
TUGboat, Volume 41 (2020), No. 2 157

Your personal LATEX bookshelf: Improving
your background in a time of lockdown

Peter Flynn

Abstract
This paper describes the development of a LATEX
package to create a bookshelf image from a BibTEX
file, suitable for use as a background for a video call
in Zoom, Skype, or similar. Each entry is typeset as
the spine of a book with title and author, using a
randomly-selected font, color, and size. The paper
describes the problems of random choice with both
fixed-length and [potentially] endless lists, and the
algorithm used to fit the author and title onto the
spine. The package is available as bookshelf on CTAN
for inspection and testing.

Background (literally)
It started on Twitter, when several people were com-
menting on the way people appeared when suddenly
faced with having to do a Skype or Zoom video call
during the COVID-19 lockdown. Apart from the
lack of a camera crew, makeup team, sound crew,
and production control, there were a lot of hastily-
cleared walls, bookcases, window-ledges, and even
whole rooms on view behind the talking head.

In particular, people who read and write, par-
ticularly academics, have lots of bookcases with lots
of books, often in a state of considerable disarray.
This doesn’t look good — people may laugh about
notoriously untidy professors, but when you need
to sit up and be interviewed about epidemiology, or
seroprevalence, or the 1918 influenza pandemic, you
need to look calm and professional, and that jumble
of books doesn’t cut it.

It suddenly dawned on me that in the BibTEX
users’ environment, we have title and author for prac-
tically everything we have ever cited — somewhere.
What was needed was a virtual bookcase, an image
generated from life’s collection of reading.

Publishers do keep images of their books, but
usually the front cover, not the spine; and even so,
they would not be available to the public, nor would
they ever be in a sensible, uniform location on their
web sites. No, it would need to be random: a random
color for background and font; a random font from
the huge range available to TEX users; and a random
height and width of spine. In fact the only non-
random data available would be the BibTEX entries,
and rather than sort them, the order could be left
to the user.

‘Actually it turns out to be rather easy, but it would need
an algorithm for colour-pairing, and a few assorted layouts
for title an author. But basically, it works.’ (May 1st)

Figure 1: First pass

Start-up
In the traditional Internet ethos of ‘rough consen-
sus and running code’ it didn’t take too long to
come up with a proof-of-concept, which I ran past
@latex_ninja, @damienmulley, and a few of the
usual suspects (Figure 1).

By this time the requirements were becoming
more apparent:
Randomness There needed to be a way to generate

random values to select at least five aspects:
a) colors (font and background); b) height and
width; and c) font (well, typeface).

Data The need for selection meant that LATEX some-
how had to be provided with a list of available
typefaces and available colors, and that minima
and maxima for the book spine height and width
needed to be set; and that those would need to
be floating-point (lengths) whereas the font and
color selection would need to be integer.

Color-pairing It was clear from early on that just
picking two random colors was a recipe for con-
flict. What was needed was a way to say if one
color was sufficiently in contrast with the other
one to be legible.

Format It would be nice if there was some variation
in spine layout, rather than having all the books
look the same.

Your personal LATEX bookshelf: Improving your background in a time of lockdown

158 TUGboat, Volume 41 (2020), No. 2

The randomness was easily fixed with Donald Arse-
neau’s wonderful random package, which can gener-
ate both random integers and random dimensions.

However, if this was to deal with anyone’s Bib-
TEX files, some way to deal with character encodings
would be needed, some way to overcome the assorted
weirdnesses of old bibtex .bst files, and some way to
choose from the user’s installed fonts. That most use-
ful of devices, Occam’s Razor, was employed: UTF-8
only, X ELATEX only, using biblatex and biber. I’ve
been using this method for a couple of years now, and
while I’m aware of the need for more development,
it works for me, and the time has probably come to
put the old .bst system out to grass.

Implementation
A shell script was created that extracted all en-
try keys from the user’s BibTEX file and formatted
each as a command to call the \makebook command,
which the class defines to handle one entry. This can
be \input by the user’s document.
cat "$BIBFILE" |\

grep '^@' |\
grep -viE '(@Preamble|@String)' |\
awk -F\{ '{print $2}' |\
awk -F, '{print "\\makebook{" $1 "}%"}' \

>entries.tex

That left basically three main actions: pick a font,
pick the colors, and size the spine.

Font selection LATEX has no way to create a list
of installed fonts. Operating systems provide this
information, so an external preprocessor was going
to be needed. A TEX \ifcase structure was con-
sidered, but the number of installed fonts on many
systems would be too large. The method chosen
was to create a set of files numbered 1.tex, 2.tex,
etc., in a subdirectory, each one containing a font
selection command. The numbering is easily scripted
on Unix-like systems (including GNU/Linux and Ap-
ple macOS) by using fc-list and the standard text
utilities to create the files, simply numbered in order
of occurrence.

The final action is to place a command setting
the maximum bound for the random choice into
another file that gets \input. Selection can then be
done with \setrannum between 1 and the maximum,
and then using \input to execute the font selection.

Colors In the case of colors, there is again a theoreti-
cal infinity of choice. However, practicality suggested
one of the named palettes in the xcolor package, and
svgnames was chosen as a representative sample. It
also had the advantage of being small enough to
be instantiated as an \ifcase structure. Extending

the script was straightforward to extract the color
names from svgnam.def and write the \ifcase into
a file that can be \input. As with font selection,
\setrannum is used to pick a number to apply to
the \ifcase for the background, and again for the
foreground.

Height and width Random dimensions sounded
fine, but needed taming: for any given length of title
and author, a certain amount of space is needed. In
LATEX, this tends to be like the choice of column type
in a tabular environment: left, right, and center only
handle single lines of data: for longer data you need
a paragraphic cell. So long titles need to be allowed
to wrap naturally in a \vbox, whereas shorter ones
don’t, so this is going to affect how much width and
height is needed. The starting-point was a height
and width set with \setrandimen between 5–20mm
wide and 70–110mm high.

In addition, an alternative layout was created:
author name across the top, rather than run-in with
the title. The sizing algorithm was therefore:

1. an author name shorter than the randomly-
chosen width of the spine would be typeset hor-
izontally across the width of the spine, at the
top, and its height deducted from the randomly-
chosen height of the spine;

2. measure the width of the typeset title (or the
title and author, joined by an em dash);

3. if the result was longer than the available height,
typeset the title (and author, if needed) into a
box of width at the available height in ragged-
right mode so that it will run naturally to as
many lines as needed;

4. measure the height of that box and if neces-
sary increase the chosen width of the spine to
accommodate it.

Theoretically you could then cycle round and see
those that affected the choice of where the author
was typeset, but this was felt to be a step too far for
an initial solution.

Adjustments
One immediate problem was known — colour clash or
brightness and contrast in pairing — but its effect was
not apparent until a large bookshelf was created. A
workable solution is due to Nir Dobovizki [1], which
proposes the formula

brightness =
√
.241r2 + .691g2 + .068b2

where r, g, and b are the red, green, and blue values
expressed as integers between 0 and 255.

Code to compute this was added to the script
so that color selection and brightness selection could

Peter Flynn

TUGboat, Volume 41 (2020), No. 2 159

‘Fixed the colour-pairing and random font selection and
picked two layouts. Basically working but needs more test
data. Thid is my thesis bibliography’ [sic] (May 16th)

Figure 2: Working solution

be done in parallel, and a clash rejected, within a
loop. By inspection of the gamut, the approximate
location of the median brightness value appeared to
be 0.7, so the code ensures that each of the two colors
chosen falls either side of this value. A notional value
of 10 was used for regulating loop exit, after which
the current values are used regardless; this appears
to be sufficient.

This created a working solution (Figure 2), but
left an unresolved issue: the data-preparation script
was including all TTF and OTF fonts regardless of
their type, whereas it needed limiting to text type-
faces with a Latin register (that is, excluding math,
symbols, and display fonts). In addition, on the au-
thor’s system, some directories of older, experimental,
and test fonts needed to be excluded.

Some inspection and experimentation showed
that a reasonable list could be created by excluding
any font name with a match in a regular expression
containing suitable strings:
(Bitmap|Emoji|Dingbats|Jazz|STIX|dings|
Symbol|Numeric|DIN|Ornament|OCR|CJK|
Awesome|Dummy|Math)

A cyclical pattern of test-as-you-go had been estab-
lished, and I am grateful to the numerous people
who sent me their thesis BibTEX files. One late addi-
tion was to shade the background to a dark color for
the inside of the bookshelf, and to color the shelves
themselves a pale cream, for which I used a technique
suggested by Ulrike Fischer [2].

The final stage, left to the user, is to convert the
PDF to image format. The default size is a landscape
A0 page, which is huge, but accommodates a few
hundred volumes. It shrinks well to a screen size.

Conclusions
The most recent step was to put the package on
CTAN and see if there were suggestions (none so far).
By this time a number of helpful suggestions had
been received, and offers of testing were accepted.
By May 24 I was able to report on Twitter:

May 24 • Replying to @latex_ninja
@TeX4Publication @erdmaennchen42 It has
just been uploaded to CTAN. Thank you.

What could be done better?
• The script works in bash (Linux) and zsh (Mac).

It needs extending to Windows (cygwin? Power-
shell?);

• The colors currently are too bright on-screen,
although reportedly OK for printing: perhaps
the color selection algorithm needs revising;

• Some more spine layouts would be interesting,
as would more bookshelf layouts: books at an
angle, or stacked horizontally;

• Can something from the biblatex field selection
provide for a place to store color, font, layout,
and size as one would for bibliometrics or a
catalogue raisonné;

• 180° rotation for spine titles is needed for some
non-English languages, and math in titles needs
more testing;

• In essence, this is just an output format from
a .bbl file. Perhaps it would be more useful
rewritten as a biblatex style option.

References
[1] N. Dobovizki. Calculating the Perceived

Brightness of a Color. Making Time-Tracking
Software, Apr 2008. https://www.nbdtech.
com/Blog/archive/2008/04/27/Calculating-
the-Perceived-Brightness-of-a-Color.
aspx

[2] U. Fischer. How to set a certain
color (other than white) to margin
areas? tex.stackexchange.com, Dec 2010.
https://tex.stackexchange.com/questions/
7725/how-to-set-a-certain-color-other-
than-white-to-margin-areas

� Peter Flynn
Textual Therapy Division,

Silmaril Consultants
Cork, Ireland
Phone: +353 86 824 5333
peter (at) silmaril dot ie
blogs.silmaril.ie/peter

Your personal LATEX bookshelf: Improving your background in a time of lockdown

