
TUGboat, Volume 40 (2019), No. 1 71

Real number calculations in TEX:
Implementations and performance

Joseph Wright

1 Introduction

TEX only exposes integer-based mathematics in any
user-accessible functions. However, as TEX allows
a full range of programming to be undertaken, it is
unsurprising that a number of authors have created
support for floating or fixed point calculations. I
recently looked at this are from an “end user” point of
view (“Real number calculations in LATEX: Packages”,
pages 69–70 in this issue), focusing on a small number
of widely-used options. In this article, I will look
at the full set of packages available, examining their
performance and considering some of the challenges
the implementations face.

2 Floating versus fixed point

The packages I’ll examine here cover both floating
and fixed point work. In a floating point approach,
the total number of digits doesn’t vary, but an ex-
ponent is used to scale the meaning: what we’d nor-
mally think of as “scientific notation”. In contrast,
fixed point calculations mean exactly that: there
are a set number of digits used, and they are never
scaled. That means that in a fixed point approach,
the number of digits in both the integer and decimal
parts is set by the implementation.

Both approaches have advantages. Floating
point working means that we gain a greater input
range, but have to track and allow for the differ-
ent meaning of the integer/decimal boundary. Fixed
point code does not have to deal with the latter issue,
and can be hard-coded for the known limits of val-
ues. However, the range is necessarily more limited,
both in terms of the maximum value accepted and
handling of very small values (where the fixed lower
limit cuts off precision).

Finally, there are packages which offer arbitrary
precision: code which works to a pre-determined
number of places, but where that limit can be ad-
justed by the user. Arbitrary precision may be used
with either fixed or floating point representation of
the mantissa.

3 Precision, accuracy and input range

Two key questions can be asked about any floating
point unit (FPU): how many places (or digits) does
it calculate, and how accurate are those digits? In
terms of the precision provided, we also have to
consider that there are different aims: for example,
both apnum and xint implement arbitrary precision.

Table 1: Precision targets

Approach Precisiona

apnum Arbitrary 20b

xint Arbitrary 20
fp Fixed 16
pst-fp Fixed 16
xfp Floating 15
Lua Floating 15
minifp Fixed 8
pgf/fpu Floating 7
pgf Fixed 5
calculator Fixed 5
fltpoint Floating 5c

aPlaces in the decimal part; bMinimum precision;
cApplies only to division; other operations may provide
more digits

Comparing the accuracy of these different ap-
proaches is non-trivial: is getting 5-digit accuracy
from a 5-digit fixed-point system “better” than get-
ting 12-digit accuracy from a 15-digit floating-point
approach? There is also the question of exactly which
tests one picks: depending on the exact values cho-
sen, different implementations may “win”. As such,
I will not tabulate “accuracy” results, but rather
comment where the user might wish to be cautious.

In terms of the precision of different packages,
the exact approach depends on the package: for
example, packages offering arbitrary precision have
only a default precision. Table 1 summarises the var-
ious packages on CTAN and provided in current TEX
systems that work in this area. I have included one
non-macro approach: using Lua in LuaTEX. Clearly
this is viable for only a subset of users, but as we
will see, it is an important option.

For pgf, I will consider two approaches: its na-
tive mathematical engine and the optional floating
point unit. There is also a loadable option to use Lua
for the “back end” of calculations: unsurprisingly, it
performs in a very similar way to the direct use of
Lua. (The number of decimal places returned stays
compatible with the standard pgf approach: five
places.) The pgf package also offers fast program-
ming interfaces to all operations which require that
each numerical argument be passed directly to a TEX
dimension register: I have not considered those here,
but they do of course offer increased performance.

4 Implementation approaches

4.1 Overview

TEX provides very limited support for calculations.
In Knuth’s TEX, we have the \count and \dimen

Real number calculations in TEX: Implementations and performance



72 TUGboat, Volume 40 (2019), No. 1

registers for storage, and the operations \advance,
\multiply and \divide (the latter truncating rather
than rounding). The ε-TEX extensions add expand-
able expression evaluation with the same fundamen-
tal abilities: \numexpr and \dimexpr (the one wrin-
kle being that division rounds). The \numexpr and
\dimexpr primitives have an internal range greater
than \maxdimen, and so for example A× B/C can
be calculated even if A×B would overflow.

4.2 Dimensions versus integers

At the macro level, these primitives allow two basic
approaches, either using integer-based calculations
or using dimension-based ones. As you may already
know, dimensions in TEX are actually (binary) fixed-
point numbers: they are stored in sp (scaled points),
but displayed in pt.

Approaches using dimensions are limited by the
underlying TEX mechanisms: five decimal places and
an upper limit of \maxdimen (16 383.999 98 pt). On
the other hand, the basic operations are both easy
to set up and fast. Other than the need to remove
a trailing pt, arithmetic does not even require any
macros.

So, it is possible to use dimensions as the un-
derlying data store and to provide additional func-
tionality on top of this. However, it is also worth
nothing that the rather limited range of dimensions
means that moderately large and small values must
be scaled as a first step. This is a potential source
of inaccuracy or range issues.

Using an integer-based approach, storage and
calculation necessarily require a range of macros or
\count registers. On the other hand, this approach
leaves the programmer in complete control of the pre-
cision used. Integer and decimal parts of a number,
plus potentially an exponent, can be held in separate
registers or extracted from a suitable macro before
arithmetic takes place.

4.3 Beyond arithmetic

Once one looks beyond simple arithmetic, issues such
as range reduction and handling of transcendental
functions become important. This is particularly
true for internal workings. For example, the normal
approach to calculating sines is to use Taylor series.
As several terms are required, rounding errors in each
term may accumulate significant inaccuracy. Thus
it is typically the case that internal steps for these
operations have to work at higher precision than the
user-accessible results.

Range reduction requires careful handling to
avoid introduction of systematic errors. This again
leads to concern over internal precision, as for ex-

ample the number of places of π used internally can
have a large impact on the final values produced.

4.4 Standards

In TEX macros, it makes sense to store numbers in
decimal form. That contrasts with most floating
point implementations, where underlying storage
is binary. Both of these cases are covered by the
IEEE754 standard, which is the primary reference for
implementers of floating point units in both software
and hardware.

The IEEE standard specifies not a single ap-
proach but a number of related ideas to do with data
storage, handling of accuracy, dealing with excep-
tions and so on. Whilst most TEX implementations
do not directly aim to implement a full IEEE754-
compliant approach, the standard does give us a
framework with which to compare aspects of be-
haviour.

One small wrinkle is that storing values in binary
means that some exact decimals cannot be expressed.
This shows up when using Lua for mathematics, for
example

\directlua{tex.print(12.7 - 20 + 7.3)}

gives

-8.8817841970013e-16

rather than 0.

4.5 Expandability

When programming in TEX, the possibility of mak-
ing code expandable is almost always a considera-
tion. Expandable code for calculations can be used
in a wider range of contexts than non-expandable
approaches. Of course, one can always arrange to
execute code before an expansion context; here’s an
example with the fp package:

\FPadd\result{1.234}{5.678}

\message{Answer is \result}

However, for the user, code which works purely
by expansion means they do not have to worry about
such issues. Implementing calculations “expandably”
means that registers cannot be used. With ε-TEX,
this is not a major issue as simple expressions can
be used instead. Creating expandable routines for
calculations is thus possible provided the underlying
operation is itself expandable. A key example where
that is not the case is measuring the width of typeset
material, for example

\pgfmathparse{width("some text")}

Expandable implementations require that the
programmer work hard to hold all results on the
input stack. Achieving this without a performance

Joseph Wright



TUGboat, Volume 40 (2019), No. 1 73

impact is a significant achievement. However, in and
of itself this is not the most important consideration
for choosing a solution.

5 Expressions

By far the simplest approach to handling calcula-
tions is to have one macro per operation, for example
\FPadd (from the fp package) for adding two num-
bers. At a programming level this is convenient, but
for users, expressions are much more natural. Sev-
eral of the packages examined here offer expressions,
either in addition to operation-based macros or as
the primary interface.

Each package inherently defines its own syntax
for such expressions. However, the majority use a
simple format which one might regard as ASCII-math,
for example

1.23 * sqrt(2) + sin(2.3) / exp(3)

to represent

1.23×
√

2 +
sin 2.3

e3

Expressions may also need to cope with scientific
notation for numbers: this is most obvious when
using a dimension-based “back-end”, as the values
cannot be read directly.

Several of the packages considered here offer
expression parsing: fp is notable in using a stack
approach rather than the more typical inline expres-
sions as shown above. However, as parsing itself
has a performance impact, the availability of faster
“direct” calculation macros is often a benefit.

6 Performance infrastructure

To assess the performance of the various options, I
wrote a script which uses l3benchmark to run a range
of operations for all of the packages covered here.
This has the advantage of carrying out a number of
runs to get a measurable time. All of these tests were
run in a single .tex source, using LuaTEX 1.07 (TEX
Live 2018) on an Intel i5-7200 running Windows 10.

The full test file (over 600 lines long!) is available
from my website: texdev.net/uploads/2019/01/

14/FPU-performance.tex. Comparison values for
calculations were generated using Wolfram Alpha
(wolframalpha.com) at a precision exceeding any of
the methods used here.

7 Arithmetic

Basic arithmetic is offered by all of the packages
considered here. I chose to test this using the combi-
nation of two constants

a = 1.2345432123454321

b = 6.7890987678909876.

Table 2: Basic operations, ordered by addition results

Time/10−4 s
a+ b a− b a× b a/b

calculator 0.03 0.03 0.02 0.88
Lua 0.16 0.18 0.17 0.17
minifp 0.29 0.26 0.77 2.20
pgf 0.78 0.75 0.74 1.32
apnum 0.94 0.95 2.55 3.15
xfp 1.44 1.40 1.79 1.97
pst-fp 3.35 3.25 5.51 22.60
xint 3.92 3.75 2.95 6.77
fp 4.52 4.25 14.50 23.80
fltpoint 5.92 12.30 200 123
pgf/fpu 6.48 6.18 6.07 7.18

Table 3: Trigonometry, ordered by sin results

sin θ sin−1 c sindφ sind−1 c tanψ

Lua 0.19 0.19 0.19 0.22 0.19
pgf 0.49 0.37 0.33 0.36 —
calculator 2.74 13.30 3.69 — —
pgf/fpu 5.24 3.40 4.28 3.52 —
xfp 5.65 14.60 4.22 16 7.77
fp 18.50 25 — — 31.90
apnum 50.70 131 — — 73.70
minifp — — 8.23 — —

As is shown in Table 2, these operations take times
in the order of microseconds to milliseconds.

As one would likely anticipate, using Lua (which
can access the hardware FPU) is extremely fast for
operations across the range and provides accurate
results in all cases. Even faster, except for division,
is calculator, which uses a very thin wrapper around
\dimen register working. Performance across the
other implementations is much more varied, with the
high-precision expandable xfp out-performing many
of the less precise packages, and working close to, for
example, pgf even though the latter takes advantages
of \dimen registers. At the slowest extreme, both
fp and in particular fltpoint take significantly longer
than other packages.

Accuracy is uniformly good for addition and
subtraction, with rounding in the last place posing
an issue in only two cases (minifp and pgf’s FPU

approach). For multiplication and division, most
implementations are accurate for all returned digits.
Again, only issues with rounding at the last digit
of precision (pgf) prevent a “full house” of accurate
results.

Real number calculations in TEX: Implementations and performance



74 TUGboat, Volume 40 (2019), No. 1

8 Trigonometry

Calculation of sines, cosines, etc., represents a more
significant challenge to a macro-based implemen-
tation than basic arithmetic. As outlined above,
considerations such as internal accuracy and range
reduction come into play, and performance can be-
come very limited. Not all packages even attempt
to work in this area, and fltpoint, pst-fp and xint all
lack any support for such functions.

To test performance in trigonometric calcula-
tions, I have again picked a small set of constants
for use in various equations:

c = 0.1234567890

θ = 1.2345432123454321

φ = 56.123456

ψ = 8958937768937

A consideration to bear in mind when dealing with
trigonometry is the units of angles. Depending on
the focus of the implementation, sin may expect
an angle in either radians or degrees. It is of course
always possible to convert from one to the other using
simple arithmetic, and thus all packages offering
trigonometric functions can be used with either unit.
However, this may lead to artefacts due to range
reduction and the precision of conversion. As such,
I have only tabulated data for “native” functions:
sine in degrees is referred to as sind; the data are
summarised in Table 3.

Lua is again by far the fastest approach and
is accurate for all of the sine calculations. (I have
allowed the use of conversion between degrees and
radian here: in contrast to macro-based approaches,
this seems reasonable with a “real” programming
language and hardware-level FPU support.)

The difference between calculator and pgf is no-
table, as both use \dimen registers behind the scenes:
pgf is significantly faster. In accuracy terms, both
calculator and pgf provide four decimal place accu-
racy, so this is not a question of trading accuracy for
performance. Enabling the FPU for pgf here does
not improve accuracy, but does cause a significant
performance hit.

Looking at the more precise approaches, xfp is
best in performing for calculation of sine, though it
is much less impressive for inverse sine. Accuracy for
sine is uniformly good, with fp failing at 17 digits,
and the other packages correct for the full set of
digits returned.

The calculation of tanψ is included to emphasise
the challenge of range reduction. The input is out-of-
range for a number of packages which otherwise can
calculate tangents. Only fp and xfp give the correct

result: both apnum and Lua give entirely erroneous
results. The failure of Lua is perhaps surprising,
but likely arises due to the IEEE754 specification for
binary storage.

9 Other operations

There are plenty of other operations which we might
wish to execute using a calculation package. As for
trigonometry, I have only included operations with
“native” support in Table 4. Coverage of these vari-
ous operations is somewhat variable. For example,
ax may be supported only for integer powers, or may
also be provided for non-integer powers. Similarly,
pseudo-random number generation is not always im-
plemented.

The pgf approach is once again fast for a range
of operations, but does suffer in terms of accuracy:
only three decimal places for

√
a, exp a and ln a, and

only one decimal place for ab. This remains the case
when enabling the pgf FPU. The calculator package
also suffers from some loss of accuracy, and is correct
to only three decimal places for

√
a.

Other implementations are generally successful
in offering good accuracy: minifp to at least 7 places
in all cases, and all other approaches to at least
14 places. As such, performance is once again the
main difference between the various implementations,
although the nature of available operations is also
worth considering. Perhaps the most notable case is
that whilst an is widely implemented, ax is less well
supported.

Generation of pseudo-random values is some-
thing of a special case. Modern TEX engines offer
primitive support for generation of such numbers, all
using code originally written by Knuth for META-
FONT. This is exploited by both xfp and xint to gen-
erate such numbers rapidly and expandably. In con-
trast, other implementations generate values purely
in macros, and so are non-expandable (due to the
need to track the seed between executions).

10 Conclusions

Implementing fully-fledged floating point support in
TEX is a significant programming challenge. It is
also a challenge that has been solved by a number
of talented TEX programmers. There are several
packages which offer good-to-excellent accuracy with
precision of at least 8 places, and in some senses
this means that choosing a package is complicated.
However, unless one requires arbitrary precision, the
balance of performance and precision is best managed
by xfp, the LATEX3 FPU as a user package. Whilst
not the fastest for every single operation, it performs
well across the board and offers performance often

Joseph Wright



TUGboat, Volume 40 (2019), No. 1 75

Table 4: Extended operations, ordered by
√
a results

√
a exp a ln a a5 ab round(d, 2) rand

Lua 0.18 0.19 0.19 0.16 0.17 0.20 0.15
pgf 0.84 0.67 0.54 0.60 1.28 — 0.07
xfp 3.88 7.43 10.20 15.50 14.80 4.11 1.47
minifp 4.15 8.96 13.10 3.61 — 0.46 2.18
pgf/fpu 4.96 4.50 4.04 7.51 8.60 — 1.12
calculator 6.91 9.21 29.10 0.32 38.90 1.28 —
xint 11.50 — — 8.01 — 1.21 1.29
apnum 42.60 121 133 13.10 — 0.08 —
fp 79.70 20.20 40.80 66.20 67.90 — 19.90
fltpoint — — — — — 1.61 —

comparable to approaches using TEX dimensions
(which are thus restricted to only 5 decimal places at
best). Where code is known to be strictly LuaTEX-
only, using Lua is of course the logical choice: no
macro implementation can compete with support at
the binary level.

For arbitrary precision work, apnum is not only
the best choice but also the only candidate if one
wishes to use transcendental functions.

11 Acknowledgements

Thanks to all of the package authors who gave me
feedback on my tests for their packages:

• Petr Oľsák (apnum)

• Robert Fuster (calculator)

• Eckhart Guthöhrlein (fltpoint)

• Michael Mehlich (fp)

• Dan Luecking (minifp)

• Christian Feuersänger (pgf)

• Jean-François Burnol (xint)

Thanks also to LATEX team members Bruno
Le Floch, Frank Mittelbach, David Carlisle and Ul-
rike Fischer for suggestions on benchmarking the var-
ious packages. Bruno also implemented the LATEX3
FPU, and his efforts in making this both expandable
and (relatively) fast are truly astounding.

� Joseph Wright
Northampton, United Kingdom
joseph dot wright (at)

morningstar2.co.uk

Real number calculations in TEX: Implementations and performance


