known. But, as often with characters in TEX, you
can do magic things:

\catcode‘?=\catcode‘#

\def\foo #1#273{717273}
\meaning\foo\space=>\foo{1}{2}{3}\par

\def\foo ?1#273{?717273}
\meaning\foo\space=>\foo{1}{2}{3}\par

\def\foo ?172#3{717273}
\meaning\foo\space=>\foo{1}{2}{3}\par

Here the question mark also indicates a macro
argument. However, when expanded we see this as
result:
macro:#1#273->717273 =>123
macro:?71#273->717273 =>123
macro: 7172#3->#1#2#3 =>123

Hans Hagen

TUGhboat, Volume 41 (2020), No. 3

The last used argument signal character (offi-
cially called a match character, here we have two that
fit that category, # and ?) is used in the serialization!
Now, there is an interesting aspect here. When TEX
stores the preamble, as in our first example:

match (# property stored)
match (# property stored)
end of match

the property is stored, so in the later example we
get:

match (# property stored)

match (# property stored)

match (? property stored)
end of match

But in the macro body the number is stored
instead, because we need it as reference to the pa-
rameter, so when that bit gets serialized TEX (or
more accurately: LuaTgX, which is what we’re using
here) doesn’t know what specific signal was used.
When the preamble is serialized it does keep track of
the last so-called match character. This is why we
see this inconsistency in rendering.

A simple solution would be to store the used
signal for the match argument, which probably only
takes a few lines of extra code (using a nine integer
array instead of a single integer), and use that instead.
I’'m willing to see that as a bug in LuaTEX but when I
ran into it I was playing with something else: adding
the ability to prevent storing unused arguments. But
the resulting confusion can make one wonder why
we do not always serialize the match character as #.

It was then that I noticed that the preamble
stored the match tokens and not the number and
that TEX in fact assumes that no mixture is used.
And, after prototyping that in itself trivial change I
decided that in order to properly serialize this new
feature it also made sense to always serialize the
match token as #. I simply prefer consistency over
confusion and so I caught two flies in one stroke. The
new feature is indicated with a \#0 parameter:
\bgroup
\catcode‘?=\catcode ‘#

\def\foo 717073{717273}
\meaning\foo\space=>\foo{1}{2}{3}\crlf
\def\foo ?71#073{717273}
\meaning\foo\space=>\foo{1}{2}{3}\crlf
\def\foo #1#273{717273}
\meaning\foo\space=>\foo{1}{2}{3}\crlf
\def\foo 71#273{717273}
\meaning\foo\space=>\foo{1}{2}{3}\crlf
\def\foo ?7172#3{717273}
\meaning\foo\space=>\foo{1}{2}{3}\crlf
\egroup

shows us:

TUGboat, Volume 41 (2020), No. 3

macro:#1#0#3->#1#2#3 =>13
macro:#1#0#3->#1#2#3 =>13
macro:#1#2#3->#1#2#3 =>123
macro:#1#2#3->#1#2#3 =>123
macro:#1#2#3->#1#2#3 =>123

So, what is the rationale behind this new #0
variant? Quite often you don’t want to do something
with an argument at all. This happens when a macro
acts upon for instance a first argument and then
expands another macro that follows up but only deals
with one of many arguments and discards the rest.
Then it makes no sense to store unused arguments.
Keep in mind that in order to use it more than once
an argument does need to be stored, because the
parser only looks forward. In principle there could
be some optimization in case the tokens come from
macros but we leave that for now. So, when we don’t
need an argument, we can avoid storing it and just
skip over it. Consider the following:

\def\foo#1{\ifnum#1=1 \expandafter\fooone
\else\expandafter\footwo\fi}

\def\fooone#1#0{#1}

\def\footwo#O#2{#2}

\foo{1}{yes}{no}

\foo{0}{yes}{no}

We get:
yes no

Just for the record, tracing of a macro shows
that indeed there is no argument stored:

\def\foo#1#0#3{....}
\foo{11}{22}{33}
\foo #1#0#3->....
#1<-11

#2<-

#3<-33

Now, you can argue, what is the benefit of not
storing tokens? As mentioned above, the TEX engines
do their own memory management.! This has large
benefits in performance especially when one keeps
in mind that tokens get allocated and are recycled
constantly (take only lookahead and push back).

However, even if this means that storing a cou-
ple of unused arguments doesn’t put much of a dent
in performance, it does mean that a token sits some-
where in memory and that this bit of memory needs
to get accessed. Again, this is no big deal on a com-
puter where a TEX job can take one core and basically
is the only process fighting for CPU cache usage. But
less memory access might be more relevant in a sce-
nario of multiple virtual machines running on the
same hardware or multiple TEX processes on one

1 An added benefit is that dumping and undumping is
relatively efficient too.

339

machine. I didn’t carefully measure that so I might
be wrong here. Anyway, it’s always good to avoid
moving around data when there is no need for it.

Just to temper expectations with respect to
performance, here are some examples:
\catcode‘!=9 ¥ ignore this character
\firstoftwoarguments

In ConTEXt we define these macros as follows:
\def\firstoftwoarguments #1#2{#1}
\def\secondoftwoarguments #1#2{#2}
\def\secondoffourarguments#1#2#3#4{#2}

The performance of 2 million expansions is the
following (probably half or less on a more modern
machine):

macro total step
\firstoftwoarguments 0.245 0.000000123
\secondoftwoarguments 0.251 0.000000126
\secondoffourarguments 0.390 0.000000195
But we could use this instead:
\def\firstoftwoarguments #1#0{#1}
\def\secondoftwoarguments #o#2{#2}

\def\secondoffourarguments#0#2#0#0{#2}

which gives:

macro total step

\firstoftwoarguments 0.229 0.000000115
\secondoftwoarguments 0.236 0.000000118
\secondoffourarguments 0.323 0.000000162

So, no impressive differences, especially when
one considers that when that many expansions hap-
pen in a run, getting the document itself rendered
plus expanding real arguments (not something de-
fined to be ignored) will take way more time com-
pared to this. I always test an extension like this on
the test suite? as well as the LuaMetaTEX manual
(which takes about 11 seconds) and although one
can notice a little gain, it makes more sense not to
play music on the same machine as we run the TEX
job, if gaining milliseconds is that important. But,
as said, it’s more about unnecessary memory access
than about CPU cycles.

This extension is downward compatible and its
overhead can be neglected. Okay, the serialization

2 Currently some 1600 files that take 24 minutes plus or
minus 30 seconds to process on a high end 2013 laptop. The
260 page manual with lots of tables, verbatim and MetaPost
images takes around 11 seconds. A few milliseconds more or
less don’t really show here. I only time these runs because I
want to make sure that there are no dramatic consequences.

Representation of macro parameters

340

now always uses # but it was inconsistent before, so
I'm willing to sacrifice that (and I'm pretty sure no
ConTEXt user cares or will even notice). Also, it’s
only in LuaMetaTEX (for now) so that other macro
packages don’t suffer from this patch. The few cases
where ConTEXt can benefit from it are easy to isolate
for MKIV and LMTX so we can support LuaTEX and
LuaMetaTEX.

I mentioned LuaTEX and how it serializes, but
for the record, let’s see how pdfTEX, which is very
close to original TEX in terms of source code, does
it. If we have this input:

\catcode‘D=\catcode‘#
\catcode‘0=\catcode ‘#
\catcode‘N=\catcode ‘#
\catcode‘-=\catcode‘#

\catcode ‘K=\catcode ‘#

\catcode ‘N=\catcode ‘#
\catcode‘U=\catcode ‘#
\catcode‘T=\catcode‘#

\catcode ‘H=\catcode ‘#

\def\dek D102N3-4K5N6U7TS8HO{#1#2#3 #A#5#6H#TH8#9}
{\meaning\dek \tracingall \dek don{}knuth}

The meaning gets typeset as (again, line break
is editorial):

macro:D102N3-4K5N6U7T8HO->H1H2H3 H4AHS5H6H7
H8H9don knuth

while the tracing reports:

\dek D102N3-4K5N6U7T8H9->H1H2H3 H4H5H6H7H8H9
Di<-d

02<-o

N3<-n

4<

K5<-k

N6<-n

U7<-u

T8<-t

H9<-h

The reason for the difference, as mentioned, is
that the tracing uses the template and therefore uses
the stored match token, while the meaning uses the
reference match tokens that carry the number and
at that time has no access to the original match
token. Keeping track of that for the sake of tracing
would not make sense anyway. So, traditional TEX,
which is what pdfTEX is very close to, uses the last
used match token, the H. Maybe this example can
convince you that dropping that bit of log related
compatibility is not that much of a problem. I just
tell myself that I turned an unwanted side effect into
a new feature.

Hans Hagen

TUGhboat, Volume 41 (2020), No. 3

A few side notes

The fact that characters can be given a special mean-
ing is one of the charming properties of TEX. Take
these two cases:

\bgroup\catcode ‘\&=5 &\egroup
\bgroup\catcode‘\!=5 !\egroup

In both lines there is now an alignment character
used outside an alignment. And, in both cases the
error message is similar:

! Misplaced alignment tab character &
! Misplaced alignment tab character !

So, indeed the right character is shown in the
message. But, as soon as you ask for help, there is a
difference: in the first case the help is specific for a
tab character, but in the second case a more generic
explanation is given. Just try it.

The reason is an explicit check for the amper-
sand being used as tab character. Such is the charm
of TEX. I'll probably opt for a trivial change to be
consistent here, although in ConTEXt the ampersand
is just an ampersand so no user will notice.

There are a few more places where, although in
principle any character can serve any purpose, there
are hard coded assumptions, like $ being used for
math, so a missing dollar is reported, even if math
started with another character being used to enter
math mode. This makes sense because there is no
urgent need to keep track of what specific character
was used for entering math mode. An even stronger
argument could be that TEXies expect dollars to be
used for that purpose. Of course this works fine:
\catcode‘€=\catcode‘$
€ \sqrt{x"3} €

But when we forget an € we get messages like:
! Missing $ inserted

or more generic:

! Extra }, or forgotten $

which is definitely a confirmation of “America first”.
Of course we can compromise in display math be-
cause this is quite okay:

\catcode‘€=\catcode‘$

$€ \sqrt{x"3} €$

unless of course we forget the last dollar in which
case we are told that

! Display math should end with $$

so no matter what, the dollar wins. Given how ugly
the Euro sign looks I can live with this, although
I always wonder what character would have been
taken if TEX was developed in another country.

¢ Hans Hagen
http://pragma-ade.com

	A few side notes

