
TUGBOAT

Volume 39, Number 2 / 2018

TUG 2018 Conference Proceedings

TUG 2018 98 Conference sponsors, participants, program

100 Joseph Wright / TUG goes to Rio

104 Joseph Wright / TEX Users Group 2018 Annual Meeting notes

Graphics 105 Susanne Raab / The tikzducks package

LATEX 107 Frank Mittelbach / A rollback concept for packages and classes

113 Will Robertson / Font loading in LATEX using the fontspec package:
Recent updates

117 Joseph Wright / Supporting color and graphics in expl3

119 Joseph Wright / siunitx: Past, present and future

Software & Tools 122 Paulo Cereda / Arara—TEX automation made easy

126 Will Robertson / The Canvas learning management system and LATEXML

131 Ross Moore / Implementing PDF standards for mathematical publishing

Fonts 136 Jaeyoung Choi, Ammar Ul Hassan, Geunho Jeong / FreeType MF Module:
A module for using METAFONT directly inside the FreeType rasterizer

Methods 143 S.K. Venkatesan / WeTEX and Hegelian contradictions in classical mathematics

Abstracts 147 TUG 2018 abstracts (Behrendt, Coriasco et al., Heinze, Hejda, Loretan,
Mittelbach, Moore, Ochs, Veytsman, Wright)

149 MAPS: Contents of issue 48 (2018)

150 Die TEXnische Komödie: Contents of issues 2–3/2018

151 Eutypon: Contents of issue 38–39 (October 2017)

General Delivery 151 Bart Childs and Rick Furuta / Don Knuth awarded Trotter Prize

152 Barbara Beeton / Hyphenation exception log

Book Reviews 153 Boris Veytsman / Book review: W.A. Dwiggins: A Life in Design by
Bruce Kennett

Hints & Tricks 155 Karl Berry / The treasure chest

Cartoon 156 John Atkinson / Hyphe-nation; Clumsy

Advertisements 157 TEX consulting and production services

TUG Business 158 TUG institutional members

159 TUG 2019 election

News 160 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2018 dues for individual members are as follows:

Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members also have the op-
tion to receive TUGboat and other benefits electron-
ically, at a discount.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
organizations and others wishing to receive TUG-
boat in a name other than that of an individual.
The subscription rate for 2018 is $110.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted membership
rate, site-wide electronic access, and other benefits.
For further information, see tug.org/instmem.html
or contact the TUG office.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: September 2018]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Reutenauer∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Johannes Braams
Kaja Christiansen
Taco Hoekwater
Klaus Höppner
Frank Mittelbach
Ross Moore
Cheryl Ponchin
Norbert Preining
Will Robertson
Herbert Voß
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board.html for a roster of all past and
present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
tug.org

tug.org/TUGboat

Electronic Mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2018 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another
language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such
approval, the original English permission notice must
be included.

2018 Conference Proceedings

TEX Users Group

Thirty-eighth annual TUG meeting

Rio de Janeiro, Brazil

July 20–22, 2018

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 39, NUMBER 2, 2018

PORTLAND, OREGON, U.S.A.

98 TUGboat, Volume 39 (2018), No. 2

https://tug.org/tug2018 tug2018@tug.org

Room 232
IMPA—Instituto de Matemática Pura e Aplicada
Estr. Dona Castorina, 110
Jardim Botânico
Rio de Janeiro, RJ 22460-320

TUG 2018 was an official satellite conference of ICM 2018.

Sponsors

TEX Users Group DANTE e.V. ICM’18

with special assistance from individual contributors. Thanks to all!

Special guests from the Lua team

Waldemar Celes Luiz Henrique de Figueiredo Roberto Ierusalimschy

Conference committee

Karl Berry Paulo Cereda Robin Laakso Paulo Ney de Souza Boris Veytsman

Participants

Francisco J Alves, Rio de Janeiro

Maynara Azevedo Aredes, Federal University of
Rio de Janeiro

Felipe da Silva Barreto, Rio de Janeiro

Nelson Beebe, University of Utah

Doris Behrendt, DANTE e.V.

Waldemar Celes, PUC-Rio & Lua team

Paulo Cereda, University of São Paulo

Jaeyoung Choi, Soongsil University

Marcel de Sena Dall’Agnol, Rio de Janeiro

Luiz Henrique de Figueiredo, IMPA & Lua team

Gert Fischer, Mönchengladbach, Germany

Ulrike Fischer, Mönchengladbach, Germany

Mylena da Silva Gomes, Rio de Janeiro

Joachim Heinze, Senior Advisor Mathematics
Sciences, Heidelberg

Tom Hejda, Charles University Prague

Roberto Ierusalimschy, PUC-Rio & Lua team

Eduardo Kalinowski, Brasilia

Mico Loretan, Zurich, Switzerland

Jonas Malaco, Rio de Janeiro

Frank Mittelbach, LATEX Project

Ross Moore, Macquarie University

Eduardo Ochs, UFF

Matheus Rocha de Souza Ramos, Ufes

Ana Claudia Ribeiro, E-papers Serviços Editoriais

Will Robertson, University of Adelaide

Chris Rowley, PCEC and LATEX

Volker RW Schaa, DANTE e.V.

Paulo Ney de Souza, University of California,
Berkeley & BooksInBytes

Arthur Szasz, Protocubo

S.K. Venkatesan, TNQ

Boris Veytsman, George Mason University
& Chan Zuckerberg Initiative

Joseph Wright, LATEX Project

TUG2018—Rio de Janeiro, Brazil

TUG2018 program

Friday
July 20

8:00 am registration

8:55 am Paulo Ney de Souza,
UC Berkeley&BooksInBytes

Opening

9:00 am Roberto Ierusalimschy,
PUC-Rio&Lua team

The making of Lua

9:45 am Eduardo Ochs, UFF Dednat6: An extensible (semi-)preprocessor for LuaLATEX
that understands diagrams in ASCII art

10:20 am break

10:45 am Mico Loretan, Zurich, Switzerland Selective ligature suppression with the selnolig package
11:15 am Joseph Wright, LATEX Project Fly me to the moon: (LA)TEX testing (and more)

using Lua

11:50 am Paulo Cereda, University of São Paulo From parrot 1.0 to phoenix 4.0: 6 years of arara,
the beginning of a new era

12:25 pm lunch

1:45 pm Will Robertson, University of
Adelaide

Creating teaching material with LATEXML for the Canvas
Learning Management System

2:25 pm Ross Moore, Macquarie University Authoring accessible ‘Tagged PDF’ documents using LATEX
3:00 pm break

3:20 pm S. Coriascoet al., Università di Torino An automated method based on LATEX for the realization
of accessible PDF documents containing formulae

3:55 pm Doris Behrendt, DANTE e.V. The General Data Protection Regulation (GDPR) in the
European Union

4:30 pm TUG Annual General Meeting

4:30 pm Workshop: Accessibility challenges

in LATEX

Saturday
July 21

8:55 am announcements

9:00 am Frank Mittelbach, LATEX Project A quarter century of doc
9:35 am Joseph Wright Through the looking glass, and what Joseph found there
10:10 am break

10:30 am Boris Veytsman, George Mason Univ.
&Chan Zuckerberg Initiative

Stubborn leaders six years later

11:05 am Joseph Wright siunitx: Past, present and future
11:40 am Frank Mittelbach Compatibility in the world of LATEX
12:40 pm lunch

2:00 pm Paulo Ney de Souza Minimizing LATEX files—First steps to automated
journal processing

2:35 pm Tom Hejda, Charles University
Prague

yoin—Yet another package for automation of journal
typesetting

3:10 pm break

3:30 pm Joachim Heinze The unchanged changing world of mathematical publishing
4:05 pm Boris Veytsman R+knitr workshop (tug.org/tug2018/workshops.html)

Sunday
July 22

8:55 am announcements

9:00 am S.K. Venkatesan and TNQ Lab WeTEX (WYSIWYG and LATEX) and Hegelian
contradictions in classical mathematics

9:35 am Susanne Raab, Paulo Cereda* A short introduction to the TikZducks package
10:10 am break

10:30 am Jaeyoung Choi, Soongsil University FreeType MF Module: A module for using METAFONT

directly inside FreeType’s rasterizer

11:05 pm Will Robertson Unicode fonts with fontspec and unicode-math

11:40 am lunch

1:00 pm bus to Sugarloaf

≈ 5:30 pm return to hotel

* = presenter

100 TUGboat, Volume 39 (2018), No. 2

TUG goes to Rio

Joseph Wright

TUG 2018 took place in Rio de Janeiro, Brazil, at
the Instituto de Matemática Pura e Aplicada (IMPA).
Most of the foreign attendees had chosen to stay at
the ‘official’ hotel, which meant that as well as the
formal business, there was plenty of time to talk over
breakfast and in the evenings. That was evident in
reception the evening before the meeting, and even
more so at breakfast on the first morning. This was
a good chance to catch up with old friends.

1 Day one

After a (brief) introduction from the conference chair,
Paulo Ney de Souza, the floor was handed to Roberto
Ierusalimschy to start us with a bang: an overview
of Lua development. He gave us an insight into
how Lua grew from early beginnings, and how it got
picked up by games developers: a big part of Lua’s
importance. He then gave us an insight into the two
key aspects of Lua’s success: the ability to embed
and extend the language. That led to Lua being
embedded in a range of applications, not only games
but also devices as varied as cars and routers. We
had a lively question session, ranging from Unicode
support to what might have been done differently if
the Lua team didn’t have any users to worry about!

We then moved on to Eduardo Ochs, talking
about using Lua as a pre-parser to convert ‘ASCII art’
into complex mathematical diagrams. He explained
the history: the origin of ASCII art as comments to
help understand sometimes complex TEX code! After
a summary of the original pre-processor, he showed
how using Lua(TEX), the processing can be done
in-line in the file with no true pre-processing step.
He showed how this can be set up in an extensible
and powerful way, using Lua to do the ‘heavy lifting’.

After the coffee break, we reconvened for three
talks. Mico Loretan started, describing his package
selnolig [4]. He started by showing us examples of
‘unfortunate’ ligatures in English words, and how
they can appear when suppressed by babel and by
selnolig. He then focussed in on some details: what
a ligature is, why they are needed and how different
fonts provide them. He moved on to describe why
you need to suppress ligatures, in particular where
they cross morpheme boundaries. Mico then gave us
a very useful summary of how the linguists work here
and how they need to link to typography. After show-
ing us the issues with other approaches, he moved on
to how selnolig uses LuaTEX callbacks to influence
ligatures ‘late’ in processing. His rule-based interface
means that ligatures can be suppressed for whole

classes of words with only a small number of discrete
settings. An interesting aspect of this work is how
variable the ligature support is in OpenType fonts,
in particular what constitutes a ‘common’ ligature.

I spoke next, focussing on l3build [11]. I gave
a brief overview of LATEX testing, from the earliest
days of the team to the current day. I covered why
we’ve picked Lua for our current testing set-up, what
works and what (currently) doesn’t. Looking forward
to other talks, the need for PDF-based testing came
up in discussions of tagging, and is very much on the
l3build ‘to do’ list.

Paulo Cereda then talked about his build tool,
arara [1]. He started with an overview of other tools,
before explaining how arara is different: it is at heart
a ‘no-guesswork’ approach. He showed us the core,
simple, syntax, before moving on to a time-line of
releases to date. He summed up the new features in
version 4.0, before moving to a series of live demon-
strations. These started with simple ideas and moved
on to new, complex ideas such as conditionals and
taking user input. He then finished by looking to the
future, both of arara and of araras (macaws).

Lunch was arranged in the IMPA café, giving
us all a chance to absorb the morning’s information
and take on all-important sustenance. The café is
right by the forest, so we also took the opportunity
to take in the local wildlife.

We started back after lunch with a couple of
slides from Barbara Beeton, absent from the meeting,
presented by TUG President Boris Veytsman. I think
everyone was pleased to hear from Barbara, even if
at one remove.

Will Robertson then took the podium. He star-
ted with some thoughts on questions he gets as an
Australian (no TEX involved). His koala pictures
were particularly fun. His talk proper was on his
work with the Learning Management System (LMS)
used by his employer. This system (Canvas) has a
programmable API for controlling information made
available to students. He laid out the issues with the
documentation he had: a very large, unmaintainable
word processing document. Will talked about various
tools for creating HTML from LATEX, the workflow
he has chosen, and then showed more detail on the
system he is using, LATEXML. He then expanded on
how using LATEXML plus scripting, he can populate
the LMS in a (semi)automated way, making his work
more efficient.

The second speaker in the ‘Australian panel’
session was Ross Moore. Ross started with a demo
of why tagging PDFs is needed: making the informa-
tion accessible not just to people but widely to the
computer, to allow re-use in alternative views. He

Joseph Wright

TUGboat, Volume 39 (2018), No. 2 101

expanded on the drivers for this, in particular legal
requirements for accessible documents.

Our next talk came in remotely from Sandro
Coriasco, also dealing with aspects of tagged PDFs
for accessibility. He started by outlining the team
involved in this work, focussed on making material
accessible to the blind. The aim of their work has
been targeted at mathematical formula, generating
‘actual text’ which can then be used by screen readers
or similar. He finished with a ‘live demo’, and left
us with lots to think about.

We then had a non-TEX talk: Doris Behrendt
on GDPR. She started by looking at the EU Official
Journal on the GDPR, and we had an excursion into
the font used for typesetting (Albertina). She then
gave details of the regulations, along with a number
of extremely amusing examples of how people have
approached them.

Presentations over, Boris Veytsman took up the
baton again as TUG President, and led a lively TUG

AGM discussion: details in a separate item.
The business of the day ended with a discussion

(workshop) session looking at technical aspects of
tagging PDFs. As one might expect, this large topic
could have filled the entire day, and it was clear that
the hour we had available was very much laying out
a framework for future meetings.

Those of us staying at the official hotel took
the minibus back to Ipanema, heading out in the
evening to what became the unofficial ‘team bar’ for
the meeting. We split into small groups, and talking
about TEX or otherwise went on for quite some time!

2 Day two

Frank Mittelbach started the day’s proceedings, talk-
ing about his doc [5] package for literate program-
ming. He explained the background, what works and
more importantly what didn’t. The success of doc
as a standard makes change challenging, but at the
same time there is a need for updates. He then laid
out goals for a new version: backward-compatibility,
new markup and out-of-the-box hyperref support.
He showed us the features for creating new markup.
There are some wrinkles, for example that hyperref
support still has to be manually activated. Frank
wrapped up by pointing to the testing version, and
gave us a likely release date (for TL’19).

I then gave my first talk of the day, looking at
expl3 [10] concepts related to colour and graphics. I
outlined the LATEX2ε background, what is happen-
ing with the LATEX2ε drivers and then moved on to
my expl3 experiments. First I talked about colo(u)r,
and the idea of colour expressions as introduced by
xcolor [3]. These are trivial to work out in expl3 due

to the expandable FPU we have there. I then looked
at creating graphics, particularly how I’ve been in-
spired by pgf/TikZ [9]. I showed how I’ve used the
fact that pgf has a clear structure, and mapped that
to expl3 concepts. I showed some examples of the
existing drawing setup, and where I’ll be going next.

We returned after coffee for a short talk from
Boris Veytsman on tackling an apparently simple
issue: putting leaders level with the first line of a
long title! He showed that this is non-trivial, and
how as a contractor he has to explain this to clients.
He then showed how he solved the issue, leading to
a lively discussion about other possible approaches.

I then came back for my second talk of the day,
this time about siunitx [13]. I started by explain-
ing the history of the package, starting with the
initial comp.text.tex post that led to its creation.
I outlined the core features, present from version 1,
and why I’ve now twice re-written it. I finished by
promising a first alpha version of version 3.

Frank then returned for a morning of symmetry,
talking about compatibility requirements. He talked
about the historical situation, starting from Knuth’s
introduction of TEX and taking us through the de-
velopment of LATEX, PDF support and Unicode en-
gines. He then moved on to look at the LATEX2ε
approach to compatibility, starting with the 1994
approach, fixltx2e. He explained how that was inten-
ded to work, and why it didn’t. The new approach,
latexrelease [12], tackles the same problems but starts
with the idea that it applies to both the kernel and
to packages. Frank covered the idea of roll-back for
packages, and how this works at the user and de-
veloper levels. Frank finished off with some thoughts
about the future, and the fact that most new users
probably pick up these ideas without issue.

Our conference chair, Paulo Ney de Souza, took
the first slot after lunch to speak on how he’s ap-
proached a major challenge, managing the abstracts
for the upcoming ICM 2018 meeting. His talk ranged
over topics such as citation formatting, small device
output, production workflows and dealing with au-
thor preambles. He covered the wide range of tools
his team has assembled to automate PDF creation
from a heterogeneous set of sources. His wide-ranging
talk was a tour de force in automated publication.

After a brief break, we moved to Tom Hejda
(who TeX.sx users know as yo’), on his tool yoin [2].
He explained that his current workflow for producing
journal issues is at present a mix of tools, and this is
likely not long-term sustainable. He then moved to
showing how yoin can be used to compile both the
master file for an issue and, as required, each article
within it.

TUG goes to Rio

102 TUGboat, Volume 39 (2018), No. 2

TEX

Figure 1: Knuthduck

The last talk of the day was from Joachim
Heinze, formerly of Springer. He talked about journal
publishing, and how online accessibility of publica-
tions has changed the landscape for publishers. He
gave an entertaining look into this world, posing the
question ‘Where is the information we have lost in
data?’

With the formal business done, some of the
group remained at IMPA for a workshop on R and
Knitr, led by Boris Veytsman. I decided to skip that,
and to conserve energy for the real business of the
meeting: the conference meal! We all met up again
for that event at Rubaiyat Rio. This was a chance
to unwind, compare notes and of course to present
the all-important Duane Bibby original: this year it
was given to the Lua team.

3 Day three

The final day of TUG2018 followed the conference
banquet, which of course meant that there were a
few tired (or missing!) delegates. Luckily, the talks
kept us all awake.

The first talk of the day came from S.K. Ven-
katesan, focussing on his WaTEX tool, and the link
to countability of computing problems. He ranged
over several fundamental questions in computability.

We then moved to Paulo Cereda (on behalf of
Susanne Raab), looking at the TikZducks package [8].
He started by pointing out that whilst drawing ducks
is fun, there is serious coding behind it. He showed
us a range of examples of how key–value settings
allow a wide range of (wacky) customisation of duck
drawings. A particular highlight was rendering Don
Knuth as a TikZduck (Figure 1).

Once we’d all refuelled, Jaeyoung Choi took the
podium to describe work on using Metafont directly
inside FreeType. He laid out the advantages of Meta-
font, and the problems for use by font designers. He
then moved to look at the particular challenges faced
in developing CJK fonts: the very large number of
characters, and resulting significant time/cost invest-
ment required. With modern computing power, this
can be solved using Metafont to parametrise this
large number of glyphs. Jaeyoung demonstrated a
GUI which allows control of the appearance of char-
acters in an (almost) interactive way. He then moved

on to look at how to integrate Metafont directly into
the TrueType rasteriser.

The final talk came from Will Robertson, on
fontspec [7] and unicode-math [6]. He started by
showing us some issues in the fonts in books for
children, before reviewing unicode-math. He showed
how it handles complex maths, allowing re-use of
copied material and changing the style of output.
He then looked at the development approach he’s
taken in ‘cleaning up’ unicode-math and fontspec. He
covered various aspects of the expl3/l3build/Git(Hub)
workflow he’s now perfected. He then moved on to
fontspec, talking about the background, current inter-
faces and possible future developments. It was a great
final talk: wide-ranging, thought-provoking and fun.

With the formal business done, we headed to
the roof of IMPA for the traditional conference pho-
tograph. After a lunch break, it was off for most of
us to the excursion to Sugarloaf Mountain, and the
end of the meeting proper. We of course managed
to pick the one afternoon of the week where the top
of the mountain was hidden in cloud, but the trip
up was great fun. Almost all of the foreign delegates
were staying for Sunday evening, and several of us
availed ourselves once again of the ‘team bar’ for a
well-deserved evening of informal chat.

References

[1] P. Cereda, M. Daniel, et al. arara: The cool TEX
automation tool, 2018. ctan.org/pkg/arara

[2] T. Hejda. yoin, 2018. https://github.com/

tohecz/yoin

[3] U. Kern. Extending LATEX’s color facilities: The
xcolor package, 2016. ctan.org/pkg/xcolor

[4] M. Loretan. The selnolig package: Selective
suppression of typographic ligatures, 2018.
ctan.org/pkg/selnolig

[5] F. Mittelbach. The doc and shortvrb packages,
2018. ctan.org/pkg/doc,shortvrb

[6] W. Robertson. Experimental Unicode
mathematical typesetting: The unicode-math

package, 2018. ctan.org/pkg/unicode-math

[7] W. Robertson. The fontspec package: Font
selection for X ELATEX and LuaLATEX, 2018.
ctan.org/pkg/fontspec

[8] samcarter. The TikZducks package: Using ducks in
TikZ, 2018. ctan.org/pkg/tikzducks

[9] T. Tantau and C. Feuersänger. TikZ and pgf, 2015.
ctan.org/pkg/pgf

[10] The LATEX Project. The expl3 package and LATEX3
programming, 2018. ctan.org/pkg/l3kernel

[11] The LATEX Project. The l3build package:
Checking and building packages, 2018.
ctan.org/pkg/l3build

Joseph Wright

TUGboat, Volume 39 (2018), No. 2 103

[12] The LATEX Project. The latexrelease package, 2018.
ctan.org/pkg/latexrelease

[13] J. Wright. siunitx: A comprehensive (SI) units
package, 2018. ctan.org/pkg/siunitx

⋄ Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph dot wright (at)

morningstar2.co.uk

(1) ? (2)E.Ochs (3)A.Ribeiro (4)D.Behrendt
(5)B.Veytsman (6)V.R.W. Schaa (7)W.Robertson
(8)U. Fischer (9) S.K.Venkatesan (10)M.Beebe
(11)P.Cereda (12)N.Beebe (13)P.Ney de Souza
(14)Mrs. Heinze (15) ? (16)C.Mittelbach (17)R. Ierusalimschy
(18) J.Choi (19)E.Kalinowski (20)C.Rowley (21)R.Moore
(22)M.Rocha de SouzaRamos (23) L. deFigueiredo
(24) J.Malaco (25) F.Mittelbach (26) J.Heinze
(27)M.Loretan (28)A. Szasz (29) J.Wright (30)T.Hejda
(∗)Der Bär

1
2

3 4

6
7 8 9 11

10
12 13

14

16
1715

18 20

19

2321

22

24

25

5

26 27

28

29

30

∗

Photos in first column c© Joachim Heinze; in second column, c© Volker RW Schaa. Thanks to both.

TUG goes to Rio

104 TUGboat, Volume 39 (2018), No. 2

TUG 2018 Annual General Meeting notes

Notes recorded by Joseph Wright

The TUG annual meeting took place in conjunction
with the TUG’18 conference in Rio de Janeiro on 22
July 2018. The meeting was conducted by the TUG

president, Boris Veytsman.
A letter from Jonathan Fine was read verbatim,

per his request, by Boris, and the two questions it
contained were answered as follows:

Q: First, please report on any Board actions and
discussions relating to the TUG website. And what
intentions does the Board have regarding the TUG

website?
A: There is general agreement on making tug.org

more mobile-friendly, and some discussion has been
directed to that end.

Q: Second, is there any potential conflict between
the personal interests of any Board member and the
interests of TUG? And if so, what action has the
Board taken to protect both sides from this potential
conflict of interest?
A: There are no conflicts that we are aware of.

Question regarding TUGboat open access

The question was posed: should TUGboat be open
access? Boris laid out the idea and background.

Joseph Wright said that (a) articles are often
available anyway from authors, and (b) people would
still join: members join for other reasons.

Tom Hejda also agreed that people would still
join, and good articles could be linked on, e.g., Face-
book which would then link back to TUG.

Mico Loretan agreed with the previous points,
and in particular the marketing possibilities that this
would make possible.

Will Robertson pointed out that open access
makes our lives easier, however, the counter argu-
ment is that there is a push for joining from wanting

articles that currently cannot be accessed unless one
is a member.

Frank Mittelbach suggested that there are few
such people today. He suggested that TUGboat is
partly a research journal in document engineering: it
is referenced by other researchers in this field. It also
carries a number of articles focused on engine and
macro development, and these may be important for
other developers in the TEX community. The current
embargo may slow down work in both areas.

Paulo Ney de Souza pointed out that a print
journal may be picked up by (e.g.) libraries.

Frank felt that most people who join electronic-
only are most likely mainly doing so for “supporting

TUG”. Mico takes the electronic-only option and
agreed that he looks at the membership fee in just
this way.

Membership drive

Boris outlined the issue: membership has been falling
(though not this year). There are lots of TEX users :
see the scale of, e.g., Overleaf.

Boris posed the question of how to convert those
users to TUG members. Frank suggested, “Maybe
you can’t”. TUG arguably missed the opportunity
for development of “cloud” services offered, which
was picked up by Overleaf (and others). The cloud
services, and so ultimately the users, rely on TUG

for the “back end” part of their business.
Boris asked the question: Our work is important,

and the TEX community needs us, but do other
people see this?

The nature of TUG

Tom asked, are we now the “TEX Developers Group”?
Frank: “Yes, to a large extent”. Others agreed

with this as reflecting the current reality.
Paulo Cereda: The nature of TUG meetings has

changed: a few “power” users attend, mainly for
developer discussion.

Frank: Why does one join? To support the “mis-
sion” as a user. Perhaps TUGboat is an exception
in print (per library comment from Paulo) but “sup-
porting the mission” is what drives the size of the
group; this is not linked to the size of the user base.

Joseph: This seems to be the case for UK-TUG

too.
Ross Moore: Some form of shareware approach

might highlight the need for developer support.
Tom: SageMath has gone this route; they could

not operate without income. Similarly for MatLab.
Other examples were given. Open question: What
were their original license/copyright situations?

Boris: The legal/moral right could be problem-
atic, as TUG doesn’t own the tools.

Suggestion: Post a “Support us” link on down-
loading, similar to Ubuntu.

Paulo C.: Current members tend to expect oth-
ers to join for the same reasons (“support”), i.e., the
need to provide help particularly to new users, e.g.,
through workshops.

Tom: There are two types of members, people
and institutions. Among the latter, there are 10
universities, one publisher, four commercial entities.
Is this a possibility to raise money?

Boris has explored this, with very little response.
Persuasion works best as an employee.

Other business: None.

TUGboat, Volume 39 (2018), No. 2 105

The tikzducks Package

Susanne Raab

Abstract

TikZducks is a funny little package to draw rubber
ducks in TikZ. The following article will give a short
overview of the package and show some examples of
how the TikZducks package can be used.

1 Introduc(k)tion

The host country of TUG’18, Brazil, is also the home
country of Hevea brasiliensis, commonly known as
rubber tree. This tree is the source of natural latex,
which (or some of its synthetic replacements) can be
used to produce rubber ducks.

This raises the question if rubber ducks can
also be made of LATEX? Yes, they can—using the
TikZducks package! This package originates from a
post on TEX.StackExchange [2] which showed that
the TEX community a) has a great sense of humour
and b) seemed to be in desperate need of a package to
easily add ducks to their documents. The package is
now available on CTAN (ctan.org/pkg/tikzducks)
and included in both TEXLive and MiKTEX.

The basic usage is fairly simple:

\documentclass{standalone}

\usepackage{tikzducks}

\begin{document}

\begin{tikzpicture}

\duck

\end{tikzpicture}

\end{document}

Instead of loading it as a package, there is also
a TikZ library with the same functionality:

\documentclass[tikz]{standalone}

\usetikzlibrary{ducks}

\begin{document}

\begin{tikzpicture}

\draw (0,0) pic {duck};

\end{tikzpicture}

\end{document}

2 Modularity

Drawing a simple yellow duck is by far not the only
thing which this package is capable of. It comes with
many accessories and the ability to adjust colours to
customise the ducks. Both can be controlled with
an intuitive key-value interface. For example, the
colour of the various body parts can be changed:

\duck[body=blue,head=yellow,

bill=red,eye=green]

Or accessories can be added:

\duck[cap=blue,cricket]

As can be seen in the above example, the colour
of additional components can usually be changed in
the same way as for the body parts. A complete
list of all the available options would exceed the
scope of this TUGboat article; please see the package
documentation [3, Section 2].

The customisation of the TikZducks is not lim-
ited to the predefined accessories included in the
package. In the end, the ducks are just shapes in a
tikzpicture. This means that the essentially infi-
nite amount of possibilities of TikZ are available for
further customisation. A trivial example:

\duck

\fill (2,0) rectangle (1,1);

To ease customisation, the TikZducks package
predefines some coordinates at prominent positions:

wing

head

bill
tail

3 Football ducks

TUG’18 is taking place in the football nation Brazil,
so it is only appropriate that the TikZducks can not
just play football (\duck[football]), but also have
customisable jerseys. The special macro \stripes

adds a highly adjustable stripe pattern which allows
emulating jerseys from nearly every team. The fol-
lowing example shows how to reproduce the jerseys
of the Brazil national team:

\duck[tshirt=Green,jacket=Gold,

football,stripes={

\stripes[color=Blue,

rotate=-75,width=0.5,

distance=1.5]}]

4 Duckify a person

A nice application of the TikZducks is to “duckify”
persons. In the following a short tutorial will give
an idea how this can be done based on a photograph.

The tikzducks Package

106 TUGboat, Volume 39 (2018), No. 2

As an example, let’s use this photo of Don Knuth
(image by J. Appelbaum [1]):

As a first step, suitable colours have to be de-
termined. For all non-artists, this process can be
simplified with a colour picker tool, which is included
in many image manipulation programs (e.g., gimp)
or as standalone applications. The following colours
are extracted from the example image:

sweater: RGB = (95, 42, 50)
shirt: RGB = (241, 238, 254)
skin: RGB = (229, 175, 166)

If colours derived from a photo are used to fill
large shapes of solid colour, they are sometimes per-
ceived as too dark. This problem can be solved by
mixing them with white to make them a bit lighter.
With slightly lightened colours and some suitable
accessories the following “duckified” version of Don
Knuth can be drawn:

\definecolor{jacket}{RGB}{95,42,50}

\definecolor{skin}{RGB}{229,175,166}

\definecolor{shirt}{RGB}{241,238,254}

\duck[%

body=skin!50!white,

bill=skin!80!gray,

tshirt=shirt, jacket=jacket,

recedinghair=lightgray!80!brown,

squareglasses=brown!30!lightgray,

eyebrow, book=\TeX,

bookcolour=black!40!brown

]

TEX

5 Examples

As mentioned above, see the package documentation
for all of TikZducks’s myriad possibilities, but as a
teaser, here are a few examples:

ScoutingforDucklings

E = mc 2

Wir müssen wissen.

Wir werden wissen.1 + 1 = 2

From top left to bottom right: Frenchman duck,
crowned duck, duck scout, bee duck, Royal Swan Up-
per, Albert Einstein, witch duck and David Hilbert.

To see more examples, there are some collections
available online

• github.com/samcarter8/tikzducks/tree/

master/duckpond

• tex.stackexchange.com/questions/387047

to which users can also contribute their creations.
There are even several videos produced by Ulrike
and Gert Fischer, Carla Maggi and Paulo Cereda,
featuring the TikZducks:

• The great TikZducks Christmas Extravaganza,
vimeo.com/246256860

• International Pizza Day, vimeo.com/254643482
• Happy Groundhog Day, vimeo.com/252719006
• Aquarela with TikZducks, vimeo.com/270727100

6 Suggestions or problems

The package source is hosted at https://github.

com/samcarter8/tikzducks, along with a tracker
for bug reports, feature requests or contributions. For
questions related to the package there is a special
{tikzducks} tag available at TEX.StackExchange.

7 Acknowledgments

I would like to thank the TEX Users Group for the
possibility to present the TikZducks package at their
annual meeting and especially Paulo Cereda for the
vivid presentation he gave in Rio de Janeiro!

The author of the TikZducks package is grate-
ful for the valuable contributions and suggestions
received from Ulrike Fischer, Carla Maggi, Enrico
Gregorio, Andrew Stacey and many others.

References

[1] J. Appelbaum. Licensed under CC BY-SA.
https://en.wikipedia.org/wiki/File:

KnuthAtOpenContentAlliance.jpg

[2] How can we draw a duck?, 2017.
tex.stackexchange.com/q/346695

[3] samcarter. The TikZducks package, Version 0.7,
2018. ctan.org/pkg/tikzducks

⋄ Susanne Raab
Susanne.Raab (at) fau (dot) de

Susanne Raab

TUGboat, Volume 39 (2018), No. 2 107

A rollback concept for packages and classes

Frank Mittelbach

Abstract

In 2015 a rollback concept for the LATEX kernel was
introduced. Providing this feature allowed us to
make corrections to the software (which more or
less didn’t happen for nearly two decades) while
continuing to maintain backward compatibility to
the highest degree.

In this paper we explain how we have now ex-
tended this concept to the world of packages and
classes, which was not covered initially. As classes
and extension packages have different requirements
compared to the kernel, the approach is different (and
simplified). This should make it easy for package
developers to apply it to their packages and authors
to use when necessary.

Contents

1 Introduction 107

2 Typical scenarios 108

3 The document interface 108
3.1 Global rollback 108
3.2 Individual rollback 108
3.3 Specifying a version instead of a date 109
3.4 Erroneous input 109
3.5 Advice for early adopters 109

4 The package/class interface 110

5 Special considerations for developers 110
5.1 Early adopters 111
5.2 New major release in beta 111
5.3 Two major releases in use 111
5.4 Fine grained control (if needed) . . . 112
5.5 Using l3build for source management 112

6 Command summary 112
6.1 Document interface, for users 112
6.2 Package and class interface,

for developers 112

1 Introduction

In 2015 we introduced a rollback concept for the
LATEX kernel that enables a user to request a kernel
rollback to its state at a given date by using the
latexrelease package [1]. For example,

\RequirePackage[2016-01-01]{latexrelease}

would result in undoing all kernel modifications (cor-
rections or extensions) released between the first of

January 2016 and the current date.1 Undoing means
reinstalling the definitions current at the requested
date and normally also removing new commands
from TEX’s memory so that \newcommand and simi-
lar declarations do not fall over because a name is
already declared.

This mechanism helps in correctly processing
older documents that contain workarounds for issues
with an older kernel, issues that have since been fixed
in a way that would make the old document fail, or
produce different output, when processed with the
newer, fixed kernel.

If necessary, the latexrelease package also allows
for rolling the kernel forward without installing a
new format. For example, if the current installation
is dated 2016-04-01 but you have a document that
requires a kernel with date 2018-01-01, then this can
be achieved by starting it with

\RequirePackage[2018-01-01]{latexrelease}

provided you have a version of the latexrelease pack-
age that knows about the kernel changes between the
date of your kernel and the requested date. Getting
this version of the package is simple as the latest
version can always be downloaded from CTAN. Thus
you will be able to process your document correctly
even when updating your complete installation is not
advisable or impossible for one or another reason.

However, rolling back the kernel state is only
doing half of the job: the LATEX universe consists of
many add-on packages and those were not affected
by a kernel rollback request. We are therefore now
extending the concept by providing a much simpler
method for use in packages and classes, one that we
think will be straightforward for developers and also
easy for document authors to use.

Unlike the method used by the kernel, which
tracks every change individually and is able to roll
back the code to precisely the state it had on any
given day, the new method for packages and classes is
intended to cover only major change points, e.g., the
introduction of major new features or (incompatible)
changes in syntax or interfaces.

As we will have only a few rollback points per
package or class, the different releases are all stored in
separate files. In the main file it therefore only needs
a single declaration per release to enable rollback.
The downside is, of course, that for each release the
whole package code is stored, instead of managing
the differences between releases. This is one of the

1 There are a few exceptions as some modifications are kept:
for example, the ability to accept date strings in ISO format
(e.g., 2016-01-01) in addition to the older LATEX convention
(e.g., 2016/01/01). These are not rolled back because removing
such a feature would result in unnecessary failures.

A rollback concept for packages and classes

108 TUGboat, Volume 39 (2018), No. 2

reasons why this approach should be used only for
major changes, i.e., at most a handful in the lifetime
of a package.

From a technical perspective it is also possible
to use the method introduced with latexrelease in
package and class files, i.e., to mark up modifica-
tions using the commands \IncludeInRelease and
\EndIncludeInRelease— the package’s documenta-
tion [1] gives some advice on how to apply it in a
package scenario—but the use of these commands
in package code is cumbersome and results in fairly
unreadable code, especially when there are many
minor changes. This is an acceptable price to pay
for fairly stable code, such as the kernel itself, since
it offers complete control over the rollback to any
date, but it is not truly practical in package or class
development and so, to our knowledge, it has there-
fore never been used up to now. Section 5.4 gives
some advice on how to achieve fine-grain control in
a somewhat simpler manner.

2 Typical scenarios

A typical example, for which such a rollback func-
tionality would have provided a major benefit (and
will do so for packages in the future), is the cap-

tion package by Axel Sommerfeldt. This package
started out under the name of caption with a certain
user interface. Over time it became clear that there
were some deficiencies in the user interface; to rectify
these without making older documents fail, Axel in-
troduced caption2. At a later point the syntax of that
package itself was superseded, resulting in caption3

and then, finally, that got renamed back to caption.
So now older documents using caption will fail whilst
documents from the intermediate period will require
caption2 (which is listed as superseded on CTAN but
is still distributed in the major distributions). So
users accustomed to copying their document pream-
ble from one document to the next are probably still
continuing to use it without noticing that they are
in fact using a version with defective and limited
interfaces.

Another example is the fixltx2e package that for
many years contained fixes to the LATEX kernel. In
2015 these were integrated into the kernel so that
today this package is an empty shell, only telling the
user that it is no longer needed. However, if you pro-
cess an old document (from before 2015) that loads
fixltx2e then of course the fixes originally provided
by this package (like the corrections to the floats
algorithm) would get lost as they are now neither in
the kernel nor in the “empty” fixltx2e package if that
doesn’t roll back as well— fortunately it does and
always did, so in reality it isn’t quite an empty shell.

A somewhat different example is the amsmath

package, which for nearly a decade didn’t see any
corrections even though several problems have been
found in it over the years. If such bugs finally get
corrected, then that would affect many of the doc-
uments written since 2000, since their authors may
have manually worked around one or another of the
deficiencies. Of course, as with the caption pack-
age, one could introduce an amsmath2, amsmath3,
. . . package, but that puts the burden on the user
to always select the latest version (instead of auto-
matically using the latest version unless an earlier
one is really needed).

3 The document interface

By default LATEX will automatically use the current
version of any class or package — and prior to offering
the new rollback concept it always did that unless
the package or class had its own scheme for providing
versioning, either using alternative names or by hand-
coded options to select a version.

3.1 Global rollback

With the new rollback concept all the user has to do
(if he or she wants their document processed with
a specific version of the kernel and packages) is to
add the latexrelease package at the beginning of the
document and specify a desired date as the package
option, e.g., just as in the first example:

\RequirePackage[2018-01-01]{latexrelease}

This will roll back the kernel to its state on that day
(as described earlier) and for each package and the
document class it will check if there are alternate
releases available and select the most appropriate
release of that package or class in relation to the
given date.

3.2 Individual rollback

There is further fine-grain adjustment possible: both
\documentclass as well as \usepackage have a sec-
ond (little known) optional argument that up to now
was used to allow the specification of a “minimal
date”. For example, by declaring

\usepackage[colaction]

{multicol}[2018-01-01]

you specify that multicol is expected to be no older
than the beginning of 2018. If only an older version
is found, then processing such a document results in
a warning message:

LaTeX Warning: You have requested, on input

line 12, version ‘2018-01-01’ of package

multicol, but only version

‘2017/04/11 v1.8q multicolumn formatting

(FMi)’ is available.

Frank Mittelbach

TUGboat, Volume 39 (2018), No. 2 109

The idea behind this approach is that packages sel-
dom change syntax in an incompatible way, but more
often add new features: with such a declaration you
can indicate that you need a version that provides
certain new features.

The new rollback concept now extends the use
of this optional argument by letting you additionally
supply a target date for the rollback. This is done
by prefixing a date string with an equal sign. For
example,

\usepackage{multicol}[=2017-06-01]

would request a release of multicol that corresponds
to its version in June 2017.

So assuming that at some point in the future
there is a major rewrite of this package that changes
the way columns are balanced, the above would re-
quest a fallback to what right now is the current
version from 2017-04-11. The old use of this op-
tional argument is still available because presence
or absence of the = determines how the date will be
interpreted.

The same mechanism is available for document
classes via the \documentclass declaration, and for
\RequirePackage if that is ever needed.

3.3 Specifying a version instead of a date

Specifying a rollback date is most appropriate if you
want to ensure that the behavior of the processing
engine (i.e., the kernel and all packages) corresponds
to that specific date. In fact, once you are finished
with editing a document, you can preserve it for
posterity by adding this line:

\RequirePackage[〈today’s-date〉]
{latexrelease}

This would mean that it will be processed a little
more slowly (since the kernel may get rolled back
and each package gets checked for alternate versions),
but it would have the advantage that processing it
a long time in the future will probably still work
without the need to add that line later.

However, in a case such as the caption package
or, say, the longtable package, that might eventually
see a major new release after several years, it would
be nice to allow the specification of a “named” release
instead of a date: for example, a user might want
to explicitly use version 4 rather than 5 of longtable

when these versions have incompatible syntax, or
produce different results.

This is also now possible if the developer declares
“named” releases for a package or class: one can then
request a named version simply by using this second
optional argument with the “name” prefixed by an
equal sign. For example, if there is a new version of

longtable and the old (now current) version is labeled
“v4”, then all that is necessary to select that old
version is

\usepackage{longtable}[=v4]

Note that there is no need to know that the new
version is dated 2018-04-01 (nor to request a date
before that) to get the old version back.

The version “name” is an arbitrary string at
the discretion of the package author — but note that
it must not resemble a date specification, i.e., it
must not contain hyphens or slashes, since these will
confuse the parsing routine.2

3.4 Erroneous input

The user interface is fairly simple and to keep the
processing speed high the syntax checking is therefore
rather light. Basically the standard date parsing from
the kernel is used, which is rather unforgiving if it
finds unexpected data.

Basically any string containing a hyphen or a
slash will trigger the date parsing which then expects
two hyphens (for the case of an ISO date) or two
slashes (otherwise) and other than these separators,
only digits. If it does find anything else, chances are
that you will get a “Missing \begin{document}”
error or, perhaps even more puzzling, a strange selec-
tion being made. For example, 2011/02 may mean
to us February 2011 but for the parsing routine it is
some day in the year 20 a.d. That is, it gets converted
to the single number 201102, so that, when this num-
ber is compared numerically to, say, 20000101, it
will be the smaller number, i.e., earlier, even though
the latter is the numerical representation of Jan-
uary 1st 2000.

So, bottom line: do not misspell your dates and
all is fine. That hasn’t been a problem in the past,
so hopefully it will be okay to continue with just this
light checking. If not, then we may have to extend
the checks made during parsing.

3.5 Advice for early adopters

If your document makes use of the new global roll-
back features, then it should be processable at any
installation later than early 2015, when the latex-

release package was first introduced. If the instal-
lation is even older, then it needs upgrading or, at
least, one has to add a current latexrelease package
to the installation.

However, if your document uses the new concept
for individual rollbacks of packages or classes (i.e.,

2 Of course more sophisticated parsing could fix this, but
we use fast and simple parsing that scans for slashes or hyphens
with no further analysis.

A rollback concept for packages and classes

110 TUGboat, Volume 39 (2018), No. 2

with the =... syntax in the optional argument), then
it is essential to use a LATEX distribution from 2018 or
later.3 Earlier distributions will choke on the equal
sign inside the argument as they will only expect to
see a date specification there.

4 The package/class interface

The rollback mechanism for packages or classes is
provided by putting, at the beginning of the file con-
taining the code, a declaration section that informs
the kernel about existing alternative releases.

These declarations have to come first and have
to be ordered by date because the loading mechanism
will evaluate them one by one and, once a suitable
release is found, it will be loaded and then processing
of the main package or class file will end. If there are
no such declarations, or if the older releases are all
ruled out for one reason or another, processing will
continue as normal by reading all of the main file.

The old releases are stored in separate files, one
for each release, and we suggest using a scheme such
as 〈package-name〉-〈date〉.sty as this is easy to un-
derstand and will sort nicely within a directory. How-
ever, any other scheme will do as well, as the name
is part of the declaration.

The contents of this release file is simply the
package or class file as used in the past. This means
that before making a new version all you need to do
is to make a verbatim copy of the current file and
give it a new suitable name.4

This way it is also straightforward to include
older releases after the fact, e.g., to take our famous
caption example, Axel could provide the very first
version of his package as caption-〈some-date〉.sty
and caption2 as caption-〈another-date〉.sty in ad-
dition to adding the necessary declarations to the
current release.

The necessary declarations in the main file are
provided by the two commands, \DeclareRelease,
and \DeclareCurrentRelease, that must be used in
a release selection section at the beginning of the file.
For each old release you can specify a 〈name〉, the
〈date〉 when it was first available and the 〈external-
file〉 that contains the code.

3 Alternatively you could try to roll the installation for-
ward, by using a current latexrelease package together with a
suitable date option.

4 Instead of making a verbatim copy you may want to
adjust the commentary added by docstrip at the top of the
file. Though technically correct, it is a bit misleading if the file
still contains the phrase “was generated from . . . ”, given that it
is now a frozen version representing a particular state in time,
rather than being a generated one that can be regenerated
any time as necessary.

\DeclareRelease

{〈name〉}{〈date〉}{〈external-file〉}

Either the 〈name〉 or the 〈date〉 can be empty, but
not both at the same time. Not specifying a 〈date〉
is mainly intended for providing “beta” versions that
people can explicitly select but that should play no
role in date rollbacks.

The current release also gets a declaration, but
this time with only two arguments: a 〈name〉 (again
possibly empty) and a 〈date〉 since the code for this
release will be the rest of the current file:

\DeclareCurrentRelease{〈name〉}{〈date〉}

This declaration has to be the last one in sequence
as it will end the release selection processing.

The order of the other releases has to be from
the oldest to the newest since the loading mechanism
compares every release declaration with the target
rollback date and stops the moment it finds one that
is newer than this target date. It will then select the
one before, i.e., the last one that is at least as old as
the target. Since the \DeclareRelease declarations
with an empty 〈date〉 argument do not play a role in
date rollbacks, they can be placed anywhere within
the sequence.

As a typical example of a release section the
start of the multicol package currently looks as fol-
lows because there was a major internal rewrite in
April 2018. Note that because of some minor fixes
afterwards the actual package date is already June.

\NeedsTeXFormat{LaTeX2e}[2018-04-01]

\DeclareRelease{}{2017-04-11}

{multicol-2017-04-11.sty}

\DeclareCurrentRelease{}{2018-04-01}

\ProvidesPackage{multicol}[2018/06/26 v1.8t

multicolumn formatting (FMi)]

If the rollback target is not a date but a name,
the mechanism works in the same way with the ex-
ception that a release is selected only if the name
matches. If none of the names is a match, then the
mechanism will raise an error and continue by using
the current release.

5 Special considerations for developers

While loading an older release of a package or class,
both types of release declarations are made no-ops,
so that, in case the files containing the code also
have such declarations, they will not be looked at or
acted upon. This makes it possible to simply move
the code from an old release into a new file without
the need to touch it at all. Of course, removing those
declarations doesn’t hurt and will make loading a
tiny fraction faster.

Frank Mittelbach

TUGboat, Volume 39 (2018), No. 2 111

As mentioned earlier, best practice for release
names is to append the release date to the package
or class name, but the 〈external file〉 argument also
allows other naming schemes.

You may have wondered why you have to make
a declaration for the current release, given that later
on there will be a \Provides... declaration that
also contains a date and a version string and thus
could signal the end of the release declaration section.
The reason is as follows: if you want to give your
current release a name, then it is best practice to
make that name something simple like v4 (and keep
it that way) even though your current package is
technically already at v4.2c and is listed that way
in the \ProvidesPackage declaration. For the same
reason (given that not every minor change will be
provided as a separate version to which people can
roll back), the 〈date〉 in \DeclareCurrentRelease

reflects when that major release was first introduced.
Thus, after a while that date may well be earlier
than the current package date.

5.1 Early adopters

For one or two years after the introduction of this
new method, there is a danger that people with older
installations will pick up an individual package from,
say, CTAN that contains release declarations with
which their kernel (from 2017 or earlier) is unable to
cope. It may therefore be a good idea for developers
to additionally add the following lines at the top
of packages or classes when using the new rollback
feature:

\providecommand\DeclareRelease[3]{}

\providecommand\DeclareCurrentRelease[2]{}

This way the declarations will be bypassed in case
the kernel doesn’t know how to deal with them.

As an alternative one could add a statement
that requires a minimal kernel version, i.e.:

\NeedsTeXFormat{LaTeX2e}[2018-04-01]

so that users get a clear error message that they need
to update their installation if they want to use the
current file.

5.2 New major release in beta

If you are working on a new major release of your
package or class, you may want to get it out into the
open so that people can try it and provide feedback.
In that case the current release is still the official
release which should be selected by default, and the
“beta” version should only be selected if explicitly
requested. To achieve that you could add

\DeclareRelease{beta}{}{〈external-file〉}

before

\DeclareCurrentRelease{}{〈some-date〉}

so that testers can explicitly access your new version
by asking for it via

\usepackage[〈options〉]{〈package〉}[=beta]

while everyone loading the package without the extra
optional argument would get the current release.

5.3 Two major releases in use

One special scenario for which this method is only
partially suitable is the case where we have two
major releases that are in continuing parallel use
and that are both under active maintenance (i.e.,
receive bug fixes and other updates once in a while).
In that case it is necessary to make one version the
primary release and allow the other (and its updates)
to be accessed only via names: a date rollback can
obviously work for only one line of development.

For example, if both v4 and v5 of package foo are
in use and you consider v5 as being the go-forward
version (even though you are still fixing bugs in the
v4 code), then you can deploy a strategy as in the
following example:

% last v4 only release:

\DeclareRelease{}{2017-06-23}

{foo-2017-06-23.sty}

% first v5 release:

\DeclareRelease{}{2017-08-01}

{foo-2017-08-01.sty}

% patch to v4 after v5 got introduced:

\DeclareRelease{v4.1}{}

{foo-v4-2017-09-20.sty}

% patch to v5:

\DeclareRelease{}{2017-08-25}

{foo-2017-08-25.sty}

% another patch to v4:

\DeclareRelease{v4.2}{}

{foo-v4-2017-10-01.sty}

% nickname for the latest v4 if you want

% users to have simple access via a name:

\DeclareRelease{v4}{}

{foo-v4-2017-10-01.sty}

% current v5 with further patches:

\DeclareCurrentRelease{v5}{2018-01-01}

This way users can use \usepackage{foo}[=v4] to
get the latest v4 release or use the more detailed
release names such as [v4.1]. This means that if
package foo is requested at version v4 (or one of its
sub-releases), it will not change even if there is a
general rollback request via latexrelease.

Normally, this should be just fine, but if you
really require automatic date rollback functionality
on both major versions, because the two are really
equal in rank, then you are essentially saying they
are independent works with some common root. In
that case you should give them two separate names,

A rollback concept for packages and classes

112 TUGboat, Volume 39 (2018), No. 2

e.g., call the older version foo-v4 when you introduce
version 5 of foo and from that point on manage the
history independently.5

5.4 Fine grained control (if needed)

As mentioned earlier, the interface is deliberately
designed to be simple and easy to use. As a price,
each rollback point is (by default) a separate file. The
idea behind this is that there is not much point in
managing each and every small change as a rollback
point, but only those that possibly alter the behavior
of a package within the document so that, when
processing older documents, it is important to be
able to get back to an earlier state.

However, if you find yourself in a situation where
you have many rollback files with only minor differ-
ences, and you consider this unsatisfactory, then here
is one other command at your disposal that you can
use to combine several files into a single file. Within a
file corresponding to a \DeclareRelease declaration
you can use

\IfTargetDateBefore{〈date〉}
{〈before-date-code〉}{〈after-or-at-date-code〉}

This must be used after the release selection section
(if present) and has the following effect: If the user
requested, say, [=2017-06-01] then the mechanism
first selects the file that is supposed to be current on
that date, i.e., the release that was introduced on that
date or is the last one that was introduced before that
date. Now, if in this file we have a statement like the
above, then the 〈date〉 is compared to 2017-06-01

and depending on the outcome either 〈before-date-
code〉 or 〈after-or-at-date-code〉 is executed.

This way a single external file can hold rollback
information for several patches on distinct dates, but
of course, the burden is then on the developer to add
the appropriate declarations, which is a little more
work than just copying and renaming files.

The alternative is to use \IncludeInRelease

and \EndIncludeInRelease. The latexrelease pack-
age documentation [1] gives some advice on how to
apply those commands.

5.5 Using l3build for source management

If you use l3build [2] for managing your sources,
then it is necessary to ensure that the files for the old
releases are copied into the distribution. To support
this, the default configuration for l3build specifies

5 While in rare cases this might be the best approach, try
to avoid it as long term management will be problematic, to
say the least.

sourcefiles = {"*.dtx", ".ins",

"*-????-??-??.sty"}

i.e., all .dtx and .ins files, together with all .sty
files matching the naming convention suggested in
this article, are automatically included in the build.

If you prefer a different naming convention you
have to adjust this setting in the build.lua file of
your project. Otherwise you are ready to go without
any adjustments.

6 Command summary

6.1 Document interface, for users

For a global rollback of kernel and packages, use

\RequirePackage[〈target-date〉]{latexrelease}

at the beginning of your document.
To request a rollback for a single package or

class, use the second optional argument with the
date preceded by an equal sign, i.e.,

\documentclass[〈options〉]{〈class〉}[=〈date〉]
\usepackage [〈options〉]{〈package〉}[=〈date〉]

6.2 Package and class interface,
for developers

To declare an old or special release, use

\DeclareRelease

{〈name〉}{〈date〉}{〈external-file〉}

Leave the 〈name〉 argument empty if rollback should
be only via dates. Leave the 〈date〉 empty if this
special release should be accessible only via its name.

Always finish this release selection section with
a declaration for the current release:

\DeclareCurrentRelease{〈name〉}{〈date〉}

In this declaration you must provide a 〈date〉 but the
〈name〉 can be left empty (which is the usual case).

Within a release file (but after the release selec-
tion section), you can specify conditional code to be
selected based on a requested rollback date by using:

\IfTargetDateBefore{〈date〉}
{〈before-date-code〉}{〈after-or-at-date-code〉}

References

[1] The LATEX Team. The latexrelease package,
April 2015. Available at https://www.
latex-project.org/help/documentation.

[2] The LATEX Team. The l3build package—
Checking and building packages, March 2018.
The manual l3build.pdf should be part
of your installation. Run “texdoc l3build”
to find it. See also https://ctan.org/pkg/

l3build.

⋄ Frank Mittelbach
https://www.latex-project.org

Frank Mittelbach

TUGboat, Volume 39 (2018), No. 2 113

Font loading in LATEX using the fontspec

package: Recent updates

Will Robertson

1 Introduction

The fontspec package (ctan.org/pkg/fontspec) is,
I am astonished to say, close to 15 years old. I hon-
estly don’t know where all the time has gone. The
interface that fontspec provides was originally very
simple: load a font. The font feature interface fol-
lowed quickly after, and was originally based around
macOS’s AAT font technology, which is largely obso-
lete these days. Today, fontspec is targeted mainly
towards the use of OpenType fonts, although the
legacy AAT code is still functional. Another font
technology, Graphite, can be used when running the
X ETEX engine but the fontspec interface is extremely
minimal (and rather undocumented).

This article will discuss some of its more recent
updates, possible future interfaces, and what I now
consider to be some ‘best practices’ for fontspec use.

2 Font loading

There are a number of ways to load or set up fonts
in fontspec:

• \fontspec

• \setmainfont

• \newfontfamily

• \defaultfontfeatures

As the package has grown, the best way to combine
these possibilities is probably not so clear, especially
to new users.

Originally, fontspec was written for the X ETEX
engine on MacOSX, with fonts being accessed via
the operating system, which provided automated
interfaces for selecting, e.g., ‘italic’ and ‘bold’. Thus,
early on, users became accustomed to the idea of
using the human-oriented font names known to the
system, as in writing

\setmainfont{Hoefler Text}

in their document, and then everything ‘just worked’
without additional configuration. This feature later
influenced luaotfload (for LuaTEX) to provide a sim-
ilar mechanism, by scanning through known font
directories and constructing its own database of font
files, their ‘logical’ names, and the relationships be-
tween shapes within a particular family. And thus it
is that, right now, you can write

\setmainfont{TeX Gyre Pagella}

in a LuaLATEX document and the correct font will be
chosen and bold and italic styles will ‘just work’ since

the TEX Gyre fonts are included in the standard TEX
distributions.

However, loading font families in these ways
has confusing edge cases, and it increases document
portability problems, and it can be slow. Over time I
have moved away from using this feature and I think
long term it would be better to de-emphasise its use.
I now recommend all users to load their fonts by
filename.

The most straightforward means to do this is
like so:

\setmainfont{texgyrepagella-regular.otf}[

ItalicFont = texgyrepagella-italic.otf ,

BoldFont = texgyrepagella-bold.otf ,

BoldItalicFont = texgyrepagella-bolditalic.otf,

]

But here there is a lot of duplication and a more
streamlined way is:

\setmainfont{texgyrepagella}[

Extension = .otf ,

UprightFont = *-regular ,

ItalicFont = *-italic ,

BoldFont = *-bold ,

BoldItalicFont = *-bolditalic,

]

Whereas in the first case the mandatory argument
{texgyrepagella-regular.otf} was a direct refer-
ence to the ‘regular upright’ font file, in the second
case {texgyrepagella} is merely a shorthand name
from which the filenames are constructed.

2.1 The case against loading by font name

I claimed above that there were some problems with
loading fonts by their external name instead of their
filename. Let’s discuss these in more detail.

Edge cases. Modern font families aren’t the font
families as we once knew them. It’s now common to
purchase families with literally tens of styles, with
weights from extra light to ultra black and a multi-
tude of styles. (I recently purchased Gill Sans Nova
and it arrived as 43 separate .otf files.) Now that
we have OpenType variable fonts, families of arbi-
trary complexity may start to appear. Software such
as luaotfload needs to use heuristics to establish the
relationships between fonts, and there can be no
general solution to this task. Therefore, sometimes
it fails to select the correct ‘bold’ font in particu-
lar circumstances; therefore, sometimes I get bug
reports.

Document portability. If you are loading a font
by name, it has to be installed somehow on that local
computer. Well, of course any font that you load has
to be installed; but if it is by name it’s possible for it
to be installed in a(ny) number of different locations,

Font loading in LATEX using the fontspec package: Recent updates

114 TUGboat, Volume 39 (2018), No. 2

and the way that the font loading heuristics work,
there could be a(ny) number of valid names that the
font can be referred to. When failure happens, is it
because you haven’t installed it correctly, or have
other software changes made the names no longer
match, or has a database not been updated when it
should have, or is it a X ETEX vs LuaTEX difference,
or . . . ?

Whereas if a font is loaded by filename it is
generally clear, or at least discoverable, where to look
and what to fix if the font cannot be found. It’s also
easier to set up a multiple-computer environment
where all your fonts are stored, say, in Dropbox
or on a secure network drive, and there is no ‘font
installation’ process anymore. As an example, I store
my ‘local’ texmf tree in Dropbox and have a shell
alias set up as

alias texmf="sudo tlmgr conf texmf \

TEXMFHOME ’~/Dropbox/texmf’"

This allows me to run texmf on a new (or freshly
updated) computer and as long as I’m connected
to Dropbox I’ll be able to load all the fonts I have
stored in that tree.

Slow. This is an obvious one. When luaotfload

scans through your font directories, it can take quite
some time. Loading fonts by filename simply doesn’t
have this problem. Another aspect of the ‘slow’
problem is that from an operating system perspective
it can get slower (on older computers especially)
as one installs tens or hundreds of additional fonts.
(Microsoft Word’s WYSIWYG font menu is a good
example of this.)

3 The interface for font features

The ‘plain’ approach to selecting OpenType font fea-
tures requires the use of raw feature tags, like +lnum
to activate ‘lining numbers’ or +dlig to activate
‘discretionary ligatures’.

\font\x="[EBGaramond12-Regular.otf]:+lnum;+dlig"

OpenType has quite a number of standard feature
tags, but they are not organised into a hierarchy. In
the early days of the fontspec package, its feature
loading interface was modelled on Apple’s AAT font
technology. This competitor to OpenType, quietly
fading in popularity, used a keyval approach to font
features instead, which mapped more naturally to
a user interface. The fontspec interface to the plain
example above is:

\fontspec{EBGaramond12-Regular.otf}[

Numbers = Lining ,

Ligatures = Discretionary ,

]

Figure 1: Upright ‘normal’ and ‘condensed’ weights of
Gill Sans Nova.

Figure 2: Additional ‘unusual’ fonts in the Gill Sans
Nova family.

It is also possible to change the font features for the
currently-selected font using \addfontfeatures. A
relatively recent improvement to fontspec dramati-
cally improved the reliability and internal logic for
such commands. Now, writing

\addfontfeatures{Numbers = OldStyle}

will explicitly deactivate Numbers = Lining before
adding the new +onum OpenType tag. OpenType
features are now provided consistently with Off and
Reset variants (e.g., Numbers = OldStyleOff and
Numbers = OldStyleReset) which interact properly
with the feature loading logic to either forcibly deac-
tivate a feature or to reset that particular fontspec
feature to its default state.

4 Typical example

Let’s now introduce a commercial font, and use this
in an example of setting up a custom font from
scratch; I’ll use ‘Gill Sans Nova’ as it comes with
a range of weights and styles. This font family has
upright and italic fonts in both ‘normal’ and ‘con-
densed’ widths with a large range of weights (see
Figures 1 and 2).

Will Robertson

TUGboat, Volume 39 (2018), No. 2 115

When using Gill Sans Nova myself, I usually
want the Medium and Bold weights paired, so I
created a file in my local texmf directory named
gill-sans-nova.fontspec, which looks like this:

\defaultfontfeatures[gill-sans-nova]{

UprightFont = GillSansNova-Medium.otf ,

ItalicFont = GillSansNova-MediumItalic.otf,

BoldFont = GillSansNova-Bold.otf ,

BoldItalicFont = GillSansNova-BoldItalic.otf ,

}

This file allows me to write, without any additional
options, \setmainfont{gill-sans-nova} or other
fontspec font selection command. Additionally, I
could write:

\newfontfamily\bookfont{gill-sans-nova}

and then use \bookfont in the setup of the typogra-
phy of the document.

To use a different selection of fonts from the
family, I can create another .fontspec file and load
that in the same way.

The \defaultfontfeatures command isn’t re-
quired to be in a .fontspec file; it could be in a class
or package file, or even just pasted into a document
preamble. But this approach keeps your preamble
as tidy as possible if you have a series of font family
definitions you will (probably) reuse between docu-
ments.

4.1 Feature possibility: font collections?

In the example above, \newfontfamily was briefly
mentioned for creating a macro that switches the font
to a pre-defined family. This is akin to extending
the selections provided in LATEX with its \rmfamily,
\sffamily, and \ttfamily definitions.

In other contexts it may be desirable to define
a single command to replace all of the standard
rm/sf/tt fonts. One interface we could imagine here
might look like

\setmainfont{pagella}% default ‘collection’

\setmainfont{aldus}[Collection={examples}]

to support a book with a series of ‘examples’, which
are typeset in a different style than the main text.
The document might look like:

this is the \textsf{main} text

% uses the default fonts

\selectfontcollection{examples}

this is some \textsf{example} text

% uses fonts from the "examples" collection

Over the next few months (or years, if my plans
go awry), I’ll experiment with implementing some
interfaces along these lines for user testing. Please
keep an eye out; I would certainly welcome additional
feedback.

5 Additional NFSS declarations

The standard ‘...Font’ variants that could be loaded
within fontspec have thus far been restricted to the
relatively standard set of:

UprightFont / ItalicFont / BoldFont /
BoldItalicFont / SlantedFont /

BoldSlantedFont

(And for each of these variants both normal and
small caps shapes are allowed.)

However, LATEX’s font selection scheme allows
complex mappings along what it terms the ‘shape’
and the ‘series’ axes. These can be assigned using
fontspec’s FontFace option:

\defaultfontfeature+[gill-sans-nova]{

FontFace = {uu}{n}{GillSansNova-UltraLight.otf},

FontFace = {ll}{n}{GillSansNova-Light.otf },

FontFace = {hh}{n}{GillSansNova-Heavy.otf },

FontFace = {xx}{n}{GillSansNova-ExtraBold.otf },

}

Now, for fonts in which only a range of weights need
to be defined, as here, the fontspec interface to this
is a little awkward. I have been discussing the idea
of a more friendly syntax with a number of users
recently. On the other hand, for truly arbitrary font
shapes that cannot be categorised in a standard way
(e.g., the ‘Deco’ Gill Sans font shown in Figure 2),
the more flexible FontFace option provides the most
generic interface.

6 ‘Inner’ emphasis and ‘Strong’ emphasis

By default, writing \emph{\emph{abc}} produces
an upright ‘abc’ as LATEX knows that italic text
needs to switch (back) to upright text for emphasis.
Some typesetters prefer instead to emphasise within
italic text with small caps, and LATEX2ε provides the
\eminnershape interface for defining the behaviour
of nested emphasis beyond a single level.

In fontspec, I became interested in the idea of
supporting arbitrary levels of nesting. For emphasis
this is presumably of limited utility, but later in this
section it will become more clear why this is useful.
Therefore, fontspec now supports arbitrary nesting
using (say)

\emfontdeclare{\itshape ,

\upshape\scshape,

\itshape ,

}

which will ask emphasised text to switch to italic,
then upright small caps, then italic small caps, as
shown in Figure 3. Each command sequence sepa-
rated by commas is applied successively.

Just above, we saw that fontspec provides the
FontFace option to load a range of font weights in

Font loading in LATEX using the fontspec package: Recent updates

116 TUGboat, Volume 39 (2018), No. 2

{ { { }}}
Figure 3: An example of nested emphasis.

{ { { }}}

Figure 4: An example of nested \strong emphases.

a single family. Inspired by HTML’s tag,
I have added \strong to fontspec as a sibling to
\emph. This is the command which makes it sensible
to support arbitrary nesting, given the large range
of weights seen in modern font families.

To follow from the previous Gill Sans Nova ex-
ample, to setup \strong with nesting I can write:

\strongfontdeclare{

\bfseries ,

\fontseries{hh}\selectfont ,

\fontseries{xx}\selectfont ,

}

This will produce the results shown in Figure 4.
Note there is no \weaken command to change

weights in the opposite direction! More seriously, I
can imagine generalising the interfaces here to a pair
of code-level interfaces such as \fontseriesup and
\fontseriesdown to change weights along a scale.

These interfaces will be subject to change as im-
proved methods for loading additional bold weights
are developed. At the moment the \emfontdeclare
and \strongfontdeclare commands are global for
all fonts; there is no current way to have font-specific
declarations there.

7 Custom encodings

We all know that fonts aren’t perfect, and while many
problems can be solved by choosing a better font,
this is not always possible. The fontspec package, in
concert with recent LATEX2ε changes around the TU
font encoding, now allows per-font customisation for
symbols and accent support. As an example, say I’m
creating a poster with some Sanskrit text but I’m
using a Western font; I can choose to redefine the
underdot accent \d by loading two fonts like so:

\newfontfamily\sanskritfont{CharisSIL}

\newfontfamily\titlefont{Posterama}[

NFSSEncoding=fakedotaccent

]

Of course, this needs some extra setup beforehand:

\DeclareUnicodeEncoding{fakedotaccent}{

\input{tuenc.def}

\EncodingCommand{\d}[1]{%

\hmode@bgroup

\o@lign{\relax#1\crcr\hidewidth

\ltx@sh@ft{-1ex}.\hidewidth}%

\egroup

}

}

Then later in the document, no additional work is
needed:

...{\titlefont KALITA\d M}...

...{\sanskritfont KALITA\d M}...

The first uses the ‘fake’ accent; the second the real
Unicode glyph.

There is a huge caveat to this, which is that
LATEX can’t intercept Unicode accents. So if you
have text that is written literally as ‘KALITAM.’ in the
source, LATEX can’t correct this for you, and you’ll
end up with whatever the font gives you. This limi-
tation could be addressed by adding a pre-processing
stage to the LATEX typesetting, but there is no built-
in mechanism to do this.

8 Conclusion

While the fontspec package has undergone extensive
development over the years, the core concepts are
the same: load fonts in a flexible way. But I think
it’s fair to say that as the package has grown and
the interfaces have become more complex, the in-
terface is not as clear as it could be. Will I ever
re-write fontspec entirely? Probably not. But with
LATEX3 interfaces to consider, it’s probable that a
slimmed-down version of fontspec will need to make
an appearance somewhere or another.

⋄ Will Robertson
School of Mechanical Engineering
The University of Adelaide, SA
Australia
will.robertson (at) adelaide dot edu dot au

wspr.io/fontspec

Will Robertson

TUGboat, Volume 39 (2018), No. 2 117

Supporting color and graphics in expl3

Joseph Wright

1 Introduction

The expl3 language has grown over the past decade
to cover a wide range of programming tasks [4]. How-
ever, at present there are a number of areas where
expl3 offers little or no ‘core’ support and which will
need functionality at this level. Here, I’ll be focussing
on one in particular: color and graphics support.

In the classical LATEX2ε setup, the picture

environment along with the packages graphics [5]
and color provide the basis for this area. To allow
driver-dependent operations, a set of definition files is
loaded by graphics to map user operations to driver-
specific instructions. Nowadays, these are managed
by the LATEX team in the bundle graphics-def [2].

In addition to this core support, a number of
well-established contributed packages offer significant
additional features. Particularly notable here are
xcolor [1], which allows user-friendly mixing of colors,
and TikZ/pgf [6], an extremely rich and versatile
system for the programmatic creation of graphics.

Here, I will look at recent efforts to begin provid-
ing a similar level of overall functionality via expl3.
Central to these efforts is the availability of a fast,
expandable and accurate software floating-point unit
(FPU) within expl3. This provides a base on which
many graphics-related functions can build: calcula-
tions are a core part of many image-related functions.

2 The driver layer

Unlike the LATEX2ε situation, where the graphics and
color driver code is managed (somewhat) separately
from the kernel, the expl3 versions are part of the core
distribution. Development of the driver code in expl3

has been informed by recent efforts to standardise
the LATEX2ε versions, and vice versa.

As new features are added to expl3 which require
driver support, the driver layer is being adjusted
to match. This means that unlike in LATEX2ε, for
expl3 there should be a single set of definitive driver
files, supported by the team and usable by (and
documented for) others.

3 Colo(u)r

The LATEX2ε (required) package color provides a
base interface for using pre-defined colors. However,
one of the most common ways to use a color is to
describe it as a mix of base colors: red, green and
blue, or cyan, magenta, yellow and black. The xcolor
package provides a convenient ‘expression’ interface
for creating mixtures: \color{red!50!blue}.

Supporting this mixing, conversion between dif-
ferent color models, and other features such as spot
colors, are all (largely) covered in the experimental
l3color package [3]. Using the LATEX3 FPU makes
much of the core support very easy to implement:
the various pieces of mathematics can be expressed
directly, rather than requiring complex dimension
shuffling.

At present, the nature of input in l3color is lim-
ited to the ‘simple’ color expressions defined by xcolor:
feedback on what is helpful to end users would be
very welcome.

4 Image inclusion

At present, expl3 support for image inclusion is only
ready at the driver level. Implementing a code-level
set of \image_... functions is on the ‘to do’ list,
and is likely straightforward.

5 Drawing

Whilst the picture environment of the LATEX kernel
does provide a way to create simple graphical ele-
ments, today perhaps the most powerful tool for this
task is TikZ/pgf. Reimplementing all of the latter
may seem excessive, but there are several reasons
to explore this. First, a core aim of expl3/LATEX3
work is to eventually provide a full set of features for
supporting document preparation, certainly provid-
ing code-level tools for all common tasks. Coupled
to this, an expl3 implementation will have API con-
sistency with the rest of the code: mixing TikZ and
expl3 can be tricky. We are also able to use existing
expl3 tools in the implementation and usage. Finally,
there is the potential offered by the LATEX3 FPU:
this avoids using dimensions for floating point work,
and so also avoids the Dimension too big issue that
comes up from time-to-time using TikZ.

Much like expl3, pgf is divided into different
layers: these line up as show in Table 1. There is
good alignment, and thus in many ways it is simply
a case of re-creating the macros with new names. Of
course, there is more to do than that: for example,
the use of the LATEX3 FPU means that co-ordinate
expressions are processed expandably by l3draw, with
a knock-on effect in usage. However, as far as possible
the interfaces in l3draw retain the same arguments
as those in pgf.

6 Examples

At the time of writing, l3draw is very much a work
in progress. However, the core idea of constructing
paths is fully implemented. For example, a simple
geometric shape including smoothing joins:

Supporting color and graphics in expl3

118 TUGboat, Volume 39 (2018), No. 2

Table 1: Comparison of TikZ/pgf and l3draw concepts

Layer TikZ/pgf l3draw

System \pgfsys@moveto \driver_draw_moveto:nn

Base \pgfpathmoveto \draw_path_moveto:n

Interface \draw —

\draw_begin:

\draw_path_corner_arc:nn { 4pt } { 4pt }

\draw_path_moveto:n

{ \draw_point_polar:nn { 0 } { 1cm } }

\int_step_inline:nnnn { 72 } { 72 } { 359 }

{

\draw_path_lineto:n

{

\draw_point_polar:nn { #1 } { 1cm }

}

}

\draw_path_close:

\draw_path_use_clear:n { stroke }

\draw_end:

The new code also integrates with existing ideas
such as coffins. Here, we draw a line to the center of
typeset text:

This is text.
\draw_begin:

\draw_path_moveto:n { 0cm , 0cm }

\draw_path_lineto:n { 0cm , 1cm }

\draw_path_use_clear:n { stroke }

\hcoffin_set:Nn \l_tmpa_coffin

{ This~is~text. }

\draw_coffin_use:Nnn \l_tmpa_coffin

{ hc } { vc }

\draw_end:

We can also exploit the expandable nature of
the FPU:

22.72949518869545pt,-17.11517943480897pt

\tl_set:Nx \l_tmpa_tl

{

\draw_point_intersect_circles:nnnnn

{ (0,0) } { 1cm }

{ (sqrt(2),sqrt(3)) } { 1cm }

{ 1 }

}

\tl_to_str:N \l_tmpa_tl

Thus, l3draw is ready for application in expl3

contexts which require drawing. Over time, we ex-
pect to cover essentially the entire API provided
by pgf’s core, plus probably node handling (loaded
by pgf but not technically part of the core of the
bundle).

References

[1] U. Kern. Extending LATEX’s color facilities: the
xcolor package, 2016. ctan.org/pkg/xcolor

[2] LATEX Project. Color and graphics option files,
2018. ctan.org/pkg/graphics-def

[3] LATEX Project. Experimental LATEX3 concepts,
2018. ctan.org/pkg/l3experimental

[4] LATEX Project. The expl3 package and LATEX3
programming, 2018. ctan.org/pkg/expl3

[5] LATEX Project. The graphics bundle, 2018.
ctan.org/pkg/graphics

[6] T. Tantau and C. Feuersänger. TikZ and pgf,
2015. ctan.org/pkg/pgf

⋄ Joseph Wright
LATEX Project
joseph dot wright (at)

morningstar2.co.uk

Joseph Wright

TUGboat, Volume 39 (2018), No. 2 119

siunitx: Past, present and future

Joseph Wright

Abstract

The siunitx package provides a powerful toolkit for
typesetting numbers and units in LATEX. By incor-
porating detail about the agreed rules for presenting
scientific data, siunitx enables authors to concentrate
on the meaning of their input and leave the package
to deal with the formatting. Here, I look at the
background to the package, what led me from ver-
sion 1 to version 2, and why version 3 is now under
development.

1 Introduction

Typesetting units naturally lends itself, in TEX, to
using macro support. The formal rules for SI units [1]
link unit names with unit symbols, and it’s not sur-
prising that several authors have created packages
that tackle some or all of the subtleties involved. I’ve
detailed some of these issues and packages before,
when I last looked at siunitx for TUGboat [6]. Here,
I’ll briefly recap some of those key points, then ex-
plore what is driving efforts toward a third version
of the package.

2 Early days

Before siunitx, there were a variety of units-related
packages, including one called SIunits [3], which deals
with providing semantic macros for units. My in-
volvement started when I followed up an apparently-
innocuous post to comp.text.tex from Stefan Pin-
now in November 2007, reporting a straightforward
bug

I want to report that \reciprocal,

\rpsquare, \rpcubic, etc. output is

written as "-1" instead of a -1, when

the package option "textstyle" is used.

I tried to contact Mr. Heldoorn, but he

didn’t answer until now. Does anyone

have an idea what to do?

Being young(ish) and foolish, after looking at
the bug itself and finding that SIunits was no longer
maintained, I volunteered to pick up the package.
Even more foolishly, I then followed up with the
following in November 2007:

As some of you may have noticed,

following a recent bug report

concerning the SIunits package,

I have taken over as the package

maintainer. I have uploaded a bug fix

for the specific issue to CTAN, and so

hopefully it will appear within a day

or two.

It has been suggested by the

maintainer of the SIstyle package

that integration of the two be would

worth considering. Other suggestions

have also been made in the newsgroup

and by private mail. I am therefore

planning to review the existing

situation and see what improvements

are needed/desirable. As well as

SIunits and SIstyle, I am going to

look at numprint, units, unitsdef and

hepunits for inspiration/points to

consider/etc.

So far, I have some outline ideas,

for example: ...

I soon had quite a list, and work on the new
package began in earnest, and by February 2008 the
first testing release was out. After a little more work,
and a rename, the first official version of siunitx hit
CTAN on the 16th of April 2008 [7].

3 Key features

The core features of siunitx have been present from
that first version, and are pretty well-known. I’d
summarise them as

• Automatic, semantic formatting of quantities
(numbers with units)

• Parsing and manipulation of numbers

• Control of printing of numbers, units and
quantities

• Alignment of numbers in tables

• Unified key–value interface for controlling
options

For me, the package has always been about units,
and the fundamental idea that input such as

\joule\per\mole\per\kelvin

can give Jmol−1 K−1 or J
molK or J/(molK), depend-

ing on the settings in force. This idea has been there
since day one, and the code has carried through
more-or-less unchanged.

4 From version one to version two

Version one of siunitx worked well for delivering on
those key features. Releases progressed rapidly, cul-
minating in version 1.4c in February 2010. However,
adding new features was a problem: internally it was
a bit of a mess. For example, if you look at the old
code you’ll see:

• Internals other than unit parsing taken from
existing packages and somewhat haphazard

siunitx: Past, present and future

120 TUGboat, Volume 39 (2018), No. 2

• Sub-optimal key–value choices

• Essentially no internal API

• Poor self-coded loops

• . . .

Around this time, Will Robertson contacted
me to ask what I thought of the LATEX3 language
expl3 [4]. This was before I joined the LATEX team,
and expl3 looked a bit different than today, but the
central ideas were all there. I liked the ideas, but at
the time was a bit wary of loading an external library
(and thus a dependency). So I started by picking
out the ideas and re-coding them in my development
setup for version two. It soon became clear that I
needed a lot of the ideas, and I realised that I’d be
much better off just requiring expl3.

Work on the second version of siunitx took me
into expl3 programming, and asking the team for lots
of features. In particular, I wanted to have key–value
support built-in, rather than needing to use another
package to do that. So I wrote some code, which
I called keys3, to solve the problem. It turned out
that was my application to join the team: it’s today
l3keys in expl3 itself!

The rewrite gave me a chance to significantly
revise internal API aspects, and to significantly im-
prove performance. It also came of course with new
features for users, and completely new names for
the key–value interface. In the v2.0 release, I didn’t
include backward-compatibility: I soon learned, and
that’s been there since a few days after the second
generation release.

5 From version two to version three

Version two retains most of the features that version
one had, but as well as the good ones, it turns out it
keeps some of the bad ones too! In particular

• Assumptions about fonts: OpenType, etc.

• No code-level API expl3

• Internals still too messy

• Testing the PDF documentation only

• Monolithic source

• Still too slow

5.1 Font control

The font assumptions carry all the way through from
SIstyle [2], and which I adjusted only slightly. The
approach currently used is

1. Detect current font type using LATEX internal
data

2. Insert everything inside \text

3. Apply \ensuremath inside the box

4. Perhaps apply \text again (for text mode
output)

5. Force the font with e.g. \mathrm or \rmfamily

That requires a lot of work, and more import-
antly is unreliable: it’s not always easy to get the
right font ‘inside’ the output section. It also fails
very badly with OpenType math mode fonts, where
the ideas in classical TEX about math families simply
don’t apply. So there is a new approach: for version
three

1. Detect current font type using LATEX internal
data

2. Set any aspects that are needed

3. Only use an \mbox if math version has to be
altered

This ‘minimal change’ approach is much faster
than the current one, and is much better at respecting
font changes. I’m still finalising compatibility for
current edge-case setups, but I believe the new code
is much preferable overall.

5.2 The code API and testing

The development of siunitx version two very much
parallels that of expl3 as a truly usable language: in
the time I’ve been using it, expl3 has gone from a set
of clever experiments to a well-established approach
to coding in TEX. But keeping all of siunitx up-to-
date with ideas has been tricky.

The biggest issue is that when I wrote the cur-
rent release code, there were just user commands
such as \num and internal implementation. However,
it’s now clear that each user command should have
a documented code-level interface. Moreover, these
interfaces should all be properly tested: the team
have created l3build precisely for that [5]. Combining
these ideas, the new code will take the input

\siunitx_unit_format:nN

{ \joule \per \mole }

\l_tmpa_tl

\tl_show:N \l_tmpa_tl

and create as output

> \l_tmpa_tl=

\mathrm {J}\,\mathrm {mol}^{-1}

Notice that this is easy to test, and highlights another
new idea: the parsing step should produce the same
results as a user typing in the formatting ‘by hand’.

5.3 First alpha release

At the time of writing, the development of version
three has reached the first alpha stage: the code is
usable but there are real gaps. Currently, all of the
following are working:

Joseph Wright

TUGboat, Volume 39 (2018), No. 2 121

• Core functionality:

– Unit parsing and formatting

– Real number formatting

– Tabular columns

• Existing API: \num, \SI, \si, S-column

• New (experimental) document API: \unit, \qty

There are some big areas left to do, such as
multi-part numbers, ranges, lists and most import-
antly the compatibility layer for dealing with existing
documents. However, that is all relatively manage-
able, and I expect to be done around the end of the
year. So 2019 should see siunitx reach version 3.0.0,
and I hope retain its place as the units package for
LATEX.

References

[1] Bureau International des Poids et Mesures.
The international system of units (SI), 2010.
bipm.org/en/measurement-units/

[2] D. Els. The SIstyle package, 2008.
ctan.org/pkg/sistyle

[3] M. Heldoorn and J. Wright. The SIunits

package: Consistent application of SI units,
2007. ctan.org/pkg/siunits

[4] LATEX Project. The expl3 package and LATEX3
programming, 2018. ctan.org/pkg/expl3

[5] LATEX Project. l3build: Checking and building
packages, 2018. ctan.org/pkg/l3build

[6] J. Wright. siunitx: A comprehensive (SI) units
package. TUGboat 32(1):95–98, 2011. tug.org/
TUGboat/tb32-1/tb100wright-siunitx.pdf

[7] J. Wright. siunitx—a comprehensive (SI) units
package, 2018. ctan.org/pkg/siunitx

⋄ Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph dot wright (at)

morningstar2.co.uk

Appendix: demos

Simple number formatting:

123
1234
12 345
0.123
0.1234
0.123 45
3.45× 10−4

−1010

\num{123} \\

\num{1234} \\

\num{12345} \\

\num{0.123} \\

\num{0,1234} \\

\num{.12345} \\

\num{3.45d-4} \\

\num{-e10}

Angles:

10◦

12.3◦

4.5◦

1◦2′3′′

1′′

10◦

−0◦1′

\ang{10} \\

\ang{12.3} \\

\ang{4,5} \\

\ang{1;2;3} \\

\ang{;;1} \\

\ang{+10;;} \\

\ang{-0;1;}

Units as macros:
kgm s−2

g cm−3

V2 lm3 F−1

m2 Gy−1 lx3

Hs
\si{\kilo\gram\metre\per\square\second} \\

\si{\gram\per\cubic\centi\metre} \\

\si{\square\volt\cubic\lumen\per\farad} \\

\si{\metre\squared\per\gray\cubic\lux} \\

\si{\henry\second}

Quantities:

1.23 Jmol−1 K−1

0.23× 107 cd
1.99/kg
1.345 C

mol

\SI[mode = text]{1.23}{J.mol^{-1}.K^{-1}} \\

\SI{.23e7}{\candela} \\

\SI[per-mode = symbol]

{1.99}{\per\kilogram} \\

\SI[per-mode = fraction]

{1,345}{\coulomb\per\mole}

siunitx: Past, present and future

122 TUGboat, Volume 39 (2018), No. 2

Arara—TEX automation made easy

Paulo Roberto Massa Cereda

Abstract

This article covers a bit of history behind arara, the
cool TEX automation tool, from the earlier stages of
development to the new 4.0 series. We also highlight
some noteworthy features of our tool.

1 Introduction

Writing software is easy. Writing good software is
extremely difficult. I was working on a Catholic
songbook with 1200+ songs and several indices and
cross-references. The compilation steps required to
achieve the final result were getting out of hand.

At some point, I realized I knew all the steps I
had to reproduce beforehand, I only had to find a way
to automate them! Inspired by the way compilers
work (i.e., read a source file, ignore all comments
and process the rest), I could exploit TEX comments
to include special indications on what to do on the
document. Since engines do ignore comments, no
side effects would arise, at least document-wise.

It was a cold afternoon. I sat in front of my
computer and decided to work on this new tool.
It was a matter of time to reach preliminary yet
promising results. I mentioned this effort in the chat
room of the TEX community at StackExchange and
some friends asked me to make a public release out
of it, as other users could benefit from this new tool.

However, a name was needed for the tool. In
the chat room, we used to have a lot of fun with
palindromes (especially palindromic reputations in
arbitrary bases), so I took that aspect as inspiration.
Then I thought of a very beautiful, colourful bird of
the Brazilian fauna: the macaw, or as we like to call
it, the arara. The name was immediately adopted!

Once the name was chosen, I needed a logo.
Since I am a Fedora Linux user, I was always a fan
of their default typeface, which is quite round! The
choice was made: the humble arara tool became
arara ! (But we’ll use the more subdued arara in
regular text.) My life was about to change.

2 A bit of history

A lot of things have happened since version 1.0, re-
leased in 2012, to the new version 4.0, released in
2018. This section presents a bit of history of arara,
including challenges in each version.

2.1 The first version

There is a famous quote along the lines of “If at
first you do not succeed, call it version 1.0.” The
first version of arara was also the first public release,

dated April 2012. Nothing much was there, besides
the core concepts that still exist today:

• Rules: a rule is a formal description of how arara

handles a certain task. It tells the tool how to
do something.

• Directives: A directive is a special comment
inserted in the source file in which you indicate
how arara should behave.

Back then, we could write directives in our doc-
ument and have the tool process them as expected,
like the following example:

% arara: pdftex

Hello world!

\bye

Amusingly, the first version offered only a log
output as an additional feature. There was no ver-
bose mode. The log file was a gathering of streams
(error and output) from the sequence of commands
specified through directives. And that was it.

2.2 The second version

The first version had a serious drawback: compilation
feedback was not in real time and, consequently, no
user input was allowed. For the second version, real
time feedback was introduced when the tool was
executed in verbose mode.

$ arara -v mydoc.tex

... [real time feedback] ...

Two other features were included in this version:
a flag to set an overall execution timeout, in millisec-
onds, as a means to prevent a potentially infinite
execution, and a special variable in the rule context
for handling cross-platform operations.

2.3 The third version

So far, arara was only a tiny project with a very
restricted user base. However, for version 3.0, a
qualitative goal was reached: the tool became inter-
national, with localised messages in English, Brazil-
ian Portuguese, German, Italian, Spanish, French,
Turkish and Russian. Further, new features such as
configuration file support and rule methods brought
arara to new heights. As a direct consequence, the
lines of code virtually doubled from previous releases.

$ arara --help -L es

...

-h,--help imprime el mensaje de ayuda

-l,--log genera el registro de la salida

...

When the counter stopped at version 3.0, Brent
Longborough, Marco Daniel and I decided it was
time for arara to graduate and finally be released in
TEX Live. Then things really changed in my life. The

Paulo Roberto Massa Cereda

TUGboat, Volume 39 (2018), No. 2 123

tool was a success! Given the worldwide coverage of
that TEX distribution, arara silently became part of
the daily typographic tool belt of many users. But
then, the inevitable happened: a lot of bugs emerged
from the dark depths of my humble code.

2.4 Critical and blocker bugs

Suddenly, several questions about arara were posted
in the TEX community at StackExchange and I was
not able to provide a consistent, definitive answer
for many of them! It was very tricky to track the
bugs to their sources, and some of them were really
nasty. For instance, a simple scenario of a file with
spaces in the name was more than enough to make
the poor tool cry for help for apparently no reason:

$ arara "My PhD thesis.tex"

Likewise, the issues page of the project repos-
itory hosted at GitHub had a plethora of reports,
and little could I do about them. I delved into the
code of third party libraries, but the root of all evil
seemed to lie in my own sources.

2.5 Nightingale

In all seriousness, I was about to give up. My code
was not awful, but there were a couple of critical
and blocking bugs. Something very drastic had to
be done in order to put arara back on track. Then,
proceeding on faith, I decided to rewrite the tool
entirely from scratch. In order to achieve this goal,
I created a sandbox and started working on the
new code. And this new project got a proper name:
nightingale.

It was the right thing to do. Nicola Talbot
helped me with the new version, writing code, fixing
bugs and suggesting new features. She was writing
a book about LATEX for administrative work at the
time and was extensively using arara in the code
examples. Her writing indirectly became my writing
as well, as I progressively improved the code and
added new features to match her suggestions.

2.6 The fourth version

At some point, nightingale had to say farewell and
gave most of its features to the bigger, older bird
in the nest. It is worth mentioning that nightingale
still lives in my repository at GitHub for those who
are bold enough to try it. From 1500+ lines of
code in version 3.0, arara 4.0 tripled that number: a
whopping 4500+ lines of code! And, most important:
all critical and blocking bugs were completely fixed.

However, although the code was ready for pro-
duction, the user manual was far from being finished.
In fact, the documentation had to be written entirely
from scratch. Then another saga started: find proper

time and effort to document a great yet complex tool
in all details, from user to developer perspectives.

It took me a lot of dedication to write the user
manual and try to cover as much detail as possible
for every feature, old and new, and the tool itself.
Some of the internals had to be changed, so more
explanations were needed. Documenting a tool is
almost as difficult as writing code for it!

3 New features

This section highlights some noteworthy features
found in the new version 4.0 of arara. For additional
information, please refer to our user manual.

3.1 REPL work flow

In version 4.0, arara employs a REPL (read-evaluate-
print loop) work flow for rules and directives. In
previous versions, directives were extracted, their
corresponding rules were analyzed, commands were
built and added to a queue before any proper exe-
cution or evaluation. I decided to change this work
flow, so now arara evaluates each rule on demand,
i.e., there is no a priori checking. A rule will al-
ways reflect the current state, including potential
side effects from previously executed rules.

3.2 Multiline directives

Sometimes, directives can span several source lines,
particularly those with several parameters. From
arara 4.0 on, we can split a directive into multiple
lines by using the arara: --> mark on each line
which should comprise the directive. We call it a
multiline directive. Let us see an example:

% arara: pdflatex: {

% arara: --> shell: yes,

% arara: --> synctex: yes

% arara: --> }

It is important to observe that there is no need
for them to be on contiguous lines in the source
file, i.e., provided that the syntax for parameterized
directives holds for the line composition, lines can
be distributed all over the code. The log file (when
enabled) will contain a list of all line numbers that
made up a directive.

3.3 Directive conditionals

arara 4.0 provides logical expressions, written in the
MVEL language, and special operators processed at
runtime in order to determine whether and how a
directive should be processed. This feature is named
directive conditional, or simply conditional for short.
The following list describes all conditional operators
available in the directive context.

Arara—TEX automation made easy

124 TUGboat, Volume 39 (2018), No. 2

• if: The associated MVEL expression is evalu-
ated beforehand, and the directive is interpreted
if, and only if, the result of such evaluation is
true. This directive, when the conditional holds
true, is executed at most once.

% arara: pdflatex if missing(’pdf’)

% arara: --> || changed(’tex’)

• unless: Same as if but the condition test is
inverted.

% arara: pdflatex unless unchanged(’tex’)

% arara: --> && exists(’pdf’)

• until: The directive is interpreted the first time,
then the associated MVEL expression evaluation
is done. As long as the result holds false, the
directive is reinterpreted. There is no guarantee
of halting.

% arara: pdflatex until !found(’log’,

% arara: --> ’undefined references’)

• while: Same as until but the condition test is
inverted.

% arara: pdflatex while missing(’pdf’)

% arara: --> || found(’log’, ’undefined

% arara: --> references’)

Although there is no conceptual guarantee for
proper halting of unbounded loops, we have provided
a practical solution to potentially infinite iterations:
arara has a predefined maximum number of loops.
The default value is 10, but it can be overridden
either in the configuration file or on the command
line.

3.4 Directive extraction only in the header

The --header command line option changes the
mechanics of how arara extracts the directives from
the code. The tool always reads the entire file and
extracts every single directive found throughout the
code. However, by activating this switch, arara will
extract all directives from the beginning of the file
until it reaches a line that is not empty and is not
a comment (hence the option name). Consider the
following example:

% arara: pdftex

Hello world.

\bye

% arara: pdftex

When running arara without the --header op-
tion, two directives will be extracted (on lines 1
and 4). However, if executed with this switch, the
tool will only extract one directive (from line 1), as it
will stop the extraction process as soon as it reaches
line 2.

3.5 Dry-run execution

The --dry-run command line option makes arara

go through all the motions of running tasks and
subtasks, but with no actual calls. This is useful for
testing the sequence of underlying system commands
to be performed on a file.

[DR] (PDFLaTeX) PDFLaTeX engine

--

Authors: Marco Daniel, Paulo Cereda

About to run: [pdflatex, hello.tex]

Note that by the rule, authors are displayed (so
they can be blamed in case anything goes wrong),
as well as the system command to be executed. It is
an interesting approach to see everything that will
happen to your document and in which order. It is
important to observe, though, that conditionals are
not evaluated in this mode.

3.6 Local configuration files

From version 4.0 on, arara provides support for local
configuration files. In this approach, a configuration
file can be located in the working directory associated
with the current execution. This directory can also
be interpreted as the one relative to the processed
file. This approach offers a project-based solution
for complex work flows, e.g., a thesis or a book.
However, arara must be executed within the working
directory, or the local configuration file lookup will
fail. Observe that this approach has the highest
lookup priority, which means that it will always
supersede a global configuration.

3.7 File hashing

arara 4.0 features four methods for file hashing in the
rule and directive scopes, presented as follows. The
file base name refers to the file name without the
associated extension.

• changed(extension): checks if the file base
name concatenated with the provided extension
has changed its checksum from last verification.

• changed(file): the very same idea as the previ-
ous method, but with a proper Java File object
instead.

• unchanged(extension): checks if the file base
name concatenated with the provided extension
is unchanged from last verification. It is the
opposite of the changed(...) method.

• unchanged(file): the very same idea as the
previous method, but with a proper Java File

object instead.

The value is stored in a database file named
arara.xml as a pair containing the full path of the
provided file and its corresponding CRC-32 hash (the

Paulo Roberto Massa Cereda

TUGboat, Volume 39 (2018), No. 2 125

database is created as needed). If the entry already
exists, the value is updated, or created otherwise.

3.8 Dialog boxes

A dialog box is a graphical control element, typically
a small window, that communicates information to
the user and prompts them for a response. arara 4.0
provides UI methods related to such interactions.
As good practice, make sure to provide descriptive
messages to be placed in dialog boxes in order to
ease and enhance the user experience.

3.9 Session

Rules are designed under the encapsulation notion,
such that direct access to the internal workings of
such structures is restricted. However, as a means
of supporting framework awareness, arara provides
a mechanism for data sharing across rule contexts,
implemented as a Session object. In practical terms,
this particular object is a global, persistent map
composed of keys and values available throughout
the entire execution.

3.10 Redesigned user interface

For arara 4.0, we redesigned the interface in order
to look more pleasant to the eye; after all, we work
with TEX and friends. Please note that the output
here is truncated to respect the column width.

__ _ _ __ __ _ _ __ __ _

/ _‘ | ’__/ _‘ | ’__/ _‘ |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing ’doc.tex’ (size: 307 bytes, last

modified: 05/29/2018 08:57:30), please wait.

(PDFLaTeX) PDFLaTeX engine SUCCESS

(PDFLaTeX) PDFLaTeX engine SUCCESS

Total: 1.45 seconds

First of all, we have the nice application logo,
displayed using ASCII art. The entire layout is based
on monospaced font spacing, usually used in terminal
prompts. Hopefully you follow the conventional use
of a monospaced font in your terminal, otherwise
the visual effect will not be so pleasant. First and
foremost, arara displays details about the file being
processed, including size and modification status:

Processing ’doc.tex’ (size: 307 bytes, last

modified: 05/29/2018 08:57:30), please wait.

The list of tasks was also redesigned to be fully
justified, and each entry displays both task and sub-
task names (the former being displayed enclosed in
parentheses), besides the usual execution result:

(PDFLaTeX) PDFLaTeX engine SUCCESS

(PDFLaTeX) PDFLaTeX engine SUCCESS

If a task fails, arara will halt the entire execution
at once and immediately report back to the user.
This is an example of what a failed task looks like:

(PDFLaTeX) PDFLaTeX engine FAILURE

Also, observe that our tool displays the execu-
tion time before terminating, in seconds. The execu-
tion time has a very simple precision, as it is meant
to be easily readable, and should not be considered
for command profiling.

Total: 1.45 seconds

The tool has two execution modes: silent, which
is the default, and verbose, which prints as much
information about tasks as possible:

• When in silent mode, arara will simply display
the task and subtask names, as well as the ex-
ecution result. Nothing more is added to the
output.

• When executed in verbose mode, arara will dis-
play the underlying system command output
as well, when applied. In version 4.0 of our
tool, this mode was also entirely redesigned in
order to avoid unnecessary clutter, so it would
be easier to spot each task.

It is important to observe that, in verbose mode,
arara can offer proper interaction if the system com-
mand requires user intervention. However, in silent
mode the tool will simply discard this requirement
and the command will almost surely fail.

4 The future

Now that arara 4.0 is officially released and already
available in CTAN and TEX Live, it is time to plan
the future. Our repository already has suggestions
for new features and improvements. The work on
arara 5.0 has begun! If you have any feedback about
our tool, please drop us a note.

Also, if you believe your custom rule is com-
prehensive enough and deserves to be in the official
pack, please contact us. We will be more than happy
to discuss the inclusion of your rule in forthcoming
updates. Happy TEXing with arara!

⋄ Paulo Roberto Massa Cereda
Analândia, São Paulo, Brazil
cereda dot paulo (at) gmail dot com

github.com/cereda/arara

Arara—TEX automation made easy

126 TUGboat, Volume 39 (2018), No. 2

The Canvas learning management system
and LATEXML

Will Robertson

1 Introduction

In 2017 The University of Adelaide adopted Canvas

(Instructure, Utah, USA) for its learning management
system (LMS). Unlike our previous LMS, Canvas
provides a programming interface to get data from
and send data to its servers. In this paper I will
discuss the system I have started developing to pre-
pare coursework material using LATEX, processed via
LATEXML, and uploaded into Canvas in both HTML

and PDF formats.

1.1 What is a learning management
system?

An LMS is an online system that organises students
into classes and allows them to access course notes,
assignments, lecture recordings, discussion boards,
and so on. They usually also include collaborative
features to help teamwork activities. The LMS is
also how the lecturer or coordinator for the course
communicates with the students, posts grades, and
otherwise does their job of running the course.

Each course tends to have a fairly typical struc-
ture, with links to the syllabus, assignment submis-
sions, grades, etc. Actual course content in Canvas
is organised into modules with individual pages writ-
ten in HTML via a rich text editor. The amount of
technical content in each course will depend on the
coordinator; most academics I know still rely largely
on printed lecture notes.

1.2 Requirements for the project

As the coordinator for the mechanical engineering
honours project course, I maintain a large collection
of course content that is provided as reference mate-
rial. After many years as a LATEX user, I am most
comfortable with the idea of a source document that
is portable, version controllable, and easy to edit.
For me, using any web interface to fix typos or make
small changes requires a non-negligible mental effort
due to having to log in, navigate to an appropriate
page, and click through to an editing mode. This
project was motivated by my desire for a more ef-
ficient and effective means to keep course material
up-to-date.

In the past, our honours project course docu-
mentation was a single monolithic Word document,
which was difficult to maintain and awkward to ex-
tract information from. With a slow move to online
documentation and incremental changes over time,

this comprehensive document fell out of sync with
the live content and had to be dropped. However, the
single reference document had specific utility in being
able to be easily distributed, and being searchable;
its loss was not disastrous but not ideal.

The new LMS provided the opportunity to re-
think the means by which the information needed
in this course was documented and communicated
to students and supervisors. This project was moti-
vated by two main requirements: (1) improving the
care and maintenance of the (somewhat extensive,
and growing, amount of) content, and (2) to allow
the generation of a comprehensive PDF reference
document for the entire course.

When I started this work, I didn’t know exactly
what I wanted except that I knew I needed at least
a good combination of the following:

One source, multiple outputs. My need for a
better system arose from wanting to be able to keep
online content up-to-date, while also having this
content collected in a single offline location. And it
soon became clear in my thinking that it would also
need to be compilable into a single PDF document
for distribution via alternate means.

Macros. I knew there would be a fair amount of
information that I would want to re-use and keep
consistent through the document (e.g., the names of
academic and professional staff members; due dates
for assessment). This precluded writing in HTML or
a ‘plain text’ format like Markdown.

Reliable and easy to set up. As much as I might
like to program my own document preparation sys-
tem, using this was to be part of my day job and I
don’t want to have to dive into the weeds if code rot
occurs and the system breaks down.

LATEX syntax. I admit, I stick with what I know.
Although I could have jumped into any number of
competing technologies here, I knew I would be most
comfortable if I was writing in the system with which
I was most accustomed. More objectively, LATEX is a
mature format with a variety of possibilities among
third party support tools for creating HTML.

2 The authoring interface

After some quick trials to establish that I could
programmatically send HTML content to Canvas, it
was time to decide how to generate the HTML in the
first place.

2.1 Which HTML converter to choose?

As discussed above, I didn’t want to do anything
home-grown (and hence fragile), nor inflexible such as
Markdown or raw HTML. I was aware of a number of

Will Robertson

TUGboat, Volume 39 (2018), No. 2 127

‘competing’ technologies to write in LATEX or LATEX-
like syntaxes which could be converted to XML and
hence to HTML. The most actively developed of these
tools, and their implementation language, appear to
be:

• lwarp [1]—Lua
• LATEXML [2, 3]—Perl
• HeVeA [8]—OCaml
• Tralics [4]—C++

• TEX4ht [5]—C and TEX
• GELLMU [6, 7]—Emacs Lisp

(Not an exhaustive list; apologies for any oversights.)
To be honest I didn’t thoroughly evaluate each on
their pragmatic merits; I was passingly familiar with
LATEXML’s philosophy, had heard it was robust, and
wanted to see if it fit the bill. It did, largely speaking.
Of the tools listed above, only TEX4ht and lwarp

are included in TEX Live. While LATEXML required
‘manual’ installation, I had no troubles doing so.

2.2 LATEXML overview

The LATEXML program would be better explained by
someone who knows a lot more than I do about Perl,
XML, and friends. My user-level understanding is
that LATEXML reimplements an extensive subset of
TEX in Perl, so that input documents are literally
processed as LATEX syntax, but not by the LATEX
program. The LATEXML parser then intercepts pack-
age loading and inserts its own understanding of the
various syntaxes introduced by different packages. If
needed, it is possible to write custom support for
packages that it doesn’t cover out of the box.

LATEXML does an excellent job emulating TEX,
and it covers an impressive array of both TEX and
LATEX programming constructs.1 Therefore, includ-
ing in my preamble a construct like

\newcommand\honourscoord{Will Robertson}

simply worked out of the box with LATEXML; indeed,
simple LATEX2ε programming using counters and so
on worked without a hitch.

To run LATEXML on my document involves the
somewhat complex command:

latexml tex/$FILENAME.tex | latexmlpost - \

--xsltparameter=SIMPLIFY_HTML:true \

--sourcedirectory=tex \

--format=html5 \

--destination=html/$FILENAME.html \

--splitat=chapter \

--splitnaming=label

This setup ensures that for each ‘chapter’ of my
LATEX document a separate self-contained HTML file

1 Even David Carlisle’s xii.tex can be successfully run
through LATEXML.

is created, which is the starting point for getting my
content into Canvas.

Using a degree of consistency in the naming and
structure of my document, each of my source LATEX
files with an \input for each chapter is therefore
converted into a similarly-named HTML file. The
structure of the source document is as follows:

\documentclass{report}

...

\begin{document}

\title{...}\author{...}\date{...}

\maketitle\tableofcontents

\input{../texdata/course-data.tex}

\part{Introduction}\label{part-intro}

\input{../pages/introduction}

\input{../pages/course-schedule}

\input{../pages/week-planner}

...

The file course-data.tex is the source for various
data (such as names of staff members, weightings
of assessment, due dates, etc.) in basic LATEX data
structures.

Each .tex file contains one chapter, with a con-
vention that the \label of each chapter matches its
file name:

% file: pages/introduction.tex

\chapter{Introduction}

\label{introduction}

...

This is because LATEXML does not convert file by
file; rather, with the --splitat=chapter option, the
output HTML is split by chapter.

3 The Canvas programming interface

Canvas has a so-called ‘REST API’2 that was easy
enough for me to get started with, with a little trial
and error. Initially, I used curl commands wrapped
into Bash scripts like this:

curl -X GET -H "$CANVASAUTH" $CANVASCOURSE/$1

where $CANVASAUTH is set up in my .bash_profile

as a secret ‘token’ to avoid needing a manually-input
password, and $CANVASCOURSE is defined essentially
as the institution-specific URL to the Canvas course.
Finally, $1 is the parameter to send through to the
Canvas API, such as assignments or rubrics or
users, etc. The parameters passed in the curl ar-
gument $1 can include additional options, such as

assignments?search_term=charter

would return just the one assignment for my honours
project students called their ‘Project Charter’.

The Canvas API can also be used to send or
upload data to a course using PUT and POST. This

2 https://canvas.instructure.com/doc/api/

The Canvas learning management system and LATEXML

128 TUGboat, Volume 39 (2018), No. 2

can range from relatively small and simple pieces of
information, to entire ‘content pages’ in HTML, to
linked files that students can access and download
(see Section A).

The results from any communication are sent
back from the Canvas API in JSON format, for which
there are a number of useful standard tools. For
Bash scripts I use jq, a nice tool which is designed
in the philosophy of Unix tools such as awk and sed.

After getting comfortable with this Bash script
approach of sending and receiving data using curl

and friends, I more recently started programming
small Lua interfaces for more advanced operations.
The main impetus for this switch was that the Can-
vas API will not send arbitrarily large amounts of
information in one request. For example, if I request
a list of students, it will send me just ten and expect
me to ask again with page=2 as an option. Then re-
peat until no data is returned. This level of iteration
was beyond what I wanted to invest in a Bash script.

To write the Lua scripts I needed a number
of third-party utilities. For Lua there are in fact
very many tools to convert JSON data into Lua’s
‘table’ data structure. I have been using the library
json-lua (installed via luarocks) and it has been fine.
After installing an SSL library (namely luasec, since
unencrypted HTTP wouldn’t cut it), I was able to
convert the curl command above into an equivalent
statement in Lua:

local http = require("ssl.https")

local ltn12 = require("ltn12")

local body, code, hdrs, status = http.request{

method = "GET",

url = canvas_url .. req .. "?" .. opt,

headers = {

["authorization"] = "Bearer "..canvas_token,

["content-type"] = "application/json"

},

sink = ltn12.sink.table(canvas_result),

}

where canvas_result is the name of the table where
the data will be stored. It is then ‘decoded’ from
JSON using json-lua.

4 The generated HTML page

For pages delivered via Canvas, I am not writing self-
contained HTML files; rather, Canvas constructs the
page within its main interface, and within the page
includes what I call ‘snippets’ of HTML to display
the actual course content.

The HTML that is generated by LATEXML is not
intended to be used for ‘snippets’ to be transferred
into a separate system, but the good thing about

HTML is that this isn’t really a problem, since any
additional markup in the HTML is silently ignored.

LATEXML runs a two-stage process, where the
latexml program itself generates generic XML from
the LATEX input, and then latexmlpost converts this
generic XML into one of several output formats. In
theory I could write my own XSL stylesheet to format
the information in the generic XML document in a
customised way. Instead, I simply postprocess the
HTML output from latexmlpost; because LATEXML

creates highly structured and machine friendly HTML,
the output from latexmlpost makes this an easy pro-
cess with some ad hoc tools (with plans for more
robust Lua processing in the future).

According to the options passed to latexmlpost,
each chapter is converted into its own HTML file; this
means I have a one-for-one correspondence between
files \included as chapters in the main document.
Each of these chapters has a standard structure, with
‘top matter’ that is not needed:3

<!DOCTYPE html><html>

<head>

<title>

〈Title of chapter〉
</title>

<meta http-equiv="Content-Type"

content="text/html; charset=UTF-8">

<link rel="stylesheet" href="LaTeXML.css"

type="text/css">

[...]

</head>

<body>

The chapters end with ‘bottom matter’ which is also
not needed in my application:

<footer class="ltx_page_footer">

[...]

</footer>

</div>

</body>

</html>

Finally, the ‘content’ of each HTML file has a struc-
ture along the following lines:

<div class="ltx_page_main">

<header class="ltx_page_header">

[...]

</header>

<div class="ltx_page_content">

<section class="ltx_chapter ltx_authors_1line">

<h1 class="ltx_title ltx_title_chapter">

〈Chapter number〉

〈Title of chapter again〉
3 All of the HTML examples have been reformatted for

ease of reading.

Will Robertson

TUGboat, Volume 39 (2018), No. 2 129

</h1>

<div class="ltx_date ltx_role_creation"></div>

<section id="S1" class="ltx_section">

〈Contents of chapter〉
</section>

</section>

</div>

The un-greyed text is the part of the HTML that is
retained for upload into Canvas. A single line of awk
is used to extract everything contained between the
outer <section> tags:

awk ’/\<section.*\>/,/\<\/section\>/’ \

html/$BASE >> snip/$BASE

The LMS doesn’t do anything in particular with the
<section> tags, but it doesn’t mind them, either.
Similarly, all of the CSS structure (the class and
id tags) is not used by Canvas, but also, thankfully,
doesn’t cause any problems.

It is worth noting that while plain LATEX and
HTML share some superficial similarities in the types
of document structures they can produce, in some
cases LATEXML really has to work hard to replicate
certain LATEX structures in HTML+CSS. The exam-
ple that I ran into was related to lists. In order to
cope with LATEX syntax such as:

\begin{enumerate}

\item aaa

\item[1b.] bbb

\item ccc

\end{enumerate}

the HTML generated by latexmlpost looks like:

<ol id="I1" class="ltx_enumerate">

<li id="I1.i1" class="ltx_item"

style="list-style-type:none;">

1.

<div id="I1.i1.p1" class="ltx_para">

<p class="ltx_p">aaa</p>

</div>

<li ...>...

<li ...>...

(The second and third items have identical struc-
ture and are elided.) This is carefully structured
HTML source intended to be styled with specific CSS

provided by LATEXML. However, without latexml’s
custom CSS files to control its layout, this HTML

produces output something like this:

1.
aaa

1b.
bbb

2.
ccc

While understandable to a reader, this is not ideal
from a formatting perspective. LATEXML’s default to
match as much of LATEX’s functionality as possible
is notable in the overall design of LATEXML, but for
my needs it still needed a workaround. In an early
stage of this project, I used more cumbersome regex
code to adapt the LATEXML output to something that
didn’t need CSS, but the developer of LATEXML kindly
added the --xsltparameter=SIMPLIFY_HTML:true
option to account for my use case here.

5 Future work

• I do not yet have an automated approach to
linking images and files. This has been okay for
the time being, since for a small number of items
doing a manual upload is no real imposition.
In the long run, it would be nice to have this
automated; compiling the main document could
create a list of files, and a Lua script could check
which files were already present in Canvas and
only upload those missing. (And possibly even
delete any existing files no longer used in the
document.)

• What about mathematics? Luckily, for this
course I don’t need to include mathematical
content. LATEXML, naturally, can produce ap-
propriate mathematical output in a variety of
modes (MathML, etc.). Currently Canvas is
in the middle of having its support for mathe-
matical content improved and I’m holding off
considering this further until their platform has
stabilised.

• In time I will transition away from Bash scripts
entirely to make the system more portable and
robust. Since a TEX platform is required to
typeset the PDF documentation, Lua is the nat-
ural choice as a scripting language. I explicitly
do not wish to develop a full-featured Canvas
interface in Lua, but I hope this system will
become general enough that other users could
deploy it for their courses.

• Currently these documents use a largely ‘one-
way’ communication in that the LATEX source is
compiled and delivered to Canvas. However, for
certain types of information (assignment rubrics
in particular), the best source of this information
is within the LMS itself. Therefore, I will be

The Canvas learning management system and LATEXML

130 TUGboat, Volume 39 (2018), No. 2

building data processors to typeset information
from Canvas within the PDF documentation
(with a simple link in the online version).

6 Benefits of scripting Canvas

This is unrelated to the LATEX side of things, but
coming to terms with Canvas’s programming inter-
face has opened the door for me to perform quite
a number of additional tasks that were previously
impossible with our older LMS.

For example, our honours project reports are
assessed by their academic supervisors, and direct-
ing supervisors to each report and following up in a
timely manner were both difficult tasks to automate.
Using a Lua script I now dynamically create a list
of project reports that have not yet been marked.
This allows me to automatically construct person-
alised emails for each project supervisor to remind
them when marks are due with direct links to their
assessments to mark.

As with LATEX itself, once you have an inter-
face that can be programmed it opens the door to
extending the ways in which one uses the system.

7 Conclusion

I have satisfied the following use cases in this work:

• A typo fix or quick addition can be done by
editing the source in a text editor, synced via the
cloud, and uploaded with a one-line command.
No need to open a browser, log in, and click
through.

• Information can be ‘programmed’ using macros
for greater consistency. This is straightforward
in LATEX and basically unheard of in a web-based
editing approach.

• HTML and PDF output are kept in sync at all
times; the PDF provides an archivable document
for the entire course.

Although I haven’t (yet) produced the most
elegant system, I have created a solution without too
much elbow grease beyond standard LATEX ecosystem
tools that does quite a bit more than I think anyone
would otherwise consider possible. The choice of
LATEXML worked well, although few design decisions
rely on it; switching to another tool for the HTML

conversion would be possible with a little additional
work.

The ability to develop these solutions is truly a
testament to the flexibility of LATEX, and an example
of why I think it will remain relevant indefinitely.
Once you program your first document, you can
never go back to manually keeping track of all the
bits and pieces.

References

[1] B. Dunn. Producing HTML directly from
LATEX— the lwarp package. TUGboat 38(1), 2017.
tug.org/TUGboat/tb38-1/tb118dunn-lwarp.pdf

[2] D. Ginev and B. R. Miller. LATEXML 2012—A
Year of LATEXML, 2014. nist.gov/publications/
latexml-2012-year-latexml

[3] D. Ginev, B. R. Miller, and S. Oprea. E-books and
Graphics with LATEXML, 2014.
arxiv.org/pdf/1404.6547v1

[4] J. Grimm. Tralics, a LATEX to XML translator.
TUGboat 24(3), 2003.
tug.org/TUGboat/tb24-3/grimm.pdf

[5] E. M. Gurari. TEX4ht: HTML production. TUGboat

25(1), 2004. tug.org/TUGboat/tb25-1/gurari.pdf

[6] W. F. Hammond. GELLMU: A bridge for authors
from LATEX to XML. TUGboat 22(3), 2001.
tug.org/TUGboat/tb22-3/tb72hammond.pdf

[7] W. F. Hammond. Dual presentation with math
from one source using GELLMU. TUGboat 28(3),
2007. tug.org/TUGboat/tb28-3/tb90hammond.pdf

[8] HeVeA. hevea.inria.fr

A Uploading a file to Canvas via its API

Evidently in a fit of late night fervour I concocted the
following monstrosity for uploading a file to Canvas
using a Bash function and few helper commands:

curl -X POST -H "$CANVASAUTH" \

"$CANVASCOURSE/files" \

-F "name=$1" \

-F "parent_folder_path=upload" > tmp.json ;

URL=‘cat tmp.json | jq ’.upload_url’‘ ;

KEYS=‘cat tmp.json | jq ’.upload_params’ |\

jq -r -j "to_entries | \

map(\"-F \(.key)=\(.value|tostring)\

\")|.[]"‘ ;

echo curl -D response.tmp\

$URL $KEYS -F file=@$1 | bash ;

LOC=‘sed -n -e ’s/Location: \

\(.*\)/\1/p’ response.tmp‘;

LOC=${LOC%$’\r’}

curl -X POST -H "$CANVASAUTH" "$LOC" | jq ;

I think it’s fair to say that a Lua implementation
would be rather more maintainable.

⋄ Will Robertson
School of Mechanical Engineering
The University of Adelaide, SA
Australia
will.robertson (at) adelaide dot edu dot au

https://gitlab.adelaide.edu.au/wspr/

canvas-tools

Will Robertson

TUGboat, Volume 39 (2018), No. 2 131

Implementing PDF standards for
mathematical publishing

Ross Moore

The author (hereafter, simply ‘Ross’) asserts the de-
sirability1 of having mathematical documents— jour-
nal articles, research reports, monographs, course-
ware, etc.—be produced conforming to modern PDF

standards; in particular, validating for PDF/UA (Uni-
versal Accessibility) and PDF/A-2a (or PDF/A-3a)
for both Archivability and Accessibility. These are
published standards, respectively as ISO 14289-1:2012
(slight revision in 2014) [13], ISO 19005-2:2011 [8] and
ISO 19005-3:2012 [9], all based on ISO 32000-1 (PDF

1.7) [4]. Ross has demonstrated the feasibility of us-
ing LATEX to build documents that conform to these
standards and can provide example documents [21].

With the cooperation of most academic publish-
ers, Ross asserts that this can be achieved within five
years, along with just a little education of authors to
provide the minimal extra information required in
producing such documents from LATEX source. This
involves use of LATEX coding supporting ‘Tagged
PDF’, mostly already written for much of ‘standard’
LATEX, many commonly-used packages, and extend-
able to the document classes required by academic
publishers that accept LATEX source from authors.

Here is a summary of how the envisioned time-
line of 5 years would be achieved, outlining the main
tasks to be undertaken both by publishers and by
Ross himself.

Year 1 Publishers: Implement full support for
PDF/A-2u (or PDF/A-3u)—which doesn’t re-
quire ‘Tagged PDF’.

TWG:2 extend support for ‘Tagged PDF’ to
cover all features of the class files used by pub-
lishers, and to more LATEX packages used by
authors along with such classes.

Year 2 Publishers: provide free access to PDFs of
example articles (from back issues), produced
by Ross during year 1, to visually-disabled aca-
demics and researchers, for feedback on the qual-
ity of the Accessibility features; technical editors
learn the extra requirements in the production of
‘Tagged PDF’ documents, compliant with both

1 Libraries at academic institutions, particularly in Ger-
many, are requiring academic theses to be submitted conform-
ing to a PDF/A standard. Governments in several countries
have ‘accessibility’ requirements for electronic publications.
Notable here is the U.S. GSA Government-wide Section 508
Accessibility Program [2].

2 ‘TWG’ here denotes a TEX working group, consisting of
developer/programmers from existing TUG working groups,
initially with Ross as the lead programmer. This will include
members of the LATEX3 team.

PDF/UA and PDF/A-2a (or PDF/A-3a). Also
seek feedback from libraries on the switch to
using PDF/A.

TWG: provide instruction to technical (and
other) editors on the extra requirements; con-
tinue to process more examples from back issues,
solving issues that may arise in supporting spe-
cial kinds of content.

Year 3 Publishers : start to produce ‘Tagged PDF’
versions of current issues in a small number of
journals; educate all editors in the extra require-
ments for producing ‘Tagged PDF’.

Ross: implement any extra features, arising
from the user feedback; work in support of pro-
duction staff to ensure the ‘Tagged PDF’ articles
are produced smoothly; start to develop instruc-
tional materials, suitable for both authors and
editors.

Year 4 Publishers: extend use of ‘Tagged PDF’
to more journals; continue to receive feedback,
passing on recommendations to Ross for imple-
mentation; fully develop instructional materials
for authors.

TWG: continue to work on the LATEX coding,
to produce a stable, modularised system that
editors and (later) authors will be able to use;
extensions to other document classes, such as
books and monographs, etc.

Year 5 Publishers and Ross : make the new LATEX
packages or class files publicly available (e.g.,
via the CTAN network).

Publishers: make available instructional ma-
terials for these new resources.

TWG: continue to act on feedback from au-
thors and editors, expecting to produce regular
updates to the software, as required.

1 Details

We now describe some of the details involved with
the tasks listed above.

1.1 Archivability

To achieve archivability, the main issues for PDFs cre-
ated with LATEX, in the standards ISO 19005-2:2011 [8]
and ISO 19005-3:2012 [9], are the following:

(a) inclusion of metadata in the XML-based XMP

format [3];

(b) specification of a color profile (usually ‘RGB’ or
‘CMYK’) for the document, and ensuring that
all embedded images and any color-changing
LATEX commands used in the production of the
PDF conform to the color-space described by the
profile;

Implementing PDF standards for mathematical publishing

132 TUGboat, Volume 39 (2018), No. 2

(c) characters in all fonts used within the document
have a mapping into the Unicode collection of
character codes;

(d) interword spaces are present in the PDF output.

These are all requirements for all flavours of level and
conformance for PDF/A. Thus to build up confor-
mance with PDF/A-2a (the ‘accessible’ flavour), one
can start first with PDF/A-2b or PDF/A-2u which
do not require the extra complications needed for
accessibility. Put simply, deal with the other issues
first; then add the ‘accessibility’ part later. Further-
more, none of these affects the actual typesetting, so
a PDF/A document can replace a non-PDF/A one at
any stage in the production process, in particular to
become a preferred online format. PDF/A-3 is appro-
priate when the final PDF is to contain attachments
in formats other than PDF; e.g., movies or runnable
code for mathematics engines.

The LATEX package pdfx [22] has coding to deal
with all of the issues (a)–(d) listed above, when
used with pdfTEX as the processing engine. Ross is
currently the principal developer for the pdfx package,
so is familiar with its LATEX coding, and how to
extend it to cope with any issues that may arise.

1.2 Metadata

In a production environment, metadata will nor-
mally be stored in a database, separate from the
LATEX source but clearly related to it. Using pdfx, a
file (with suffix .xmpdata) is used with the LATEX job.
This can be generated as a database report. Publish-
ers will need to develop appropriate work flows.

The XMP metadata [3] is organised as an XML

formatted file, which is included uncompressed into
a PDF as a single object. Using pdfx this XML file
is constructed using a template, with TEX macros
expanding to provide the values for specific Metadata
fields. Values are passed to these macros using the
.xmpdata file.

This setup is easily expanded to include ex-
tra fields, using the concept of ‘PDF/A Extension
Schema’. The standard templates which come with
pdfx have examples of this, for including Metadata
fields from PRISM specifications [23]. It is not hard to
add new fields, and define extra TEX macros within
the coding for pdfx.sty. If there is a need for this, in
particular for information that ultimately needs to
be supplied by authors, then Ross can extend the
pdfx package to cope.

1.3 Color profiles

For PDF files distributed via the Internet, the ap-
propriate color profile will normally be based on the
‘RGB’ color space. Consider embedded images, such

as photographs, scientific graphics or other kinds
of colored diagram. These will all need to specify
their colors via the RGB space—but this may not
be the space used when a graphic image supplied
by the author was created. There will be a need for
conversions to be made.

Publishers already have to deal with such issues,
but with strict conformance to a PDF/A standard,
the amount of work required in this area can be
expected to increase. It could be useful to setup an
online ‘color-conversion’ service. This would allow
authors to convert images prior to submission of a
paper for publication. The resulting image could
then be used by the author during preparation of
their manuscript, and also be already available on
the publisher’s system, converted into the required
format (perhaps with extra metadata added).

Some publishers may also want a ‘CMYK’ ver-
sion of images for paper-printing, in color. This might
be done via a separate LATEX run, with the .xmpdata

file specifying a CMYK profile, which need not be the
one included with the pdfx package distribution [22].
Note that pdfx loads the xcolor package, with options
corresponding to the chosen color space (‘RGB’ or
‘CMYK’). This forces all LATEX color commands to
use the specified space, irrespective of how a color
was originally specified by the author. Thus there
is no need to adjust an author’s LATEX preamble, or
other coding, to ensure compliance with a PDF/A

standard.

1.4 Font mappings to Unicode

The pdfTEX software already has a feature to gen-
erate mappings of font characters to valid Unicode
code-points, and the pdfx package enables this fea-
ture. However, some rarely-used characters can be
mapped into invalid code-points; e.g., incorrectly
mapped into the ‘Private Use’ area, or where there
is no obvious corresponding code-point. When this
occurs, the \pdfglyphtounicode command allows
the problem to be overcome, for each troublesome
font character. Such instances should be reported to
Ross, to insert such command usage into pdfx.sty, to
avoid the particular issue recurring.

1.5 Interword spaces

Normally TEX (and hence LATEX) does not insert
space characters into the PDF output that it gen-
erates. However, since 2014 (and earlier in an ex-
perimental branch) the pdfTEX software has had
the ability to insert extra spaces, using a heuristic
method to determine when sufficient white space
occurs between characters. This happens on output

Ross Moore

TUGboat, Volume 39 (2018), No. 2 133

only, so has no effect whatsoever on the typeset-
ting. That is, the visual page remains unchanged.
These spaces do contribute to Copy/Paste and occur
within the output stream fed to screen-readers and
‘Assistive Technology’.

This feature was added, at Ross’ request, specifi-
cally to meet the requirement for PDF/A compliance.
It is turned on automatically when using the pdfx

package.

1.6 Validation

When producing a PDF document that is supposed to
be conform to a particular standard, it is important
to check this conformance with validator software.
For PDF/A there are a number of programs that
can do this. Best is probably the ‘Preflight’ utility
that is built-in to the ‘Acrobat Pro’ application from
Adobe Systems Inc. [1]. This can also be obtained as
stand-alone software named pdfaPilot [10]. There’s
another validator at pdftools.com [11].

Production editors in particular, and eventually
all editors, will need to gain experience using such
validation software. Starting with PDF/A-2u, the
errors are likely to be associated with items (a)–(d)
above. Ross has had more than 5 years of experience
creating documents conforming to PDF/A, in all its
flavours. He can help interpret the error reports that
may arise using Adobe’s Preflight.

Later, as we move towards accessibility, via
‘Tagged PDF’, which has much stricter requirements
on what must be tagged, and how that tagging is
actually done—some of the errors will have an obvi-
ous cause associated with poorly-constructed LATEX
coding in an author’s manuscript. Others may not
be so clear. Since TEX was designed well before PDFs
were conceived, let alone any tagging, there are no
internal checks related to it. Macros can be written
in LATEX to catch some tagging-related errors, but for
most errors that are not also errors in TEX, mostly
you will not know that there is a problem until the
resulting PDF has been checked with a validator.
Again Ross’ experience is paramount here, to diag-
nosing the problem and devising appropriate internal
LATEX coding to properly handle the situation.

2 Tagging for accessibility

Producing a ‘Tagged PDF’ document requires tag-
ging both structure and content. With ‘structure
tagging’ viewed as providing a tree-like description
of blocks the information contained within the docu-
ment, then ‘content tagging’ supplies the leaf nodes
for this tree. That is, a span of content ‘hangs off’ the
structure tree, much as a leaf hangs from a branch.
Detailed indexing of all structure types allows for

rich navigation facilities; e.g., finding all section head-
ings, list items, all inline or displayed mathematical
expressions.

It is this embedded structure and indexing that
is the key to ‘Accessibility’ within a PDF, since it
allows the content to be studied in ways that are
independent of visual appearance. A primary require-
ment of PDF/UA, is for all content to be ‘tagged’,
either as leaf nodes of the structure tree, or as an
‘Artifact’— such as page numbers and running head-
ers and footers. Content such as embedded figures
and mathematical formulae must be accompanied by
‘alternative text’, providing an easily spoken descrip-
tion of what the formula is about.

Precise (and some not-so-precise) rules on how
a PDF file needs to be constructed for PDF/UA is
detailed in the ‘Matterhorn Protocol’ [15]. This doc-
ument contains a collection of 31 checkpoints, com-
prised of 136 ‘Failure Conditions’, to test whether
a given PDF is compliant. Most of these can be
automated, and such checking is available with the
validation software mentioned above. Furthermore,
Adobe’s ‘Acrobat Pro’ software [1] has a suite of 32
checks built in to its ‘Accessibility Tool’, most of
which are the same as in the Matterhorn Protocol;
there are differences, but no incompatibilities. Some
of the latter tests can only be checked by a human;
e.g., sufficient color contrast, correct reading order,
hyperlinks point to a sensible (and correct) target,
etc. In all, these rules embody all of the WCAG

guidelines [24] for documents delivered via the in-
ternet, insofar as these can be sensibly applied to a
PDF document—most can.

It is desirable for PDFs produced using LATEX to
satisfy all the automated checks of both the Matter-
horn Protocol [15] and Acrobat Pro’s Accessibility
Tool [1]. This has been the case with Ross’ earlier
work [18, 19, 20], and remains so with the ‘Tagged
PDF’ document examples [21] produced more re-
cently. Furthermore, the idea of ‘alternative text’
can be extended beyond figures and formulæ; indeed,
any structure item or span of content can have a
speakable alternative. This is useful for the ‘Accessi-
ble Text’ view, as read by screen-readers that do not
have the ability to follow structure, but only content.
In [20] Ross introduced the notion of ‘access-tag’,
which is a span of content containing a single very,
very small space, which can be equipped with arbi-
trary ‘alternative text’. It can hold words such as
“start of enumerated list”, “end of quotation”, etc., as
appropriate to the start and end of blocks of special
content.

Implementing PDF standards for mathematical publishing

134 TUGboat, Volume 39 (2018), No. 2

2.1 Tagged PDF with LATEX

To date, the tagging required for many aspects of
a document’s structure have been implemented by
Ross, within example documents [21]. These include:

document title, normal paragraphing,
section headings (numbered and
unnumbered), lists and list-items,
font-changes within a paragraph,
italic corrections, inline mathematics,
most amsmath displayed environments,
footnotes, cross-referencing, hyperlinks,
table-of-contents, citations, bibliography,
floats, theorem-like environments,
some verbatim environments, quotations,
centering, abstract, included images, . . .

The title page of a document depends very much
on the particular document class being used. A
significant amount of work is needed to correctly tag
all the different pieces of information that may occur.
Thus a large part of the work required to support
a new document class is devoted to just getting the
first page(s) correct. All of this has been done in
such a way that the pagination and full-page layout
are exactly the same as would occur with no tagging;
that is, all the internal ‘glue’ calculations performed
by the TEX engine result in the same numerical values
for all glue settings.

Other typical document elements that currently
are not yet properly supported include:

tabular environments, two-column
format, color-changing commands,
language switches, index and indexing,
some displayed math-environments,
line-numbering, commenting, and most
user-supplied packages that are not merely
built from environments in the LATEX base
distribution.

Thus there is still plenty of work to be done,
some of it easy, but much of it not. The main source
of difficulty lies in the ways that different environ-
ments can interact with each other. There are many
situations in LATEX where one environment or struc-
ture is not complete until the next has begun. So it
is not just a matter of wrapping start and finish tags
around every piece of supplied content. Instead one
needs to understand the subtleties of how different
environments and other structures actually start and
finish, within the context established by surrounding
material.

2.2 Export to other formats

When creating a ‘Tagged PDF’ document from LATEX
source, the created tags use the name of the LATEX

environment presenting its content. These names
are essentially arbitrary, so must be ‘mapped’ to
standard PDF structure types. Similarly for the
tagging of content. The format provides a ‘Role Map’
feature for precisely this purpose. This is important
for exporting the PDF’s content into other formats:
XML, HTML, plain text, accessible text, Microsoft
Word, Excel spreadsheet, PowerPoint slides, etc.

Upon exporting to XML using Acrobat Pro
DC [1], the structure tags use the user-defined (i.e.,
LATEX) names; that is, no DTD is assumed. Further-
more all the metadata is included in the resulting
XML file. On the other hand, export to HTML uses
tags based on the role-mapped structure. There is
also a ‘Class Map’ feature that allows style attributes
to be added to tags upon export. With proper use
of the ‘Role Map’ and ‘Class Map’ a ‘Tagged PDF’
version of a document can be truly ‘Universal’, much
as in the mathematical (categorical) sense. That
is, good quality alternative formats of a document’s
content can (at least in principle) be obtained from
the PDF file, using ‘Export’ options, just as a functor
can be factored through a ‘Universal Object’. To
make this even better, especially when mathematical
content is involved, may require collaboration with
Adobe and other PDF browser distributors.

3 Future directions

In July 2017, a new version of the PDF specification
was released, namely PDF 2.0 [6]. This is ‘Tagged
PDF’, with only a few changes and recommendations
from PDF 1.7 [5, 4], and a few new features. There
should soon be a release of PDF/UA-2. The main dif-
ference will be that mathematics must be described
structurally, using MathML tagging [14]. Ross has
done some preliminary work [18, 19, 20] which used
a non-standard pdfTEX engine, not generally avail-
able. It is too soon to directly incorporate this work,
but it should be a long-term aim to do so. First
we need to get editors and authors used to using
‘Tagged PDF’ and creating ‘Accessible’ documents.
Generating MathML descriptions, and their inclusion
into published articles, can be a goal to be realised
perhaps seven or more years hence.

References

[1] Acrobat DC; Adobe Systems Inc.
acrobat.adobe.com/au/en/acrobat.html

[2] General Services Administration,
U.S. Government-wide Section 508 Accessibility
Program. section508.gov

[3] ISO16684-1:2012; Graphic technology—
Extensible metadata platform (XMP)
specification—Part 1: Data model,
serialization and core properties; Technical

Ross Moore

TUGboat, Volume 39 (2018), No. 2 135

Committee ISO/TC130 Graphic technology,
(February 2012). Reviewed in 2017.
iso.org/standard/57421.html

[4] ISO32000-1:2008; Document management—
Portable document format (PDF1.7); Technical
Committee ISO/TC171/SC2 (July 2008). Also
available as [5].
iso.org/iso/catalogue detail?csnumber=51502

[5] PDF Reference 1.7; Adobe Systems Inc.;
November 2006. Also available as [4].
adobe.com/devnet/pdf/pdf reference.html

[6] ISO32000-2:2017; Document management—
Portable document format—Part 2: PDF 2.0;
Technical Committee ISO/TC 171/SC 2 (July
2017). iso.org/standard/63534.html

[7] ISO19005-1:2005; Document Management—
Electronic document file format for long
term preservation—Part 1: Use of PDF1.4
(PDF/A-1); Technical Committee ISO/TC
171/SC 2 (Sept. 2005). Revisions via Corrigenda:
ISO19005-1:2005/Cor 1:2007 (March 2007);
ISO19005-1:2005/Cor 2:2011 (Dec. 2011).
iso.org/iso/catalogue detail?csnumber=38920

[8] ISO19005-2:2011; Document Management—
Electronic document file format for long term
preservation—Part 2: Use of ISO32000-1
(PDF/A-2); Technical Committee ISO/TC
171/SC 2 (June 2011).
iso.org/iso/catalogue detail?csnumber=50655

[9] ISO19005-3:2012; Document Management—
Electronic document file format for long term
preservation—Part 3: Use of ISO32000-1 with
support for embedded files (PDF/A-3); Technical
Committee ISO/TC 171/SC 2 (October 2012).
iso.org/iso/catalogue detail?csnumber=57229

[10] pdfaPilot; Callas Software GmbH.
callassoftware.com/en/products/pdfapilot

[11] 3-Heights PDF Validator; pdftools.com, Premium
PDF Technology.
pdf-tools.com/pdf20/en/products/

pdf-converter-validation/

[12] ISO14289-1:2012; Document management
applications—Electronic document file format
enhancement for accessibility—Part 1: Use
of ISO 32000-1 (PDF/UA-1). Technical
Committee ISO/TC171/SC2 (August
2012). Corrected version (December 2014).
iso.org/iso.catalogue_detail?csnumber=64599

[13] ISO14289-1:2014, Document management
applications—Electronic document file
format enhancement for accessibility—
Part 1: Use of ISO32000-1 (PDF/UA-1).
International Standards Organisation, 2014.
iso.org/standard/64599.html

[14] ISO/IEC40314:2016, Information technology—
Mathematical Markup Language (MathML),
Version 3.0, 2nd Edition; Technical Committee:
ISO/IECJTC1 Information technology,
(February 2016). iso.org/standard/58439.html

[15] The Matterhorn Protocol (version 1.02);
PDF Association, 2014. pdfa.org/publication/
the-matterhorn-protocol-1/.

[16] PDF/UA-1 Technical Implementation Guide:
Understanding ISO 32000-1 (PDF 1.7); AIIM,
aiim.org/Global/AIIM_Widgets/

Community_Widgets/

Technical-Implementation-Guide-32000-1

[17] PDF/UA in a Nutshell; PDF Association, 2012.
pdfa.org/download/pdfua-in-a-nutshell

[18] Moore, Ross; Ongoing efforts to generate “tagged

PDF” using pdfTEX, in DML 2009, Towards a

Digital Mathematics Library, Proceedings, Petr
Sojka (editor), Muni Press, Masaryk University,
2009. ISBN 978-80-20-4781-5. Reprinted in:
TUGboat Vol.30, No.2 (2009), pp. 170–175.
tug.org/TUGboat/tb30-2/tb95moore.pdf

[19] Moore, Ross; Tagged Mathematics in PDFs
for Accessibility and other purposes, in
CICM-WS-WiP 2013, Workshops and Work
in Progress at CICM, CEUR Workshops
Proceedings.
ceur-ws.org/Vol-1010/paper-01.pdf

[20] Moore, Ross; PDF/A-3u as an archival format for
accessible mathematics, in S.M.Watt et al., eds.:
CICM2014, Springer LNAI 8543, pp. 184–199,
2014. springer.com/computer/
theoretical+computer+science/book/

978-3-319-08433-6

[21] Moore, Ross; Examples of Tagged PDF
documents built using LATEX.
maths.mq.edu.au/%7Eross/TaggedPDF/

[22] pdfx—PDF/X and PDF/A support for
pdfTEX; Moore, Ross, C.V.Radhakrishnan,
Hàn Thé̂ Thành, Selinger, Peter.
ctan.org/pkg/pdfx

[23] PRISM: Publishing Requirements for Industry
Standard Metadata; Idealliance.
idealliance.org/prism-metadata.

[24] Web Content Accessibility Guidelines
(WCAG) 2.0—W3C Recommendation 11
December 2008; Web Accessibility Initiative
(WAI) of the World Wide Web Consortium.
w3.org/TR/2008/REC-WCAG20-20081211

⋄ Ross Moore
maths.mq.edu.au/~ross/TaggedPDF

Implementing PDF standards for mathematical publishing

136 TUGboat, Volume 39 (2018), No. 2

FreeType MF Module:
A module for using METAFONT directly
inside the FreeType rasterizer

Jaeyoung Choi, Ammar Ul Hassan,
Geunho Jeong

Abstract

METAFONT is a font description language which gen-
erates bitmap fonts for the use by the TEX system,
printer drivers, and related programs. One advan-
tage of METAFONT over outline fonts is its capability
for producing different font styles by changing pa-
rameter values defined in its font specification file.
Another major advantage of using METAFONT is
that it can produce various font styles like bold,
italic, and bold-italic from one source file, unlike
outline fonts, which require development of a sepa-
rate font file for each style in one font family. These
advantages are especially applicable when designing
CJK (Chinese-Japanese-Korean) fonts, which require
significant time and cost because of the large number
of characters used in Hangeul (Korean character)
and Hanja (Chinese character). However, to use
METAFONT in current font systems, users need to
convert it into its corresponding outline font. Fur-
thermore, font rendering engines such as FreeType
don’t support METAFONT.

In this paper, we propose FreeType MF Module

for the FreeType rasterizer. The proposed mod-
ule enables direct usage of METAFONT just like
any other font (outline or bitmap) supported in the
FreeType rasterizer. Users of METAFONT don’t need
to pre-convert METAFONT fonts into corresponding
outline fonts as FreeType MF Module automatically
performs this. Furthermore, FreeType MF Module
allows the user to easily generate multiple font styles
from one METAFONT source file by changing param-
eters.

1 Introduction

In today’s information society, much traditional pen
and paper usage for communication between people
has been increasingly replaced by computers and
mobile devices. Text has become an effective source
for gathering information and a means of communi-
cation between people. Although people commonly
use smart devices these days with effective resources
like media and sound, text generally plays the key
role of interaction between user and device. Text
is composed of characters, and these characters are
physically built from specific font files in the digital
environment’s system.

Fonts are the graphical representation of text
in a specific style and size. These fonts are mainly
categorized in two types: outline fonts and bitmap
fonts. Outline fonts are the most popular fonts for
producing high-quality output used in digital envi-
ronments. However, to create a new font style as
an outline font, font designers have to design a new
font with consequent extensive cost and time. This
recreation of font files for each variant of a font can
be especially painful for font designers in the case of
CJK fonts, which require designing of thousands in-
dividual glyphs one by one. Compared to alphabetic
scripts, CJK scripts have both many more characters
and generally more complex shapes, expressed by
combinations of radicals [3]. Thus it often takes more
than a year to design a CJK font set.

A programmable font language, METAFONT,
has been developed which does not have the above
disadvantages of outline fonts. METAFONT is a pro-
gramming language created by D.E. Knuth [1] that
generates TEX-oriented bitmap fonts. A METAFONT

source file is radically different from an outline font
file: it consists of functions for drawing characters
and has parameters for different font styles. By
changing the parameters defined in a font specifica-
tion file, various font styles can be easily generated.
Therefore, a variety of font variants can be generated
from one METAFONT source.

However, in practice users are unable to use
METAFONT on modern systems, because current
font engines like FreeType [2] do not provide any
direct support of METAFONT. Unlike standard bit-
map and outline fonts, METAFONT is expressed as
a source code that is compiled to generate fonts.
To use METAFONT in a general font engine like the
FreeType rasterizer, users have to convert each meta-
font into its corresponding outline font. When it
was developed in the 1980s, standard PC hardware
was not fast enough to do real-time conversion of
METAFONT source into a corresponding outline font.
Current PC hardware, however, is fast enough to do
such real-time conversion.

In this paper, a METAFONT module for the
FreeType rasterizer (FreeType MF Module) is pro-
posed. The proposed module enables direct use of
METAFONT in FreeType, just like any other out-
line and bitmap font modules. With FreeType MF

Module, users don’t need to pre-convert a META-
FONT font into its corresponding outline font before
using it with the FreeType rasterizer, as FreeType
MF Module automatically performs this. It allows
users to easily generate variants of font styles by
applying different parameter values. This module is
directly installed in the FreeType rasterizer just like

Jaeyoung Choi, Ammar Ul Hassan, Geunho Jeong

TUGboat, Volume 39 (2018), No. 2 137

its default font modules, thus minimizing any relia-
bility and performance issues. We have tested our
proposed module by generating different font styles
with METAFONT and compared its performance with
default FreeType modules and our previous research.

This paper is organized as follows. In Section 2,
related research regarding font modules and libraries
is discussed. The architecture of FreeType MF

Module is explained in Section 3. Section 4 demon-
strates how FreeType can support METAFONT, via
some testing of FreeType MF Module. The perfor-
mance of FreeType MF Module is also compared
with FreeType default modules and other researches
in this section. Section 5 gives concluding remarks.

2 Previous research and its problems

MFCONFIG [4] is a plug-in module for Fontconfig [5].
It enables the use of METAFONT on GNU/Linux
and other Unix font systems. Figure 1 shows the
architecture of the MFCONFIG module linked with
Fontconfig.

Figure 1: Basic architecture of MFCONFIG module

Although MFCONFIG does provide support for
METAFONT in Fontconfig-based font systems, it has
performance and dependency problems. Since MF-

CONFIG is plugged into a high-level font system, i.e.,
Fontconfig, and not at the low-level FreeType raster-
izer, its performance is very slow compared to the
font-specific driver modules supported by FreeType.
Whenever the client application sends a METAFONT

file request, Fontconfig communicates with MFCON-

FIG, performs operations, and then sends input to
FreeType for rendering text. This whole process
becomes slow because of the high-level operations
before FreeType receives its input.

Other than the performance problem, MFCON-

FIG also has a dependency problem. As it works with
the Fontconfig library, this means that in a font en-
vironment not using Fontconfig, this module cannot
be used. Fontconfig is mainly used in the font sys-

tem for GNU/Linux and some other Unix operating
systems, so MFCONFIG cannot be supported in other
environments, such as Windows and MacOSX.

VFlib [6], a virtual font library, is a font ras-
terizer developed for supporting multilingual fonts.
VFlib can process fonts which are represented in dif-
ferent font formats and outputs glyphs as bitmap
images from various font files. VFlib supports many
font formats like TrueType, Type 1, GF, and PK

bitmaps [7], et al. It provides a unified API for ac-
cessing different font formats. A new module can
be added in this font library for adding support for
METAFONT but this library has its own drawbacks:
as it supports many different font formats, and re-
quires support from a database, it can be too heavy
for embedded systems. It is also dependent on ad-
ditional font libraries, such as the FreeType engine
for TrueType font support and T1lib [8] for Type 1
font support, so it has its own dependency problems
as well. Therefore, VFlib is not suitable for adding
METAFONT support.

FreeType is a font rasterizer. It can produce
high quality output for mainly two kinds of font
formats, both outline and some bitmap formats.
FreeType mainly supports font formats such as True-
Type, Type 1, Windows, and OpenType fonts us-
ing the same API, independent of the font format.
Although FreeType supports many different font
formats, it doesn’t provide any support for META-
FONT directly. If there were a module for FreeType
that directly supports METAFONT, users could take
advantage of the METAFONT features above, e.g.,
generating variants of font styles by just changing
parameter values. MFCONFIG’s problems can also be
resolved using such a module.

The proposed FreeType MF Module in this pa-
per reuses the process for printing METAFONT from
the MFCONFIG module. FreeType MF Module in-
tends to solve the two problems of the MFCONFIG

module. METAFONT can be used with any system
having FreeType using the proposed module. As
it is implemented like any other default FreeType
module, it can be easily installed or uninstalled.

3 Implementation of FreeType MF Module
in the FreeType rasterizer

3.1 FreeType MF Module as an internal
module of FreeType

FreeType can support various font formats. Process-
ing a font file corresponding to its format is done
by an internal module in FreeType. This internal
module is called a font driver. FreeType contains a
configuration list of all driver modules installed, in
a specific order. When FreeType receives a request

FreeType MF Module: A module for using METAFONT directly inside the FreeType rasterizer

138 TUGboat, Volume 39 (2018), No. 2

Figure 2: Process of selecting a module in FreeType

for a font file from an application, it passes this re-
quest to the driver module at the top of the list for
processing. This module performs some internal op-
erations to check if this font format can be processed
or not. If this driver module supports the request, it
performs all other operations to process the font file
request. Otherwise the request is sent to the second
driver module mentioned in the list. This process
continues until a font driver is selected for processing
the font file request. If no font driver can process
the request, an error message is sent to the client
application.

In our case, FreeType MF Module is directly
installed inside FreeType just like its other internal
modules. When the client application sends a request
for a METAFONT file, FreeType MF Module receives
this request and processes it. Figure 2 shows how
FreeType will select a driver module for processing
a METAFONT file request.

FreeType MF Module consists of three submod-
ules: Linker module, Administrator module, and
Transformation module.

3.2 Linker module

Linker module is the starting point of FreeType MF

Module. It is mainly responsible for linking Free-
Type internal modules with FreeType MF Module.
It is divided into two parts: inner meta interface
and outer meta interface. The inner meta interface
receives font file requests from internal modules and
delivers it to the Administrator module for process-
ing. After processing by the Administrator module,
outer meta interface delivers the response to inter-
nal modules for further operations. The process of
Linker module is shown in Figure 3.

Figure 3: Linker module

3.3 Administrator module

The core functionality of FreeType MF Module is per-
formed in the Administrator module. This module
is divided into two layers: Search layer and Manage-
ment layer.

The Search layer is responsible for finding all
the installed METAFONT fonts in a table. This table
contains a list of all the METAFONT fonts installed
and how to fetch information related to them. The
Search layer is implemented in Meta scanner and
Meta table.

The Management layer mainly performs the fol-
lowing tasks:

1. Checking whether or not the requested font file
is METAFONT.

2. Checking the cache to determine if the corre-
sponding outline font for the METAFONT re-
quest is already stored. If yes, it sends the
response directly from the cache. This function-
ality is implemented to achieve better perfor-
mance and reusability.

3. If the outline font is not prepared in the cache,
this request is sent to the Transformation layer.
The outline font prepared by the Transformation
layer is stored in the cache.

4. The response is sent back to FreeType internal
modules by the Management layer.

The Management layer is implemented in three parts:
Meta analyzer, Meta request, and Meta cache. Fig-
ure 4 shows the Administrator module and its sub-
layers.

Jaeyoung Choi, Ammar Ul Hassan, Geunho Jeong

TUGboat, Volume 39 (2018), No. 2 139

Figure 4: Administrator module

Figure 5: Transformation module

3.4 Transformation module

The Transformation module is mainly responsible for
converting the METAFONT file into its correspond-
ing outline font file. If the outline font file for a
requested METAFONT file doesn’t exist in the table
then the Administrator module sends the request
to the Transformation module. This module pro-
cesses the request and returns the corresponding
outline font file to the Administrator module. Fig-
ure 5 shows how the Transformation module converts
METAFONT files into corresponding outline files.

3.5 METAFONT support in FreeType using
FreeType MF Module

The overall architecture of FreeType MF Module is
shown in Figure 6. As seen there, FreeType MF

Module is an internal module of FreeType which is
responsible for processing METAFONT file requests.

• First an application sends a font file request to
FreeType (step 1).

• If all other driver modules fail to process this
font file request, the request is sent to FreeType
MF Module through the Linker module. Inner
meta interface delivers this request to the Ad-
ministrator module (step 2).

• A Meta request in the Administrator module re-
ceives all the information in this font file request
and sends it to the Meta Analyzer to check if
this font file is METAFONT or not (step 3). If
this font file is not METAFONT this request is
sent back to FreeType (step 3a). If this request
is METAFONT, The Meta analyzer checks if this
METAFONT file is installed or not by scanning
the Meta table. If not found in the Meta ta-
ble, an error is sent back to FreeType internal
modules (step 3b).

• There can be a scenario in which the META-
FONT font is installed but its corresponding
outline font is not stored in the cache. In this
case, the Meta cache is scanned to check if the
corresponding outline file is stored in it (step 4).
If it is already stored in the Meta cache with
the same style parameters as requested, it is
directly sent to FreeType (step 4a). If it is not
stored in Meta cache, the request is sent to the
Transformation layer (step 4b).

• The Transformation layer converts the META-
FONT file into its corresponding outline font by
applying the requested style parameters (step 5).

• An outline font is returned from the Transfor-
mation module to the Administrator module
where the Meta cache is updated for future reuse
(step 6).

• The outer Meta interface returns this outline
font to core FreeType for further processing
(step 7).

Lastly, FreeType renders this outline font that was
made from the requested METAFONT with the style
parameter values.

The FreeType MF Module is perfectly compati-
ble with the standard FreeType rasterizer. FreeType
MF Module provides direct support of METAFONT in
FreeType rasterizer just like its default Type1 driver
module, TrueType driver module, etc. The module
manages the METAFONT font and its conversion to
the corresponding outline font. Client applications
can request any style parameters of METAFONT;
FreeType MF Module processes them and the result
is displayed on the screen as usual. As it is directly
implemented inside the FreeType rasterizer, it has
no dependency problems as discussed in Section 2.
FreeType MF Module can easily generate multiple
font families like bold, italic, and bold-italic depend-
ing on the style parameter values passed to it.

FreeType MF Module: A module for using METAFONT directly inside the FreeType rasterizer

140 TUGboat, Volume 39 (2018), No. 2

Figure 6: FreeType MF Module architecture

Table 1: FreeSerif font family

4 Experiment and performance evaluation
of FreeType MF Module

For the experiment of using FreeType MF Module
to generate different font styles from METAFONT

source, the authors used a font viewer application in
GNU/Linux. This application directly uses FreeType
to render fonts. It takes a font file and text as input
and displays the styled text on the screen using the X
Windows System. For testing, the authors have used
all four styles of FreeSerif font family as TrueType
fonts, i.e., normal, bold, italic, bold-italic, comparing
with the Computer Modern fonts in METAFONT.

Table 1 shows the FreeSerif font family in four
different styles. These styles are generated by using
four different font files. Table 2 shows Computer

Table 2: Various font styles with Computer Modern

Modern in the same four styles, made using different
parameter values. These styles are made from one
single METAFONT source file. The parameter values
which are modified for generating these font styles
are hair, stem, curve, and slant. The three parame-
ters hair, curve, and stem are related with the bold
style. Increasing their value increases the boldness of
text. These parameter values are different for lower-
case and uppercase characters. The slant parameter
is related to the italic style. As shown in Table 2, for
the normal style the default values of all four param-
eters are used. For bold style, the values used are
stem+20, hair+20, curve+20, and slant parameter
default value. Default values of stem, hair, curve,
and slant= 0.4 are used for italic style. Whereas,

Jaeyoung Choi, Ammar Ul Hassan, Geunho Jeong

TUGboat, Volume 39 (2018), No. 2 141

(a) FreeSerif normal style (b) FreeSerif bold style

(c) FreeSerif italic style (d) FreeSerif bold-italic style

Figure 7: Dataset rendered in FreeSerif (enlarged from screen resolution)

(a) default values of stem, hair, curve, slant (b) stem+20, hair+20, curve+20, slant default

(c) default values of stem, hair, curve; slant = 0.4 (d) stem+20, hair+20, curve+20, slant = 0.4

Figure 8: Dataset rendered in Computer Modern (enlarged from screen resolution)

stem+20, hair+20, curve+20, slant = 0.4 values are
used for bold-italic style. Similarly, many other font
styles can be generated with this single METAFONT

source file by changing parameter values.
To test the performance of FreeType MF Module

compared to FreeType default driver modules and
the MFCONFIG module, another experiment was per-
formed using the same font viewer application. All
four font files of FreeSerif in Table 1 were used for
testing the TrueType driver module of FreeType;
Computer Modern source files were used with four
different parameter values to generate four differ-
ent styles in Table 2. For the text input, a sample
dataset was used which consisted of 2,000 words
and over 8,000 characters, including space charac-
ters. The average time in milliseconds between the
font style request from application and the successful
display of styled text on the screen was computed
and compared.

Figure 7 shows the result of printing four Free-
Serif fonts and Figure 8 shows the result of four Com-
puter Modern METAFONT fonts. Table 3 shows the
average time to print the dataset using the FreeSerif
font by the TrueType driver module, the Computer
Modern font by FreeType MF Module, and Com-
puter Modern with the MFCONFIG module. The
default TrueType driver module in FreeType takes
3ms to 7ms to print the dataset with all four FreeSerif
families. FreeType MF Module takes 4ms to 10ms to

print this dataset with Computer Modern, whereas
the MFCONFIG module took 50ms to 120ms to display
a similar size dataset.

The performance of FreeType MF Module is
comparatively slower than default FreeType driver
module because it takes extra time to convert a
METAFONT into its corresponding outline font by
applying the style parameters. On the other hand,
FreeType MF Module has very good performance rel-
ative to the MFCONFIG module, because it is directly
implemented inside the FreeType rasterizer and not
dependent on other font libraries like Fontconfig and
Xft [9] etc. Hence, we can conclude that FreeType
MF Module in the FreeType rasterizer can provide
direct support of METAFONT usefully in practice, in
almost real time on a modern PC.

Performance can be further improved by optimiz-
ing the METAFONT converter in the Transformation
layer. Currently, the METAFONT converter works
with the mftrace and autotrace programs. Future
work will consider proposed module optimization and
direct usage of TEX bitmap fonts like GF and PK

which are not supported by the FreeType rasterizer.
FreeType MF Module is a suitable module for

providing users with parameterized font support on
the screen by applying style parameters directly to
the METAFONT font. To reiterate, users don’t need
to pre-convert METAFONT fonts into outlines before

FreeType MF Module: A module for using METAFONT directly inside the FreeType rasterizer

142 TUGboat, Volume 39 (2018), No. 2

Table 3: Average time to display dataset with the TrueType driver, FreeType MF Module, and MFCONFIG

using with FreeType, as FreeType MF Module auto-
matically performs this step. Users see no difference
between METAFONT fonts and TrueType fonts using
FreeType with this module. FreeType MF Module
has also overcome the performance and dependency
problems of the MFCONFIG module.

5 Conclusion

In this paper, we have proposed a module, named
FreeType MF Module, enabling direct support of
METAFONT in the FreeType rasterizer. Outline fonts
such as TrueType and Type 1 do not allow users to
easily change font styles. For every different font style
in outline fonts, a new font file is created, which can
be a time consuming and costly process for CJK fonts
consisting of large numbers of complex characters.
METAFONT fonts do not have this disadvantage.

FreeType supports many different font formats,
including TrueType, Type 1, Windows fonts, etc.,
but does not provide any support for METAFONT.
The proposed module is installed directly inside
FreeType and can be used like any other internal
module to support METAFONT fonts. The authors
have reported on experiments demonstrating that a
variety of styled fonts can be generated from META-
FONT by adjusting parameter values in a single
METAFONT source file by FreeType MF Module in
almost real time.

Acknowledgement

This work was supported by an Institute for In-
formation & Communications Technology Promo-
tion (IITP) grant funded by the Korean government
(MSIT) (No. R0117-17-0001, Technology Develop-
ment Project for Information, Communication, and
Broadcast).

References

[1] Donald E. Knuth, Computers and

Typesetting, Volume C: The METAFONTbook.
Addison-Wesley, 1996.

[2] David Turner, Robert Wilhelm, Werner
Lemberg, FreeType. freetype.org

[3] Jinpyung Kim, et al. Basic Study of Hangul

Font, Seoul: Korea Publishing, Research
Institute, 1988.

[4] Jaeyoung Choi, Sungmin Kim, Hojin Lee,
Geunho Jeong, MFCONFIG: A METAFONT

plug-in module for the FreeType rasterizer,
TUGboat 37:2, pp.163–170, 2016.
tug.org/TUGboat/tb37-2/tb116choi.pdf

[5] Fontconfig. freedesktop.org/wiki/Software/

fontconfig

[6] Hirotsugu Kakugawa, VFlib—a general

font library that supports multiple font

formats, EuroTEX conference, March 1998.
www-masu.ist.osaka-u.ac.jp/~kakugawa/

VFlib/vflib35.ps

[7] Tomas Rokicki, The GFtoPK processor Version

2.4, 06 January 2014. ctan.org/pkg/mfware

[8] Rainer Menzner, A Library for Generating

Character Bitmaps from Adobe Type 1 Fonts.
inferiorproducts.com/docs/userdocs/

t1lib/t1lib_doc.pdf

[9] Keith Packard, The Xft font library:

Architecture and Users Guide, Proceedings of
the 5th annual conference on Linux Showcase
Conference, 2001.
keithp.com/keithp/talks/xtc2001/xft.pdf

⋄ Jaeyoung Choi
Ammar Ul Hassan
Geunho Jeong

369 Sangdo-Ro, Dongjak-Gu
Seoul 06978, Korea
choi@ssu.ac.kr

ammar@ssu.ac.kr

ghjeong@gensolsoft.com

Jaeyoung Choi, Ammar Ul Hassan, Geunho Jeong

TUGboat, Volume 39 (2018), No. 2 143

WeTEX and Hegelian contradictions
in classical mathematics

S.K. Venkatesan

Abstract

We consider the contradiction between WYSIWYG

and LATEX markup, in order to demonstrate a Hegel-
ian synthesis (WeTEX, a KaTEX-based JavaScript im-
plementation) of this contradiction. We then briefly
consider other contradictions such as form vs. con-
tent in mathematics typesetting. After that we move
on to the Hegelian contradictions in classical mathe-
matics, starting from Zeno’s paradox, leading to the
hierarchy of infinities, continuum hypothesis, and fi-
nally the problem of algorithmic complexity classes.

“Reason has always existed, but not always in a
reasonable form”—Karl Marx.

1 Introduction

Contradictions are mills through which reality ebbs
and flows. The right and left hand sides exist as
opposing manifestations. The fact that the perfect
symmetry of the left and right is broken is what
establishes their distinction. If Earth were a perfect
sphere, then there would not be rivers and valleys
that bring life to it. However, since the radius of
the earth is almost a constant (to more than 99%
accuracy), we are qualified to call it a sphere.

Contradictions are also a great source of changes
to society and transitions from one form to another.
Goliath was powerful when combat was direct physi-
cal conflict with hand-held weapons. When the giant
Goliath calls David to come near him to fight, it is
clear that only at that range can he overcome David.
David, at the same time, keeps his distance to deny
him that opportunity and defeats him with his long-
distance weapon. Inside the atomic nucleus such a
conflict between the Goliath of nuclear forces that
operate only at short distances releases an enormous
amount of energy when they come in conflict with
electrical repulsion that operates at long distances,
when the size of the nucleus becomes sufficiently
large, as in the case of the uranium or plutonium
nucleus. At the other end of the spectrum, when
gravitational forces crush electrical repulsion in hy-
drogen ions, the Goliathian nuclear forces take over,
releasing the enormous energy that powers suns.

In this article we first consider WeTEX, a KaTEX-
based JavaScript implementation of an equation edi-
tor that resolves the conflict between the WYSIWYG

(What You See Is What You Get) paradigm and the
LATEX macros, a WYSIWYM (What You See Is What
You Mean) system. We see how both of these contra-

dictory approaches work at different user parametric
ranges and use cases. The synthesis of these opposing
paradigms produces a new application, WeTEX.

In the third section we consider Zeno’s para-
dox, countable infinity and uncountable infinities
of higher order. We also show how these Hegelian
contradictions lead to a hierarchy of infinities.

In the fourth section we consider the Cantor
set in the context of the continuum hypothesis and
in the fifth and final section we consider a class of
recursive algorithms for constructing the Cantor set
and its complexity.

2 WeTEX—a synthesis between
WYSIWYG and WYSIWYM

LATEX markup solved the problem of typesetting doc-
uments using a system of macros involving braces
and backslashes. WYSIWYG systems, on the other
hand, use a system of graphical menu objects with
place holders for inserting text and symbols. This
allows the user to directly visualize the output in-
stantly with instant gratification. On the other hand,
it is not easy to search for symbols in a character
palette in a WYSIWYG system, so LATEX-like back-
slashed named entities are more convenient. Auto-
completion prompts can further improve productivity
in authoring such macro entities in LATEX, as some
LATEX editors provide.

The WeTEX system was created as a proof
of concept for a hybrid system. At present we
deal only with authoring equations. We have used
KaTEX’s JavaScript rendering engine to implement
this math editor. The KaTEX source code is available
in a Github repository, github.com/Khan/KaTeX.
WeTEX’s open source (GPL-licensed) code is available
in the Github repository github.com/Sukii/WeTeX.

In addition to the standard LATEX (KaTEX fla-
vor) macros, WeTEX defines some additional macros
and keyboard shortcuts, described in Table 1.

In addition to typesetting equations we will also
be making an attempt to make the mathematics com-
putable, wherever possible. A preliminary attempt
at integration with Maxima [1], an open source GPL

licensed maths computing library, has been made
at mathml.in. Here the contradiction is between
form and content, as we will be attempting to walk
on two legs, quite similar to the literate program-
ming approach for LATEX macro packages where one
has to make a fine balance between the code and
documentation. One the one hand the attempt of
presentation aspect is beautiful typography, as an
endeavor of a metal-based art form developed for
many centuries in Europe. However, all this beauty
has to be rooted in objectivity and realism, especially

WeTEX and Hegelian contradictions in classical mathematics

144 TUGboat, Volume 39 (2018), No. 2

Table 1: WeTEX macros and shortcut keys

WeTEX Shortcut Description Sample

input key output

_ shift _ Subscript Ad

^ shift ^ Superscript A
d

\t[] ctrl - Tensor A
ijk

abc

\f[] shift % Fraction a
d

\r[] shift ! Square root
√
456

\x[] shift @ Unicode text Unicode

\q[] shift # Cube root 3
√
082

\d[] ctrl d Differential derivative dX
dZ

\p[] ctrl p Partial derivative ∂X
∂Z

\i[] alt i Integration
∫ Z

X
Y dX

\s[] alt s Summation
∑Y

X
Z

(()) ctrl (Left & right parentheses
(
a
z

)

[[]] ctrl [Left & right brackets
[
a
z

]

{{}} ctrl { Left & right braces
{

a
z

}

\8 ctrl 8 Infinity symbol ∞
\0 ctrl . Centered single dot ·
shift ~ Similar ∼
ctrl = Equivalent ≡

the functional requirement of mathematics and its
development rooted in industrial society, publish-
ing books and journals both in electronic and print
forms. Modern electronic devices also now allow
us to develop newer forms that can interact more
closely with users both in form and content, allowing
much broader dissemination of content, forcing us
to think about accessibility requirements of content
transcending the current form. However the spirit
of accessibility is not only a technical requirement,
but also requires that we change the form (pun unin-
tended) of the content also, making it accessible to
a broader audience.

3 Classical Hegelian hierarchy of infinities

We will begin with the classical Zeno’s paradox that
is usually explained in terms of Achilles and the
tortoise [2].

3.1 Zeno’s paradox

However, we will illustrate this in a much simpler
way using the concept of recursive decimals:

0.99999 · · · = 1 .

We know from this that there is an infinite se-
quence of numbers, 0.9, 0.99, 0.999, . . . , which are
bounded above by the finite value 1.0. The finite
value 1.0 can be expressed by the infinite sequence
of decimals represented by the above equation. Of
course, there are many such infinite sequences that
approach 1.0, each with its own rhyme and rhythm.
The fact that the infinite is contained in the finite

value of 1.0 is indeed a paradox in classical logic, but
not in paraconsistency logic [3], which allows such an
inconsistency to exist without great consternation.
In classical logic A and −A cannot exist as truth
together. It would create a blow-up. Consider the
classical Boolean logic statement:

(A or B) and (−A or B) is true .

In classical logic we can conclude from this state-
ment that B is true. This is considered a blow-up,
as in classical logic an unrelated statement B would
be true if both A and −A were to be true. Para-
consistency logic [3] mitigates this blow-up. The
name “paraconsistency” was coined by the Peruvian
philosopher Francisco Miró Quesada [4].

3.2 Hegelian hierarchy of infinities in
classical mathematics

Let us now consider the cardinality of a set as the
number of elements in a set, for example, if

A = {dog, cat, horse, car, bus, train, aeroplane}

then #(A) = 7. Now consider the set of all subsets of
A, symbolically written as the set 2A. This notation
for the power-set is justified by the relation

#(2A) =

#(A)
∑

i=0

(
n

i

)

= 2#(A) .

We would like to point out that this process can
be continued indefinitely, i.e., we can construct the
power-set of a power-set or, in plain language, that
there can be a set of all subsets of the set of all
subsets of a set, etc., i.e.,

A, 2A, 22
A

,

Now let us consider the set of natural numbers,

N = {1, 2, 3, . . .}

The cardinality of natural numbers is denoted by
aleph,

ℵ = #(N) .

Now consider the cardinality of the set of all real
numbers between 0 and 1, i.e.,

c = #([0, 1])] .

Just as the number of drops of water in a glass of
water cannot be counted like a bunch of bananas,
we intuitively know that the set of real numbers in
[0,1] cannot be counted like natural numbers. We
will prove this now.

Let us represent all real numbers between 0
and 1 in terms of their binary representation in some
counting order,

a1 = 0.01010 · · ·
a2 = 0.110010 · · ·
a3 = 0.101011 · · ·
· · · .

S.K. Venkatesan

TUGboat, Volume 39 (2018), No. 2 145

By a diagonalization process discovered by Cantor
we can construct a real number,

b = 0.100 · · · ,

where b is obtained by reversing the 0s and 1s of the
i-th digit of ai, such that

b /∈ {a1, a2, a3, . . .} ,

leading to a contradiction, thus proving that it is not
countable. However, this is only a qualitative result.
We will now prove a quantitative result, that

c = 2ℵ .

In order to prove this, consider the binary represen-
tation of a real number in (0,1),

x = {0.010011001 · · ·} .

We now obtain the corresponding subset of natural
numbers by considering all the index positions of “1”
in the above binary representation, i.e.,

S = {2, 5, 6, 9, . . .} .

Similarly, for every subset of natural numbers
we can construct a real number in (0,1). This implies
a bijective mapping between the power-set of natural
numbers and the set (0,1), proving the result. QED

So finally we also have the result that we can
construct an infinite hierarchy of infinities, i.e.,

ℵ, 2ℵ, 22
ℵ

,

Although here we are only discussing about num-
bers and the mathematics of set theory, these results
have much greater implication in computer science
as there is a corresponding categorical mapping at
higher levels that maps these domains to similar prob-
lems there. At an abstract level, decision problems
can be considered as function mappings,

f : A → {0, 1} ,

where A ⊂ N.
So in essence a decision problem can be mapped

to a real number. However, at the same time it can
be shown that the set of algorithms or procedural
programs is countable, as a Turing machine can be
reduced to a natural number, a binary state of the
computer. Putting the two facts together, we get the
result that not all decision problems can be solved
accurately by a computer as real numbers are un-
countable. However, rational numbers are countable
(as they are like two-dimensional natural numbers,
they can be counted in a zig-zag way starting from
the top right corner) and they are dense in real
numbers (which means that a sequence of rational
numbers can sufficiently approximate any given real
number). So every decision problem can be solved
approximately by a computer, although the degree
of approximation varies depending on the decision
problem and the computer algorithm.

4 The Cantor set and the continuum
hypothesis

The continuum hypothesis states that there are no
cardinal numbers between ℵ and 2ℵ. We will now
argue against this, but the argument has to be con-
sidered from the point of view that there are better
measures that distinguish between different shades
of infinities than just counting bananas, namely, by
weighing them.

Let us now consider the Cantor set, C , which
can be obtained by recursively removing the middle
one-third (but keeping the end points during the
removal) of the set of real numbers in [0,1]. Consider
the sequence of sets, C1 = [0, 1

3]∪ [23 , 1], C2 = [0, 1
9]∪

[29 ,
1
3]∪[

2
3 ,

7
9]∪[

8
9 , 1], . . . , defining the Cantor set to be

C =

∞⋂

k=1

Ck .

It can also be symbolically written as a geomet-
ric set following the relation

3× C (0) = C (0) ∪ C (2/3) .

Or to put it more simply, when we scale the
Cantor set by 3, we get two Cantor sets, i.e.,

3D = 2 ,

where 0 < D < 1 is the scaling dimension of the
Cantor set and from this relation we obtain D =
log 2/ log 3 ≈ 0.63.

For example, we can see that natural numbers
are 0-dimensional points in Euclidean space that
don’t scale, while the interval [0,1] scales linearly, a
two-dimensional square scales quadratically, a three-
dimensional cube grows to the cubic power, etc.

We can also prove easily that the Cantor set is
uncountable. Consider the ternary representation of
a real number in (0,1), i.e.,

x = 0.0102201 · · · .

The points in the Cantor sets will not have digit
“1” in them, i.e.,

x = 0.002022002 · · ·

Similar to the proof involving the binary rep-
resentation of real numbers we can show that the
Cantor set, C , is uncountable. Using a similar pro-
cedure we can also show that

#(C) = 2ℵ .

One then wonders how this is a counter example
to the continuum hypothesis? The answer lies not in
counting bananas but weighing bananas, as there is
more geometric information in the Cantor set that
is lost in counting rather than weighing them. It
is this extra geometric information that is captured
by the scaling dimension, which distinguishes it as a

WeTEX and Hegelian contradictions in classical mathematics

146 TUGboat, Volume 39 (2018), No. 2

fractal object existing between the 0-dimension and
1-dimension. This quantitative aspect becomes clear
as we deal with algorithms that generate the Cantor
set and their complexity in the next section.

5 Algorithmic complexity of the Cantor
set and the power of iterative functional
formulations

Let us now consider the iterative algorithm for con-
structing a Cantor set by considering the n-digit
ternary representation of real number between 0
and 1, such as

x = 0. 012102002 · · · 1020
︸ ︷︷ ︸

n

.

The Cantor set follows the recursive relation,

C =
1

3
C ∪

(
1

3
C +

2

3

)

.

This can be used to define a recursive push-down
from the left,

x →

(1
3x

1
3x+ 2

3

)

,

which can be represented using a constant push of 0s
and 2s from the left as in the tree-like representation
shown in Figure 1.

Figure 1: Binary tree formulation of the Cantor set

C

0

0

0 2

2

0 2

2

0

0 2

2

0 2

· ·

To construct the real numbers between 0 and 1
in an n-digit ternary representation, we need a deci-
sion tree with 3n steps, while to construct the Cantor
set, we need a tree of 2n steps. As there are no fur-
ther information or constraints that can be retrieved
either from geometry or from its ternary representa-
tion, so this is the minimal complexity that can be
achieved in order to compute the points in the Cantor
set, C . This then proves that the Cantor set compu-
tation problem cannot be solved in polynomial time.

However, we have discovered how a single al-
gorithmic step in recursive functional formulation
requires 2n operations in the state machine. Check-
ing the results (2n states of n-digits) of this output

to see if these n-digits are distinct points in C re-
quires equal or more effort. However, if we are using
a stateless function to generate the output then it
is enough to test only a few points in the Cantor
set to check for the veracity of 2n values (just as in
a cooked pot it is enough to test a few particles of
rice to see if it is cooked). So this effectively reduces
the problem to a NP-class problem. This shows the
power of recursive functions and functional formula-
tions of the lambda calculus. The power of neural
networks in modelling data comes precisely from this
iterative functional formulation.

The Cantor set is a simple example of a comput-
able fractal. However, there are more complex (pun
unintended) fractals that are not even computable.
Penrose [5] conjectured that some Mandelbrot sets
are not computable, and this has been confirmed [6].
However, here again, these Mandelbrot fractals are
formulated in terms of complex functions, another
example of iterative functional formulation, which
in this case is not even computable in terms of state
machines.

Finally, we would like to mention that the power
of recursion was considered in the early 1960s by
Noam Chomsky who quoted the famous phrase of
Wilhelm von Humboldt, “infinite by finite means”
and later on by Douglas Hofstadter in his popular
work [7], where he also makes interesting references
to Metafont.

References

[1] Maxima (1982). A Computer Algebra System.
maxima.sourceforge.net

[2] Aristotle (350 BCE), Zeno’s paradox, translated by
R.P. Hardie and R.K. Gaye.
classics.mit.edu/Aristotle/physics.6.vi.html

[3] Béziau, J.-Y. (1970). Future of Paraconsistency
Logic. wwwa.unine.ch/unilog/jyb/future-pl.pdf

[4] New Directions in Paraconsistent Logic, 5th WCP
(2014) Kolkata, India, February 2014, Béziau,
J.-Y., Chakraborty, M., and Dutta, S., eds..
Springer-Verlag.

[5] Penrose, R. (1989). The Emperor’s New Mind.
Concerning Computers, Minds and The Laws of
Physics. Oxford University Press, New York.

[6] Blum, L., Shub, M., and Smale, S. (1989). On a
theory of computation and complexity over the
real numbers: NP-completeness, recursive functions
and universal machines, Bull. Amer. Math. Soc.,
21(1):1–46.

[7] Hofstadter, D. (1979). Gödel, Escher, Bach: An
Eternal Golden Braid. Basic Books.

⋄ S.K. Venkatesan
TNQ Technologies, Chennai, India
skvenkat (at) tnqsoftware dot co dot in

S.K. Venkatesan

TUGboat, Volume 39 (2018), No. 2 147

TUG 2018 abstracts

Editor’s note: Videos are available for nearly all
of the talks; links and other information at https:

//tug.org/tug2018/program.html.

−− ∗ − −

Doris Behrendt
The General Data Protection Regulation (GDPR) in
the European Union

On 25 May 2018 the GDPR was applied in the EU.
In my position as treasurer of the German TEX user
group DANTE e.V. I studied this regulation from the
DANTE perspective and will talk about some aspects
of this regulation, which are concerning us.

As some of you probably know, a lot of Euro-
peans— including myself—are somewhat delicate
about data processing and privacy. While the indus-
try complains about the GDPR being a monster of
bureaucracy, there are also some quite interesting
legal bearings that come with it, e.g., it will also
apply “to the processing of personal data of data
subjects who are in the Union by a controller or
processor not established in the Union, where the
processing activities are related to . . . the offering
of . . . services, irrespective of whether a payment of
the data subject is required, to such data subjects
in the Union . . . ”.

This should be interesting especially to compa-
nies that are not based in the EU but are handling
data of EU citizens, and by GDPR Article 83 (5) not
complying could become expensive: “Infringements
. . . shall . . . be subject to administrative fines up to
20,000,000 EUR, or in the case of an undertaking, up
to 4% of the total worldwide annual turnover of the
preceding financial year, whichever is higher . . . ”.

You can imagine that this could become very
interesting when the next Facebook or similar data
scandal comes up.

S. Coriasco, D. Ahmetovic, T. Armano,
C. Bernareggi, M. Berra, A. Capietto,
N. Murru, A. Ruighi, E. Taranto
An automated method based on LATEX for the
realization of accessible PDF documents containing
formulae

Mathematical formulae contained in PDF documents
generated using LATEX are usually not accessible with
assistive technologies for visually impaired people,
such as screen readers and braille displays.

To address this issue, we developed Axessibil-
ity, a LATEX package which allows creation of PDF

documents in which the formulae can be read by
these assistive technologies. Axessibility automat-
ically generates hidden comments inside PDF doc-

uments corresponding to each formula (by means
of the /ActualText PDF attribute). This actual
text contains the LATEX code of the formula, and it is
read by screen readers (JAWS, NVDA and VoiceOver).
Moreover, we have created NVDA and JAWS dictio-
naries (in English and in Italian) that provide natural
language reading for users that do not know LATEX.

While this package enables accessibility of math-
ematical formulae contained in PDF documents, it
does not generate PDF/UA compatible documents.

Joachim Heinze
The unchanged changing world of mathematical
publishing

1. A very short overview of the history of mathe-
matical publishing with some Springer examples is
given. Numerische Mathematik was the first of all
SpringerNature journals ever, over all disciplines, to
go online in 1994.

2. The change of the world of publishing: gen-
erating (scientists), composing (publishers and scien-
tists) and disseminating (librarians and publishers)
mathematical content in electronically form. TEX
and “online visibility” are the buzzwords here.

3. Open access for all mathematical content?
“New” initiatives like “Overlay Journals”, based on
arXiv, are briefly discussed, as well as the more recent
Sci-Hub and ResearchGate initiatives.

4. Keep track of what has been published and
cited. MathSciNet and zbMATH, the two big math
review journals, in comparison to other initiatives,
like Google Scholar, Scopus, and Web of Science. A
new initative from China? MathSciDoc.

5. Recent developments in the dissemination
of scientific information are discussed. Social media
(Scholarly Collaboration Networks (SCN)) in scien-
tific communication and some new initiatives such as
“Sharedit” and “SciGraph” are briefly reflected upon.
Artificial intelligence and some hope for the future
will close the presentation.

Tom Hejda
yoin—Yet another package for automation of
journal typesetting

A new LATEX package will be presented that allows
combining journal, conference and similar papers
into issues. The most important premises the pack-
age are built upon are (1) the papers themselves are
independent documents to the extent that even dif-
ferent compilers can be used for different papers, and
(2) the papers’ page numbering is automated and
there are tools for communicating metadata between
the whole issue and the papers.

148 TUGboat, Volume 39 (2018), No. 2

Please note that a preliminary version of the
package will be presented and help from the commu-
nity will very likely be sought at the conference.

Mico Loretan
Selective ligature suppression with the selnolig

package

TEX has long provided straightforward methods for
creating typographic ligatures. Until recently, though,
suppressing inappropriate ligatures selectively could
only be achieved by applying mark-up by hand to a
document. selnolig, a LuaLATEX package, provides
the machinery to perform selective ligature suppres-
sion in an automated way that requires minimal
user involvement. The package also provides sets of
ligature suppression rules for English and German
language documents. The talk provides an overview
of the package’s design philosophy and main features,
discusses some of its current limitations, and gives
the outlook for further developments.

Frank Mittelbach
A quarter century of doc

In this talk I will re-examine my poor attempts at
Literate Programming and how they have shaped
(for better or worse) the LATEX world in the past
decades.

It’s about time to rethink some of the concepts
invented back then— but can we still evolve?

Ross Moore
Authoring accessible ‘Tagged PDF’ documents
using LATEX

Several ISO standards have emerged for what should
be contained in PDF documents, to support appli-
cations such as ‘archivability’ (PDF/A) and ‘acces-
sibility’ (PDF/UA). These involve the concept of
‘tagging’, both of content and structure, so that smart
reader/browser-like software can adjust the view pre-
sented to a human reader, perhaps afflicted with some
physical disability. In this talk we will look at a range
of documents which are fully conformant with these
modern standards, mostly containing at least some
mathematical content, created directly in LATEX.
The examples are available on the author’s website,
web.science.mq.edu.au/~ross/TaggedPDF.

The desirability of producing documents this
way will be discussed, along with aspects of how
much extra work is required of authors. Also on the
above website, and published elsewhere in this issue
(pp. 131–135), is a ‘five-year plan’ on how to modify
the production of LATEX-based scientific publications
to adopt such methods. This will involve cooperation
between academic publishers and a TUG working
group.

[Editor’s note: Since the talk worked mostly from
examples, showing non-printing aspects of what can
be stored in, and extracted from PDF files, the
printed description is not entirely sufficient; see the
video at youtube.com/watch?v=mPBtkCsChJw.]

Eduardo Ochs
Dednat6: An extensible (semi-)preprocessor for
LuaLATEX that understands diagrams in ASCII art

(LA)TEX treats lines starting with % as comments, and
ignores them. This means that we can put anything
we want in these % lines, even code to be processed
by other programs besides TEX.

In this talk we describe a “semi-preprocessor”,
called dednat6, that makes blocks of lines starting
with %L be executed as Lua code, treats blocks of lines
starting with %: as 2D representations of derivation
trees, and treats blocks of lines starting with %D

as diagrams in which a 2D representation specifies
where the nodes are to be placed and a stack-based
language inspired by Forth is used to connect these
nodes with arrows.

A predecessor of dednat6, called dednat4, was
a preprocessor in the more usual sense: running
“dednat4.lua foo.tex” on a shell would convert the
trees and diagrams in %: and %D-blocks in foo.tex

to \defs that LATEX can understand, and would put
these \defs in a file foo.dnt. Then in foo.tex we
put an \input "foo.dnt" to load those definitions.
Dednat6 does something almost equivalent to that,
but using LuaLATEX to avoid the needs for an external
preprocessor and for an auxiliary .dnt file. Here is
how; the workflow is unusual, so let’s see it in detail.

Put a line
\directlua{dofile("loaddednat6.lua")}

in a file bar.tex. When we run “lualatex bar.tex”
that line loads the dednat6 library, initializes the
global variable tf in the Lua interpreter with a
TexFile object, and sets tf.nline=1 to indicate
that nothing in bar.tex has been processed with
Dednat6 yet.

A (low-level) command like
\directlua{processlines(200, 300)}

in bar.tex would “process the lines 200 to 300 in
bar.tex with dednat6”, which means to take all the
blocks of %L-lines, %:-lines, and %D-lines between the
lines 200 to 300 in bar.tex, run them in the neces-
sary interpreters, and then send the resulting LATEX
code— usually \defs— to the latex interpreter.

The high-level macro \pu runs
\directlua(processuntil{tex.inputlineno})

which runs processlines on the source lines be-
tween tf.nline=1 and the line where the current
\pu is, and advances tf.nline. That is, it processes

TUGboat, Volume 39 (2018), No. 2 149

with dednat6 the lines in the current file between
the previous \pu and the current one.

The strings %L, %:, and %D are called “heads” in
dednat6, and it’s easy to add support for new heads;
this can even be done in a %L block.

With dednat4, all the \defs had to be loaded at
once; in dednat6 idioms like {\pu ...}, $\pu ...$,
and $$\pu ...$$ can be used to make the \defs
between the last \pu and the current one be local.

Boris Veytsman
Stubborn leaders six years later

After six years the journal Res Philosophica changed
the style of its table of contents. The new design
requires the dotted line with the page number to
follow the last line of the article title rather than
the first one. The old design was described in a
TUGboat article (33:3, pp. 316–318, 2012, tug.org/
TUGboat/tb33-3/tb105veytsman-leaders.pdf).

We use this occasion to revisit the old code,
discuss the new one and the fact that deceptively
similar designs require completely different code.

Boris Veytsman
R+knitr+LATEX workshop

The work of a research scientist involves keeping daily
notebooks. Such a working notebook is a document
with text, equations, calculations, figures, tables,
code snippets which reflects the current state of the
lab research. This workshop teaches how to maintain
such notebooks in a TEX/R environment.

Prerequisites: please install the following on
your computer—a TEX distribution (preferably ei-
ther TEX Live or MiKTEX), R, with packages knitr,
tikzDevice and Hmisc. For a front end, we can use
either Rstudio or Emacs+AUCTEX+ESS.

After you have installed R, you can install knitr,
tikzDevice and Hmisc using the R packaging system.
Also, Vincent Goulet has constructed convenient
Emacs distributions for Windows and Mac systems
which include ESS+AUCTEX, available at vigou3.

github.io/emacs-modified-windows.

Joseph Wright
Fly me to the moon: (LA)TEX testing (and more)
using Lua

Testing has been important to the LATEX team since
its inception, and over the years a sophisticated set
of test files have been created for the kernel. Meth-
ods for running the tests have varied over the past
quarter-century, following changes in the way the
team work.

In recent years, the availability of Lua as a
scripting language in all TEX systems has meant it
has become the natural choice to support this work.
With this as a driver, the team have developed the
l3build package (ctan.org/pkg/l3build) for run-
ning tests automatically. Building on the core work,
l3build has grown to provide a powerful approach
to releasing packages (and the LATEX kernel) reliably.

Here, I’ll look at the background of our testing
approach, before showing how and why Lua works
for us here.

MAPS 48 (2018)

MAPS is the publication of NTG, the Dutch language
TEX user group (http://www.ntg.nl).

Michael Guravage, Redactioneel [From the
editor]; pp. 1–2

Karl Berry, TEX Live Guide; pp. 3–45
[See https://tug.org/texlive/doc.html.]

Hans Hagen, Executing TEX; pp. 46–50
[Published in TUGboat 39:1.]

Hans Hagen, Variable fonts; pp. 51–58
[Published in TUGboat 38:2.]

Bogus law Jackowski, Piotr Pianowski,

Piotr Strzelczyk, TEX Gyre text fonts
revisited; pp. 59–65

[See DTK abstracts.]

Siep Kroonenberg, TLaunch, the TEX Live
Launcher; pp. 66–69

[Published in TUGboat 38:2.]

Norbert Preining, updmap and fmtutil—past
and future changes; pp. 70–76

[Published in TUGboat 38:2.]

NTG, Privacybeleid; pp. 77–80

150 TUGboat, Volume 39 (2018), No. 2

Die TEXnische Komödie 2–3/2018

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).
(Non-technical items are omitted.)

Die TEXnische Komödie 2/2018

Jörg Bergs, Abseits der Wissenschaft: Setzen
eines konzeptionellen Bildbands [Beyond science:
Typesetting an illustrated book]; pp. 29–37

As the owner of one of the few analogue photo
labs still in existence, I am using LATEX for our com-
plete correspondence workflow and for our techni-
cal documentation, using standard packages such as
KOMA-Script. For pure DTP tasks, however, we use
QuarkXPress, as I consider LATEX to be suboptimal
for such tasks. But I have now started to create an
illustrated book using LATEX.

Thomas Hilarius Meyer, Liste der nicht
benutzten Literatur ausgeben [Printing uncited
references]; pp. 37–39

I suppose I am not the only one who has issues
with the question of which references from the bib
file have actually been used and which not. In this
article I show a way of finding out.

Dominik Wagenführ, Vorstellung einer
deutschsprachigen Bewerbungsvorlage [A German
template for job applications]; pp. 40–53

Almost everyone, sooner or later, has to apply
for a job. In this article I present my LATEX-based
application template which is directed mainly to Ger-
man TEX users. Components of the application are
given in a single format making the whole application
look consistent.

Gerd Neugebauer, CTAN quiz; pp. 53–55
Published in TUGboat 39:1.

Die TEXnische Komödie 3/2018

Bogusław Jackowski, Piotr Pianowski,

Piotr Strzelczyk, TEX Gyre text fonts
revisited; pp. 11–20

The collection of the TEX Gyre (TG for short)
family of text fonts was first released by the GUST

e-foundry in 2006–2009. Having finished this task,
the GUST e-foundry team started to work on the
math companion (in OpenType, OTF, format) for
the TG text fonts. Work on the math companion was
finished two years ago. It resulted in the broadening
of the repertoire of glyphs that could be used not
only in math mode but also in text mode in techni-
cal documents. Hans Hagen, indefatigably coming
up with interesting ideas, proposed migrating the

relevant glyphs to the text TG fonts. Needless to say,
we seized on Hans’s suggestion. The first step was
to decide which glyphs are to be migrated (and/or
improved). Obviously, the list of candidates grew
and grew. All in all, about 1000 glyphs were des-
ignated to be added, mostly geometrical and math
symbols. A math companion, so far, was provided
only for serif fonts, thus the consistent enhancement
of the repertoire of the sans-serif fonts was a working
test for our fonts generator. We started with two
fonts — the serif TG Pagella and the sans-serif TG

Adventor. The results were satisfying. Now we are
ready for the next step: to enhance similarly the
rest of the TG family (TG Chorus which is hardly
suitable for technical texts, needs an individualized
approach). We believe, however, that we’re over the
hump. Below, we describe the most difficult and
thus most interesting (to us) aspects of this stage of
the TG project.

[To be published in the next issue of TUGboat.]

Robert Winkler, Akademisches Schreiben mit
Markdown und Pandoc Scholar [Academic writing
using Markdown and Pandoc Scholar]; pp. 21–28

In academia it is often required to create docu-
ments for different output formats. Besides scientific
manuscripts there are webpages, CVs or reports to
be created. Markdown is a simple text-based format
that allows easy conversion with the help of Pan-
doc into different output formats, e.g., PDF, LATEX,
OpenOffice XML, HTML, or EPUB. Pandoc Scholar
is an extension for Pandoc, enriching it with semantic
web annotations, e.g., Citation Typing Ontologies.
A practical application is shown with the example
of this article.

Christine Römer, Schnell und direkt von .tex

zu .epub mit tex4ebook [Fast and direct from
.tex to .epub using tex4ebook]; pp. 29–34

tex4ebook has been discussed already in DTK

issue 4/2015; however we address it again in this
article. Since the previous article mainly addressed
issues in the output of mathematical content we now
focus on its advantages regarding text output.

Editors, Im Netz gefunden [Found in the world
wide web]; pp. 35–36

• Christian Justen: have xcolor typeset only
the first line in a different color.

• Brian Dunn: centering a “framed box”
between two columns.

[Received from Herbert Voß.]

TUGboat, Volume 39 (2018), No. 2 151

Eutypon 38–39, October 2017

Eutypon is the journal of the Greek TEX Friends
(http://www.eutypon.gr).

Apostolos Syropoulos, Diagrams with pgfplots;
pp. 1–12

Most authors of science papers and books need
to create plots and diagrams to display scientific
data. The problem of course is which tool to use
for this task. In general, people prefer to use a tool
from a suite of tools which is familiar to them. The
package pgfplots is the ideal package for people who
use LATEX to prepare their documents. This paper
describes the basic use of the package, i.e., how to
create a simple diagram and how to place points and
text on it. In addition, it presents some specialized
features and how one can create bar charts and pie
charts. (Article in Greek with English abstract.)

Dimitrios Filippou, Typesetting elements and
other. . . chemicals; pp. 13–33

The International Union of Pure and Applied
Chemistry (IUPAC) has produced several guidelines
for the nomenclature of chemicals, and also for the
appearance of chemical elements, compounds, phys-
ical/chemical variables, units, etc. TEX was made
for typesetting mathematical formulæ. Nonetheless,
with some effort, TEX’s machine can be tweaked for
typesetting chemical formulæ as well. Packages like
chemmacros, mhchem, chemfig and xymtex, give with
LATEX (and even with plain TEX) excellent results
for documents with chemical symbols. (Article in

Greek with English abstract.)

Dimitrios Filippou, TEXniques: Slanted black
math symbols and other issues of unicode-math;
pp. 35–37

In this regular column, it is shown how to obtain
slanted (or italic) black math symbols with X ELATEX
and unicode-math, as well as some particular issues
in the use of the same package. (Article in Greek.)

Dimitrios Filippou, Book presentations;
pp. 39–40

The following books are presented:
(a) Keith Houston, Shady Characters: Ampersands,

Interrobangs and Other Typographical Curiosities,
2nd edition, Penguin, UK 2015; and
(b) George Grätzer, More Math into LATEX, 5th
edition, Springer, Cham, Switzerland.
(Article in Greek.)

[Received from Dimitrios Filippou
and Apostolos Syropoulos.]

Don Knuth awarded Trotter Prize

Bart Childs, Rick Furuta

The Trotter Prize & Endowed Lecture Series on In-
formation, Complexity and Inference is presented
by the College of Science in collaboration with the
Dwight Look College of Engineering at Texas A&M

University (science.tamu.edu). It seeks to illumi-
nate connections between science and religion.

Donald Knuth, Professor Emeritus of The Art
of Computer Programming at Stanford University,
and Michael Duff, Emeritus Professor of Theoretical
Physics at Imperial College London, were awarded
the prize April 17, 2018. Professor Knuth’s lecture
was entitled Translating the Bible into Music. Pro-
fessor Duff’s lecture was entitled The Best of All

Possible Worlds.
A lively Q&A session was held the next day with

the awardees in the Hawking Auditorium with titles
“All Questions Answered” and “The Universe and
Other General Questions”, respectively.

Don’s talk was about his composing Fantasia

Apocalyptica. Don’s home page (www-cs-faculty.
stanford.edu/~knuth) is a good source for addi-
tional information about this work as well as his 80th

birthday party.
Richard Furuta and I hosted the Knuth family

for a TEXas barbecue at a well-known local restau-
rant, C&J’s Barbecue. A good time was had by all.
We also learned that Don “rarely passes up a chance
to have peach cobbler.” Don was accompanied by Jill
and her sister and family. Doug Hensley, Professor
of Mathematics, and my friend Barbara Schwartz
also joined us. Barbara took the picture.

Rick and I were TUG officers 1985–89 and served
as site coordinators for distributions of TEX systems.

⋄ Bart Childs
Rick Furuta

Texas A&M University
College Station, TeXas 77843, USA
bart , furuta (at) tamu.edu

Eutypon 38–39, October 2017

Hyphenation exception log

Barbara Beeton

This is a brief update of the list of words that TEX
fails to hyphenate properly for U.S. English. The
full list last appeared in TUGboat 16:1, starting
on page 12, with periodic updates, most recently
in TUGboat 39:1, p. 7.

A cumulative list appears in the CTAN collec-
tion, at ctan.org/pkg/hyphenex, or in TEXLive, in
the file tb0hyf (.tex or .pdf). We are dispensing
here with the details of how the list is organized;
that information can be found in the previous up-
date or on CTAN.

The heavy concentration of names in this up-
date is due to the (un?)timely appearance of a 700-
page book on a historical topic in the production
queue at the AMS. Names often do not follow the
pattern of ordinary English words, and are there-
fore not handled gracefully by the existing patterns.
Worse still, they often appear in the first sentence
of a paragraph, introducing the subject; and, once
introduced, they are likely to occur again in the
same work. Hence the desirability that they be dealt
with once, in a local \hyphenation list.

British hyphenation

The patterns for British hyphenation—quite differ-
ent from the U.S. patterns—were developed from a
word list provided by the Oxford University Press
based on their 1986 Minidictionary of Spelling and

Word Division. As of 2014, the New Oxford Spelling

Dictionary shows that many points of word divi-
sion have changed. (The changes largely appear
to be converging with U.S. practice.) The UK TEX
Users Group has approached OUP to request access
to the new word list, in order to update the pat-
terns. There is apparently progress in this direction,
at least in principle, although nothing definitive is
known yet. Should the negotiations be successful, it
will be reported here as soon as feasible.

The list—English words

al-manac al-ma-nac

al-manack al-ma-nack
awarded awar-ded
bankroll bank-roll
courage cour-age
coura-geous(ly) cou-ra-geous(-ly)

dataflow data-flow

dat-a-point data-point
dataset data-set

datatype data-type
drosophila dro-soph-i-la

152 TUGboat, Volume 39 (2018), No. 2

ephemera ephem-era
ephemeris(ides) ephem-eris(-i-des)
equated equa-ted
equidi-men-sional equi-di-men-sional

method-ol-ogy(ies) meth-od-o-lo-gy(ies)
method-olog-i-cal(ly) meth-od-o-logical(ly)
nonar-chimedean non-ar-chi-me-dean
philoso-pher phi-los-o-pher
philoso-phies phi-los-o-phies

plurisub-har-monic pluri-sub-har-monic
polynya po-lyn-ya
pol-y-semy poly-se-my
potable po-ta-ble
premise prem-ise

prepo-si-tion prep-o-si-tion
prepo-si-tional prep-o-si-tional
semistable semi-sta-ble
sto-plist stop-list

transat-lantic trans-at-lan-tic
transept tran-sept

transpa-cific trans-pacific
trapez-ium tra-pe-zium
trape-zoid trap-e-zoid

trape-zoidal trap-e-zoi-dal
trigonom-e-try trig-o-nom-e-try

trigono-met-ric trig-o-no-met-ric

Names and non-English words
used in English text

Alexan-dria Alex-an-dria
An-dalu-cia(n) An-da-lu-cia(n)
An-dalu-sia(n) An-da-lu-sia(n)
Bowditch Bow-ditch
Brinkmann Brink-mann

Canada Can-a-da

Cana-dian Ca-na-di-an
Chicago Chi-ca-go
Franklin Frank-lin
Ge-oge-bra Geo-gebra
Hamil-ton(ian) Ham-il-ton(-nian)

Haskell Has-kell
Hedrick Hed-rick

Hegelian Hegel-ian

Hilbert Hil-bert
Jeremiah Je-re-miah

Laplace La-place

Lester Les-ter
Morawetz Mora-wetz
Mordell Mor-dell
Nicholas Nich-o-las
Northamp-ton North-amp-ton

Por-tuguese Por-tu-guese
Richard Rich-ard
Southamp-ton South-amp-ton
Sylvester Syl-ves-ter

Wilczyn-ski Wil-czyn-ski
Wolfskehl Wolfs-kehl

Woodrow Wood-row

⋄ Barbara Beeton
http://tug.org/TUGboat

TUGboat (at) tug dot org

TUGboat, Volume 39 (2018), No. 2 153

Book review: W.A. Dwiggins: A Life in

Design, by Bruce Kennett

Boris Veytsman

Bruce Kennett, W.A. Dwiggins: A Life in
Design. Letterform Archive, San Francisco,
496pp., US$95, ISBN 978-0-9983180-0-4 (standard
edition), US$350, ISBN 978-0-9983180-1-1
(deluxe edition). brucekennett.com/

wa-dwiggins-a-life-in-design/

In 1923, when forty-three years old, William A.
Dwiggins (or WAD to his many friends) was diag-
nosed with severe diabetes. His father died young
due to diabetes, so Dwiggins understood he had just
several years to live. He decided to wrap up his lucra-
tive business as an advertising designer and printer,
and to spend the rest of his life doing the work of
love: book design and illustration.

Dwiggins was wrong: two years earlier insulin
had been discovered, and his physician had access to
this experimental drug. He lived for another thirty-
three years, leaving a huge number of splendid books
and illustrations, several fonts, as well as many es-
says, pamphlets, articles, plays and tales. He was
incredibly prolific: at the peak of his creativity he
designed 24 books per year. Furthermore, he made
time for his many hobbies, including marionettes:
WAD made important contributions to this ancient
art, and his book about marionette making is still
respected among practitioners. By the way, his ex-
pectation of “starvation” (as he wrote in a letter)
was also wrong: Dwiggins quickly became widely
recognized in the book world. Mergenthaler (the
Linotype company) and Alfred Knopf had him on
a retainer, and many publishers were happy to pay
WAD for his work.

This book by Bruce Kennett is a fitting tribute
to this master of American book design and typog-
raphy. Kennett spent a decade and a half teaching
about WAD, lecturing and writing. A talented de-
signer himself, Kennett created a masterpiece of the
book arts. His volume is typeset in LfA Aluminia,

a digital revival of Dwiggins’ Electra font by Jim
Parkinson (Letterform Archive sells the set for $75).
It has about 1,200 color illustrations with many re-
productions of WAD’s works, and a collection of his
writings typeset in his fonts (the deluxe edition is ac-
companied by these samples printed on a letterpress;
several are reproduced here).

Book review: W.A. Dwiggins: A Life in Design, by Bruce Kennett

154 TUGboat, Volume 39 (2018), No. 2

The colophon reflects the love and the work
that went into the book creation. I cannot help but
reproduce it in full:

W.A. Dwiggins: A Life in Design has been pro-
duced in standard and deluxe editions, a total of
2,200 copies. Bruce Kennett designed the book
and composed the text with LfA Aluminia, a re-
vival of WAD’s Electra types that Jim Parkinson
created expressly for this project. Photographs
made at Letterform Archive were captured on
a Phase One digital-camera system with raking
light; the remaining photographs were made with
Nikon digital SLR cameras, also with raking light.
The paper for the body of the book is Sappi
Opus Matte Text; the endpapers are Strathmore
Writing Text, Ultimate White. The standard edi-
tion’s cover is printed on Sterling Ultra Text.
The boards of the deluxe edition are covered
with Neenah Environment Raw Text, Concrete,
printed with a reproduction of Dwiggins’s design
for Lakeside Press edition of Edgar Allan Poe’s
Tales; its spine is made from Saderra leather and
Taylor Box, of Warren, Rhode Island, built its slip-
cases. Penmor Lithographers, of Lewiston, Maine,
provided all the presswork, using high-definition
stochastic screens, and Acme Bookbinding/HF

Group, of Charlestown, Massachusetts, performed
the smyth-sewing and binding. Production de-
tails for the letterpress portfolio that accompanies
the deluxe edition are described on page 453.

Eleven chapters of the book correspond to eleven
addresses where Dwiggins studio was located. This
periodization of WAD’s life is apt: each move corre-
sponded to a change in the artist’s life, interests or
the line of work. There are three separate unnum-
bered chapters about Dwiggins’ type design, mari-
onettes and writings. It does not often happen that a
lavishly illustrated book is also informative and well
written. This book is an exception to this rule. The
text is superb: Kennett does not try to overwhelm
the reader with the arcana of typography, but he also
does not oversimplify his writing. Instead Kennett’s
style is direct, honest and full of love— the same as
the style of Dwiggins himself. Moreover, the book
satisfies the strict requirements of an academic mono-
graph: it has sources and notes (14 pages of small
print), several pages of bibliography and suggested
reading, and a useful index—a rarity nowadays.

The book is a great work of love and art. I
consider it one of the best books of the year—or
many years.

⋄ Boris Veytsman
Systems Biology School and Center

for Simulation and Modeling,
George Mason University,
Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

Boris Veytsman

TUGboat, Volume 39 (2018), No. 2 155

TheTreasure Chest

This is a selection of the new packages posted to
CTAN (ctan.org) from April–August 2018, with
descriptions based on the announcements and edited
for extreme brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package
can be found at ctan.org/pkg/pkgname. A few
entries which the editors subjectively believe to be
of especially wide interest or otherwise notable are
starred (*); of course, this is not intended to slight
the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. See also ctan.org/topic. Com-
ments are welcome, as always.

⋄ Karl Berry
tugboat (at) tug dot org

biblio

bath-bst in biblio/bibtex/contrib

Univ. of Bath reference style for BibTEX.

fonts

casiofont in fonts

Support for the Casio ClassWiz font.
dsserif in fonts

Double-struck serifed font for math.
notocjksc in fonts

Noto CJK (Source Han) fonts for Simplified Chinese.
* stickstoo in fonts

STIX2 fonts with enhanced LATEX support.
stoneipa in fonts

Support for Stone Sans Phonetic.

graphics

ketcindy in graphics

Create graphics for TEX with Cinderella.
milsymb in graphics/pgf/contrib

TikZ-based drawing of military symbols.
penrose in graphics/pgf/contrib

TikZ library for producing Penrose tilings.
postage in graphics

Stamp letters with Deutsche Post online service.
pst-contourplot in graphics/pstricks/contrib

Draw implicit functions using “marching squares”
algorithm.

tikz-nef in graphics/pgf/contrib

Draw networks using Neural Engineering
Framework methods.

tikz-network in graphics/pgf/contrib

Draw generalized networks with TikZ.
tikzmarmots in graphics/pgf/contrib

Draw marmots with TikZ.

language/japanese

endnotesj in language/japanese

Japanese-style endnotes.

macros/generic

modulus in macros/generic

Non-destructive modulus and integer quotient.
* texdate in macros/generic

Date printing, formatting, manipulation.

macros/latex/contrib

axessibility in macros/latex/contrib

Assistive technology support for math in PDF.
cellprops in macros/latex/contrib

Accept CSS-like selectors for tabular, array, etc.
clrdblpg in macros/latex/contrib

Control pagestyle on \cleardoublepage pages.
clrstrip in macros/latex/contrib

Place contents in a full-width color strip.
competences in macros/latex/contrib

Track skills assessed by classroom tests.
digicap-pro in macros/latex/contrib

Captions for digital photos, using Adobe Distiller.
ecothesis in macros/latex/contrib

Theses at the Univ. Federal de Viçosa, Brazil.
erw-l3 in macros/latex/contrib

Utilities built on expl3.
etsvthor in macros/latex/contrib

Abbreviations for study group at Eindhoven Univ.
gatherenum in macros/latex/contrib

Displayed enumerations via align* and enumerate.
guitartabs in macros/latex/contrib

Draw guitar tablatures.
hyperbar in macros/latex/contrib

Interactive barcode fields in PDF forms.
includernw in macros/latex/contrib

Include .Rnw inside .tex, invoking knitr.
inline-images in macros/latex/contrib

Include inline images in base64.
jnuexam in macros/latex/contrib

Exam class for Jinan University.
libertinus-otf in macros/latex/contrib

Support for Libertinus OpenType fonts.
manyind in macros/latex/contrib

Support multiple indexes.
mathfont in macros/latex/contrib

Use TrueType and OpenType fonts in math mode;
compatible with X ETEX and LuaTEX.

musikui in macros/latex/contrib

Creating “arithmetical restoration” puzzles.
nexus-otf in macros/latex/contrib

Support for the Nexus OpenType fonts.

macros/latex/contrib/nexus-otf

156 TUGboat, Volume 39 (2018), No. 2

onedow in macros/latex/contrib

Diagrams for the bridge card game.
opacity-pro in macros/latex/contrib

Transparency and blend modes with Adobe Distiller.
padcount in macros/latex/contrib

Pad numbers (token lists) with arbitrary characters.
pdfpc-movie in macros/latex/contrib

Embed movies for the PDF Presenter Console.
pdfoverlay in macros/latex/contrib

Overlay text on an existing PDF file.
powerdot-tuliplab in macros/latex/contrib

Powerdot theme for the TULIP Lab.
qrcstamps in macros/latex/contrib

QR codes as dynamic stamp annotations.
statistics in macros/latex/contrib

Compute and typeset statistics tables and graphics.
tagpdf in macros/latex/contrib

Experimental tagging using pdfLATEX and LuaLATEX.
tlc-article in macros/latex/contrib

Document class for formal documents.
topletter in macros/latex/contrib

Letter class for the Politecnico di Torino.
ucsmonograph in macros/latex/contrib

Documents for Univ. of Caxias do Sul, Brazil.
worksheet in macros/latex/contrib

Worksheet creation.
xbmks in macros/latex/contrib

Create cross-document PDF bookmark tree.
xfakebold in macros/latex/contrib

Fake bold for outline fonts.

macros/latex/contrib/beamer-contrib/themes

beamertheme-focus in m/l/c/b-c/themes

Clean and minimalist beamer theme.
beamertheme-npbt in m/l/c/b-c/themes

Collection of themes relating to FOM Hochschule.

macros/latex/contrib/biblatex-contrib

biblatex-math in m/l/c/biblatex-contrib

Univ. of Bath reference style for BibLATEX.
biblatex-socialscienceshuberlin in m/l/c/b-c

Social sciences at HU Berlin.

macros/luatex/generic

kanaparser in macros/luatex/generic

Kana parser for LuaTEX supporting ASCII input.
luavlna in macros/luatex/generic

Prevent line breaks after nonsyllabic prepositions
and single-letter conjunctions.

macros/luatex/latex

bezierplot in macros/luatex/latex

Approximate smooth function graphs with splines.
gurps in macros/luatex/latex

Generic Universal Role Playing System materials.
lualatex-truncate in macros/luatex/latex

Hyphenation fixes for LuaLATEX.

plantuml in macros/luatex/latex

Rendering diagrams specified in PlantUML.
typewriter in macros/luatex/latex

Typeset with randomly variable monospace font.
wallcalendar in macros/luatex/latex

Wall calendar layouts and internationalization.

macros/xetex/latex

businesscard-qrcode in macros/xetex/latex

Business cards with QR codes.
cqubeamer in macros/xetex/latex

Beamer template for Chongqing Univ.
kurdishlipsum in macros/xetex/latex

Generic text examples in Kurdish.
na-border in macros/xetex/latex

CornPop border font support for Arabic and
French.

Comics by John Atkinson (http://wronghands1.com).

macros/luatex/latex/plantuml

TEXConsultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
tug.org/consultants.html. If you’d like to be listed,
please see there.

Aicart Martinez, Mercè
Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our
web site.

Dangerous Curve
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. We take special care to typeset
mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Dominici, Massimiliano
Email: info (at) typotexnica.it

Web: http://www.typotexnica.it

Our skills: layout of books, journals, articles; creation
of LATEX classes and packages; graphic design;
conversion between different formats of documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for documents
in Italian, English, or French. Let us know the work
plan and details; we will find a customized solution.
Please check our website and/or send us email for
further details.

TUGboat, Volume 39 (2018), No. 2 157

Hendrickson, Amy
57 Longwood Ave. #8
Brookline, MA 02446
+1 617-738-8029
Email: amyh (at) texnology.com

Web: http://texnology.com

LATEX Macro Writing: Packages for print and
e-publishing; Sophisticated documentation for users.
Book and journal packages distributed on-line to
thousands of authors.

More than 30 years’ experience, for major publishing
companies, scientific organizations, leading universities,
and international clients.

Graphic design; Software documentation; LATEX
used for Data Visualization, and automated report
generation; e-publishing, design and implementation;
Innovation to match your needs and ideas.

LATEX training, customized to your needs, on-site—
have taught classes widely in the US, and in the
Netherlands and Sweden.

See the TEXnology website for examples. Call or
send email: I’ll be glad to discuss your project with you.

Latchman, David
2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com

LATEX consultant specializing in the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized packages
to meet your needs. Call or email to discuss your
project or visit my website for further details.

Peter, Steve
+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge,
and Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens
of languages, into beautiful camera-ready copy. In
addition, I’ve helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.

Sofka, Michael
8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Personalized, professional TEX and LATEX consulting
and programming services.

I offer 30 years of experience in programming, macro
writing, and typesetting books, articles, newsletters,
and theses in TEX and LATEX: Automated document

Sofka, Michael (cont’d)

conversion; Programming in Perl, C, C++ and other
languages; Writing and customizing macro packages in
TEX or LATEX, knitr.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

TEXtnik
Spain
Email: textnik.typesetting (at) gmail.com

Do you need personalised LATEX class or package
creation? Maybe help to finalise your current
typesetting project? Any problems compiling your
current files or converting from other formats to
LATEX? We offer +15 years of experience as advanced
LATEX user and programmer. Our experience with
other programming languages (scripting, Python
and others) allows building systems for automatic
typesetting, integration with databases, . . . We can
manage scientific projects (Physics, Mathematics, . . .)
in languages such as Spanish, English, German and
Basque.

Veytsman, Boris
132 Warbler Ln.
Brisbane, CA 94005
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training, typesetting and
seminars. Integration with databases, automated

158 TUGboat, Volume 39 (2018), No. 2

Veytsman, Boris (cont’d)

document preparation, custom LATEX packages,
conversions (Word, OpenOffice etc.) and much more.

I have about two decades of experience in TEX and
three decades of experience in teaching & training. I
have authored more than forty packages on CTAN as
well as Perl packages on CPAN and R packages on
CRAN, published papers in TEX-related journals, and
conducted several workshops on TEX and related
subjects. Among my customers have been Google,
US Treasury, FAO UN, Israel Journal of Mathematics,
Annals of Mathematics, Res Philosophica,
Philosophers’ Imprint, No Starch Press, US Army
Corps of Engineers, ACM, and many others.

We recently expanded our staff and operations to
provide copy-editing, cleaning and troubleshooting of
TEX manuscripts as well as typesetting of books,
papers & journals, including multilingual copy with
non-Latin scripts, and more.

Webley, Jonathan
Flat 11, 10 Mavisbank Gardens
Glasgow, G1 1HG, UK
07914344479
Email: jonathan.webley (at) gmail.com

I’m a proofreader, copy-editor, and LATEX typesetter.
I specialize in math, physics, and IT. However, I’m
comfortable with most other science, engineering and
technical material and I’m willing to undertake most
LATEX work. I’m good with equations and tricky
tables, and converting a Word document to LATEX.
I’ve done hundreds of papers for journals over the
years. Samples of work can be supplied on request.

TUG
Institutional
Members

TUG institutional members
receive a discount on multiple
memberships, site-wide electronic
access, and other benefits:
tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,
Providence, Rhode Island

Association for Computing
Machinery, New York, New York

Aware Software, Newark, Delaware

Center for Computing Sciences,
Bowie, Maryland

CSTUG, Praha, Czech Republic

Harris Space and Intelligence
Systems, Melbourne, Floida

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czech Republic

MOSEK ApS,
Copenhagen, Denmark

Nagwa Limited, Windsor, UK

New York University,
Academic Computing Facility,
New York, New York

Overleaf, London, UK

Springer-Verlag Heidelberg,
Heidelberg, Germany

StackExchange,
New York City, New York

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

TEXFolio, Trivandrum, India

TNQ, Chennai, India

University College Cork,
Computer Centre,
Cork, Ireland

Université Laval,
Ste-Foy, Québec, Canada

University of Ontario,
Institute of Technology,
Oshawa, Ontario, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

VTEX UAB, Vilnius, Lithuania

TUGboat, Volume 39 (2018), No. 2 159

2019 TEX Users Group election

Karl Berry
for the Elections Committee

The positions of TUG President and five members of the
Board of Directors will be open as of the 2019 Annual
Meeting, which we expect to be held in July or August
2019 in Palo Alto, California, USA.

The terms of these individuals will expire in 2019:
Barbara Beeton, Susan DeMeritt, Michael Doob,
Cheryl Ponchin, Norbert Preining.

Continuing directors, with terms ending in 2021:
Karl Berry, Johannes Braams, Kaja Christiansen,
Taco Hoekwater, Klaus Höppner, Frank Mittelbach,
Ross Moore, Arthur Reutenauer, Will Robertson,
Herbert Voß.

The election to choose the new President and Board
members will be held in early Spring of 2019. Nomina-
tions for these openings are now invited. A nomination
form is on this page; forms may also be obtained from
the TUG office or via tug.org/election.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG President/
to the Board by submitting a nomination petition in
accordance with the TUG Election Procedures. Election
. . . shall be by . . . ballot of the entire membership, carried
out in accordance with those same Procedures.”

The name of any member may be placed in nomina-
tion for election to one of the open offices by submission
of a petition, signed by two other members in good stand-
ing, to the TUG office; the petition and all signatures
must be received by the deadline stated below. A can-
didate’s membership dues for 2019 must be paid before
the nomination deadline. The term of President is two
years, and the term of TUG Board member is four years.

Along with a nomination form, each candidate must
supply a passport-size photograph, a short biography,
and a statement of intent to be included with the bal-
lot; the biography and statement of intent together
may not exceed 400 words. The deadline for receipt
of complete nomination forms and ballot information is

07:00 a.m. PST, 1 March 2019
at the TUG office in Portland, Oregon, USA. No excep-
tions will be made. Forms may be submitted by fax,
or scanned and submitted by email to office@tug.org;
receipt will be confirmed by email.

Information for obtaining ballot forms from the TUG

website will be distributed by email to all members within
21 days after the close of nominations. It will be possible
to vote electronically. Members preferring to receive a
paper ballot may make arrangements by notifying the
TUG office; see address on the form. Marked ballots must
be received by the date noted on the ballots.

Ballots will be counted by a disinterested party not
affiliated with the TUG organization. The results of the
election should be available by mid-April, and will be
announced in a future issue of TUGboat and through
various TEX-related electronic media.

2019 TUG Election—Nomination Form

Only TUG members whose dues have been paid for 2019
will be eligible to participate in the election. The signa-
tures of two (2) members in good standing at the time
they sign the nomination form are required in addition to
that of the nominee. Type or print names clearly, using
the name by which you are known to TUG. Names that
cannot be identified from the TUG membership records
will not be accepted as valid.

The undersigned TUG members propose the nomi-
nation of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

� TUG President

� Member of the TUG Board of Directors

for a term beginning with the 2019 Annual Meeting.

1.
(please print)

(signature) (date)

2.
(please print)

(signature) (date)

Return this nomination form to the TUG office via postal
mail, fax, or scanned and sent by email. Nomination
forms and all required supplementary material (photo-
graph, biography and personal statement for inclusion
on the ballot) must be received at the TUG office in
Portland, Oregon, USA, no later than

07:00 a.m. PST, 1 March 2019.
It is the responsibility of the candidate to ensure that
this deadline is met. Under no circumstances will late or
incomplete applications be accepted.

Supplementary material may be sent separately from

the form, and supporting signatures need not all appear

on the same physical form.

� nomination form
� photograph

� biography/personal statement

TEX Users Group
Nominations for 2019 Election
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

(email: office@tug.org; fax: +1 815 301-3568)

2018

Aug 28 – 31 18th ACM Symposium on Document
Engineering, Halifax, Nova Scotia,
Canada. www.doceng2018.org

Sep 2 – 8 12th International ConTEXt Meeting,
“Unusual usage of ConTEXt”,
Prague–Sibřina, Czech Republic.
meeting.contextgarden.net/2018

Sep 13 Lecture: W.A. Dwiggins by
Bruce Kennett, Museum of Printing,
Haverhill, Massachusetts.
museumofprinting.org

Sep 9 – 14 XML Summer School, St Edmund Hall,
Oxford University, Oxford, UK.
xmlsummerschool.com

Sep 11 – 15 Association Typographique Internationale
(ATypI) annual conference,
“Type legacies, honouring the heritage,
designing type today”, Antwerp, Belgium.
www.atypi.org

Sep 15 DANTE 2018 Herbsttagung and

59th meeting, Chemnitz, Germany.
www.dante.de/events.htm

Sep 30 TUGboat 39:3, submission deadline.

Oct 4 – 7 Ladies of Letterpress + Print Week,
St. Louis, Missouri.
www.letterpressconference.co

Oct 5 – 7 Oak Knoll Fest XX, New Castle,
Delaware. www.oakknoll.com/fest

Oct 18 – 19 Centre for Printing History & Culture,
“Baskerville in France”, Birmingham
City University, Birmingham, UK.
www.cphc.org.uk/events

Oct 24 Award Ceremony: The Updike Prize
for Student Type Design,
Speaker: Victoria Rushton,
Providence Public Library,
Providence, Rhode Island.
www.provlib.org/updikeprize

160 TUGboat, Volume 39 (2018), No. 2

Calendar

Oct 25 – 27 American Printing History Association’s

43rd annual conference, held jointly with
The Friends of Dard Hunter,
“Matrices: The Social Life of Paper,
Print, and Art”, Iowa City, Iowa.
printinghistory.org

2019

Jan 4 – 5 College Book Art Association Biennial
Meeting, “The Photographic
Artists’ Book”, The University
of Arizona, Tucson, Arizona.
www.collegebookart.org

Feb 3 – 6 CODEX VII 2019 Book Fair and
Symposium, Richmond, California.
www.codexfoundation.org

Mar 1 TUG election: nominations due.
tug.org/election

Mar 2 – 4 Typography Day 2019,
“Experimental Typography”.
IDC School of Design,
Indian Institute of Technology Bombay,
Mumbai, India. www.typoday.in

Apr 26 TUG election: ballots due.
tug.org/election

Jul 3 – 5 Seventeenth International Conference
on New Directions in the Humanities
(formerly Books, Publishing, and
Libraries), “The World 4.0: Convergences
of Knowledges and Machines”,
University of Granada, Granada, Spain.
thehumanities.com/2019-conference

Jul 9 – 12 Digital Humanities 2019, Alliance of
Digital Humanities Organizations,
Utrecht, The Netherlands.
adho.org/conference

Jul 19 –
Aug 1

SIGGRAPH 2019, “Generations”,
Los Angeles, California.
s2019.siggraph.org

Status as of 25 August 2018

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 39 (2018), No. 2

Introductory

105 Susanne Raab / The tikzducks package
• introduction, tutorials, and fun with these TikZ graphics

Intermediate

155 Karl Berry / The treasure chest
• new CTAN packages, April–August 2018

122 Paulo Cereda / Arara—TEX automation made easy
• TEX build tool supporting MVEL expressions and more

113 Will Robertson / Font loading in LATEX using the fontspec package: Recent updates
• usage summary, filename loading recommendation, futures

117 Joseph Wright / Supporting color and graphics in expl3
• LATEX2ε vs. LATEX3 drivers, color, comparison with TikZ, examples

119 Joseph Wright / siunitx: Past, present and future
• origination, concepts, API, and enhancements

Intermediate Plus

107 Frank Mittelbach / A rollback concept for packages and classes
• supporting rollback by date or version for packages, as well as the kernel

131 Ross Moore / Implementing PDF standards for mathematical publishing
• five-year plan for archivable and accessible mathematical PDFs

126 Will Robertson / The Canvas learning management system and LATEXML
• connecting coursework documents in LATEX with web-based management

Advanced

136 Jaeyoung Choi, Ammar Ul Hassan, Geunho Jeong / FreeType MF Module: A module for using
METAFONT directly inside the FreeType rasterizer

• rendering METAFONT fonts on demand from within FreeType

143 S.K. Venkatesan / WeTEX and Hegelian contradictions in classical mathematics
• attempted computability of math markup; hierarchy of infinities

Reports and notices

98 TUG 2018 conference information

100 Joseph Wright / TUG goes to Rio
• conference report

104 Joseph Wright / TEX Users Group 2018 Annual Meeting notes

147 TUG 2018 abstracts (Behrendt, Coriasco et al., Heinze, Hejda, Loretan, Mittelbach, Moore, Ochs,
Veytsman, Wright)

149 From other TEX journals: MAPS 48 (2018); Die TEXnische Komödie 2–3/2018; Eutypon 38–39 (October 2017)

151 Bart Childs and Rick Furuta / Don Knuth awarded Trotter Prize
• a prize awarded by Texas A&M University to illuminate connections between science and religion

152 Barbara Beeton / Hyphenation exception log
• update for missed and incorrect U.S. English hyphenations

153 Boris Veytsman / W.A. Dwiggins: A Life in Design, by Bruce Kennett
• review of this superb and lavishly illustrated biography of Dwiggins

156 John Atkinson / Comics: Hyphe-nation; Clumsy

157 TEX consulting and production services

158 Institutional members

159 TUG Election committee / TUG 2019 election

160 Calendar

