
8 TUGboat, Volume 41 (2020), No. 1

Beyond Trip and Trap: Testing the urtext
WEB sources

David Fuchs

Abstract

Finding some undefined behavior and other tricky
bugs in Donald Knuth’s original WEB sources of TEX,
METAFONT, &c, and a request for plain TEX and
METAFONT input files.

1 Preparing for the next TEX tuneup

In anticipation of TEX and METAFONT approaching
versions π and e, respectively, I’ve been working on
some tools to help find any remaining “undefined
behavior” bugs in the core code, so they can be
addressed for posterity.

In the remainder of this note, I’ll mostly re-
fer to TEX for brevity, but everything said here ap-
plies to the set of principal Stanford WEB programs:
Tangle, Weave, TEX, METAFONT, TFtoPL, PLtoTF,
DVItype, and GFtype.

2 Range checks

As usual with this sort of tool, the first kind of “un-
defined behavior” to watch for at runtime is any
attempt to read from an uninitialized variable. (One
caveat, however: TEX and METAFONT do this inten-
tionally at one place, with the ready already variable.)
This is straightforward to handle using an auxiliary
bit per variable that indicates whether it has been
written to yet. Each field in a record (C struct) gets
its own bit, as they can be assigned to individually.

Next, each array has a declared range of valid
index values, so each access to an array should check
that the index is properly in range. Also, each read
of an array element should check that that indi-
vidual element has been initialized, as per the first
item. C programmers may be unaware that Pascal
allows each individual array to be non-zero-based
(e.g., weight: array [1957..2020] of pounds), but this
doesn’t add any significant complication.

Additionally, Pascal is somewhat unusual in that
it allows the programmer to specify that a scalar vari-
able will store only a certain range of values. C has
somewhat similar functionality with “bitfields” in
records, where each integer field can be specified
as taking a given number of bits, but Pascal com-
pletely generalizes this to ranges, exactly like array
subscripts; for instance, year of interest: 1957..2020
declares a variable that may contain values only in
the given range. As TEX and METAFONT make lib-
eral use of this feature, it’s also worth checking at

runtime that each assignment to such a variable is
within its declared range of valid values.

Similarly, if a procedure has a formal param-
eter with a limited range, at runtime each actual
parameter of each call should be checked for validity.
Checking that returned values from functions also
match their signatures rounds out the list of range
checks. It’s also worth checking for overflow on each
addition, subtraction, and multiplication operation
(leaving the hardware to watch for division by zero).

3 Toolchain background and an edge case:
empty change files

To do this checking, I wrote a purpose-built transpiler
that inputs Knuthian Pascal and outputs very vanilla
C code that implements all these runtime checks.
The transpiler is about 7,600 lines of C and the
runtime library about 2,500 lines.

TEX and METAFONT come with their own test
input files, trip.tex and trap.mf, with instructions
on how to use each to verify ports. These test files
are designed to execute every line of code (with
minor exceptions such as fatal error messages), and
thus provide one good way to try out the transpiler
output. Of course, generating the code involves
running Tangle on all of the above WEB files, which
tests it; and doing the complete trip and trap test
regimens runs the rest of the programs; except for
Weave, which I tested separately on all the above
WEB files as well. Finally, I also ran a number of large
documents that require only original (traditional?
ur? un-enhanced? Knuthian?) TEX.

All of the Pascal files are generated directly
from Tangle using empty change files, so everything
is tested exactly as in DEK’s master sources, un-
modified, with two exceptions: First, ready already,
as mentioned above, gets specially tagged as being
“unmemchecked”, so it won’t trigger a failure when
it’s read before being written. Second, the line of
“dirty Pascal” code in the tex.web module 〈Display
the value of glue set(p)〉 that tries to detect invalid
floating-point values that a bug may have caused
to be stored in a floating point field, has been re-
moved, as this attempt itself would be detected as
trying to access the wrong variant (discussed be-
low). Of course, as this later module is indexed
under “system dependencies” and “dirty Pascal” in
DEK’s sources, this is an expected spot for a platform-
specific change.

And one bug was found, manifested in both Tan-
gle and Weave: they share a bunch of code that deals
with text file reading, which is where the bug ap-
peared. The module 〈Read from web file and maybe
turn on changing〉 contains this code:

David Fuchs

TUGboat, Volume 41 (2020), No. 1 9

. . .

else if limit = change limit then

if buffer[0] = change buffer[0] then

if change limit> 0 then check change;

. . .

to see if the current line from the WEB file matches
the first line after an @x in the change file. First it
tests that the line lengths match, then that the first
characters match, and only then does it go to all the
expense of actually calling a function (check change)
that sees if the lines fully match. (Computers used to
be slow, so one could argue that this was a reasonable
optimization, rather than paying the price of just
calling check change every time.) The bug occurs
when the change file is completely empty, in which
case change buffer[0] is uninitialized when this code
tries to read it. It’s interesting to note that I would
not have bumped into this bug if not for the fact
that the transpiler handles DEK’s code directly, and
thus most of my change files are in fact empty.

However, rather to my dismay, in normal, non-
undefined-behavior-checking-mode, no matter what
junk might happen to be in change buffer[0], Tangle
and Weave still operate properly (since change limit
will be zero in this case, so check change won’t be
called anyway). So no one will ever be affected by this
bug, leaving the philosophical question as to whether
it’s actually a bug or not. A redeeming aspect is
that to fix this quasi-bug, one can simply remove
the middle line of the code shown! (Since, happily,
lines dont match ultimately checks the first charac-
ter as appropriate anyway.) This may be the first
bug I’ve ever encountered where simply removing
code fixes it. In fact, the if limit = change limit then
check can be removed, too!

A few cases of fetching uninitialized variables
were also detected in METAFONT. But in all these
cases, the value fetched doesn’t ever get looked at
as METAFONT continues to execute. For the record:
The procedure recycle value starts with

if t< dependent then v := value(p)
and then uses v in some of the subsequent cases in
its switch statement. It turns out that in some of
the cases where v is not used, value(p) hadn’t ever
been assigned to. Note that the existing code tries to
avoid the fetch when it’s not going to use the value,
but the condition t<dependent isn’t correct. The
other cases are in copy path, its mirror htap ypoc,
and scan expression, all of which copy right/left x/y
values, some of which may not have been previously
written to (when the source record came from, say,
new knot). Again, these copied, uninitialized values
are not subsequently used.

4 Variant records and homegrown memory
management

Another potential case of “undefined behavior” con-
cerns “variant records” (known as “unions” to C
programmers). Every time a member field of a union
is read from, we must check that the most recent
write to that variable was to that same member. This
is very important for TEX and METAFONT, as they
make extensive use of variant records; see particularly
the definition of memory word.

TEX and METAFONT never allocate dynamic
memory or deal with pointers, so we needn’t worry
about checking pointer dereference validity. But they
do their own form of memory management within
the big mem array; see get node and free node for
how a linked-list of free blocks is maintained. Note
that this whole scheme uses indexes into the mem
array as “pointers”, so they can be stored in 2 bytes.
(Or, for larger capacity TEXs, 4 bytes, which used to
make it harder to explain why “real” pointers weren’t
used, but recently many platforms have switched to
using 8-byte pointers exclusively, so TEX’s 4-byte
pseudo-pointers are again a space-saver.)

Of course, this approach to memory manage-
ment is not typical. In addition to pointers being
smaller, TEX implements a zero-overhead allocation
scheme: as compared with most implementations
of malloc in C libraries, where each allocated item
takes 8 or more extra bytes of storage beyond what
the caller requested, in TEX there are no extra bytes
per allocation. Recall that TEX was developed on a
machine with a data address space of only about half
a megabyte, so it’s a tight squeeze to fit in an entire
macro package, hyphenation rules, font metrics, etc.,
while leaving enough room to store a whole page’s
worth of boxes and glue, etc. Every byte counted,
and it’s fair to say that things are packed to the
gills (this can also be seen in Weave, which makes
two passes over the input file rather than try to fit
everything into memory).

As mentioned above, the mechanism for catching
uninitialized variables involves keeping an extra bit of
information per variable to indicate if it’s “readable”
or not. It’s fairly straightforward to add another ex-
tra bit to control variables’ “writable” status. Then,
by augmenting the code in get node and free node
to make special calls that turn the “writable” bits
on and off, respectively, for the entire node being
allocated or freed, access-after-free errors get caught
automatically. Additionally, we can arrange by using
a huge mem array that no freed slot is ever reused
later as part a subsequent allocation, thereby en-
suring that there’s no chance of an illicit read ever

Beyond Trip and Trap: Testing the urtext WEB sources

10 TUGboat, Volume 41 (2020), No. 1

getting lucky and going undetected. This requires
about 200 lines in TEX’s change file, including more
specific safeties, such as setting the static glue specs
zero glue, fil glue, . . . , fil neg glue to be not writable
(and all tests of TEX were run with and without this
change, just to be sure that no bugs get hidden by
it; ditto for subsequent changes mentioned herein).

The entire suite of programs pass all these checks,
as one might expect, given their robustness in the
field. Also, if I recall correctly, in the 1980s there
was an especially good Pascal compiler from DEC for
their VAX/VMS systems that was able to detect these
sorts of errors, and someone in the TEX user commu-
nity reported a few bugs of this sort that it found.

But there’s yet another, more subtle, type of
problem left to consider. The issue with keeping track
of which member of a union is “active” has already
been mentioned. But TEX goes a step further, and
re-uses members for different purposes in different
contexts. For instance, the in state record is how
TEX keeps track of the current line of input from
a file, with member fields that tell where the line
begins and ends, and where the next character to
read is within those limits. But when the current
input is instead from a macro, these same fields get
used to now keep track of the start of the macro’s
token list, and where along the way the next token is
to be fetched from, etc. Some of the fields are given
new names with a simple WEB macro that redirects
to the old name; other fields just get reused with the
same name (such as start, which is a fine name to
indicate either the start of a token list or start of a
line, even though in one case it’s a pointer into mem,
and in the other an index into the input buffer of
characters). But either way, how do we make sure
that a value stored with one meaning isn’t attempted
to be interpreted with the other meaning?

The answer is to manually introduce new mem-
ber fields in separate variants to distinguish the two
contexts, thus reducing the problem to one that’s al-
ready been addressed. This takes some manual labor
to examine every use of each symbol, and assign it
to one of the two variants, but it’s not too onerous,
resulting in fewer than 200 lines in the change file.

Quite a bit more extreme are the memory words
in mem; they have more than three dozen differ-
ent possible interpretations: height, width, depth,
glue stretch, glue shrink, penalty, etc., etc. The in-
teresting twist here is that multiple node types share
various fields under a common name and offset; both
boxes and rules have width, height, and depth, but
only a box has a shift amount; and a kern also has
a width, but no height or depth. The trick here is to
put each of these field types into its own variant in

memory word, so they get checked individually. So
the width of a box is the same sort of thing as the
width of a rule, but different than the other sorts of
things that other node types have at offset 1.

While separating out all the different uses of
memory word, we get an additional opportunity for
checking ranges. For example, consider TEX’s “delim-
iter fields”, which hold family and character values.
These normally get stored in byte-sized fields in a
memory word record, but the fam is always supposed
to be in the range 0..15. So, the newly introduced
variant can actually specify that its fam field is of
this range type, with the result that all the checking
logic will get kicked off by the transpiler. TEX has
other similar cases, including some where the permis-
sible values are more like an enumeration, and are in
fact turned into one; for instance the stretch order
and shrink order fields of a glue specification take
values of the enumerated type glue ord.

Quite a bit of manual effort was involved with
this set of alterations, requiring over 1100 lines in
TEX’s change file, but with satisfactory results.

5 An edgier case: unbalanced braces at
end of file

And, again, all this additional checking finds a bug,
this time in TEX. It’s in the use of the input state
(discussed above). If the module 〈Input the next line
of read file[m] 〉 encounters an end-of-file at a time
when braces haven’t been balanced, a call to the
error reporting routine is made. But this happens
before the formalities of setting up the input state
to properly represent the input line have happened.
So, an uninitialized field of the in state record gets
read, leading to the failure.

In fact, the Trip test hits this very situation (not
surprisingly, since it attempts to hit every line of code
in TEX, including each error message). It was never
noticed because of a happy coincidence in which
the junk values happen to produce a reasonable re-
sult, and TEX continues uninjured. Results could be
more disastrous with non-Trip inputs. The same bug
can occur with the fatal error “*** (cannot \read

from terminal in nonstop modes)” occurs, but
that’s even more of an edge case, and isn’t tested for
(as all fatal errors are not).

�� In particular, 〈Input and store tokens from
the next line of the file〉 hasn’t yet fallen through to
the code that sets loc and limit when the error call
happens. When error does 〈Pseudoprint the line〉,
we’re in trouble, since it thinks that loc and limit tell
where the contents of the problematic line are.

�� When a non-checking TEX gets to line 415 of
trip.tex, where the “File ended within \read” case is

David Fuchs

TUGboat, Volume 41 (2020), No. 1 11

tested, it kind of lucks out: limit happens to be a left-
over zero (from a left-over param start, no doubt),
while loc is a big number (similarly representing
a left-over token location), and start is actually a
correct pointer into buffer. So 〈Pseudoprint the line〉
randomly checks buffer[0] for end line char, then in
any case skips its for loop, and happily shows the two
empty context lines (lines 6167–68 in trip.log):

l.6167 <read 0>

l.6168

To see this bug in action, we can create a file
unbal.tex containing a single “{” character, and
create a second file readbug.tex containing:

\catcode‘{=1 \catcode‘}=2 \catcode‘#=6

\openin1 unbal

\def\A#1#2#3#4#5#6#7#8#9{\read1to \x}

\def\B#1#2#3#4#5#6#7#8#9{\A#1#2#3#4#5#6#7#8#9 \relax}

\def\C#1#2#3#4#5#6#7#8#9{\B#1#2#3#4#5#6#7#8#9 \relax}

\def\D#1#2#3#4#5#6#7#8#9{\C#1#2#3#4#5#6#7#8#9 \relax}

\def\E#1#2#3#4#5#6#7#8#9{\D#1#2#3#4#5#6#7#8#9 \relax}

\E123456789

Then, running virtex readbug results in a non-
sense <read 1> context:

! File ended within \read.

<read 1> {^^M#5#6#7#8#9{\D#

The trick here is that all those parameters cause
param start to be 36, which then gets used as a
bogus value for limit when show context is called,
resulting in unrelated stuff in buffer being shown as
the context.

6 More stress: checking constants

Thus far, all of the testing has used as input only
files which are part of the basic TEX distribution as it
came from Stanford. So, Tangle and Weave get tested
with all of the WEB sources; TEX and METAFONT

have their Trip and Trap test files, but TEX also runs
all the Weave output, as well as The TEXbook and
The METAFONTbook, while METAFONT runs all of
Computer Modern at various resolutions, and so on.

This represents a lot of stress, but doesn’t hit
everything. One additional direction I have tried
pushing was to see that the 〈Check the “constant”
values for consistency〉 checks were complete and
accurate. Nothing of much importance showed up,
other than there being no check that buf size is at
least big enough to hold the longest built-in prim-
itive name (which happens to be a tie, at 21 char-
acters each, between “abovedisplayshortskip” and
“belowdisplayshortskip”).

Finally, the only deeply-embedded constant in
TEX that can’t be changed at all (as far as I have
noticed, anyway) is that the hyphenation routines
only work on words of length up to 64. Or is it 63?

Or is it only on the first 64 letters of a word? And
does that mean only 63 possible hyphenation points,
or would it include a possible hyphen after the 64th
letter of a longer word? And where is this specified in
The TEXbook? Trying to figure this out by reading
the code is a challenge, as there are various 63’s, 64’s,
and 65’s scattered about (the latter having to do
with adding sentinels to the word being hyphenated
so that the pattern matching has something to match
for beginning- and ending-of-word; and/or adding
a byte that indicates the “current language” when
looking up hyphenation exceptions).

So, I created a test file containing the four lines
(abridged here):

\lefthyphenmin=0 \righthyphenmin=0

\hyphenation{-a-b-...-y-z-a-b-...-y-z-a-b-...-y-z}

\showhyphens{ab...yzab...yzab...yz}

\end

and tried it out. Sure enough, a bug occurs: the
code tries to store a value that’s not in the declared
range of the receiving variable. In particular, in
the hyphenate function, when 〈Look for the word
hc[1..hn] in the exception table, and goto found
(with hyf containing the hyphens) if an entry is found〉
is called, hn can already be 63, but then this module
increments it to 64 for a while (to fit the cur lang
byte), which puts hn out of range for a small number.

On common architectures, this bug probably
won’t actually change TEX’s behavior, since hn will
no doubt be stored in a full byte, which means it
will be able to actually store the value 64 properly.
By the way, I’d guess this bug got introduced when
multiple-language support was added to the hyphen-
ation code; the arrays grew by one to be able to
append the language byte, but the declaration of
hn got overlooked (easy to do, as it didn’t show an
explicit 0..63 range).

7 Need more \input

A big limitation in all this is the small number of
plain TEX and METAFONT files I’ve been able to use
as test input. The issue is that this is absolutely
plain, original TEX and METAFONT, as created by
DEK, without any of the added features of pdfTEX,
MetaPost, etc. So, I’m on the lookout for TEX doc-
uments that use only macro packages that work on
unmodified TEX. Any help in this regard would be
appreciated, and I’m happy to share credit for find-
ing any bugs that your devious macros or lengthy
tome might turn up!

� David Fuchs
plain-tex-tests (at) tug dot org

https://tug.org/texmfbug/

Beyond Trip and Trap: Testing the urtext WEB sources

