
TUGboat, Volume 41 (2020), No. 2 175

LaTeX-on-HTTP: LATEX as a commodity
web service for application developers

Yoan Tournade

Abstract

Although LATEX is widely used in academia and edu-
cation, only a few developers use it to create PDFs in
web applications or IT systems. This seems strange
considering that many developers are well exposed
to these academic and scientific milieux — and that
many recognize LATEX for its superior typesetting
qualities.

In this paper, we try to answer two questions:

• Why use of LATEX in IT systems is not wide-
spread — and not even common?

• How can we change this state of affairs?

In this article we give an overview of LaTeX-on-
HTTP (github.com/YtoTech/latex-on-http), an
attempt to commodify and simplify LATEX use in web
applications or IT systems, and to ease its adoption
by modern developers.

1 Introduction

LATEX has its indisputable niches, like academic and
scientific publications. Thanks to web projects like
Overleaf (overleaf.com), it has also become more
readily accessible for the lay computer user to com-
plete common editing chores.

I found it strange then that one of the popu-
lations most exposed to LATEX, and also the most
likely to recognize its merits, the computer engineers,
do not use LATEX in the applications they develop —
and that they may not even think to do so.

Currently a modern application developer that
needs PDF output for a project will find an abun-
dance of solutions by searching the web:

1. HTML/CSS to PDF converters, e.g.,
wkhtmltopdf (wkhtmltopdf.org) and
WeasyPrint (weasyprint.readthedocs.io);

2. instruction-based PDF generators, e.g.,
PDFKit (pdfkit.org) in Node, and
FPDF (fpdf.org) in PHP;

3. headless calls to browsers or office software,
e.g., Puppeteer (github.com/puppeteer)
is an example of a headless API to run
Chrome/Chromium browsers with no GUI.

Browsing a couple of Stack Overflow entries will give
our hypothetical developer copy-paste ready initial
working code, in his language of interest. LATEX will
not appear in the results; and may well not pop up
in our developer’s mind as an eligible solution.

LaTeX-on-HTTP: LATEX as a commodity web service for application developers

https://github.com/YtoTech/latex-on-http
https://overleaf.com
https://wkhtmltopdf.org
https://weasyprint.readthedocs.io
https://pdfkit.org
https://fpdf.org
https://github.com/puppeteer

176 TUGboat, Volume 41 (2020), No. 2

All these tools provide decent results, but we
argue they are far from the typesetting quality at-
tainable by LATEX. While we can understand the
prevalence of the first class of solutions above by the
opportunity to leverage existing HTML and CSS code,
this does not explain why LATEX would be virtually
absent from the common set of solutions.

2 Why LATEX is uncommon in modern
applications for PDF creation

We explain this state of affairs from three viewpoints:
techniques, customs and knowledge.

2.1 Technical barriers: the not-so-accessible
LATEX runtime

It is easy enough to install a LATEX distribution on a
personal computer. Modern browser-based services
like CoCalc (cocalc.com) [4] and Overleaf have even
removed this need and drastically reduced the time
required to first interact with LATEX [2, 3]. Tools
such as MathJax (mathjax.org) and LaTeX Base
(latexbase.com) [1] have even demonstrated that
LATEX (or a subset) can be run in a browser.

However the requirements of an application de-
veloper are different: he does indeed want conve-
nience, but even more importantly he needs repro-
ducibility and scaling — and he certainly does not
want to battle with his infrastructure team to explain
why it would be pertinent to add many hundred of
megabytes of complex runtime requirements to gen-
erate PDFs in their applications. Many developers
do not even fully control their runtime environment
(restricted cloud, etc.).

When the developer has only a few hours, or
at best days, to automate PDF creation, he will
shy away from the complexities of adding the LATEX
runtime in his application — he has to go for the
safer and more recognized solutions.

2.2 Cultural glass walls: mental buckets of
use cases

Developers, often coming or having been exposed to
academic and scientific milieux, know of LATEX and
recognize its typesetting superiority. They are the
people who might tease one of their mates for not
using LATEX in their latest technical publication.

However, for them LATEX is in a mental bucket
that excludes their web application development or
IT system integration activities. More often than
not, they will not think about LATEX for making a
PDF document in their application: a glass wall of
custom separates their need from the LATEX solution.

2.3 Imperfect knowledge bases: learning
by copying

Even if our developer considers LATEX as a prospec-
tive solution, he must then learn about its implemen-
tation.

As developers, we try not to reinvent the wheel
with each task. We search and we find shared knowl-
edge about recommended tool usage and common
patterns. Generally, we use readily available and
copy-pasteable code samples for our needs; and tweak
our custom solution from there.

Our developer could easily find a proper LATEX
template to start from for his PDF application —
there are great resources on the web for that. But
then? Our developer will need the code to compile
their LATEX template to a PDF, which they will not
easily find on the web. Compile a LATEX document
on my computer or on the web? Easy. Compile a
LATEX template from a web application — either from
a server or from any browser1 — in a couple of lines
of code and without adding potentially problematic
requirements? Not so easy.

Few pertinent examples are available to lead
our developer to a way to implement LATEX in his
application. If he has the time to be curious and is
up for a challenge, he can find a path [5, 6]. This is
especially so in the niches where the need for very
high-quality or specialized document creation will
justify the cost of bringing LATEX into the infrastruc-
ture. But this is not the typical case that interests
us here: we consider the common modern web devel-
oper that at first just wants to create a rather simple
PDF document in his application.

3 Introducing LaTeX-on-HTTP

LaTeX-on-HTTP first emerged when I needed a way
to compile LATEX documents to automate invoicing,
without installing the whole LATEX stack.2

The basic requirements for LaTeX-on-HTTP

were rather straightforward: take the TEX Live run-
time, put it on a server, and add an HTTP-based
API between the user and the server so we can pass
the files to be compiled. Voilà — now users just need
Internet access to generate their PDF documents;
they do not even need to know that they are using
LATEX.

1 And considering the disparate array of web browsers,
this is not the least of requirements.

2 After converting my quotes-and-invoices consulting tem-
plates to LATEX, I was glad of the result, but I wanted my
other team members to be able to make these PDF documents
without them having to install gigabytes of additional soft-
ware, or me having to support them for managing missing
CTAN packages.

Yoan Tournade

https://cocalc.com
https://mathjax.org
https://latexbase.com

TUGboat, Volume 41 (2020), No. 2 177

3.1 HTTP: the web lingua franca

The HTTP API is an important part of the solution;
it gives us several desirable properties:

• as HTTP is ubiquitous in modern applications,
the service is accessible from most of the techni-
cal stacks: no more need for complex runtime
requirements, a simple HTTP client suffices;

• the HTTP protocol is well-known to most devel-
opers;

• it clearly advertises the solution as intended for
automation and integration.

LaTeX-on-HTTP is not the first solution to put
the LATEX stack behind an HTTP API,3 but it may
be the first designed with developers as first-class
users.

3.2 Hello world: specifying a compilation
job with JSON

Let’s now present how to use the LaTeX-on-HTTP

for compiling documents in applications.
The following JSON4 code is sent in a POST

HTTP request to the /builds/sync endpoint:5

{

"compiler": "lualatex",

"resources": [

{

"main": true,

"content": "\\documentclass{article}

\\usepackage{graphicx}

\\begin{document}

Hello World

\\includegraphics[width=5cm]{logo.png}

\\end{document}"

},

{

"path": "logo.png",

"url": "https://www.ytotech.com/static/

images/ytotech_logo.png"

}

]

}

(The line break in the url value is editorial.)
This request will return a PDF file if the com-

pilation succeeds. If there is an error, the API will
return a JSON payload including the compiler logs.

3 ShareLaTeX/Overleaf’s CLSI (github.com/
overleaf/clsi) and Andrey Lushnikov’s LaTeX-Online
(github.com/aslushnikov/latex-online) are significant
open source precedents.

4 JSON (json.org) has become a dominant force in data
serialization languages in web applications and APIs, rivaling
or surpassing XML.

5 You can easily try a similar example on the command
line of your computer by using curl. A snippet is available
on the project page: github.com/YtoTech/latex-on-http.

As we can see, we pass two main things to the
LaTeX-on-HTTP endpoint:

• a set of resources — or source files — to be com-
piled, with the path specified for each;

• the engine selected — and other potential op-
tions — to control the compilation environment.

We may also remark that we can use different
means to transfer the resources to be compiled: here,
by passing the string content directly, or by provid-
ing a url pointing to a file. We can imagine and
provide several other ways, for convenience and for
supporting various use cases.

It is essential to normalize as much as possible
the LATEX compilation job input for ensuring the
reproducibility of the process and to provide further
capabilities, such as caching of input resources or
output documents.

3.3 Real-life example: editing a letter

A developer can use this API to construct a real-life
application. Let’s say our developer wants to edit
a personal letter from a bank IT system, notifying
customers of their account opening. Using Python as
our language, the code could look like the following:

Open and read the template LaTeX file.

with open("opening-letter-template.tex") as f:

template_str = f.read()

Replace the dynamic content.

template_str = template_str.replace(

"<<letter-title>>, "Your account...")

template_str = template_str.replace(

"<<letter-body>>, "Dear Mr...")

Loads a binary image file.

with open("duck_logo.png", "rb") as f:

logo_binary = f.read()

Convert to base64.

logo_b64 = base64.b64encode(

logo_binary).decode("utf-8")

Generate the PDF file,

using an HTTP client (requests).

r = requests.post(

"https://latex.ytotech.com/builds/sync",

json={

"compiler": "pdflatex",

"resources: [

{

"main": true,

"content": template_str

},

{

"path": "logo.png",

"file": logo_b64,

},

LaTeX-on-HTTP: LATEX as a commodity web service for application developers

https://github.com/overleaf/clsi
https://github.com/overleaf/clsi
https://github.com/aslushnikov/latex-online
https://json.org
https://github.com/YtoTech/latex-on-http

178 TUGboat, Volume 41 (2020), No. 2

]

}

)

Save the PDF output.

with open("opening-letter.pdf", "wb") as f:

f.write(r.content)

In this example, the string interpolation is man-
aged directly with Python: the templating could
have been done with LATEX tools, but it is easier
and faster for our developer to inject the dynamic
content in his main programming language.6

We can also note that we used another resource
transfer mechanism: the local image file is passed as
a binary object (with a base64 encoding required by
the string-based JSON API).

From this simple base example, our developer
can easily inject his application data in the letter to
be edited; he can then take the resulting generated
PDF to return it in a web page, in his own application
API and/or to save it in a persistent storage system
for later use.7

4 The road ahead

LaTeX-on-HTTP is still a project in development; it
must be enhanced to meet more developers’ needs
and use cases. We have already received excel-
lent feedback, but we actively encourage and need
prospective users to try it and let us know their
observations and feelings.

Several subjects have been left aside in this intro-
ductory paper — or are still not properly dealt with
by the current LaTeX-on-HTTP implementation:

• providing an asynchronous compilation endpoint;

• bringing alternative output modes to the PDF

binary, like DVI for advanced uses or PDF.js
(mozilla.github.io/pdf.js) for universal web
embedding;

• securing and isolating the compilation jobs;

• advanced and reliable run configurations;

• caching output documents for dealing with du-
plicated jobs;

• caching input resources for minimizing band-
width usage;

• discovering and managing the instance capabili-
ties (fonts, packages, etc.).

In addition, to further aid adoption and reduce
the time to first interaction, library wrappers and

6 In a more complex case, we could have used a dedi-
cated templating engine, such as Jinja2 (github.com/pallets/
jinja). For more about combining LATEX and Python, see [7].

7 Complete demo code can be found for Python at
github.com/YtoTech/talk-TUG2020-LaTeX-on-HTTP and in
JavaScript at github.com/YtoTech/latex-on-http-demo.

utilities need to be provided for the popular program-
ming languages.

The next important work, however, is not in
further development but rather writing high-level
documentation and presentation material.

5 Conclusion

By bringing the runtime requirement to use LATEX
to a familiar HTTP API, we remove the main friction
preventing developers from adopting LATEX in their
applications for PDF document creation.

To bolster the prospective success of LATEX and
LaTeX-on-HTTP as a reference solution for devel-
opers, we must address the cultural glass wall and
knowledge barriers by:

• publicizing this usage of LATEX in web applica-
tions and IT systems with ready-to-use demon-
stration code and libraries;

• publishing attractive documentation and presen-
tations of the LaTeX-on-HTTP API.

Only then can we hope to see better typeset
PDF documents in our daily applications as a result.

References

[1] G. Aye. Introducing LaTeX Base. TUGboat
37(3):275–276, 2016. https://tug.org/TUGboat/

tb37-3/tb117aye.pdf

[2] S. Lang, A. Schmölzer. Noob to Ninja: The
challenge of taking beginners’ needs into account
when teaching LATEX. TUGboat 40(1):5–9,
2019. https://tug.org/TUGboat/tb40-1/

tb124lang-newbie.pdf

[3] P. Lupkowski. Online LATEX editors and other
resources. TUGboat 36(1):25–27, 2015. https:

//tug.org/TUGboat/tb36-1/tb112lupkowski.pdf

[4] H. Snyder. SageMathCloud for collaborative
document editing and scientific computing.
TUGboat 38(1):44–47, 2017. https://tug.org/

TUGboat/tb38-1/tb118snyder.pdf

[5] B. Veytsman, L. Akhmadeeva. TEX in the GLAMP
world: On-demand creation of documents online.
TUGboat 31(2):236–239, 2010. https://tug.org/

TUGboat/tb31-2/tb98veytsman-glamp.pdf

[6] B. Veytsman, M. Shmilevich. Automatic report
generation with Web, TEX and SQL. TUGboat
28(1):77–79, 2007. https://tug.org/TUGboat/

tb28-1/tb88veytsman-report.pdf

[7] U. Ziegenhagen. Combining LATEX with Python.
TUGboat 40(2):126–128, 2019. https://tug.org/

TUGboat/tb40-2/tb125ziegenhagen-python.pdf

� Yoan Tournade
Soubeyrac
Le Laussou, 47150 France
y (at) yoantournade dot com

https://yoantournade.com

Yoan Tournade

https://mozilla.github.io/pdf.js
https://github.com/pallets/jinja
https://github.com/pallets/jinja
https://github.com/YtoTech/talk-TUG2020-LaTeX-on-HTTP
https://github.com/YtoTech/latex-on-http-demo
https://tug.org/TUGboat/tb37-3/tb117aye.pdf
https://tug.org/TUGboat/tb37-3/tb117aye.pdf
https://tug.org/TUGboat/tb40-1/tb124lang-newbie.pdf
https://tug.org/TUGboat/tb40-1/tb124lang-newbie.pdf
https://tug.org/TUGboat/tb36-1/tb112lupkowski.pdf
https://tug.org/TUGboat/tb36-1/tb112lupkowski.pdf
https://tug.org/TUGboat/tb38-1/tb118snyder.pdf
https://tug.org/TUGboat/tb38-1/tb118snyder.pdf
https://tug.org/TUGboat/tb31-2/tb98veytsman-glamp.pdf
https://tug.org/TUGboat/tb31-2/tb98veytsman-glamp.pdf
https://tug.org/TUGboat/tb28-1/tb88veytsman-report.pdf
https://tug.org/TUGboat/tb28-1/tb88veytsman-report.pdf
https://tug.org/TUGboat/tb40-2/tb125ziegenhagen-python.pdf
https://tug.org/TUGboat/tb40-2/tb125ziegenhagen-python.pdf

	Introduction
	Why LaTeX is uncommon in modern applications for PDF creation
	Technical barriers: the not-so-accessible LaTeX runtime
	Cultural glass walls: mental buckets of use cases
	Imperfect knowledge bases: learning by copying

	Introducing LaTeX-on-HTTP
	HTTP: the web lingua franca
	Hello world: specifying a compilation job with JSON
	Real-life example: editing a letter

	The road ahead
	Conclusion

