
TUGboat, Volume 41 (2020), No. 2 185

The design concept for llmk— Light LATEX
Make

Takuto Asakura

Abstract

It is a matter of joy that we have many options for
processing a LATEX document. We can choose the
most suitable TEX engine and external programs,
such as for bibliography and for indexing, depending
on one’s needs. However, now it is hard or even
impossible in some cases to know what is the ‘right’
workflow to process a document only by seeing doc-
ument sources.

Light LATEX Make (llmk) is yet another build
tool specific for LATEX documents, intended to remove
such ambiguity in the workflows. Its aim is to provide
a simple way to write down a workflow for document
authors and encourage people to always explicitly
show the right workflow for each document. For this
goal, the design of llmk gives primary consideration to
convenience and portability. For example, it supports
multiple magic comment formats to enable users
to easily write the workflows and it requires only
texlua, so that it will work under any environment
which has LuaTEX.

1 The goal and design concept

TEX, LATEX, and their friends have a long history
and a variety of related software has been developed,
including variations of TEX engines, DVIware, and
supporting programs such as BibTEX, MakeIndex,
and their alternatives. Thanks to such a rich ecosys-
tem, we have numerous options for TEX workflow
to create a document. However, on the other hand,
there are so many possible workflows for processing
a LATEX document, and therefore it is not necessar-
ily easy to detect the right workflow only from the
document sources. In addition, there is no ultimate
general workflow that can be used for every purpose.
Using pdfTEX is one of the typical choices for cre-
ating a document in English, but in some cases, it
is reasonable to choose X ETEX or LuaTEX, e.g., if
you want to use fonts installed in your system inde-
pendent of TEX systems. For these reasons, LATEX
users should clearly specify the workflow for each
document, at least for those documents where the
sources will be seen by someone else.

There are a number of existing well-established
generic build tools, such as (GNU) Make, that can
be used to explicitly specify the workflows. However,
for many simple LATEX documents, such as those that
require only a single pdfTEX run, it might be rather
overkill to utilize such tools. As a matter of fact,

people often neglect using them for small documents
and leave the right workflows as mysteries. Also, it
is difficult to regard knowledge of such generic build
tools as an essential skill for all LATEX users, especially
considering light users and non-programmers.

Focusing on such casual use cases, I began a new
project named “Light LATEX Make” (llmk). Its goal
is to encourage people to always explicitly show the
workflow for each document by providing convenient
ways to do it. The design of the tool is all about this
purpose. First, it supports multiple magic comment
formats to specify the workflows in addition to ex-
ternal configuration files. Magic comments are an
easier way than external files, though the difference
is small. It should be compatible with most LATEX
use cases, including using it on cloud services and
LATEX-specific IDEs.

Second, it is fully cross-platform. It requires
only texlua, and thus it should work in almost all
TEX environments. For instance, one does not need
to install any dependency other than the TEX Live
distribution.

Third, it behaves exactly the same in any envi-
ronment. At this moment, llmk intentionally does
not provide any method for user configuration, so
that a LATEX document with a supported workflow
specification should be processed exactly in the same
way, no matter where you run the program.

Overall, llmk is a tool to provide a convenient
way to describe the workflow for an individual LATEX
document. It is designed more or less for simple doc-
uments and might not be suitable for large projects
that require complicated workflows. For such cases,
more sophisticated tools are better suited. A well-
written document that already has a Makefile or
similar is not the target of this project. In such a
document, the right workflow is already explicitly
shown. The major targets of llmk are small docu-
ments without unusual requirements.

There are other LATEX-specific build tools with
aims similar to llmk. The differences from such tools
will be discussed later (Section 3).

2 How llmk works

In this section, only a brief summary of the usage
and the mechanism in llmk is given. The details are
shown in the bundled documentation.

2.1 How to write the workflows

A user of llmk can write a document’s workflow in a
special external file (llmk.toml) or in the TEX file
(*.tex) itself. When the llmk command is executed
without any argument, it loads the llmk.toml file in
the working directory. If one or more names of TEX

The design concept for llmk— Light LATEX Make

186 TUGboat, Volume 41 (2020), No. 2

files are specified as arguments for llmk, it reads the
TOML fields in the files — these are special comment
areas that are given by comment lines containing
only three or more consecutive + characters:

1 % +++

2 % latex = "xelatex"

3 % +++

4 \documentclass{article}

Either way, you can write the workflow in the
TOML format [5] — a small configuration-oriented
language. This language is designed to be human-
friendly and is used in numerous projects.1

General-purpose programming languages, such
as Perl and Lua, can also be used for writing work-
flows and are in fact used in some TEX-related build
tools, but they are too powerful and have large spec-
ifications. Smaller languages designed specifically for
configuration, which are easier to learn, are better
for llmk. Among the various configuration languages,
including JSON and YAML, TOML is easy to parse
and thus a built-in parser can be written in reason-
able lines of code in pure Lua. These are the reasons
why TOML was chosen for llmk.

2.2 Simple keys

There are only a few important keys for llmk configu-
ration for casual users. For simple documents where
the default configuration is applicable, using some
of these keys should be enough:

latex (string) specifies the LATEX command to use.
The default value is "lualatex". Since llmk
runs on texlua, the installation of LuaTEX is
guaranteed. This is the reason that LuaTEX
is chosen for the default engine. Similar keys
dvipdf, bibtex, etc., are also available.

max_repeat (integer) sets the maximum number of
repetitions. For various reasons, such as solving
cross-references, llmk has a feature to repeat
command executions. This key exists to prevent
potential infinite loops. The default value is 5.

source (string or array of strings) sets the source
TEX files to process. This key is effective, and
required, only in llmk.toml.

The following is a small example of a configuration
for llmk which overrides the defaults:

1 # source TeX files

2 source = ["test1.tex", "test2.tex"]

3 # software to use

4 latex = "xelatex"

5 bibtex = "biber"

1 You can find the list of projects using TOML in its official
wiki: https://github.com/toml-lang/toml/wiki.

6 # misc

7 max_repeat = 7

When a value of a wrong type is given for a key,
it will result in a type error before llmk tries actual
document processing. It is designed to produce help-
ful error messages as much as possible, not to add
confusing errors in addition to those produced by
TEX engines.

2.3 Flexible control

For most simple LATEX documents, just using simple
keys described in the previous section should work
fine. Though such documents are the main targets
of llmk, it has features to process more complicated
documents if users desire to do so.

The core of flexible control in llmk is a pair
of keys: sequence (array of strings) and programs

(table of tables). The sequence array holds the
names of programs in the order of execution, and
the programs table contains detailed configuration
for each program in the sequence.

The default configuration of llmk is designed to
work without changes for typical LATEX documents.
Users are required to write only the differences from
the default, so that they do not have to write all
configurations from scratch every time. The default
value of the sequence array is as follows:

["latex", "bibtex",

"makeindex", "dvipdf"]

Under this configuration, llmk tries to convert *.tex
files to *.pdf. In case *.dvi is generated in the
process, the dvipdf program (by default DVIPDFMx)
is executed to convert it to a PDF. The bibtex

and makeindex programs are executed only if the
corresponding files (*.bib and *.idx respectively)
exist, and the latex program is set as postprocess
in order to make sure to rerun the LATEX command
after those executions.

2.4 Supports for other formats

For the convenience of the users, llmk supports other
existing magic comment formats. At present, the
so-called shebang-like magic comment, which is sup-
ported by a few existing tools, notably the YaTeX
mode for Emacs,2 is supported by llmk. Writing
%#!pdflatex in the first line of a *.tex file is equiv-
alent to specifying "pdflatex" to the latex key.
Other formats are also planned to be supported.

3 Differences from other tools

In response to the most frequently asked question, I
will briefly explain the differences from other similar

2 https://www.yatex.org/

Takuto Asakura

https: //github.com/toml-lang/toml/wiki
https://www.yatex.org/

TUGboat, Volume 41 (2020), No. 2 187

LATEX-specific build tools. Please note that most
of these differences are just the result of different
design concepts, and I would not call them ‘advan-
tages’. Though the aims and concepts that each tool
prioritizes are a bit different from each other, they
all have longer histories than llmk and thus have
sophisticated designs and implementation. I have
been greatly inspired from them and will continue to
learn. I hope llmk can provide another useful option
for LATEX users and some new ideas and inspiration
for the developers.

3.1 Latexmk and rubber

Latexmk [2] and rubber [3] are two well-known LATEX-
specific build tools. They have their own character-
istics and have stable sophisticated implementations,
but their purposes are slightly different from that
of llmk. Their goals are to provide easy ways to
process LATEX documents; they guess how to process
a document by analyzing the log files, for instance,
and implicitly determine the process. In other words,
they try hard to ‘hide’ the specific workflow from
users as much as possible. In addition, for both tools,
users are allowed to choose some variations, e.g., a
favorite TEX engine from pdfTEX, X ETEX, LuaTEX,
etc., with the command-line options. It is a use-
ful feature, but this makes it harder to reproduce
the same process for colleagues without being told
another piece of information, i.e., runtime command-
line options, from authors of documents.

On the other hand, llmk takes a different ap-
proach: it requires users to explicitly show the work-
flow to process a document either in an external
configuration file (llmk.toml) or in a *.tex file.
Thanks to its default configuration, it appears as if
llmk determines the workflow automatically for sim-
ple configuration, often consisting of a single latex

key, but in fact this is just a ‘shorthand’ for one
of the typical workflows and nothing is implicitly
determined. Thus, once you want to process a more
complex document for which the default configura-
tion is unsuitable, llmk will require you to specify
everything explicitly. In this way, we can take ad-
vantage of both convenience and portability.

3.2 Arara and spix

Arara [1] is a newer build automation tool for LATEX
documents that has become quite popular. Its aim
is close to ours: arara provides a way to describe the
workflow explicitly for each document. It has a set
of rules indicating the ways to process typical LATEX
documents and a user can specify which rules with
a directive, which is a magic comment in the *.tex

file. It also enables users to create their own rules by

writing the details in external files, in case a suitable
built-in rule is missing. Arara is a big project and
is capable of processing large documents that need
complicated workflows, while llmk is small and more
or less focusing on simple documents.

Spix [4] identifies itself as a simpler version of
arara. It also follows the idea of explicit workflow
description for each document and generally focuses
on simple documents. Therefore, the goals of spix
and llmk are almost the same, though there are a few
differences in concrete syntaxes and specifications.

One apparent strength of llmk as compared to
these two tools is that llmk can be executed without
installing any dependency other than from TEX sys-
tems. While arara and spix are implemented in Java
and Python respectively and thus require external
programs in order to use them,3 llmk is written in
pure Lua and thus can work with only texlua avail-
able. The specification and features of llmk are far
smaller than those of arara. Instead, llmk prioritizes
a uniform way to describe the workflows available
for nearly all TEX environments.

4 Acknowledgements

This project has been supported by the TEX Develop-
ment Fund created by the TEX Users Group (No. 29).
I would like to thank all contributors and the people
who gave me advice and suggestions for new features
for the llmk project. I am grateful to Yusuke Kuroki
for helping with the manuscript.

References

[1] Paulo Cereda, et al. arara — The cool TEX
automation tool.
https://ctan.org/pkg/arara

[2] John Collins. latexmk — generate LATEX
document. https://ctan.org/pkg/latexmk

[3] Sebastian Kapfer. rubber — a building system
for LATEX documents.
https://launchpad.net/rubber/

[4] Louis Paternault. SpiX — Yet another TEX
compilation tool: simple, human readable, no
option, no magic.
https://ctan.org/pkg/spix

[5] Tom Preston-Werner. TOML: Tom’s Obvious
Minimal Language. https://toml.io/

� Takuto Asakura
The University of Tokyo
Department of Computer Science
tkt.asakura (at) gmail dot com

3 Neither the Java virtual machine nor the Python inter-
preter are included in TEX Live, or in MiKTEX.

The design concept for llmk— Light LATEX Make

https://ctan.org/pkg/arara
https://ctan.org/pkg/latexmk
https://launchpad.net/rubber/
https://ctan.org/pkg/spix
https://toml.io/

	The goal and design concept
	How llmk works
	How to write the workflows
	Simple keys
	Flexible control
	Supports for other formats

	Differences from other tools
	Latexmk and rubber
	Arara and spix

	Acknowledgements

