188

Typesetting product catalogs and other
database-driven documents with the
speedata Publisher

Patrick Gundlach

Abstract

The speedata Publisher is a database publishing
system based on LuaTgX. Although it is a fully
commercial-driven development, it is available under
an open source license (AGPL). The main goal of
the speedata Publisher is to provide the high quality
of TEX’s typesetting output while fulfilling the needs
of database publishing. The speedata Publisher im-
plements its own language for defining layout rules.
This language is inspired by HTML, XSL and CSS,
and specializes in layout generation and excels in
optimizing layout such as rearranging objects on the
page, whitespace optimization, copyfitting and other
means.

LuaTgX has the ability to manipulate and build
the internal data structure that TEX uses to assemble
the pages and to break paragraph into lines. It
provides an extremely powerful environment for non-
standard typesetting tasks by allowing all necessary
steps to be done programmatically while still falling
back to TEX’s algorithms.

1 Introduction

IXTEX is great if you want to write articles or books.
But how about if you want to publish product cata-
logs or data sheets? Is TEX still the tool of choice?

Normal text vs. data from databases

Product catalogs and similar documents are at best
created from data stored in a database. But what
distinguishes normal text from data retrieved from
databases?

Texts in a TEX document could look like this

The quick\footnote{yes, really quick} brown
fox jumps...

while data from the database has a rather schematic
structure:

<productdata>
<articlegroup
name="interior lights"
number="123">
<article number="123-12345">
<propertyl>...</propertyl>
<property2>...</property2>
</article>
<article number="123-12346">
<propertyl>...</propertyl>
<property2>...</property2>
</article>

Patrick Gundlach

TUGDboat, Volume 41 (2020), No. 2

</articlegroup>
</productdata>

Data processed in such systems is almost ex-
clusively formulated in XML, regardless of how it is
stored on disk. Textual descriptions are generally
stored either as plain text or as HTML formatted
text, rarely as Markdown formatted text.

A fundamentally different approach is therefore
necessary to process data from databases. The pro-
cessing of documents is no longer linear, i.e. from
‘top to bottom’. Instead, the data must be assembled
according to a logic that differs from application to
application. From the data above, it is not possible
to see how it should be represented. Whether it is
intended to be typeset as a table, a nicely designed
page with several products, or as a data sheet — this
cannot be seen from the data alone.

1.1 Strict separation of data and layout

Apart from a few exceptions, no information about
the appearance is found in the data. While the strict
separation is in theory a good concept, it makes
the typesetting part much harder. Sometimes the
separation is even impossible to maintain. For exam-
ple: when having a full page background image and
text to be placed in a good position, you need some
information coming from a human decision.

So how do you arrange the data on a page? Ac-
cording to which rules must the elements be placed?
To get to the solution, it helps to look over the shoul-
der of a graphic designer when creating a document
(e.g., a product catalogue). Professional graphic de-
signers work according to rules: How is a catalog
structured? Which products should be displayed in
which way? How many products fit on one page?
Which colors and fonts are used? Where is a page
break inserted?

The same rules are usually applied when filling
the pages, even if pages often look very different. If
you can manage to write these often formal rules in
text form or in a programming language, you are
often already very close to the goal.

1.2 Software used for product catalogs

Adobe InDesign is certainly the software most often
used to create documents with non-linear layout. It
is professional desktop publishing software for Win-
dows and Mac. This very powerful program has
excellent graphic qualities and can be automated by
plugins. There is also QuarkXPress, which works
similarly. However, these programs have limitations
in automation. In practice, these programs usually
work by using a database interface and page tem-
plates to fill pages. When finished, the pages need

TUGDboat, Volume 41 (2020), No. 2

to be finalized via a tedious manual process. This
workflow is suitable for documents that change only
occasionally, but quickly reaches its limits if the data-
base changes very frequently or if documents are to
be generated fully automatically.

1.3 TEX as an alternative?

For the readers of TUGboat, the question is of course
how far TEX can be used here. The advantages of
TEX are well-known to us:

e Full automation. You can set up the process so
that a document is generated at the push of a
button or at a given time.

e Free software. No dependence on proprietary
software. TEX can be used on any number of
computers without any additional license fees.

e High output quality. We all know that TEX’s
line breaking algorithm is superb.

e High speed. TEX can output up to 300 pages
per second on my old 2015 laptop with almost
no startup time. (Less than that with more
complex documents and lots of fonts.)

A few difficulties remain, however:

e XML encoded in UTF-8 as input format. TEX is
neither made for XML input nor for UTF-8 pro-
cessing. LuaTEX allows more than 256 glyphs
in a font, so that helps significantly. Since April
2018 KTEX defaults to UTF-8 input, so this part
is getting better.

e Assembling the data. As seen, the input is not
linear. You have to go back and forth within the
data and fetch data from different XML elements
in the input.

e Output of HTML sources. Text in database pub-
lishing is usually stored as plain text or as HTML
fragments. To render HTML, a CSS+HTML
parser is needed.

e Optimization of pages. Many applications de-
mand some kind of whitespace optimization such
as adding images to the page until the text com-
pletely occupies the space. Other applications
require, for example, reducing the text size until
the text fits on one page (copyfitting).

2 speedata Publisher

I have developed the speedata Publisher precisely
for the purpose of non-linear documents with high
demands for layout flexibility. It is open source soft-
ware based on LuaTEX. You can download it from
the homepage [1] and use it immediately without any
further installation of dependencies (not even TEX
is required; it is included in the ZIP file). A compre-
hensive manual [2] describes in detail how to use the
software.

189

data layout

output

In addition to the data, which must be avail-
able in XML format, the layout instructions are also
formulated in XML. This has several advantages.

e You stay in the XML environment, which is
required for handling the data anyway.

e With a schema, editing XML in a text editor is
also fun.

e You see syntax errors immediately.

e XML can be easily created and transformed from
programs.

2.1 The speedata layout language

Since the data can be structured in any way, the
layout language must be very flexible. It must also
be possible in the layout files to formulate and eval-
uate the above-mentioned design rules. Supporting
queries to the data is necessary, such as: how wide
has the object become? Is there still enough space
on the page?

Existing layout or formatting languages do not
allow such flexibility. (X)HTML has no programming
support, XSL has no knowledge of layout, CSS is
fine for output, but has only limited programming
abilities. XSL-FO is rigid in its output and has no way
to respond to dynamic queries. In this respect, the
layout language is a mixture between the languages
mentioned here.

2.2 Hello, world

In the following sections I would like to give a small
insight into the layout language. The classic “Hello,
world” example serves as an introduction to speedata.

In database publishing the input usually consists
of two files: the data file and the layout file. I ignore
images and font files for now.

The data file in the “Hello, world” example
consists of one line:

<greeting>Hello, world!</greeting>

Typesetting product catalogs and other database-driven documents with the speedata Publisher

190

This file must be saved in an otherwise empty
directory under the name data.xml.

The layout file (layout.xml) is rather larger,
and looks scarier than it really is (the arrow indicates
an editorial line break):

<Layout
xmlns="urn:speedata.de:2009/publisher/en"
xmlns:sd="urn:speedata:2009/publisher/ ~
functions/en">
<Record element="greeting">
<PlaceObject>
<Textblock>
<Paragraph>
<Value select="."/>
</Paragraph>
</Textblock>
</PlaceObject>
</Record>
</Layout>

If you have the speedata Publisher installed, you
can run the command sp to create a PDF file.

The processing starts at the root node in the
data file. In this case it is the element <greeting>.
It sets the “focus” to this element so you can access
it from the layout file. The software now looks for an
entry point in the layout file (<Record>) and executes
every command that is found within this <Record>
element. In this example, a text block is output for
the current element. The <Value> uses the dot (.) to
select the contents of the current focussed element in
the data file, in this case just the text “Hello, world”.
The dot is a so-called XPath expression with which
you can select data. A more detailed description
of the “Hello, world” example can be found in the
manual [3].

2.3 Dynamic layouts

To enable dynamic layouts, the speedata layout lan-
guage has programming options such as loops and
variables and the ability to query the appearance of
the page and objects that are put in virtual areas.
Together, these have enough expressiveness to im-
plement complex layout requirements. As with TEX,
you can put any objects into a virtual area which is
not output in the PDF. In TEX this is called a box;
here it is called a group. For example, to compare
the width of a group to the size of the page and act
on the outcome of the comparison:

<Switch>
<Case test="sd:group-width(’mybox’) > /
sd:number-of-columns () ">
<!-- too wide, recalculate —-—>
</Case>

Patrick Gundlach

TUGDboat, Volume 41 (2020), No. 2

<0Otherwise>
<!-- great, fits on the page -->
<PlaceObject groupname="mybox" />
</Otherwise>
</Switch>

The requirements in practice are of course much
more complex. Interestingly, however, a few building
blocks are sufficient to create complex layouts. Many
functions in speedata Publisher fall into the category
syntactic sugar, i.e. not strictly necessary but helpful
constructions. For example, an image file can be
specified as a fallback for image output:

<Image file="myfile.pdf"
fallback="placeholder.pdf" />

This could also be written in a different way:

<SetVariable
variable="filename"
select="’"myfile.pdf’" />
<Switch>
<Case test="sd:file-exists($filename)">
<Image file="{ $filename }"/>
</Case>
<Otherwise>
<Image file="placeholder.pdf"/>
</Otherwise>
</Switch>

2.4 Grid typesetting

Objects can be placed anywhere on a page or in a
grid. Grids can be any size and define a coordinate
system that helps in placing objects automatically
and ensuring that no object overlaps any other.

<Layout xmlns="urn:speedata.de:2009/
publisher/en"
xmlns:sd="urn:speedata:2009/publisher/ v~
functions/en">

<SetGrid height="12pt" nx="10"/>
<Trace grid="yes"/>
<Pageformat width="8cm" height="4cm"/>

<Record element="data">
<PlaceObject column="3" row="2">
<Textblock>
<Paragraph>
<Value>Hello world!</Value>
</Paragraph>
</Textblock>
</PlaceObject>
</Record>
</Layout>

TUGDboat, Volume 41 (2020), No. 2

Hello world!

Using a grid has several advantages:

e Every object allocates an area on the page. It
is easy to check how big this area is.

e Objects that are placed on a grid cannot overlap,
unless forced to. The system moves the object
to the next free space.

e It is easy to achieve typesetting on a grid just
by letting the output start at a new grid row.

Of course not everything can be placed within a
grid. Logos or background images for example need
to be placed at absolute positions:
<l-- grid -->
<PlaceObject row="4" column="5">

<Image file="_samplea.pdf" width="5"/>
</PlaceObject>

<!-- absolute -—>

<PlaceObject row="12mm" column="5cm">
<Image file="_samplea.pdf" width="5"/>

</PlaceObject>

2.5 Other features

The speedata Publisher has many, many features.
Here, I'd like to highlight just a few of them.

Accessibility It is possible to attach logical struc-
ture to the texts placed in the PDF so it can be
PDF/UA (Universal Accessibility) compliant.

HTML input The speedata Publisher comes with
a CSS+HTML parser that lets you typeset doc-
uments written in HTML as they would look in
a browser.!

Master pages Page templates, including logos and
other static and dynamic information, can be
defined together with arbitrarily complex con-
ditions for when the page will be chosen by the
software.

Page areas You can define areas on the page to let
text flow from one area to the next area. This
is used in magazine typesetting.

HTTP assets Images and all other resources can
be loaded on the fly from the web. This makes it
easy to use digital asset management software.

1 This feature is under development, so not all aspects are
implemented yet.

191

Image wrapping Images can be (automatically)
enriched with information about where text can
wrap around the image. The paragraph shape
is calculated automatically.

Advanced tables The speedata Publisher does not
use any of TEX’s table code. It ships with its
own table model, which is inspired by HTML
and supports static and dynamic headers and
footers, controllable page breaks, running totals,
complex table cell backgrounds and much more.

Server mode Included in the Publisher is a REST
API that listens for incoming HTTP requests
to start publishing runs. This makes it easy to
build a server infrastructure for typesetting jobs.

Strong quality assurance There are more than a
hundred documents that are automatically com-
pared before making changes to the software, so
we can be assured old documents will be typeset
without changes in future versions.

3 speedata and LuaTgX

As mentioned above, LuaTEX is used as the backend
for speedata. Almost all parts of the speedata Pub-
lisher are written in Lua. No code from the plain,
ConTEXt or BTEX formats is used. There is a tiny
TEX wrapper that jumps directly into the Lua mode,
which does all the processing.
\catcode‘\{=1 \catcode‘\}=2
\directlua{require("publisher.spinit")}
\end

All other functions are at the Lua level. These
are, for example
Parse the XML files (data and layout)
Read in all images and font files
Execute the program statements in the layout
Assemble the data structures for TEX

. and much more

Some of the routines are written in the pro-
gramming language Go and included as a library
at runtime. This library handles the loading of re-
sources via HTTP (including caching) and parsing
of HTML and CSS files. It was easier to use existing
libraries for these tasks than to rewrite them in Lua
from scratch.

3.1 TEX without \TEX

If no input comes in the form of TEX code, how is
LuaTgX able to typeset text and place other objects
into the PDF?

TEX normally reads the files with the macro in-
structions (e.g., \section) and stores the contents as
so-called nodes after some processing. These are the
smallest data units, which store e.g. a character or a

Typesetting product catalogs and other database-driven documents with the speedata Publisher

192

glue. With these data units everything that is visible
in the output (along with some other technical infor-
mation) is represented. These data structures can
then be used to create DVI or PDF output. Thanks
to LuaTEX, these nodes can also be created and ma-
nipulated in Lua. Thus, the main part of the Lua
program code consists of generating such nodes from
the input data and the instructions of the layout file.

Node lists are linked lists of single nodes, which
can also contain lists themselves. For example, the
content of a horizontal box \hbox{...} is a list and
the box itself can be part of another list. Each
node consists of different fields, depending on what
is stored. For example, the character “H” could be
represented as a node as follows.

type: glyph
char: 72

font: 1

lang: 2

prev [next

Such a character could easily be created with
the following Lua commands (the double dash -- is
a Lua comment):

h = node.new("glyph")
-- 72 is the ascii code for H

h.char = 72
h.font =1
h.lang = 2

You can chain the nodes by, for instance, setting
the prev and next pointers:

-- as above

e = node.new("glyph")

e.char = 101; e.font = 1; e.lang = 2
h.next = e

e.prev = h

type: glyph type: glyph
char: 72 char: 101
font: 1 font: 1
lang: 2 lang: 2
prev | next prev | next

In this way, entire nodelists can be generated.

glyph | | glyph || glyph | | glyph || glyph glue
H e | | 0

(space)

glyph || glyph || glyph || glyph || glyph | |penalty| | glue glue
(parfill- | | (right-

w 0 r | d skip) skip)

We are close to a nodelist that can be used for
output. Three things are missing from a “perfect”
paragraph:

Patrick Gundlach

TUGboat, Volume 41 (2020), No. 2

1. hyphenation
2. kerns
3. ligatures

Hyphenation: there is a Lua function for TEX’s
hyphenation routine: long.hyphenate(nodelist).
When called, LuaTEX changes the nodelist and in-
serts the so-called discretionaries that signal a hy-
phenation point.

Kerns and ligatures: there are two very helpful
routines that add ligatures and kerns to the nodelists:
node.ligaturing(nodelist) for ligatures, and for
kerns node.kern(nodelist). The former replace
some glyph nodes with ligatures, so that they can
be dissolved again when a word is hyphenated. The
latter inserts small (often negative) spaces between
glyphs. Regarding ligatures, one can argue whether
it is still appropriate to do this via the TEX mecha-
nism. OpenType fonts often contain other ligatures
that would have to be translated for TEX’s ligature
mechanism. Furthermore, libraries like HarfBuzz
offer much more powerful functions for ligatures.

If hyphenation, kerns and ligatures are inserted,
you can use

tex.linebereak(nodelist, parameter)

to create a paragraph broken by TEX. The param-
eters specify the values for paragraph settings like
emergencystretch or linepenalty but also the para-
graph style (parshape). The result is a vertical box
with single lines in horizontal boxes.

3.2 Output of nodelists

After nodelists have been assembled, they can be out-
put. The speedata Publisher collects all material for
the pages and outputs it in one go. tex.shipout (n)
outputs the TEX box with the number n:

nodelist = node.vpack(nodelist)

tex.box[1234] = nodelist

tex.shipout (1234)

Before output, structural elements may have
to be written to the PDF for PDF/UA. To do this,
the content of the page is analyzed and a PDF ob-
ject structure is written to the PDF for accessibility
purposes.

3.3 Fonts and languages

In the example above, we just used some dummy val-
ues for ‘font” and ‘lang’. Usually TEX loads the font
files or language patterns with \font and \patterns.
The speedata Publisher has its own routines for
both to allow UTF-8 input, similar to fontspec and
luaotfload for KTEX.

A new language can easily be loaded in LuaTEX:

TUGDboat, Volume 41 (2020), No. 2

local 1 = lang.new()

1l:patterns(pattern)

local id = 1:id()

Here pattern is the content of a pattern file.
Loading a new font is a bit more complicated.

The FontForge library that is part of LuaTEX is used

to get information about (OpenType) fonts. An

alternative routine based on HarfBuzz is planned,

which is part of LuaTEX (under the name luahbtex)

since the last TEX Live release.

font, err = fontloader.open(filename_with_path)

fonttable = fontloader.to_table(font)

fonttable now has all font properties in an
extensive table, which can be made available to TEX:

local f = { }

f .name = fonttable.fontname
f.fullname = fonttable.fontname
f.designsize = size

f.size = size

f.direction =0

f.filename = fonttable.filename_with_path
f.type = ’real’

f.characters = {
-- code for all glyphs in a font
}

-- define the font:
fontid = font.define(f)

You can use the font id in the nodelists above.

3.4 PDF specials

The PDF contains a lot more information than that
which is visible at a first glance. For example, book-
marks, hyperlinks, document structure for accessi-
bility, attached documents for electronic invoices
are elements that need to be written into the PDF.
Thanks to pdfTEX and the API in LuaTgX, this is
an easy task once the required syntax for these PDF
objects are known. They can be written to the PDF
as follows:

pdf.obj(...)

This function has several different parameters
that allow compressed or uncompressed text or data
to be written as a simple or a stream object.

There are also visible objects that cannot be
created with TEX’s graphics routines. Colors, trans-
parency, shades and other objects need to be writ-
ten with PDF drawing instructions. For example,
the borders in the following picture need to drawn
with instructions such as 0 0 m 1 5 1 which means
“move to position (0,0) and draw a line to (1,5)”.

193

There are operators to draw lines and Bézier curves,
fill paths, clip contents from inside and outside of
given areas and many other drawing operators.

These operations can be inserted into the PDF
by whatsits:

n = node.new("whatsit","pdf_literal")
n.data ="00m15 1"

and then insert this whatsit into the nodelist (output
grayscaled for TUGboat):

order

4 Outlook and conclusion

Of course I can only scratch the surface in this ar-
ticle. LuaTEX and also the speedata Publisher are
two very powerful pieces of software. As can be seen,
the speedata Publisher would not be possible in this
way without LuaTEX. There is no need to under-
stand TEX’s macro language to use TEX, even for
the programmer.

The speedata Publisher is in active development
since 2009. I have a lot of plans for the future de-
velopment (such as HarfBuzz integration), but the
(paying) customers are the ones who drive most de-
velopment of new features.

I’d like to invite you to try out the software, ask
questions, look at the showcase on the homepage or
just browse the manual for inspiration.

To close with Donald E. Knuth’s words: Go
forth now and create masterpieces of the publishing
art!

References

[1] speedata homepage.
https://www.speedata.de.

[2] speedata manual. https://doc.speedata.de.

[3] “Hello, world” example in speedata manual.
https://doc.speedata.de/publisher/en/
helloworld/.

o Patrick Gundlach
speedata GmbH
Odilostrafle 43
13467 Berlin
Germany
gundlach (at) speedata dot de
https://www.speedata.de/

Typesetting product catalogs and other database-driven documents with the speedata Publisher

https://www.speedata.de
https://doc.speedata.de
https://doc.speedata.de/publisher/en/helloworld/
https://doc.speedata.de/publisher/en/helloworld/

	Introduction
	Strict separation of data and layout
	Software used for product catalogs
	TeX as an alternative?

	speedata Publisher
	The speedata layout language
	Hello, world
	Dynamic layouts
	Grid typesetting
	Other features

	speedata and LuaTeX
	TeX without \TeX
	Output of nodelists
	Fonts and languages
	PDF specials

	Outlook and conclusion

