
136 TUGboat, Volume 40 (2019), No. 2

Design into 3D: A system for customizable
project designs

William Adams

Abstract

Design into 3D is a system for modeling parametric
projects for manufacture using CNC machines. It
documents using OpenSCAD to allow a user to in-
stantly see a 3D rendering of the result of adjusting
a parameter in the Customizer interface, saving pa-
rameters as JSON files which are then read into a
LuaLATEX file which creates a PDF as a cut list/setup
sheet/assembly instructions and uses MetaPost to
create SVG files which may be loaded into a CAM
tool. A further possibility is using a tool such as
TPL (Tool Path Language) to make files which are
ready to cut.

1 iTEX

It has been almost ten years since Prof. Knuth made
the earthshaking announcement of iTEX (see fig. 1;
my thanks to Robin Laakso, executive director who
kept track of her keepsake as I did not). For the
folks who were not fortunate enough to be able to
attend: youtube.com/watch?v=eKaI78K_rgA (from
tug.org/tug2010/program.html).

The announcement posited a successor to TEX
which would among other things, support 3D, and
output to:

• lasercutters
• embroidering machines
• 3D printers
• plasma cutters

all of which are examples of Computer Numeric Con-
trol (CNC) machines. Presumably other machines
such as mills and routers would also have been sup-
ported. While 3D printers have a straightforward
mechanism for creating parts (load a 3D file into a

Figure 1: iTEX keepsake

Figure 2: Shapeoko 3 (XXL)

“slicing” application), and laser and plasma cutters
are limited to 2D (with the possibility of repeated
passes for lasers), mills and routers afford the limita-
tion of a 2.5D movement of the tool over and around
the part, and the flexibility of using tooling with
different shapes which will allow efficient cutting of
surfaces with finishes not readily achieved with other
tools. They also afford the possibility of loading
stock larger than the working area and either cutting
it incrementally (known as tiling) or cutting only a
small portion of the stock (e.g., when cutting joinery
into the end of a board).

2 CNC machines

Since then, CNC machines have become far more
affordable and accessible, mostly due to the open
sourcing of the Enhanced Machine Controller,1 and
the development of Grbl which runs on the inexpen-
sive Arduino,2 with one early machine on its third
iteration3 (see fig. 2).

I happened to pick up a Shapeoko 1 (an open
source hobbyist CNC machine based on Bart Dring’s
MakerSlide,4 which uses the open source G-Code
interpreter Grbl running on an Arduino) early on,
and became involved in the project doing documen-
tation and so forth, and now work for the company
as off-site tech support.

3 CAD/CAM

CNC is driven by Computer Aided Design (CAD),
and Computer Aided Manufacturing (CAM). Most
applications thus far developed for this follow the
same basic concept: Draw a design or shape, select
elements of it and assign appropriate toolpaths to
those elements. This works, but can be tedious
and repetitive, especially when a design needs some

1 www.nist.gov/publications/use-open-source-
distribution-machine-tool-controller

2 bengler.no/grbl
3 carbide3d.com/shapeoko
4 www.kickstarter.com/projects/93832939/

makerslide-open-source-linear-bearing-system

William Adams

TUGboat, Volume 40 (2019), No. 2 137

Figure 3: Carbide Create user interface

adjustment such as size or the inclusion or removal
of a feature.

Even a simple, small, round box scrolls off the
interface when enumerating all of its toolpath set-
tings, making it tedious to transfer said settings
to a different project, let alone set them up in the
first place. (Fig. 3 shows Carbide Create,5 a freely
available CAD/CAM program).

Some 3D CAM tools do afford options for export-
ing settings and loading them into different projects,
but then one is restricted to the toolpaths which a 3D
CAM tool can create, and must work up a 3D model
of the project in question. While the latter may not
be much of a limitation, the former certainly is.

4 Tagging vs. parameters

TEX works from the idea of a manuscript, assign-
ing to it macros/tagging/markup which then allow
the text to be typeset. Moreover, (LA)TEX typically
doesn’t describe a document as fully as would be
needed to make it into a finished object, omitting con-
siderations such as signatures, binding method, and
usually the design of a physical cover or dust jacket.
Unfortunately, the CAD/CAM workflow doesn’t al-
low for the sort of free-flowing narrative which even
a rigorous scientific paper would allow. For exam-
ple, it may be possible to define a potential project
concisely:

• Project type: Box
• Shape: Round
• Lid style: Fitted
• Number of compartments: 1
• Box dimensions:

– Diameter 50.8mm
– Height 16.175mm

5 carbide3d.com/carbidecreate

but there are no readily accessible tools for taking
such specifications (or parameters) and directly and
immediately creating the design in a format a com-
puter can work with. Parametric tools do allow one
to create such designs, but the design has to be
created (or programmed) in such a tool.

5 Parametric CAD

That last does indicate a class of tool which is suited
for this sort of work: Parametric CAD applications
allow one to use numbers, formulae, and algorithms
directly to define a design. Commercial examples:

• Autodesk Fusion 360/Inventor
• CATIA V5
• NX
• Onshape
• Pro Engineer
• Rhino 3D (when using the Grasshopper plug-in)
• Solid Edge
• SolidWorks

Many open source applications have also been devel-
oped which afford this style of design:

• FreeCAD—unfortunately somewhat limited in
the calculations which may be performed; using
a spreadsheet is advocated as a work-around6,
and importing OpenSCAD files is also an option.

• NaroCAD
• OpenVSP (Vehicle Sketch Pad from NASA)
• SolveSpace— fully graphical, with parameter

alteration requiring selection.
• Varkon

But the most notable implementations are those
which are programmatic in nature. Arguably there
are too many to name (especially as any program-
ming language can be one), but of special note are:

• Antimony—regrettably available for only GNU/
Linux and MacOS X; previous versions were the
subject of the developer, Matt Keeter’s, aca-
demic thesis.

• Maker.JS—a Microsoft Garage Project, this
tool supports 2D design, but requires special
effort to create a 3D file or preview.

• OpenSCAD—the most popular tool, widely used
for 3D printing, and is notable for support on the
popular project-sharing site Thingiverse which
inaugurated the “Customizer” feature.

• PLaSM
• Tool Path Language (TPL)—a relatively re-
cent development, this is a JavaScript variant
supporting creation of G-Code to control the
machine.

6 floatingcam.com/blog/freecad-parametric-design

Design into 3D: A system for customizable project designs

138 TUGboat, Volume 40 (2019), No. 2

Figure 4: Blockly interface and graphical code of the
initial prototype

This attempt at a representative sampling includes
the most popular implementation, OpenSCAD, which
was used for the implementation of this project.

6 BlocksCAD

Initial development was done using the Blockly im-
plementation of OpenSCAD BlocksCAD (see fig. 4).7
There are a number of similar tools, with varying
tradeoffs, compromises, and difficulties. A better
tool, with better graphical integration (specifically,
the ability to select nodes, edges, or faces and drag
them) would make for even easier development.

BlocksCAD allows one to save a project as an
XML file, and to export to OpenSCAD. Similar tools
include OpenJSCAD and Flood Editor.

7 OpenSCAD

BlocksCAD allowed a rapid development without
worrying about the trivialities of coding such as the
placement of semi-colons and an easy conversion into
the textual OpenSCAD.

More important for the project is where the
Customizer features (unfortunately unsupported by
BlocksCAD) were implemented; see fig. 5.

8 Presets

Once a design has been worked up using the cus-
tomization interface, the parameters must be passed
to other tools. Fortunately, OpenSCAD implements
saving design settings as “presets” in a JSON file:

{
"parameterSets": {

"export": {
"$fn": "45",
"Boxshape": "0",
"Clearance": "0.01",

7 www.blockscad3d.com/editor

Figure 5: OpenSCAD design with Customizer

"Height": "13.5",
"Length": "66.675",
"PARTNO": "0",
"Thickness": "6.35",
"Width": "209.55",
"depth": "25.4",
"diameter": "3.175",
"dividers_lengthwise": "1",
"dividers_thickness": "3.175",
"dividers_widthwise": "2",
"endmillshape": "1",
"largecompartment": "2",
"partspacing": "12.7"

}
},
"fileFormatVersion": "1"

}

It is then a matter of loading the JSON data
into variables. The first tool which makes use of this
is LuaLATEX, as well as the embedded METAPOST

interpreter. Fortunately, the Lua scripting language
has a tool available for importing JSON data.8 Also,
Henri Menke (at the conference) demonstrated an
elegant system for reading in JSON which merits
investigation (see pp. 129–135 in this issue).

\newcommand{\boxspecification}{export}
%\typein[\boxspecification]{What preset to use?}
\begin{luacode}
function read(file)

local handler = io.open(file, "rb")
local content = handler:read("*all")
handler:close()
return content

end
JSON = (loadfile "JSON.lua")()
local table = JSON:decode(read(

"designinto3dboxfitted.json"))

8 regex.info/blog/lua/json

William Adams

TUGboat, Volume 40 (2019), No. 2 139

First, define a macro for each value which may
then be redefined at need:

% "PARTNO": "0",
\newcommand{\PARTNO}{\relax}
\newcommand{\definePARTNO}[1]
{\renewcommand{\PARTNO}{#1}}

Then read in each variable from the selected
preset (in this case, assigned to the LATEX macro
\boxspecification):

PARTNO = (table[’parameterSets’]
[’\boxspecification’][’PARTNO’])

Define the contents of the matching TEX macro:

\definePARTNO{\directlua{tex.print(PARTNO)}}

9 Drawing

Once one has all the numbers loaded, it’s a matter
of defining macros (the actual path definitions are
quite lengthy):
def rp (expr x,y,z,w,l,t,d) = draw 〈outer path〉;
enddef;
def rpf (expr x,y,z,w,l,t,d,f) =

fill 〈inner block〉 cycle withgreyscale f;
enddef;
def rpu (expr x,y,z,w,l,t,d) =

unfill 〈boundary〉 -- cycle; enddef;

and then using them to draw:

beginfig(1);
rpf(-diam,-diam,0, Width*u+diam*2, Length*u

+diam*2, Thickness*u, diameter*u,0.0);
rpu(0,0,0,Width*u, Length*u, Thickness*u, diam);
rpf(Thickness/2*u-halfclearance*u, Thickness/2*u

-halfclearance*u, 0, Width*u-Thickness*u
+Clearance*u, Length*u-Thickness*u+Clearance*u,
Thickness *u-Thickness/4*u, diam,0.5);

endfig;

and to fill in the project description:

\sbox{\projectdescription}{\vtop{PARTNO:
\dltw{PARTNO}\par

Boxshape: \dltw{Boxshape}\par
Clearance: \dltw{Clearance}\par
Height: \dltw{Height}\par
Length: \dltw{Length}\par
Thickness: \dltw{Thickness}\par
Width: \dltw{Width}\par
depth: \dltw{depth}\par
diameter: \dltw{diameter}\par
dividers:\par
\quad lengthwise: \dltw{dividerslengthwise}\par
\quad thickness: \dltw{dividersthickness}\par
\quad widthwise: \dltw{dividerswidthwise}\par

PARTNO: 0
Boxshape: 0
Clearance: 0.01
Height: 13.5
Length: 66.675
Thickness: 6.35
Width: 209.55
depth: 25.4
diameter: 3.175
dividers:
 lengthwise: 1
 thickness: 3.175
 widthwise: 2
endmillshape: 1
largecompartment: 2
partspacing: 12.7

Figure 6: Typeset project plans and parameters

Figure 7: MetaPost output

endmillshape: \dltw{cuttershape}\par
largecompartment: \dltw{largecompartment}\par
partspacing: \dltw{partspacing}}}%

to end up with what’s shown in fig. 6.
This is a basic representation— it would be pos-

sible to elaborate on that, adding colour and a depth
mapping notation, and identify the parts (in this case,
lid and base), and for more complex instructions, gen-
erate assembly instructions. It is also possible to add
geometry and colour code such images so that they
can be cut out directly.

The system includes code for making SVG files
which may be directly imported into a CAM tool.

outputtemplate := "%j-%c.svg";
prologues := 3;
outputformat := "svg";
input designinto3dboxfittedpreamble;
input designinto3dboxfittedfigure1;
input designinto3dboxfittedfigure2;
input designinto3dboxfittedpostamble;

The preamble and postamble files have macros
and code for cleaning things up. The final drawings
are shown in fig. 7.

Creating SVG files allows one to use METAPOST

only on the drawings, which is quick and efficient,
and to use an SVG viewer (here, nomacs from Image
Lounge (nomacs.org), shown in fig. 8) to interac-
tively edit and remake the files, adjusting until things
are as desired.

Once the files were ready, they could be im-
ported into a CAM tool (in this case, the free Carbide
Create) and toolpaths assigned so as to prepare the

Design into 3D: A system for customizable project designs

140 TUGboat, Volume 40 (2019), No. 2

Figure 8: nomacs interactive interface

Figure 9: Toolpaths in Carbide Create

project for cutting, as shown in fig. 9. This how-
ever, limits one to the capabilities of the program in
question, and requires a fair bit of manual effort.

10 Coding

The normal output for toolpaths is G-Code (RS-274),
developed by the Electronic Industries Alliance in
the early 1960s. For lack of a CAM tool which will
directly map such vector greyscale images to efficient
toolpaths we have instead chosen to work up a pro-
gram based on CAMotics (camotics.org) which will
import the JSON data parameters and directly create
the toolpaths which will allow the design to be cut
out, shown in fig. 10. The results of running this are
in fig. 11.

In addition to reading in the parameters, ide-
ally this tool would create optimal toolpaths using
advanced features such as:

• ramping in—moving into a cut on a diagonal,
or in a helical motion, rather than a straight
vertical plunge—endmills are four times better
at side-to-side cutting than they are at drilling.

Figure 10: Code for making toolpaths

Figure 11: Preview of toolpaths

• trochoidal toolpaths—shown in the curlicue
paths around the perimeter of the part in fig. 11,
trochoidal toolpaths allow efficient removal of
material in a narrow slot by reducing tooling
engagement, avoiding the full engagement of the
machine attempting to move directly through
material which has not yet been cut away.

• adaptive clearing—similar to trochoidal tool-
paths, this is an optimized motion to clear an
area, minimizing redundant motion while keep-
ing tooling engagement at or near optimum.

• roughing clearance and finishing passes—the
best finish and most precise/accurate parts are
achieved by allowing the machine to remove a
minimal amount of material at the end of a
cut—much of the complexity shown in the tool-
paths shown above were the result of manually
implementing these.

11 Cutting

Once toolpaths are created, whether programmati-
cally or using a typical CAM tool, the project may
then be cut on the machine (fig. 12).

William Adams

TUGboat, Volume 40 (2019), No. 2 141

Figure 12: Project cutting

Figure 13: Post-processing after the cut

Once cut, the part will usually require some sort
of post-processing (fig. 13)—at a minimum sanding,
but possibly cutting tabs to release it from surround-
ing stock, or cutting away material at the bottom of
the profile which was not completely removed.

But once, post-processed, one has a completed
project (fig. 14).

12 Concepts

The Tool Path Language program proves the concept
of beginning-to-end automation, but raises further
questions, and leaves much room for improvement:

• Each project design must be worked up as a col-
lection of specific programs— is there some way
to have a more general design language which
allows a more natural description of designs?

• The OpenSCAD customization interface is quite
limited—an early version attempted to imple-
ment a natural switching between Imperial and
metric units, but this was so awkward that it
was abandoned—using another tool to develop
a front-end would seem better.

• It requires that the user download, install, and
use a number of tools (OpenSCAD, LuaLATEX,
CAMotics/Tool Path Language)—this on top

Figure 14: Completed project

of the normal program(s) required to run the
machine.

12.1 Shapes

The above code, rather simplistically, only requires
clearing rounded corner pockets. More complex
projects will require macros/functions for additional
shapes, and names for them. Arranging them by the
number of points, we find that all but a few have
an accepted single word nomenclature (or suitably
concise description):

• 0
– circle
– ellipse (requires some sort of non-arc curve)

∗ egg-shaped (oval)
– annulus (one circle within another, forming

a ring)
– superellipse (see astroid below)

• 1
– cone with rounded end (arc)— see also

“sector” under 3 below
• 2

– semicircle/circular/half-circle segment (arc
and a straight line); see also sector below

– arch—curve possibly smoothly joining a
pair of straight lines with a flat bottom

– lens/vesica piscis (two convex curves)
– lune/crescent (one convex, one concave

curve)
– heart (two curves)
– tomoe (comma shape)—non-arc curves

• 3
– triangle

∗ equilateral
∗ isosceles
∗ right triangle
∗ scalene

– (circular) sector (two straight edges,
one convex arc)

∗ quadrant (90°)
∗ sextants (60°)
∗ octants (45°)

Design into 3D: A system for customizable project designs

142 TUGboat, Volume 40 (2019), No. 2

– deltoid curve (three concave arcs)
– Reuleaux triangle (three convex arcs)
– arbelos (one convex, two concave arcs)
– two straight edges, one concave arc

∗ An example is the hyperbolic sector9

– two convex, one concave arc
• 4

– rectangle (including square)
– parallelogram
– rhombus
– trapezoid/trapezium
– kite
– ring/annulus segment (straight line,

concave arc, straight line, convex arc)
– astroid (four concave arcs)
– salinon (four semicircles)
– three straight lines and one concave arc

Is the list of shapes for which there are not widely
known names interesting for its lack of notoriety?

• two straight edges, one concave arc—oddly, an
asymmetric form (hyperbolic sector) has a name,
but not the symmetrical—while the colloqui-
al/prosaic “arrowhead” was considered, it was
rejected as being better applied to the shape be-
low. (It’s also the shape used for the spaceship
in the game Asteroids (or Hyperspace), but that
is potentially confusing with astroid.) At the
conference, Prof. Knuth suggested “dart” as a
suitable term.

• two convex, one concave arc—with the above
named, the term “arrowhead” is freed up to use
as the name for this shape.

• three straight lines and one concave arc.
The first in particular is sorely needed for this project
(it’s the result of inscribing a circle in a square or
other regular geometric shape). Do these shapes
have names in any other languages which might be
used instead?

A final consideration: It has been said that there
are two types of furniture— the system fails to take
that into account or to leverage on it.

12.2 Two types of furniture

What are the two types of furniture?
• Boxes
• Platforms

This first project has involved making two-piece
boxes out of solid materials, simply removing what is
not needed for the design. While this works for small

9 en.wikipedia.org/wiki/Hyperbolic_sector and
www.reddit.com/r/Geometry/comments/bkbzgh/is_there_a_
name_for_a_3_pointed_figure_with_two

pieces, it is necessarily limited to the degree to which
it can be scaled up, and quickly becomes profligately
wasteful of material. The traditional solution for this
is joinery, of which there are many sorts, and thus
far for CNC, usually involve complicated fixtures and
jigs and multiple setups.

12.3 Further steps

Developing a solution which could incorporate joinery
efficiently is one obvious next step. All of the pockets
assume 2.5D cutting on a single plane—the ability
to make cuts at an angle would afford a welcome
flexibility which is needed in some sorts of joinery.
Similarly, the ability to make cuts using arbitrary
endmill shapes may enable designs as yet undreamed
of. Possibilities:

• Joinery
• General purpose design frameworks/grammars
• Special purpose tools— there are many extant
project generators for various sorts of boxes,
furniture (chairs and workbenches) gears, geog-
raphy, clocks, even houses—other possibilities
include telescopes, cribbage boards, &c.

• Would it be possible to create a font where a
series of letters would describe discrete aspects
of a design, assign toolpaths to the appropriate
letters using that font, and then to change the
design by just changing the text?

• Ornamentation—that’s next year’s Kickstarter
and presentation— ideas include Sheridan (tra-
ditional Western floral leatherworking), Celtic
knots and letters, and Arabesques, as well as
various arrangements of text.

13 Continuing work

This was initially a (funded) Kickstarter.10 It is being
developed as a wiki page on the Shapeoko project11
with code on GitHub.12 A number of sample files and
projects have already been made13,14,15; and this is
tied into a Thingiverse project16 and an online box
generator.17

� William Adams
willadams (at) aol dot com

10 kickstarter.com/projects/designinto3d/design-
into-3d-a-book-of-customizable-project-desi

11 wiki.shapeoko.com/index.php/Design_into_3D
12 github.com/WillAdams/Design_Into_3D
13 cutrocket.com/p/5c9fb998c0b69
14 cutrocket.com/p/5cb536396c281
15 cutrocket.com/p/5cba77918bb4b
16 www.thingiverse.com/thing:3575705
17 chaunax.github.io/projects/twhl-box/twhl.html

William Adams

