
136 TUGboat, Volume 39 (2018), No. 2

FreeType MF Module:
A module for using METAFONT directly
inside the FreeType rasterizer

Jaeyoung Choi, Ammar Ul Hassan,
Geunho Jeong

Abstract

METAFONT is a font description language which gen-
erates bitmap fonts for the use by the TEX system,
printer drivers, and related programs. One advan-
tage of METAFONT over outline fonts is its capability
for producing different font styles by changing pa-
rameter values defined in its font specification file.
Another major advantage of using METAFONT is
that it can produce various font styles like bold,
italic, and bold-italic from one source file, unlike
outline fonts, which require development of a sepa-
rate font file for each style in one font family. These
advantages are especially applicable when designing
CJK (Chinese-Japanese-Korean) fonts, which require
significant time and cost because of the large number
of characters used in Hangeul (Korean character)
and Hanja (Chinese character). However, to use
METAFONT in current font systems, users need to
convert it into its corresponding outline font. Fur-
thermore, font rendering engines such as FreeType
don’t support METAFONT.

In this paper, we propose FreeType MF Module
for the FreeType rasterizer. The proposed mod-
ule enables direct usage of METAFONT just like
any other font (outline or bitmap) supported in the
FreeType rasterizer. Users of METAFONT don’t need
to pre-convert METAFONT fonts into corresponding
outline fonts as FreeType MF Module automatically
performs this. Furthermore, FreeType MF Module
allows the user to easily generate multiple font styles
from one METAFONT source file by changing param-
eters.

1 Introduction

In today’s information society, much traditional pen
and paper usage for communication between people
has been increasingly replaced by computers and
mobile devices. Text has become an effective source
for gathering information and a means of communi-
cation between people. Although people commonly
use smart devices these days with effective resources
like media and sound, text generally plays the key
role of interaction between user and device. Text
is composed of characters, and these characters are
physically built from specific font files in the digital
environment’s system.

Fonts are the graphical representation of text
in a specific style and size. These fonts are mainly
categorized in two types: outline fonts and bitmap
fonts. Outline fonts are the most popular fonts for
producing high-quality output used in digital envi-
ronments. However, to create a new font style as
an outline font, font designers have to design a new
font with consequent extensive cost and time. This
recreation of font files for each variant of a font can
be especially painful for font designers in the case of
CJK fonts, which require designing of thousands in-
dividual glyphs one by one. Compared to alphabetic
scripts, CJK scripts have both many more characters
and generally more complex shapes, expressed by
combinations of radicals [3]. Thus it often takes more
than a year to design a CJK font set.

A programmable font language, METAFONT,
has been developed which does not have the above
disadvantages of outline fonts. METAFONT is a pro-
gramming language created by D.E. Knuth [1] that
generates TEX-oriented bitmap fonts. A METAFONT

source file is radically different from an outline font
file: it consists of functions for drawing characters
and has parameters for different font styles. By
changing the parameters defined in a font specifica-
tion file, various font styles can be easily generated.
Therefore, a variety of font variants can be generated
from one METAFONT source.

However, in practice users are unable to use
METAFONT on modern systems, because current
font engines like FreeType [2] do not provide any
direct support of METAFONT. Unlike standard bit-
map and outline fonts, METAFONT is expressed as
a source code that is compiled to generate fonts.
To use METAFONT in a general font engine like the
FreeType rasterizer, users have to convert each meta-
font into its corresponding outline font. When it
was developed in the 1980s, standard PC hardware
was not fast enough to do real-time conversion of
METAFONT source into a corresponding outline font.
Current PC hardware, however, is fast enough to do
such real-time conversion.

In this paper, a METAFONT module for the
FreeType rasterizer (FreeType MF Module) is pro-
posed. The proposed module enables direct use of
METAFONT in FreeType, just like any other out-
line and bitmap font modules. With FreeType MF

Module, users don’t need to pre-convert a META-
FONT font into its corresponding outline font before
using it with the FreeType rasterizer, as FreeType
MF Module automatically performs this. It allows
users to easily generate variants of font styles by
applying different parameter values. This module is
directly installed in the FreeType rasterizer just like

Jaeyoung Choi, Ammar Ul Hassan, Geunho Jeong



TUGboat, Volume 39 (2018), No. 2 137

its default font modules, thus minimizing any relia-
bility and performance issues. We have tested our
proposed module by generating different font styles
with METAFONT and compared its performance with
default FreeType modules and our previous research.

This paper is organized as follows. In Section 2,
related research regarding font modules and libraries
is discussed. The architecture of FreeType MF

Module is explained in Section 3. Section 4 demon-
strates how FreeType can support METAFONT, via
some testing of FreeType MF Module. The perfor-
mance of FreeType MF Module is also compared
with FreeType default modules and other researches
in this section. Section 5 gives concluding remarks.

2 Previous research and its problems

MFCONFIG [4] is a plug-in module for Fontconfig [5].
It enables the use of METAFONT on GNU/Linux
and other Unix font systems. Figure 1 shows the
architecture of the MFCONFIG module linked with
Fontconfig.

Figure 1: Basic architecture of MFCONFIG module

Although MFCONFIG does provide support for
METAFONT in Fontconfig-based font systems, it has
performance and dependency problems. Since MF-

CONFIG is plugged into a high-level font system, i.e.,
Fontconfig, and not at the low-level FreeType raster-
izer, its performance is very slow compared to the
font-specific driver modules supported by FreeType.
Whenever the client application sends a METAFONT

file request, Fontconfig communicates with MFCON-

FIG, performs operations, and then sends input to
FreeType for rendering text. This whole process
becomes slow because of the high-level operations
before FreeType receives its input.

Other than the performance problem, MFCON-

FIG also has a dependency problem. As it works with
the Fontconfig library, this means that in a font en-
vironment not using Fontconfig, this module cannot
be used. Fontconfig is mainly used in the font sys-

tem for GNU/Linux and some other Unix operating
systems, so MFCONFIG cannot be supported in other
environments, such as Windows and MacOSX.

VFlib [6], a virtual font library, is a font ras-
terizer developed for supporting multilingual fonts.
VFlib can process fonts which are represented in dif-
ferent font formats and outputs glyphs as bitmap
images from various font files. VFlib supports many
font formats like TrueType, Type 1, GF, and PK

bitmaps [7], et al. It provides a unified API for ac-
cessing different font formats. A new module can
be added in this font library for adding support for
METAFONT but this library has its own drawbacks:
as it supports many different font formats, and re-
quires support from a database, it can be too heavy
for embedded systems. It is also dependent on ad-
ditional font libraries, such as the FreeType engine
for TrueType font support and T1lib [8] for Type 1
font support, so it has its own dependency problems
as well. Therefore, VFlib is not suitable for adding
METAFONT support.

FreeType is a font rasterizer. It can produce
high quality output for mainly two kinds of font
formats, both outline and some bitmap formats.
FreeType mainly supports font formats such as True-
Type, Type 1, Windows, and OpenType fonts us-
ing the same API, independent of the font format.
Although FreeType supports many different font
formats, it doesn’t provide any support for META-
FONT directly. If there were a module for FreeType
that directly supports METAFONT, users could take
advantage of the METAFONT features above, e.g.,
generating variants of font styles by just changing
parameter values. MFCONFIG’s problems can also be
resolved using such a module.

The proposed FreeType MF Module in this pa-
per reuses the process for printing METAFONT from
the MFCONFIG module. FreeType MF Module in-
tends to solve the two problems of the MFCONFIG

module. METAFONT can be used with any system
having FreeType using the proposed module. As
it is implemented like any other default FreeType
module, it can be easily installed or uninstalled.

3 Implementation of FreeType MF Module
in the FreeType rasterizer

3.1 FreeType MF Module as an internal
module of FreeType

FreeType can support various font formats. Process-
ing a font file corresponding to its format is done
by an internal module in FreeType. This internal
module is called a font driver. FreeType contains a
configuration list of all driver modules installed, in
a specific order. When FreeType receives a request

FreeType MF Module: A module for using METAFONT directly inside the FreeType rasterizer



138 TUGboat, Volume 39 (2018), No. 2

Figure 2: Process of selecting a module in FreeType

for a font file from an application, it passes this re-
quest to the driver module at the top of the list for
processing. This module performs some internal op-
erations to check if this font format can be processed
or not. If this driver module supports the request, it
performs all other operations to process the font file
request. Otherwise the request is sent to the second
driver module mentioned in the list. This process
continues until a font driver is selected for processing
the font file request. If no font driver can process
the request, an error message is sent to the client
application.

In our case, FreeType MF Module is directly
installed inside FreeType just like its other internal
modules. When the client application sends a request
for a METAFONT file, FreeType MF Module receives
this request and processes it. Figure 2 shows how
FreeType will select a driver module for processing
a METAFONT file request.

FreeType MF Module consists of three submod-
ules: Linker module, Administrator module, and
Transformation module.

3.2 Linker module

Linker module is the starting point of FreeType MF

Module. It is mainly responsible for linking Free-
Type internal modules with FreeType MF Module.
It is divided into two parts: inner meta interface
and outer meta interface. The inner meta interface
receives font file requests from internal modules and
delivers it to the Administrator module for process-
ing. After processing by the Administrator module,
outer meta interface delivers the response to inter-
nal modules for further operations. The process of
Linker module is shown in Figure 3.

Figure 3: Linker module

3.3 Administrator module

The core functionality of FreeType MF Module is per-
formed in the Administrator module. This module
is divided into two layers: Search layer and Manage-
ment layer.

The Search layer is responsible for finding all
the installed METAFONT fonts in a table. This table
contains a list of all the METAFONT fonts installed
and how to fetch information related to them. The
Search layer is implemented in Meta scanner and
Meta table.

The Management layer mainly performs the fol-
lowing tasks:

1. Checking whether or not the requested font file
is METAFONT.

2. Checking the cache to determine if the corre-
sponding outline font for the METAFONT re-
quest is already stored. If yes, it sends the
response directly from the cache. This function-
ality is implemented to achieve better perfor-
mance and reusability.

3. If the outline font is not prepared in the cache,
this request is sent to the Transformation layer.
The outline font prepared by the Transformation
layer is stored in the cache.

4. The response is sent back to FreeType internal
modules by the Management layer.

The Management layer is implemented in three parts:
Meta analyzer, Meta request, and Meta cache. Fig-
ure 4 shows the Administrator module and its sub-
layers.

Jaeyoung Choi, Ammar Ul Hassan, Geunho Jeong



TUGboat, Volume 39 (2018), No. 2 139

Figure 4: Administrator module

Figure 5: Transformation module

3.4 Transformation module

The Transformation module is mainly responsible for
converting the METAFONT file into its correspond-
ing outline font file. If the outline font file for a
requested METAFONT file doesn’t exist in the table
then the Administrator module sends the request
to the Transformation module. This module pro-
cesses the request and returns the corresponding
outline font file to the Administrator module. Fig-
ure 5 shows how the Transformation module converts
METAFONT files into corresponding outline files.

3.5 METAFONT support in FreeType using
FreeType MF Module

The overall architecture of FreeType MF Module is
shown in Figure 6. As seen there, FreeType MF

Module is an internal module of FreeType which is
responsible for processing METAFONT file requests.

• First an application sends a font file request to
FreeType (step 1).

• If all other driver modules fail to process this
font file request, the request is sent to FreeType
MF Module through the Linker module. Inner
meta interface delivers this request to the Ad-
ministrator module (step 2).

• A Meta request in the Administrator module re-
ceives all the information in this font file request
and sends it to the Meta Analyzer to check if
this font file is METAFONT or not (step 3). If
this font file is not METAFONT this request is
sent back to FreeType (step 3a). If this request
is METAFONT, The Meta analyzer checks if this
METAFONT file is installed or not by scanning
the Meta table. If not found in the Meta ta-
ble, an error is sent back to FreeType internal
modules (step 3b).

• There can be a scenario in which the META-
FONT font is installed but its corresponding
outline font is not stored in the cache. In this
case, the Meta cache is scanned to check if the
corresponding outline file is stored in it (step 4).
If it is already stored in the Meta cache with
the same style parameters as requested, it is
directly sent to FreeType (step 4a). If it is not
stored in Meta cache, the request is sent to the
Transformation layer (step 4b).

• The Transformation layer converts the META-
FONT file into its corresponding outline font by
applying the requested style parameters (step 5).

• An outline font is returned from the Transfor-
mation module to the Administrator module
where the Meta cache is updated for future reuse
(step 6).

• The outer Meta interface returns this outline
font to core FreeType for further processing
(step 7).

Lastly, FreeType renders this outline font that was
made from the requested METAFONT with the style
parameter values.

The FreeType MF Module is perfectly compati-
ble with the standard FreeType rasterizer. FreeType
MF Module provides direct support of METAFONT in
FreeType rasterizer just like its default Type1 driver
module, TrueType driver module, etc. The module
manages the METAFONT font and its conversion to
the corresponding outline font. Client applications
can request any style parameters of METAFONT;
FreeType MF Module processes them and the result
is displayed on the screen as usual. As it is directly
implemented inside the FreeType rasterizer, it has
no dependency problems as discussed in Section 2.
FreeType MF Module can easily generate multiple
font families like bold, italic, and bold-italic depend-
ing on the style parameter values passed to it.

FreeType MF Module: A module for using METAFONT directly inside the FreeType rasterizer



140 TUGboat, Volume 39 (2018), No. 2

Figure 6: FreeType MF Module architecture

Table 1: FreeSerif font family

4 Experiment and performance evaluation
of FreeType MF Module

For the experiment of using FreeType MF Module
to generate different font styles from METAFONT

source, the authors used a font viewer application in
GNU/Linux. This application directly uses FreeType
to render fonts. It takes a font file and text as input
and displays the styled text on the screen using the X
Windows System. For testing, the authors have used
all four styles of FreeSerif font family as TrueType
fonts, i.e., normal, bold, italic, bold-italic, comparing
with the Computer Modern fonts in METAFONT.

Table 1 shows the FreeSerif font family in four
different styles. These styles are generated by using
four different font files. Table 2 shows Computer

Table 2: Various font styles with Computer Modern

Modern in the same four styles, made using different
parameter values. These styles are made from one
single METAFONT source file. The parameter values
which are modified for generating these font styles
are hair, stem, curve, and slant. The three parame-
ters hair, curve, and stem are related with the bold
style. Increasing their value increases the boldness of
text. These parameter values are different for lower-
case and uppercase characters. The slant parameter
is related to the italic style. As shown in Table 2, for
the normal style the default values of all four param-
eters are used. For bold style, the values used are
stem+20, hair+20, curve+20, and slant parameter
default value. Default values of stem, hair, curve,
and slant= 0.4 are used for italic style. Whereas,

Jaeyoung Choi, Ammar Ul Hassan, Geunho Jeong



TUGboat, Volume 39 (2018), No. 2 141

(a) FreeSerif normal style (b) FreeSerif bold style

(c) FreeSerif italic style (d) FreeSerif bold-italic style

Figure 7: Dataset rendered in FreeSerif (enlarged from screen resolution)

(a) default values of stem, hair, curve, slant (b) stem+20, hair+20, curve+20, slant default

(c) default values of stem, hair, curve; slant = 0.4 (d) stem+20, hair+20, curve+20, slant = 0.4

Figure 8: Dataset rendered in Computer Modern (enlarged from screen resolution)

stem+20, hair+20, curve+20, slant = 0.4 values are
used for bold-italic style. Similarly, many other font
styles can be generated with this single METAFONT

source file by changing parameter values.
To test the performance of FreeType MF Module

compared to FreeType default driver modules and
the MFCONFIG module, another experiment was per-
formed using the same font viewer application. All
four font files of FreeSerif in Table 1 were used for
testing the TrueType driver module of FreeType;
Computer Modern source files were used with four
different parameter values to generate four differ-
ent styles in Table 2. For the text input, a sample
dataset was used which consisted of 2,000 words
and over 8,000 characters, including space charac-
ters. The average time in milliseconds between the
font style request from application and the successful
display of styled text on the screen was computed
and compared.

Figure 7 shows the result of printing four Free-
Serif fonts and Figure 8 shows the result of four Com-
puter Modern METAFONT fonts. Table 3 shows the
average time to print the dataset using the FreeSerif
font by the TrueType driver module, the Computer
Modern font by FreeType MF Module, and Com-
puter Modern with the MFCONFIG module. The
default TrueType driver module in FreeType takes
3ms to 7ms to print the dataset with all four FreeSerif
families. FreeType MF Module takes 4ms to 10ms to

print this dataset with Computer Modern, whereas
the MFCONFIG module took 50ms to 120ms to display
a similar size dataset.

The performance of FreeType MF Module is
comparatively slower than default FreeType driver
module because it takes extra time to convert a
METAFONT into its corresponding outline font by
applying the style parameters. On the other hand,
FreeType MF Module has very good performance rel-
ative to the MFCONFIG module, because it is directly
implemented inside the FreeType rasterizer and not
dependent on other font libraries like Fontconfig and
Xft [9] etc. Hence, we can conclude that FreeType
MF Module in the FreeType rasterizer can provide
direct support of METAFONT usefully in practice, in
almost real time on a modern PC.

Performance can be further improved by optimiz-
ing the METAFONT converter in the Transformation
layer. Currently, the METAFONT converter works
with the mftrace and autotrace programs. Future
work will consider proposed module optimization and
direct usage of TEX bitmap fonts like GF and PK

which are not supported by the FreeType rasterizer.
FreeType MF Module is a suitable module for

providing users with parameterized font support on
the screen by applying style parameters directly to
the METAFONT font. To reiterate, users don’t need
to pre-convert METAFONT fonts into outlines before

FreeType MF Module: A module for using METAFONT directly inside the FreeType rasterizer



142 TUGboat, Volume 39 (2018), No. 2

Table 3: Average time to display dataset with the TrueType driver, FreeType MF Module, and MFCONFIG

using with FreeType, as FreeType MF Module auto-
matically performs this step. Users see no difference
between METAFONT fonts and TrueType fonts using
FreeType with this module. FreeType MF Module
has also overcome the performance and dependency
problems of the MFCONFIG module.

5 Conclusion

In this paper, we have proposed a module, named
FreeType MF Module, enabling direct support of
METAFONT in the FreeType rasterizer. Outline fonts
such as TrueType and Type 1 do not allow users to
easily change font styles. For every different font style
in outline fonts, a new font file is created, which can
be a time consuming and costly process for CJK fonts
consisting of large numbers of complex characters.
METAFONT fonts do not have this disadvantage.

FreeType supports many different font formats,
including TrueType, Type 1, Windows fonts, etc.,
but does not provide any support for METAFONT.
The proposed module is installed directly inside
FreeType and can be used like any other internal
module to support METAFONT fonts. The authors
have reported on experiments demonstrating that a
variety of styled fonts can be generated from META-
FONT by adjusting parameter values in a single
METAFONT source file by FreeType MF Module in
almost real time.

Acknowledgement

This work was supported by an Institute for In-
formation & Communications Technology Promo-
tion (IITP) grant funded by the Korean government
(MSIT) (No. R0117-17-0001, Technology Develop-
ment Project for Information, Communication, and
Broadcast).

References

[1] Donald E. Knuth, Computers and
Typesetting, Volume C: The METAFONTbook.
Addison-Wesley, 1996.

[2] David Turner, Robert Wilhelm, Werner
Lemberg, FreeType. freetype.org

[3] Jinpyung Kim, et al. Basic Study of Hangul
Font, Seoul: Korea Publishing, Research
Institute, 1988.

[4] Jaeyoung Choi, Sungmin Kim, Hojin Lee,
Geunho Jeong, MFCONFIG: A METAFONT

plug-in module for the FreeType rasterizer,
TUGboat 37:2, pp.163–170, 2016.
tug.org/TUGboat/tb37-2/tb116choi.pdf

[5] Fontconfig. freedesktop.org/wiki/Software/
fontconfig

[6] Hirotsugu Kakugawa, VFlib — a general
font library that supports multiple font
formats, EuroTEX conference, March 1998.
www-masu.ist.osaka-u.ac.jp/~kakugawa/

VFlib/vflib35.ps

[7] Tomas Rokicki, The GFtoPK processor Version
2.4, 06 January 2014. ctan.org/pkg/mfware

[8] Rainer Menzner, A Library for Generating
Character Bitmaps from Adobe Type 1 Fonts.
inferiorproducts.com/docs/userdocs/

t1lib/t1lib_doc.pdf

[9] Keith Packard, The Xft font library:
Architecture and Users Guide, Proceedings of
the 5th annual conference on Linux Showcase
Conference, 2001.
keithp.com/keithp/talks/xtc2001/xft.pdf

� Jaeyoung Choi
Ammar Ul Hassan
Geunho Jeong

369 Sangdo-Ro, Dongjak-Gu
Seoul 06978, Korea
choi@ssu.ac.kr

ammar@ssu.ac.kr

ghjeong@gensolsoft.com

Jaeyoung Choi, Ammar Ul Hassan, Geunho Jeong

freetype.org
tug.org/TUGboat/tb37-2/tb116choi.pdf
freedesktop.org/wiki/Software/fontconfig
freedesktop.org/wiki/Software/fontconfig
www-masu.ist.osaka-u.ac.jp/~kakugawa/VFlib/vflib35.ps
www-masu.ist.osaka-u.ac.jp/~kakugawa/VFlib/vflib35.ps
ctan.org/pkg/mfware
inferiorproducts.com/docs/userdocs/t1lib/t1lib_doc.pdf
inferiorproducts.com/docs/userdocs/t1lib/t1lib_doc.pdf
keithp.com/keithp/talks/xtc2001/xft.pdf

	Introduction
	Previous research and its problems
	Implementation of FreeType_MF_Module in the FreeType rasterizer
	FreeType_MF_Module as an internal module of FreeType
	Linker module
	Administrator module
	Transformation module
	Metafont support in FreeType using FreeType_MF_Module

	Experiment and performance evaluation of FreeType_MF_Module
	Conclusion

