TUGboat, Volume 40 (2019), No. 1

Indexing, glossaries, and bib2gls
Nicola L. C. Talbot

Abstract

The bib2gls command line application [17] com-
bined with the glossaries-extra package [18] provides
an alternative indexing method to those provided by
the base glossaries package [19]. In addition, since
the terms are defined in .bib files, tools such as
JabRef [3]| can be used to manage large databases.

1 Introduction

The KTEX kernel provides two basic forms of in-
dexing (that is, collating terms and their associated
locations in the document). The first form creates a
file called \ jobname.idx using \makeindex and the
information is written to the file using the command
\index{(info)}. This writes the line
\indexentry{(info)}{{page)}

to the .idx file, where (page) is the page number.

The second form is very similar but uses a dif-
ferent file extension. A file called \jobname.glo is
created with \makeglossary and the information
is written using the command \glossary{{info)}
which writes the line
\glossaryentry{(info){(page)}
to the .glo file, where (page) is the page number.

In both cases, the page number is obtained from
\thepage and the write operation is delayed to en-
sure the value is correct in the event that the index-
ing occurs across a page break. These commands
date back to the 1980s when processing power and
resources were significantly smaller than today. Com-
pilation of draft documents could be speeded up by
omitting the indexing, which can be done by com-
menting out the \make... commands or by inserting
\nofiles before them.

The next step is to collate the {(info)}{(page)}
information, removing duplicates, concatenating page
ranges, hierarchically ordering the terms, and writ-
ing the IXTEX code that will typeset the result as an
index or glossary. TEX isn’t particularly suited for
this kind of task. It’s much more efficient to use a
custom application; makeindex was created for this
purpose, which creates a .ind file from the .idx.

2 Indexing

The TEX kernel doesn’t provide any specific com-
mands for reading the file created by the indexing
application, but instead defers this task to pack-
ages. The first of these was makeidx [5], which is
quite trivial. It provides the command \printindex
that inputs \jobname.ind if it exists and provides

47

commands for convenient ‘see’ and ‘see also’ cross-
referencing.

2.1 Indexing example

A simple example that uses the lipsum package [2]
for padding follows:

\documentclass{article}

\usepackage{lipsum}

\usepackage{makeidx}

\makeindex

\begin{document}
\index{duck}\1lipsum*[1]\index{goose}
\par\lipsum[2-4]\par
\index{duck}\index{ant}\lipsum* [5-6]
\index{zebral}\par
\index{goose}\index{aardvark}\lipsum[7-10] \par
\lipsum*[11]\index{dog}\index{ant}\index{goose}
\printindex

\end{document}

If the file is called myDoc.tex then®

latex myDoc

will create the file myDoc.idx that contains
\indexentry{duck}{1}

\indexentry{goose}{1}

\indexentry{duck}{1}

\indexentry{ant}{1}

\indexentry{zebra}{2}

\indexentry{goose}{2}

\indexentry{aardvark}{2}

\indexentry{dog}{3}

\indexentry{ant}{3}

\indexentry{goose}{3}

At this point the output doesn’t contain an index,
as the file myDoc. ind (which \printindex attempts
to read) doesn’t exist. This file can be created with

makeindex myDoc

The document then needs to be rerun to include the
new myDoc.ind so the complete document build is

latex myDoc
makeindex myDoc
latex myDoc

The default behaviour of makeindex is to as-
sume the extension .idx for the input file (if not
specified) and use the extension .ind for the out-
put file (which fits the expected extension used in
\printindex). In this case, it creates a myDoc.ind
containing (except the blank lines around each group
are omitted, here and in the following):
\begin{theindex}

\item aardvark, 2
\item ant, 1, 3

1 latex is used here to denote pdflatex, xelatex, etc., as
appropriate.

Indexing, glossaries, and bib2gls



48

\indexspace
\item dog, 3
\item duck, 1

\indexspace
\item goose, 1--3
\indexspace
\item zebra, 2
\end{theindex}

The \indexspace command usually produces a vis-
ual separation between letter groups. Neither that
command nor the \begin{theindex} environment
are provided by the KTEX kernel, so are defined by
classes that provide index support.

If you try out this example, you'll find that
\index doesn’t produce any text where it’s used in
the document. This catches out some new users
who expect the indexed term to also appear in the
document. Typically, \index will be placed either
before or after the appropriate word. For example:

Aardvarks\index{aardvark} are
\index{nocturnal animal}nocturnal animals.

The default output created by makeindex can
be modified by a style file. For example, if I create a
file called myindexstyle.ist that contains
headings_flag 1
heading_prefix "\\heading{"
heading_suffix "}"

and pass this file to makeindex:
makeindex -s myindexstyle.ist myDoc
then the resulting myDoc. ind will now contain

\begin{theindex}
\heading{A}

\item aardvark, 2

\item ant, 1, 3

\indexspace
\heading{D}

\item dog, 3

\item duck, 1

\indexspace
\heading{G}

\item goose, 1--3

\indexspace
\heading{Z}

\item zebra, 2
\end{theindex}

This custom command \heading will need to be de-
fined somewhere in my document. A basic example:
\newcommand*{\heading} [1]{%
\item\textbf{#1}\par\nobreak\indexspace\nobreak}

Some newer, more sophisticated, classes (such as
memoir [8]) and packages (such as imakeidx [1]) pro-
vide greater flexibility, making it easier to customize
the index format.

Nicola L. C. Talbot

TUGDboat, Volume 40 (2019), No. 1

The obsolete glossary package [12] provided an
analogous version of makeidx designed for use with
\makeglossary and \glossary. This was made
more complicated by the need to provide some kind
of separation between the term and its description
to assist formatting, but it was essentially using the
same kind of mechanism as the above indexing exam-
ple. The memoir and nomencl [9] packages provide
similar functions. As with \index, \nomenclature
(as provided by nomencl) and \glossary do not pro-
duce any text where they’re used in the document.

2.2 Indexing syntax

The (info) argument of both \index and \glossary
needs to be given in the syntax of the indexing ap-
plication used to process the data.? This catches out
many new users who may still be learning (I#)TEX
syntax and don’t realise that external tools may have
different special characters.

For makeindex, the special characters are:

e The ‘actual’ character used to separate the sort
value from the actual term when they’re different
(default: @).

e The ‘level’ character used to separate hierarchi-
cal levels (default: !).

e The ‘encap’ character used to indicate the page
number encapsulating command (default: ).

e The ‘quote’ character used to indicate that the
following character should be interpreted liter-
ally (default: ").

These characters can be changed in the makeindex
style file, if required.

For example, using the defaults,
\index{deja vu@\emph{d\'ej\ a vu}}
This indicates that the term should be sorted as
‘deja vu’ but the term will be written to the output
(.ind) file as
\emph{d\'ej\ a vu}
Up to three hierarchical levels are supported by
makeindex, and also by the standard definition of
\begin{theindex}:
\index{animal!nocturnal!owl}
\index{animal !nocturnal!aardvark}
\index{animal!crepuscular!ocelot}
This is converted by makeindex to

\item animal
\subitem crepuscular
\subsubitem ocelot, 1
\subitem nocturnal

2 This refers to the kernel definitions of \index and
\glossary which simply take one mandatory argument
that’s written to the relevant file.



TUGboat, Volume 40 (2019), No. 1

\subsubitem aardvark, 1
\subsubitem owl, 1
(assuming the indexing occurred on page 1).

Each hierarchical level may have a separate sort

and actual value. For example (except on one line),
\index{debutante@d\'ebutante!1945-19580@1945
\textendash1958}
Here, the top-level item has the sort value debutante
(used by the indexing application to order the top-
level entries) with the actual value d\ 'ebutante used
for printing in the document’s index.

The sub-item has the sort value 1945-1958 (used
by the indexing application to order sub-entries rel-
ative to their parent entry) with the actual value
1945\textendash 1958 used within the document’s
index.

If a parent entry is also indexed within the doc-

ument, it must exactly match its entry within the
hierarchy. A common mistake is something like
\index{debutante@d\'ebutante}
\index{d\'ebutante!1945-195801945\textendash 1958}
In this case, makeindex treats d\'ebutante and
debutante@d\'ebutante as two separate top-level
entries, which results in an index where ‘débutante’
appears twice, and one entry doesn’t have any sub-
items while the other does.

The corresponding page number (location) can
be encapsulated by a command using the encap spe-
cial character. This should be followed by the com-
mand name without the leading backslash. For ex-
ample, if on page 2 of my earlier example document
I add an encap to the aardvark entry,
\index{aardvark|textbf}

then the resulting .ind file created by makeindex
will now contain (makeindex inserts the \):

\item aardvark, \textbf{2}
Other commands could be included, for example,
\index{aardvark|bfseries\emph}
would end up in the .ind file as

\item aardvark, \bfseries\emph{2}
but obviously this would lead to the undesired effect
of rendering the rest of the index in bold. A bet-

ter solution is to define a semantic command that
performs the required font change, such as
\newcommand*{\primary} [1]{\textbf{\emph{#1}}}

If the encapsulating command takes more than
one argument, the final argument needs to be the
page number and the initial arguments need to be
added to the encap. For example,
\index{aardvark|textcolor{blue}}

The makeidx package provides two commands that
can be used in this way:

49

\newcommand*\see [2] {\emph{\seename} #1}
\providecommand*\seealso[2]{\emph{\alsoname} #1}

(The \seename and \alsoname macros are language-
sensitive commands that produce the text ‘see’ and
‘see also’.) These commands both ignore the second
argument, which means that the page number won’t
be displayed. This provides a convenient way of
cross-referencing. For example, if on page 2 I have

\index{ant-eater|seealso{aardvark}}
then the .ind file would contain
\item ant-eater, \seealso{aardvark}{2}

From makeindex’s point of view, this is just another
encapsulating command, so if I add

\index{ant-eater}

to page 1 and page 8, then this would lead to a rather
odd effect in the index:

\item ant-eater, 1, \seealso{aardvark}{2}, 8

The page list now displays as ‘1, see also aardvark, 8.

The simple solution is to place all the cross-
referenced terms before \printindex. (imakeidx
closes the indexing file at the start of \printindex,
which means that indexing can’t take place after it.)

The encap value may start with ( or ) to indicate
the start or end of an explicit range. If used, these
must match. For example, on page 2:

\index{aardvark| (textbf}
and then on page 10:
\index{aardvark|)textbf}
results in
\item aardvark \textbf{2--10}
If no formatting is needed, ( and ) may be used alone:
\index{aardvark| (}

\index{aardvark|)}

Although these parentheses characters have a spe-
cial meaning at the start of the encap, they’re not
considered special characters.

If any of the special characters need to be inter-
preted literally, then they must be escaped with the
quote character. For example,

\index{n"!Q@$n"!$}
\index{x@$" |\vec{x}"|$}

In the first case above, the special character that
needs to be interpreted literally is the level character
! which appears in both the sort value and the actual
value. In the second case, the special character that
needs to be interpreted literally is the encap character
| which appears twice in the actual value. (Of course,
replacing | with \vert avoids the problem.)

Indexing, glossaries, and bib2gls



50

This is something that often trips up new users.
With experience, we may realise that providing se-
mantic commands can hide the special characters
from the indexing application. For example,
\newcommand*{\factorial} [1]{#1!}

This can take care of the actual value but not the
sort value, which still includes a special character:

\index{n"!@$\factorial{n}$}

The quote character itself also needs escaping if
it’s required in a literal context:

\index{naive@na\""\i ve}

From makeindex’s point of view the backslash char-
acter \ is a literal backslash so \"" is a backslash
followed by a literal double-quote (which has been
escaped with ").

2.3 UTF-8

So far, all examples that include accented charac-
ters have used accent commands, such as \', since
makeindex doesn’t support UTF-8. This is essen-
tially down to its age, as it was written in the mid-
1980s, before the advent of Unicode. A previous
TUGboat article [13] highlights the problem caused
when trying to use makeindex on a UTF-8 file.

Around 2000, xindy [4], a new indexing appli-
cation written in Perl and Lisp, was developed as a
language-sensitive, Unicode-compatible alternative
to makeindex. The native xindy format is quite dif-
ferent from the makeindex syntax described above
and can’t be obtained with \index. In this case,
the special characters are the double-quote " used
to delimit data and the backslash \ used to indicate
that the following character should be taken literally.

In the earlier factorial example, the makeindex
syntax (used in the .idx file) is

\indexentry{n"!@$\factorial{n}$}{1}

(assuming \index{n"!@$\factorial{n}$} occurred
on page 1). Whereas in the native xindy format this
would be written as
(indexentry

ttkey (("n!" "$\\factorial{n}$"))

:locref "1")

or
(indexentry

:key ("n!")

:print ("$\\factorial{n}$")

:locref "1")
The exclamation mark doesn’t need escaping in this
case but the backslash does. The na\""\i ve exam-
ple above needs both the backslash and double-quote
treated in a literal context:

(indexentry

Nicola L. C. Talbot

TUGDboat, Volume 40 (2019), No. 1

:tkey (("naive" "na\\\"\\i ve"))
:locref "1")

Of course, in this case UTF-8 is preferable:
(indexentry :key ("naive") :locref "1")

This format requires a completely different com-
mand than \index for use in the document. However,
xindy is capable of reading makeindex syntax. The
simplest way of enabling this is by invoking xindy
through the wrapper program texindy. Unfortu-
nately, unlike makeindex, there’s no way of changing
the default special characters. The previous TUG-
boat article on testing indexing applications [13] com-
pares makeindex and xindy.

A recent alternative that’s also Unicode com-
patible is the Lua program xindex [20]. This reads
makeindex syntax and command line switches are
available to change the special characters or to spec-
ify the language.

2.4 Shortcuts

The \index command doesn’t generate any text.
This can lead to repetition in the code. For example,

An aardvark\index{aardvark} is a
nocturnal animal\index{nocturnal animall}.

It’s therefore quite common to see users provide their
own shortcut command to both display and index a
term. For example,

\newcommand*{\Index}[1]{#1\index{#1}}
Y/

An \Index{aardvark} is a
\Index{nocturnal animall}.

Complications arise when variations are required.
For example, if a page break occurs between ‘noctur-
nal’ and ‘animal’, so that ‘nocturnal’ is at the end
of, say, page 1 and ‘animal’ is at the start of page 2,
then placing \index after the term leads to the page
reference 2 in the index whereas placing it before
leads to the page reference 1. Also \index creates a
whatsit that can cause interference. Although exam-
ples quite often place \index after the text, in many
cases it’s more appropriate to put \index first. This
shortcut command doesn’t provide the flexibility of
the placement of \index relative to the text.

A problem also arises if the term includes special
characters that need escaping in \index but not in
the displayed text or if the display text needs to be
a slight variation of the indexed term. For example,
the above definition of \Index can’t be used in the
following:

The na\"\i ve\index{naive®@na\""\i ve}
geese\index{goose} were frightened by the
flock of ph\oe nixes\index{phoenix@ph\oe nix}.



TUGboat, Volume 40 (2019), No. 1

The definition of \Index could be modified to include
an optional argument to provide a different displayed
term. For example:
\newcommand*{\Index}[2] [\thedisplayterm] {%
\def\thedisplayterm{#2}%
#1\index{#2}}

but this ‘shortcut’ ends up with slightly longer code:
The \Index[na\"\i ve]l{naive@na\""\i ve}
\Index[geese]{goose} were frightened by the
flock of \Index[ph\oe nixes]{phoenix@ph\oe nix}.
An obvious solution to the first case (naive) is to use
UTF-8 instead of ATEX accent commands combined
with a Unicode-aware indexing application (texindy
or xindex).
The \Index{naive} geese\index{goose}
were frightened by the flock of
phenixes\index{phenix}.
This works fine with a Unicode engine (XgIATEX or
Lual&TEX) but not with inputenc [6], which uses the
so-called active first octet trick to internally apply
accent commands. This means that the .idx file
ends up with
\indexentry{na\IeC {\"\i }ve}{1}
\indexentry{goose}{1}
\indexentry{ph\IeC {\oe }Inix}{1}

The \index mechanism is designed to write its
argument literally to the .idx file. This can be seen
from the earlier \factorial example where

$\factorial{n}$\index{$\factorial{n}$}

is written to the .idx file as
\indexentry{$\factorial{n}$}{1}

Unfortunately, embedding \index in the argument of

another command (such as the above custom \Index)
interferes with this. For example,

\Index{$\factorial{n}$}

results in the expansion of \factorial as the index-
ing information is written to the .idx file:
\indexentry{$n!$}{1}

The level special character (!) is no longer hidden
from the indexing application and, since it hasn’t
been escaped with the quote character, this leads to
an unexpected result in the .ind file:

\item $n
\subitem §, 1

2.5 Consistency

With makeindex, invisible or hard to see differences
in the argument of \index can cause seemingly du-
plicate entries in the index. For example (line breaks
here are part of the input),

\index{debutante@d\'ebutante

51

11945-195801945\textendash 1958}
%. ..

\index
{debutante@d\'ebutante!1945-19580@1945\textendash
1958}

Here the two entries superficially appear the same
but the line break inserted into the first instance
results in two different entries in the index. The first
entry has a space at the end of its actual value but
the second doesn’t. This is enough to make them
appear different entries from makeindex’s point of
view. When viewing the .ind file, the difference is
only perceptible if the text editor has the ability to
show white space.

The simplest solution here is to run makeindex
with the -c option, which compresses intermediate
spaces and ignores leading and trailing blanks and
tabs.

A long document with a large index of hierar-
chical terms and terms that require a non-identical
sort value can be prone to such mistakes. Other
inconsistencies can arise through misspellings (which
hopefully the spell-checker will detect) or more subtle
errors that are missed by spell-checkers.

For example, in English some words are hyphen-
ated (‘first-rate’), some are merged into a single word
(“firstborn’) and some are space-separated (‘first aid’).
Even native speakers can mix up the separator, and
this can result in inconsistencies in a large document.
For example,

\index{firstborn}
/R
\index{first-born}
/.
\index{first bormn}

From the spell-checker’s point of view, there are
no spelling errors to flag in the above code. The
inconsistencies can be picked up by proof-reading
the index, but unfortunately some authors skip the
back matter when checking their document.

When using \glossary (rather than \index),
which may additionally include a long description,
the problem with consistency becomes more pro-
nounced. The example document below illustrates
the use of the kernel version of \glossary, with one
regular entry and one range entry. All the strings
have to be exactly the same.

Also shown here is that since makeindex is a
trusted application, it can be run through the shell
escape in restricted mode. Finally, a makeindex style
file is needed to indicate that data is now marked up
with \glossaryentry instead of \indexentry:
\documentclass{report}
\begin{filecontents*}{\jobname.ist}

Indexing, glossaries, and bib2gls



52

keyword "\\glossaryentry"
\end{filecontents*}

\IfFileExists{\jobname.glo}
{\immediate\writel18{makeindex -s \jobname.ist

-o \jobname.gls \jobname.glo}}
{\typeout{Rerun required.}}

\makeglossary

\begin{document}
\chapter{Introduction}
Duck\glossary{duck: a waterbird
with webbed feet}\ldots

\chapter{Ducks}
\glossary{duck: a waterbird
with webbed feet|(}

\1ldots

\glossary{duck: a waterbird
with webbed feet|)}

\renewcommand{\indexname}{Glossary}
\makeatletter
\@input@{\jobname.gls}

\makeatother

\end{document}

The old glossary package introduced a way of
saving the glossary information and referencing it by
label to perform the indexing, which helped consis-
tency and reduced document code. The term could
then be just indexed by referencing the label with
\useglosentry, or could be both indexed and dis-
played with \gls{(label)}. Special characters still
needed to be escaped explicitly, and this caused a
problem for \gls as the quote character ended up
in the document text. Abbreviation handling was
performed using a different indexing command, and
the package reached the point where it far exceeded
its original simplistic design. It was time for a com-
pletely new approach, which we turn to now.

3 The glossaries package

The glossaries package [19] was introduced in 2007 as
a replacement to the now obsolete glossary package.
The main aims were to

e define all terms so that they can be referenced
by label (no document use of \glossary);
e internally escape indexing special characters so
that the user doesn’t need to know about them;
e make abbreviations use the same indexing mech-
anism for consistency.
The advantage of first defining terms so that they can
be referenced by label isn’t only to help consistency
but also improves efficiency. When a term is defined,
partial indexing information is constructed and saved.

Nicola L. C. Talbot

TUGDboat, Volume 40 (2019), No. 1

This is the point where any special characters are
escaped, which means that this operation only needs
to be done when the term is defined, not every time
the term is indexed.

A hierarchical term is defined by referencing its
parent by label; thus, the parent’s indexing data
can easily be obtained and prefixed with the level
separator at the start of the child’s data.

With the old glossary package, a term had only
an associated name, description and sort value, but
the new glossaries package provides extra fields, such
as an associated symbol or plural form. Unfortu-
nately, when developing the new package I was still
thinking in terms of the old package that needed
to include the name and description in the index-
ing information so that it could be displayed in the
glossary. Early versions of the glossaries package
continued this practice and the ‘actual’ part of the
indexing information included the name, description
and symbol, written to the indexing file in the form
\glossaryentryfield{(label)}{(name)}{(description)}
{(symbol)}

This caused a number of problems. First, the name,
description and symbol values all had to be parsed for
indexing special characters, which added to the doc-
ument build processing time (especially for long de-
scriptions). Second, long descriptions could cause the
indexing information to exceed makeindex’s buffer.

The package settings can allow for expansion
to occur when terms are defined (for example, if
terms are defined in a programmatic context that
uses scratch variables that need expanding). This
can lead to robust internal commands appearing in
the indexing information. To simplify the problem
of trying to escape all the @ characters, the glossaries
package uses the question mark character (?) as the
actual character instead.

While it was necessary with the glossary package
to write all this information to the indexing file, it
is no longer necessary with the glossaries package as
the name, description and symbol can all now be
accessed by referencing the corresponding field asso-
ciated with the term’s identifying label. Therefore,
newer versions now simply use
\glossentry{(label)}
for the actual text. Hierarchical entries use
\subglossentry{(level)}{(label)}
for the actual text, where (level) is the hierarchi-
cal level that’s calculated when the term is defined.
(This information may be of use to glossary styles
that support hierarchical entries.) It’s now quicker to
construct the indexing information and only the sort
value and label need checking for special characters.



TUGboat, Volume 40 (2019), No. 1

For example,

\documentclass{report}

\usepackage [colorlinks] {hyperref}

\usepackage [symbols,style=treegroup]l {glossaries}
\makeglossaries

\newglossaryentry{waterbird}’ label
{name={waterbird},
description={bird that lives in or near waterl}}

\newglossaryentry{duckl}), label
{name={duck},

parent={waterbird},

description={a waterbird with webbed feet}}

\newglossaryentry{goose}’ label
{name={goose},

plural={geese}l,

parent={waterbird},

description={a waterbird with a long neck}}

\newglossaryentry{factl}), label
{name={\ensuremath{n!}},
description={$n$ factoriall},
sort={n!},

type=symbols

}

\begin{document}
\chapter{Singular}

\Gls{duck} and \gls{goosel}.
\chapter{Plural}

\Glspl{duck} and \glspl{goosel}.
\chapter{Other}
\begin{equation}
\gls[counter=equation]{fact} = n \times (n-1)!
\end{equation}
\printglossaries
\end{document}

This uses \makeglossaries (provided by glossaries),
rather than \makeglossary, as it’s not simply open-
ing one associated file. The glossaries package sup-
ports multiple glossaries and all associated files are
opened by this command as well as the custom style
file for use by the indexing application. In this
case, the document has two glossaries: the default
main glossary and the symbols list (created with the
symbols package option).

The glossaries are output using the command
\printglossaries. This is a shortcut to iterate over
all defined glossaries, calling for each

\printglossary [type=(label)]

where (label) identifies the required glossary. It’s
this command that inputs the file generated by the
indexing application. A style is needed that sup-
ports hierarchical entries. In this example, I've cho-
sen the tree style in the package options but the

53

style can also be set within the optional argument of
\printglossary. (A list of all styles with example
output can be viewed at the glossaries gallery [15].)

As shown here: the hyperref package must be
loaded before glossaries. This is an exception to the
general rule that hyperref should be loaded last.

The commands \gls, \Gls, \glspl and \Glspl
all reference a term by its label and simultaneously
display and index the term. The variations provide
a way of displaying the plural form (\glspl and
\G1lspl) and to convert the first letter to upper case
(\Gls and \Glspl). In this case, the ‘waterbird’
entry isn’t explicitly indexed in the document but
it’s included in the indexing information for its child
entries ‘duck’ and ‘goose’, which are indexed.

The above example creates two indexing files
with extensions .glo (for the default glossary) and
.slo (for the symbols list), that both use makeindex
syntax. Each file contains the indexing information
for a particular glossary. Both files require the .ist
style file that’s also created during the document
build.

The lines are quite long but are all in the form
(line breaks for clarity)

\glossaryentry

{(data) | (encap)}

{(location)}

The (encap) and (location) information can vary with
each indexing instance but the (data) part is constant
for each term, and it’s this part that’s created when
the term is defined.

When the ‘waterbird’ term is defined, the (data)
part is determined to be

waterbird?\glossentry{waterbird}

The sort part here is waterbird and the actual part
is \glossentry{waterbird}. This is stored inter-
nally and accessed when the child entries are defined.
For example, when the ‘duck’ entry is defined, its
(data) information is set to (line break for clarity
and not included in (data))
waterbird?\glossentry{waterbird}!
duck?\subglossentry{1}{duck}
The hierarchical level numbering starts with 0 for
top-level entries, so the duck entry has the level set
to 1 since it has a parent but no grandparent.

The factorial example has this (data) part set:
n"!?\glossentry{fact}

Note that the special character occurring in the sort
value has been escaped. This has to be done only
once, when the entry is defined.

The location number defaults to the page num-
ber but may be changed, as in the reference to the
fact entry, which switches to the equation counter:

Indexing, glossaries, and bib2gls



54

\begin{equation}
\gls[counter=equation]{fact} = n \times (n-1)!
\end{equation}

Since the report class is in use, this is in the form
(chapter) . {equation) (3.1 in this case).

Location formats only have limited support with
makeindex, which requires a bare number (0, 1, 2,
...), Roman numeral (i, i, iii, ... or I, IT, III, ... ),
basic Latin letter (a, ..., zor A, ..., Z) or a simple
composite that combines these forms with a given
separator (such as A-4 or 3.1). The separator must
be consistent, so you can’t have a mixture of, say,
A:i and B-2 and 3.4.

In this case, the separator is a period or full
stop character, which is the default setting in the
custom style file created by \makeglossaries, so
makeindex will accept ‘3.1’ as a valid location.

Unfortunately, the glossary style may need to
know which counter generated each location. This
is especially true if the hyperref package is in use
and the location numbers needs to link back to the
corresponding place in the document. The hyperlink
information can’t be included in the indexed location
as it will be rejected as invalid by makeindex. The
only other part of the indexing information that
can vary without makeindex treating the same term
as two separate entries is within the encap, so the
glossaries package actually writes the encap as

setentrycounter [(h-prefiz)]{({counter)}\(csname)

where (counter) is the counter name and (csname) is
the name of the actual encapsulating command. This
defaults to glsnumberformat but may be changed
in the optional argument of commands like \gls.

The first example document at the start of this
article demonstrated makeindex’s implicit range for-
mation, where the location list for the ‘goose’ entry
(which was indexed on pages 1, 2 and 3) was com-
pressed into 1--3. This compression can only occur
if the encap is identical for each of the indexing
instances within the range.

The hypertarget will necessarily change for each
non-identical indexed location. This means that if
the actual target is included in the encap it will inter-
fere with the range formation. Instead, only a prefix
is stored ({h-prefiz)) which can be used to reconstruct
the hypertarget. This assumes that \theH(counter)
is defined in the form (h-prefiz)\the(counter). Now
the encap will be identical for identical values of
(h-prefiz). If the hypertarget can’t be reconstructed
from the location by simply inserting a prefix then
it’s not possible to have hyperlinked locations with
this indexing method.

Nicola L. C. Talbot

TUGDboat, Volume 40 (2019), No. 1

In the above example, the report class has been
loaded along with hyperref so \theHequation is de-
fined as

\theHsection.\arabic{equation}

This means that the indexing of the term in equa-
tion 3.1 occurs when \theHequation expands to
3.0.1 (the section counter is 0) so (h-prefix) can’t
be obtained since there’s no prefix that will make
(prefiz)3.1 equal to 3.0. 1. This results in a warning
from the glossaries package:

Hyper target “3.0.1' can't be formed by
prefixing location “3.1'. You need to modify
the definition of \theHequation otherwise

you will get the warning: " “name{equation.3.1}'
has been referenced but does not exist"

(and hyperref does indeed generate that warning once
the glossary files have been created). The only solu-
tion here is to either remove the location hyperlink
or redefine \theHequation so that a prefix can be
formed.

3.1 xindy

Although the glossaries package was originally de-
signed for use with just makeindex, version 1.17
added support for xindy. It made sense to use
xindy’s native format as it’s more flexible; also,
texindy only accepts the default makeindex spe-
cial characters so it won’t accept ? as the actual
character.

The default setting assumes the makeindex ap-
plication will be used for backward compatibility.
The xindy package option will switch to xindy syn-
tax. Again the partial indexing data is constructed
when each entry is defined, but now the special char-
acters that need escaping are " and \.

The previous example can be converted to use
xindy by modifying the package options:
\usepackage [symbols,style=treegroup,xindy]

{glossaries}

The package also needs to know which counters (aside
from the default page counter) will be used for lo-
cations. In our example, since one of the terms is
indexed with the equation counter, this needs to be
indicated:

\GlsAddXdyCounters{equation}

(The argument should be a comma-separated list if
you are indexing other counters as well.)

As with makeindex, it’s not straightforward to
add the information needed to convert the location
into a hyperlink. Now the prefix and location are
provided using

:locref "{{h-prefiz)}{{location)}"



TUGboat, Volume 40 (2019), No. 1

and the counter and encapsulating format are merged
into the attribute value:

rattr "(counter)(format)"

This is why with the xindy package option set it’s
necessary to specify which non-default counters and
formats you want to use—so that corresponding
commands can be provided.

Unlike makeindex, which will only accept very
specific types of numbering, with xindy you can have
your own custom numbering scheme, provided that
you define a location class that specifies the syntax.
This is obviously a far more flexible approach but
the downside is a far greater chance that the location
might include xindy’s special characters that will
need escaping, and now the escaping must be done
every time an entry is indexed, not just when the
entry is defined.

Suppose for example, I have a little package
(that loads etoolbox [7] and tikzducks [11]) that pro-
vides the robust command \ducknumber{(n)}to dis-
play (n) little ducks in a row,

\newcount\duckctr
\newrobustcmd{\ducknumber}[1]{%
\ifnum#1>0\relax
\duckctr=0\relax
\loop
\advance\duckctr by 1\relax
\tikz[scale=0.3]{\duck;1}%
\ifnum\duckctr<#1
\repeat
\fi
}
It also provides \duckvalue{(counter)} if the value
needs to be obtained from a counter:
\newcommand*{\duckvalue}[1]{%
\ducknumber{\value{#1}}}

Now let’s suppose I want the page numbering
in my document to be represented by ducks:

\renewcommand{\thepage}{\duckvalue{pagel}}

so, for example, on page 5, five little ducks are dis-
played in the footer. Now let’s suppose that I index
a term on this page. The location will expand to
\ducknumber{5}

This would be rejected as invalid by makeindex, but
what about xindy? With an appropriate location
class xindy would accept this, but it would interpret
\d as the literal character ‘d’. The resulting code it
would write to the designated output file would be
ducknumber{5}

so you’d end up with ‘ducknumber5’ typeset in your
document.

The backslash must be escaped but there’s a
conflict between expansion and TEX’s asynchronous

55

output routine. With the glossaries package, the
location is obtained by expanding the command
\theglsentrycounter, and the corresponding hy-
pertarget value (if supported) is obtained by expand-
ing \theHglsentrycounter. These two commands
can be fully expanded when trying to determine the
prefix. If the value of the page counter is currently
wrong, then it’s equally wrong for both values and
it should still be possible to obtain the prefix.

When it comes to the actual task of preparing
the location so that it’s in a suitable format for xindy,
there’s no sense in converting \theglsentrycounter
into \\theglsentrycounter as clearly there’s no
way for xindy to extract the page number from this.
On the other hand, if \theglsentrycounter is fully
expanded (and then detokenized and escaped), the
page number could end up incorrect if it occurs across
a page break.

The normal way around this problem (used by
\protected@urite) is to locally let \thepage to
\relax so that it isn’t expanded until the actual
write operation is performed, but if this method is
used the location will end up as \\thepage which
will prevent xindy from obtaining the correct value.

It’s necessary for \thepage to be expanded be-
fore the write operation in order to escape the special
characters but at the same time, the actual value
of \c@page shouldn’t be expanded until the write
operation is actually performed.

Essentially, for the duck numbering example, on
page 5 \thepage needs to be converted into

\\ducknumber{\the\c@page}

where \\ are two literal (catcode 12) characters and
\the\c@page is left to expand when the write oper-
ation is performed.

The glossaries package gets around this problem
with a nasty hack that locally redefines some com-
mands. For example, \@alph\c@page expands to
\gls@alphpage. This command is skipped when the
special characters are escaped but expands to the
original definition of \@alph\c@page when the write
operation is actually performed.

This action is only performed when the page
counter is being used for the location. Other counters
will need to be expanded immediately to ensure that
they are the correct value.

As this hack can cause problems in some con-
texts, if you know that your locations will never
expand to any content that contains xindy special
characters, then it’s best to switch off this behaviour
with the package option esclocations=false.

This is an inherent problem when converting
from one syntax (ATEX in this case) to another

Indexing, glossaries, and bib2gls



56

(xindy or makeindex). Each syntax has its own set
of special characters (required to mark up or delimit
data) that may need to be interpreted literally.

3.2 Using TEX to sort and collate

Some users who aren’t familiar with command line
tools have difficulty integrating them into the doc-
ument build and prefer a TEX-only solution that
doesn’t require them. In general, it’s best to use
tools for the specific task they were designed for.
Indexing applications are designed for sorting and
collating data. TEX is designed for typesetting. Each
tool is optimized for its own particular intended pur-
pose. It is possible to sort and collate in TEX but
it’s much less efficient than using a custom indexing
application. However, for small documents it may
suit some users to have everything done within TEX,
so version 4.04 of the glossaries package introduced
a TEX-only method.

The example document given on page 53 can
be converted to use this method simply by replacing
\makeglossaries with \makenoidxglossaries and
\printglossaries with \printnoidxglossaries.
As with \printglossaries, this is a shortcut com-
mand that iterates over all defined glossaries, doing

\printnoidxglossary [type=(label)]

In this case, the command doesn’t input a file but
sorts the list of entry labels and iterates over them to
display the information using the required glossary
style. The label list only includes those entries that
have been indexed in the previous ATEX run. This
information is obtained from the .aux file. Each
time an entry is indexed using commands like \gls,
a line is written to the .aux file in the form

\gls@reference{(type)}{(label)}{(location)}

where (type) identifies the glossary, (label) identifies
the entry and (location) is in the form

\glsnoidxdisplayloc{(h-prefix)}{(counter)}{{encap)}
{(number)}

This has the advantage that there is no conversion
from one syntax to another and there’s no restriction
on (number) (as long as it’s valid BTEX code). The
disadvantages are that there’s no range support and
sorting is slow and uses character code comparisons.
(See my earlier TUGboat article comparing indexing
methods [13].)

With this method, each entry has an associated
internal field labelled loclist. When the .aux file
is parsed, each location is added to this field using
one of etoolbox’s internal list commands. This list is
iterated over in order to display the locations.

Nicola L. C. Talbot

TUGDboat, Volume 40 (2019), No. 1

4 The glossaries-extra package

The glossaries-extra package [18] was created in 2015
as a compromise between the conflicting require-
ments of users who wanted new features and users
who complained that the glossaries package took a
long time to load (because it had so many features).
New features, especially those that require additional
packages, necessarily add to the package load time.

The glossaries-extra package automatically loads
the base glossaries package, but there are some dif-
ferences in the default settings, the most noticeable
being the abbreviation handling. The base package
only allows one abbreviation style to be used through-
out the document. The extension package defines a
completely different mechanism for handling abbre-
viations that allows multiple styles within the same
document.

As with the base package, the default indexing
application is still assumed to be makeindex but
the extension package provides two extra methods
(although from KTEX’s point of view they both use
the same essential code).

The new command
\printunsrtglossary [{options)]
works fairly similarly to \printnoidxglossary, in
that it iterates over a list of labels, but the list
contains all the labels defined in the given glossary
(rather than just those that have been indexed) and
no sorting is performed by TEX.

As with the other methods, there’s a shortcut
command that iterates over all glossaries:
\printunsrtglossaries
For example,

\documentclass{report}

\usepackage [colorlinks] {hyperref}

\usepackage [symbols,style=treegroup]
{glossaries-extra}

\newglossaryentry{waterbird}{name={waterbird},
description={bird that lives in or near water}}

\newglossaryentry{duck}{name={duck},
parent={waterbird},
description={a waterbird with webbed feet}}

\newglossaryentry{goose}{name={goose},
plural={geese},

parent={waterbird},

description={a waterbird with a long neckl}}

\newglossaryentry{fact}{name={\ensuremath{n!}},
description={$n$ factoriall,

sort={n!},

type=symbols

}



TUGboat, Volume 40 (2019), No. 1

\begin{document}
\printunsrtglossaries
\end{document}

No indexing is performed in this document. With
the other methods provided by the base package
this would result in empty glossaries, but with this
method all defined entries are shown (and only one
BTEX call is required to display the list). The ‘goose’
entry appears after ‘duck’ but only because ‘goose’
was defined after ‘duck’.

The glossary style I’ve chosen here (treegroup)
shows the letter group headings. This is something
that’s usually determined by the indexing applica-
tions according to the first character of the sort value.
The heading information is then written to indexing
output file (read by \printglossary) at the start
of a new letter block.

The ‘noidx’ method checks the first letter of the
sort value at the start of each iteration, and if it’s
different from the previous iteration a new heading
is inserted. The ‘unsrt’ method also does this unless
the group key has been defined, in which case the
letter group label is obtained from the corresponding
field (if it’s set).

This letter group formation can lead to strange
results if the entries aren’t defined in alphabetical
order [16]. For example,

\documentclass{article}
\usepackage [style=treegroup] {glossaries-extral}

\newglossaryentry{ant}{name={ant},
description={small insectl}}

\newglossaryentry{aardvark}{name={aardvark},
description={animal that eats ants}}

\newglossaryentry{duck}{name={duck},
description={waterbird with webbed feetl}}

\newglossaryentry{antelope}{name={antelope},
description={deer-like animall}}

\begin{document}
\printunsrtglossaries
\end{document}

This produces the document shown in figure 1. (The
vertical spacing below the letter headings is too large,
but that is the default result; the point here is the
undesired second ‘A’ group.)

If the group key has been defined but not explic-
itly set then an empty headerless group is assumed.
If the above example is modified so that it defines
the group key:

\glsaddstoragekey{group}{}{\grouplabel}

o7

Glossary
A

ant small insect
aardvark animal that eats ants

D
duck waterbird with webbed feet

A

antelope deer-like animal

Figure 1: Example glossary with letter groups

Glossary

ant small insect

aardvark animal that eats ants
duck waterbird with webbed feet
antelope deer-like animal

Figure 2: Example glossary with empty group

but without modifying the entry definitions to set
this key then no letter groups are formed (see fig-
ure 2).

The record package option automatically de-
fines the group key. Each group value should be a
label. The corresponding title can be set with

\glsxtrsetgrouptitle{(label)}{(title)}
For example,

\documentclass{article}

\usepackage [style=treegroup,record]
{glossaries-extra}
\glsxtrsetgrouptitle{antrelated}{Ants and
Ant-Eaters}
\glsxtrsetgrouptitle{waterbirds}{Waterbirds}
\glsxtrsetgrouptitle{deerlike}{Deer-Like}
\newglossaryentry{ant}{name={ant},
group={antrelated},

description={small insect}}
\newglossaryentry{aardvark}{name={aardvark},
group={antrelated},

description={animal that eats ants}}
\newglossaryentry{duck}{name={duck},
group={waterbirds},

description={waterbird with webbed feetl}}
\newglossaryentry{antelope}{name={antelopel,
group={deerlike},

description={deer-like animall}}
\begin{document}

\printunsrtglossaries

\end{document}

Indexing, glossaries, and bib2gls



58

Glossary
Ants and Ant-Eaters

ant small insect
aardvark animal that eats ants

Waterbirds
duck waterbird with webbed feet
Deer-Like

antelope deer-like animal

Figure 3: Example glossary with custom groups

This now produces the glossary shown in figure 3.
(Alternatively, use the parent key for a hierarchical
structure or the type key to separate the logical
blocks into different glossaries [16].)

\printunsrtglossary uses an iteration handler
that supports the loclist internal field used with
the ‘noidx’ method. If this field is set, the locations
will be displayed but, as with the ‘noidx’ method, no
ranges are formed and the elements of the loclist
field must conform to a specific syntax. However,
the handler will first check if the location field is
set. If it is, that will be used instead.

The location key isn’t provided by default but
is defined by the record option, so locations can also
be provided when a term is defined. For example,
\newglossaryentry{ant}{name={ant},

group={antrelated},

location={1, 4--5, 8},

description={small insectl}}
This may seem cumbersome to do manually but it’s
the underlying method used by bib2gls [17].

5 Glossaries and .bib: bib2gls

Some years ago I was asked if it was possible to pro-
vided a GUI (graphical user interface) application
to manage files containing many entry definitions.
This article has only mentioned defining entries with
\newglossaryentry but there are other ways of
defining terms with the glossaries package (and some
additional commands provided with glossaries-extra).
I already have several GUI applications that are quite
time-consuming to develop and maintain, and the
proposed task seemed far too complex, so I declined.

More recently, a question was posted on StackEx-
change [10] asking if it was possible to store terms in
a .bib file, which could be managed in an application
such as JabRef [3], and then converted into a . tex file
containing commands such as \newglossaryentry.

Nicola L. C. Talbot

TUGDboat, Volume 40 (2019), No. 1

This was a much better proposition as the graphical
task could be dealt with by JabRef and the conver-
sion tool could be a command line application.

I added the record option and the commands

like \printunsrtglossary to glossaries-extra to as-
sist this tool. The record option not only creates
new keys (group and location) but also makes ref-
erences to undefined entries trigger warnings rather
than errors. This is necessary since the entries won’t
be defined on the first BTEX call. The option also
changes the indexing behaviour. As with the ‘noidx’
method, the indexing information is written to the
.aux file so that the new tool could find out which en-
tries are required and their locations in the document.
In this case, the .aux entry is in the form
\glsxtr@record{(label) }H (h-prefix) H (counter)}
{(encap)}{(location)}
As with the ‘noidx’ method there is no conversion
from one syntax to another when the indexing takes
place, so there is no need to worry about escaping
special indexing characters.

It later occurred to me that, without the con-
straints of the makeindex or xindy formats, it’s pos-
sible to save the hypertarget so that it doesn’t have
to be reconstructed from (h-prefiz) and (location).
In glossaries-extra version 1.37 I added the package
option record=nameref, which writes more detailed
indexing information to the .aux file (and support
for this new form was added to bib2gls v1.8). This
means that the earlier makeindex example on page 53
can be rewritten in such a way that the equation
location now has a valid hyperlink.

TEX syntax can be quite hard to parse program-
matically. Regular expressions don’t always work.
I have a number of applications that are related
to TEX in some way and need to parse either com-
plete documents or code fragments. The most com-
plicated of these was a Java GUI application used
to assist production editors. The document code
submitted by authors often contained problematic
code that needed fixing, which was both tedious and
time-consuming, so I tried to develop a system that
parsed the original source provided by the authors
and created new files with the appropriate patches
and comments alerting the production editors of a
potential problem, where necessary. The files were
also flattened (that is, \input was replaced by the
contents of the referenced file) to reduce clutter.

I realised that the TEX parsing code used in this
application would also be useful in some of my other
Java applications so, rather than producing unneces-
sary duplication, I split the code off into a separate
library, texparserlib.jar [14]. Rather than test-
ing the code in big GUI applications that take a long



TUGboat, Volume 40 (2019), No. 1

time to set up and run, I added a small application
called texparserapp. jar to the texparser reposi-
tory together with a selection of sample files to test
the library.

The production editor GUI application not only
needed to parse the .tex and .bib files supplied
by the authors but also needed to gather informa-
tion from .aux files. Some of this information is
displayed in the graphical interface and it looks bet-
ter if MTEX commands like \’ or \c are converted
to Unicode when showing author names. It used to
also be a requirement for production editors to pro-
duce HTML files containing the abstract. I originally
used TEX4ht for this but an update caused a conflict,
and since only the abstract needed converting and
MathJax could be used for any mathematical con-
tent, I decided that the TEX parser code should not
only provide PTEX to KTEX methods but also BTEX
to HTML —with the caveat that the conversion to
HTML was not intended for complete documents
but for code fragments supplemented by information
obtained from the .aux file.

The GUI application was used not only to pre-
pare workshop proceedings but also to prepare a
related series of books that contained reprints. Since
writing the TEX parser library the requirements for
the proceedings have changed, which make the pro-
duction editing task easier, and the publisher for the
related series has also changed and the new publisher
provides their own templates. The application has
now largely become redundant although it can still
be used to prepare volumes for the proceedings.

Since I already had this library that was de-
signed to obtain information from .aux and .bib
files, it made sense to use it for my new tool. This
meant that the new tool also had to be in Java. The
library methods that can convert IXTEX code frag-
ments to HTML provide a useful way of obtaining an
appropriate sort value from the name field as accent
commands can be converted to Unicode characters.
Command definitions provided in @preamble can
also be interpreted (provided they aren’t too com-
plex). Any HTML markup is stripped and leading
and trailing white space is trimmed. This means
that there should rarely be any need to set the sort
field when defining an entry.

Sorting can be performed according to a valid
language tag, such as en (English) or en-GB (British
English) or de-CH-1996 (Swiss German new orthog-
raphy). Java 8 has support for the Unicode Common
Locale Data Repository (CLDR) which provides col-
lation rules, so bib2gls can support more languages
than xindy (although, unlike xindy, it doesn’t sup-
port Klingon).

59

There are other sort methods available as well,
including sorting according to Unicode value (case-
sensitive or case-insensitive) or sorting numerically
(assuming the sort values are numbers) or sorting
according to use in the document (determined by
the ordering of the indexing information contained
within the .aux file).

For example, suppose the file entries.bib con-
tains the following:

% Encoding: UTF-8
Q@entry{waterbird,
name={waterbird},
description={bird that lives in or near waterl}}
Qentry{goose,
name={goose},
parent={waterbird},
description={waterbird with a long neckl}}
Qentry{duck,
name={duck},
parent={waterbird},
description={waterbird with webbed feetl}}
and suppose the file symbols.bib contains
% Encoding: UTF-8
@preamble{"\providecommand{\factorial} [1]{#1!}
\providecommand{\veclength} [1]{|#1|}"}
@symbol{nfact,
name={\ensuremath{\factorial{n}}},
description={$n$ factoriall}}
Q@symbol{lenx,
name={\ensuremath{\veclength{\vec{x}}}2},
description={length of $\vec{x}$}}

The document code

\documentclass{report}
\usepackage [colorlinks]{hyperref}
\usepackage [symbols,style=treegroup,
record=nameref]
{glossaries-extra}
\GlsXtrLoadResources[
src=entries,’, entries.bib
sort=en-GB]
\GlsXtrLoadResources[
src=symbols, % symbols.bib
type=symbols,’% glossary
sort=letter-nocase]

\begin{document}

\chapter{Singular}

\Gls{duck} and \gls{goosel}.
\chapter{Plural}

\Glspl{duck} and \glspl{goosel}.
\chapter{Other}

\begin{equation}
\gls[counter=equation]{nfact} = n \times (n-1)!
\end{equation}

The length of $\vec{x}$ is \gls{lenx}.\par
\printunsrtglossaries

\end{document}

Indexing, glossaries, and bib2gls



60

Unlike the makeindex and xindy methods, which
require one call per glossary, with this approach only
one bib2gls call is required, regardless of the number
of glossaries. For example, if the document code is
in myDoc.tex, then the build process is

pdflatex myDoc

bib2gls myDoc

pdflatex myDoc

Letter groups are not formed by default. To get
them, specify the -g switch:

bib2gls -g myDoc

bib2gls creates one .glstex output file per instance
of \GlsXtrLoadResources, but you don’t necessarily
need one \GlsXtrLoadResources per glossary. You
may be able to process multiple glossaries within one
instance of this command, or a single glossary may
require multiple instances.

The .glstex file contains the glossary defini-
tions (using provided wrapper commands for greater
flexibility) in the order obtained from the provided
sort method. In the above example, the entries in the
first .glstex file are defined in the order obtained
by sorting the values according to the en-GB rule.
The entries in the second .glstex file are defined in
the order obtained by sorting the values according
to the letter-nocase rule (that is, case-insensitive
Unicode order).

If the sort key isn’t provided (which it generally
isn’t), its value is taken from the designated fallback
field. In the case of @entry this is the name field and
in the case of @symbol this is the entry’s label. So in
the above example, the symbols are sorted as first
‘lenx’ and second ‘nfact’.

The fallback field used for @symbol entries can
be changed. For example, to switch to the name field:
\GlsXtrLoadResources[

src=symbols,

type=symbols,
symbol-sort-fallback=name,
sort=letter-nocase

]

Since the name field contains commands, the TEX
parser library is used to interpret them. The tran-
seript file (.glg) shows the results of the conversion.
The nfact entry ends up with just two characters,
‘n!’ but the lenx entry ends up with four characters:
vertical bar (Unicode 0x7C), lower case ‘x’ (Unicode
0x78), combining right arrow above (Unicode 0x20D7)
and vertical bar (Unicode 0x7C). The order is now:
n! (nfact), |Z] (lenx).

References

[1] Claudio Beccari and Enrico Gregorio. The imakeidx
package, 2018. ctan.org/pkg/imakeidx.

Nicola L. C. Talbot

TUGDboat, Volume 40 (2019), No. 1

[2] P. Happel. The lipsum package, 2019.
ctan.org/pkg/lipsum.

[3] JabRef: Graphical frontend to manage BIBTEX
databases, 2018. jabref.org.

[4] R. Kehr and J. Schrod. xindy: A general-purpose
index processor, 2018. ctan.org/pkg/xindy.

[6] The ITEX Team. The makeidx package, 2014.
ctan.org/pkg/makeidx.

[6] The KTEX Team, F. Mittelbach, and A. Jeffrey.
The inputenc package, 2018.
ctan.org/pkg/inputenc.

[7] P. Lehman and J. Wright. The etoolbox package,
2018. ctan.org/pkg/etoolbox.

[8] L. Madsen and P. R. Wilson. The memoir class,
2018. ctan.org/pkg/memoir.

[9] L. Netherton, C. V. Radhakrishnan, et al.

The nomencl package, 2019.
ctan.org/pkg/nomencl.
e Pompitous of Love. Is there a program for

10] The P i f L Is th g fi
managing glossary tags?, 2016.
tex.stackexchange.com/questions/342544.

[11] samcarter. The tikzducks package, 2018.
ctan.org/pkg/tikzducks.

[12] N. Talbot. The glossary package, 2006.
ctan.org/pkg/glossary.

[13] N. Talbot. Testing indexes: testidx.sty. TUGboat
38(3):377-399, 2017.
tug.org/TUGboat/tb38-3/tb120talbot . pdf.

[14] N. Talbot. texparserlib.jar: A Java library for
parsing (E)TEX files, 2018.
github.com/nlct/texparser.

[15] N. Talbot. Gallery of all styles provided by the
glossaries package, 2019. dickimaw-books.com/
gallery/glossaries-styles.

. Talbot. Logical glossary divisions (type vs

[16] N. Talbot. Logical gl y divisi (typ
group vs parent), 2019. dickimaw-books.com/
gallery/logicialdivisions.shtml.

[17] N. Talbot. bib2gls: Command line application
to convert .bib files to glossaries-extra.sty
resource files, 2019. ctan.org/pkg/bib2gls.

[18] N. Talbot. The glossaries-extra package, 2019.
ctan.org/pkg/glossaries-extra.

[19] N. Talbot. The glossaries package, 2019.
ctan.org/pkg/glossaries.

[20] H. VoR. xindex: Unicode compatible index
generation, 2019. ctan.org/pkg/xindex.

¢ Nicola L. C. Talbot
School of Computing Sciences
University of East Anglia
Norwich Research Park
Norwich NR4 7TJ
United Kingdom
N.Talbot (at) uea dot ac dot uk
http://www.dickimaw-books.com



