
TUGboat, Volume 39 (2018), No. 1 69

A. Braslau, I. Hamid, and H. Hagen

ConTEXt nodes: commutative diagrams
and related graphics

A. Braslau, I. Hamid, and H. Hagen

Abstract
The graphical representation of node-based textual
diagrams is a very useful tool in the communication
of ideas. These are composed of graphical objects or
blocks of text or a combination of both, i.e. a deco-
rated label or text block, each attached to some point
(= the node). Additionally, such diagrams may dis-
play other such objects (such as a line segment, an
arrow, or other curve) connecting node points. The
set of nodes of a diagram will have some spatial rela-
tion between nodes. In this article we discuss a new
MetaPost module for handling node-based graphics,
as well as a derivative simplified ConTEXt module.

1 Introduction
The graphical representation of textual diagrams is
a very useful tool in the communication of ideas. In
category and topos theory, for example, many key
concepts, formulas, and theorems are expressed by
means of commutative diagrams; these involve ob-
jects and arrows between them. Certain concepts
discovered by category theory, such as natural trans-
formations, are becoming useful in areas outside of
mathematics and natural science, e.g., in philoso-
phy. To make category and topos methods usable by
both specialists and non-specialists, commutative di-
agrams are an indispensable tool. (For many exam-
ples of formal and informal commutative diagrams,
see [1].) The use of nodal diagrams is not limited to
category theory: they may represent a flow diagram
(of a process, for example), a chemical reaction se-
quence or pathways, phases and phase transitions, a
hierarchical structure (of anything), a timeline or se-
quence of events or dependencies, a family tree, etc.

The basic units of a node-based diagram include
node objects, each attached to some point (= the
node) in some spatial relationship. Note that a set
of objects might be associated with a single node.
Given a node, it also stands in a spatial relation to
some other node. The spatial relationship between
the set of nodes of a diagram need not be in a regu-
lar network, although it often is. Note that the spa-
tial relationship between nodes is graphical and may
represent, e.g., a temporal or logical relationship, or
a transformation of one object into another or into
others (one interesting example might be that rep-
resenting cell division or mitosis).

Given a spatial relation between any two nodes,
a node-based diagram often includes some path seg-

ment or segments (such as arrows or other curves)
between two given nodes that relate(s) them. Each
path segment may be augmented by some textual or
graphical label.

A simple example of a node diagram is shown
in Figure 1.

A B
Figure 1

More precisely, a node is a point of intersection or
branching of paths, often a point on a regular lat-
tice. (The nodes of the above diagram are the two
endpoints of a straight line segment.) Sometimes,
however, a node might be a single point as in an
identity map of category theory, referring to itself:

𭑂
Figure 2

The standard arrowhead in MetaPost is a sim-
ple triangle, whose length and angle can be ad-
justed. Metafun provides further options, allowing
this arrowhead to be barbed or dimpled. In the
present article, we use the settings ahlength:=10pt;
ahangle:=30; ahvariant:=1; ahdimple:=4/5;. The
loop-back arrow paths used here deviate from a
circular segment, becoming ellipsoidal, through
the value node_loopback_yscale:=.7;. These
are all set within a \startMPinitializations ...
\stopMPinitializations pair.

In this article we discuss a new MetaPost mod-
ule designed for handling node-based graphics as well
as a derivative simple ConTEXt interface. To illus-
trate, the code producing A B could be, in
MetaPost and the ConTEXt interface respectively:

− MetaPost:
draw node(0,"A") ;
draw node(1,"B") ;
drawarrow fromto(0,1) ;

The MetaPost code shown here has been sim-
plified, as will be seen further on.

− ConTEXt:
\startnodes [dx=1.5cm]

\placenode [0,0] {A}
\placenode [1,0] {B}
\connectnodes [0,1] [alternative=arrow]

\stopnodes

The ConTEXt interface has a limited set of
features, and will remain simple.

In each case, TEX is told to draw an arrow from A
to B (i.e., from node 0 to node 1).

For beginners, casual users of ConTEXt, or any

70 TUGboat, Volume 39 (2018), No. 1

ConTEXt nodes: commutative diagrams and related graphics

others who might be intimidated by MetaPost syn-
tax, the ability to construct simple diagrams by
means of standard ConTEXt syntax is helpful. For
those who have tried the ConTEXt interface and/or
want to draw more advanced diagrams, the Meta-
Post module is much more powerful and flexible.

2 MetaPost
MetaPost is a vector-graphics language which calls
upon TEX to typeset text (such as labels); in Con-
TEXt, furthermore, MetaPost is integrated natively
through the library MPlib as well as the macro pack-
age Metafun. The tight integration of ConTEXt and
MetaPost provides advantages over the use of other,
external graphics engines. These advantages include
ease of maintaining coherence of style, as well as ex-
tensive flexibility without bloat. MetaPost has fur-
ther advantages over most other graphics engines, in-
cluding a very high degree of precision as well as the
possibility to solve certain types of algebraic equa-
tions. This last feature is rarely used but should not
be overlooked.

It is quite natural in MetaPost to locate our
node objects along a path or on differing paths. This
is a much more powerful concept than merely locat-
ing a node at some pair of coordinates, e.g., on a
square or a rectangular lattice, for example (as in
a table). Furthermore, these paths may be in three
dimensions (or more); of course the printed page will
only involve some projection onto two dimensions.
Nor are the nodes restricted to a location on the
points defining a path: they may have, for an index,
any time along a given path p ranging from the first
defining point (𭑡 = 0) up to the last point of that
path (𭑡 ≤ 𭚕𭚎𭚗𭚐𭚝𭚑(𭚙)), the number of defining points
of a path. (Note that the time of a cyclic path is
taken modulo the length of the path, that is, 𭑡 out-
side of the range [𭟶, 𭚕𭚎𭚗𭚐𭚝𭚑(𭚙)] will return the first
or the last point of an open path, but will “wrap”
for a closed path.)

Given a path p, nodes are defined (implicitly)
as picture elements: picture p.pic[];. This is
a pseudo-array where the square brackets indicate a
set of numerical tokens, as in p.pic[0] or p.pic[i]
(for i=0), but also p.pic0. This number need not
be an integer, and p.pic[.5] or p.pic.5 (not to
be confused with p.pic5) are also valid. These pic-
ture elements are taken to be located relative to the
path p, with the index t corresponding to a time
along the path, as in
draw p.pic[t] shifted point t of p;

(although it is not necessary to draw them in this
way). This convention allows the nodes to be ori-

ented and offset with respect to the path in an arbi-
trary manner.

Note that a path can be defined, then nodes
placed relative to this path. Or the path may be de-
clared but remain undefined, to be determined only
after the nodes are declared. Yet another possibility
is that the path may be adjusted as needed, as a
function of whatever nodes are to be occupied. This
will be illustrated through examples further down.

3 Some simple examples
Let’s begin by illustrating a typical commutative di-
agram from category theory. Although it may ap-
pear trivial, this example helps to introduce Meta-
Post syntax. At the same time, a large part of the
idea behind this module is to facilitate use of this
system without having to learn much MetaPost.
\startMPcode

path p ; p := fullsquare scaled 3cm ;
draw p ;
for i=0 upto length p:

draw point i of p
withpen pencircle scaled 5pt ;

endfor ;
\stopMPcode

A path is drawn as well as the points defining the
path.

Figure 3

Given the named path nodepath, we can now define
and draw nodes as well as connections between them
(see Figure 4):
\startMPcode

clearnodepath ; nodepath = p ;
draw node(0,"\node{$G(X)$}") ;
draw node(1,"\node{$G(Y)$}") ;
draw node(2,"\node{$F(Y)$}") ;
draw node(3,"\node{$F(X)$}") ;
drawarrow fromto.bot(0,0,1,

"\nodeSmall{$G(f)$}") ;
drawarrow fromto.top(0,3,2,

"\nodeSmall{$F(f)$}") ;
drawarrow fromto.rt (0,2,1,

"\nodeSmall{η_Y}") ;
drawarrow fromto.lft(0,3,0,

"\nodeSmall{η_X}") ;
\stopMPcode

TUGboat, Volume 39 (2018), No. 1 71

A. Braslau, I. Hamid, and H. Hagen

𭐺(𭑋) 𭐺(𭑌)

𭐹(𭑌)𭐹(𭑋)

𭐺(𭑓)

𭐹(𭑓)

𭜂𭑌𭜂𭑋

Figure 4 Drawn using
the MetaPost interface.

In working with MetaPost, it is good practice to
reset or clear a variable using the directive save
for the suffix (or variable name) nodepath, as con-
tained in the directive clearnodepath (defined as
“save nodepath; path nodepath”). The macros
used here rely on the creation of certain internal vari-
ables and may not function correctly if the variable
structure is not cleared. Indeed, any node may con-
tain a combination of picture elements, added suc-
cessively, so it is crucial to save the variable, making
its use local rather than global. This point is par-
ticularly true with ConTEXt, where a single MPlib
instance is used and maintained over multiple runs.

The ConTEXt directives \startMPcode...\stopMPcode
include grouping (MetaPost begingroup;...endgroup;)
and the use of save (in clearnodepath) will make the
suffix nodepath local to this code block. In the code
for Figures 3 and 4, the path p itself is not declared
local (through the use of a save); it therefore remains
available for other MetaPost code blocks. We cannot
do this with the default suffix name nodepath without
undesirable consequences.

Note that one should not confuse the above
MetaPost function node() with the ConTEXt com-
mand \node{}, defined as follows:
\defineframed

[node]
[frame=off,
offset=1pt]

\defineframed
[nodeSmall]
[node]
[foregroundstyle=small]

\node{} places the text within a ConTEXt frame
(with the frame border turned off), whereas the
MetaPost function node(i,"...") sets and returns
a picture element associated with a point on path
nodepath indexed by its first argument. The second
argument here is a string that gets typeset by TEX.
(The use of \node{} adds an offset.)

By default, the MetaPost function fromto() re-
turns a path segment going between two points of
the path nodepath. The first argument (0 in the ex-
ample above) can be used as a displacement to skew
the path away from a straight line (by an amount in
units of the straight path length). The last argument
is a string to be typeset and placed at the midpoint
of the segment. The suffix appended to the function
name gives an offset around this halfway point. This
follows standard MetaPost conventions.

It is important to draw or declare the nodes
before drawing the connections, using fromto(), in
order to avoid overlapping symbols, as one notices
that the arrows drawn in the example above begin
and end on the border of the frame (or bounding
box) surrounding the node text. This would not be
possible if the arrow were to be drawn before this
text was known.

As will be seen further on, one can specify the
use of any defined path, without restriction to the
built-in name nodepath that is used by default. Fur-
thermore, a function fromtopaths() can be used to
draw segments connecting any two paths which may
be distinct. This too will be illustrated further on.

The ConTEXt syntax for the current example
looks like this:
\startnodes [dx=3cm,dy=3cm]

\placenode [0,0] {\node{$G(X)$}}
\placenode [1,0] {\node{$G(Y)$}}
\placenode [1,1] {\node{$F(Y)$}}
\placenode [0,1] {\node{$F(X)$}}
\connectnodes [0,1] [alternative=arrow,

label={\nodeSmall{$G(f)$}},position=bottom]
\connectnodes [3,2] [alternative=arrow,

label={\nodeSmall{$F(f)$}},position=top]
\connectnodes [2,1] [alternative=arrow,

label={\nodeSmall{η_Y}},position=right]
\connectnodes [3,0] [alternative=arrow,

label={\nodeSmall{η_X}},position=left]
\stopnodes

𭐺(𭑓)

𭐹(𭑓)

𭜂𭑌𭜂𭑋

𭐺(𭑋) 𭐺(𭑌)

𭐹(𭑌)𭐹(𭑋)

Figure 5 Drawn using
the ConTEXt interface.

72 TUGboat, Volume 39 (2018), No. 1

ConTEXt nodes: commutative diagrams and related graphics

This follows the more classic (and limited) approach
of placing nodes on the coordinates of a regular lat-
tice, here defined as a 3 cm square network. [The lat-
tice can be square (𭚍𭚡 = 𭚍𭚢), rectangular (𭚍𭚡 ≠ 𭚍𭚢),
or oblique (through 𭚛𭚘𭚝𭚊𭚝𭚒𭚘𭚗 ≠ 90).] The ar-
guments are then (𭑥, 𭑦) coordinates of this lattice
and the nodes are indexed 0, 1, 2, . . . in the or-
der in which they are drawn. These are used as
reference indices in the commands \connectnodes
(rather than requiring two pairs of coordinates); see
Figure 6.

0 1

3 2

2 1
3 0

(0,0) (1,0)

(1,1)(0,1)

Figure 6 Coordinates and indices. (For
variety, a rectangular oblique lattice is drawn.)

Connecting numbered nodes (in the order in which
they were declared) might seem a bit confusing at
first view, but it simplifies things in the end, really!

An identity map, as shown in Figure 2, earlier,
and, below, in Figure 7 is achieved by connecting a
node to itself.

myself

yourself

Me
You

Figure 7 Identity maps

\startnodes [dx=2cm,dy=.6cm]
\placenode [0,0] {\node{Me}}
\placenode [1,-1] {\node{You}}
\connectnodes [0,0] [alternative=arrow,

offset=.75cm,position=topright,
label=myself]

\connectnodes [1,1] [alternative=arrow,
offset=.75cm,position=bottomright,
label=yourself]

\stopnodes

The scale (diameter) of the circular loop-back
is set by the keyword offset= (normally used to
curve or bow-away a path connecting nodes from
the straight-line segment between them), and the
position= keyword sets its orientation.

Let us now consider the following code which il-
lustrates the Metafun operator crossingunder (see
Figure 8). The nodepath indices are put into vari-
ables A, B, C, and D, thus simplifying the code.

\startMPcode
clearnodepath ;
nodepath := fullsquare scaled 2cm ;
save A,B,C,D ;
A = 3 ; draw node(A,"\node{A}") ;
B = 2 ; draw node(B,"\node{B}") ;
C = 0 ; draw node(C,"\node{C}") ;
D = 1 ; draw node(D,"\node{D}") ;
drawarrow fromto(0,B,C) ;
drawarrow fromto(0,A,D)

crossingunder fromto(0,B,C) ;
\stopMPcode

A B

C D
Figure 8 A D under B C.

Given a path segment to be crossed, crossingunder
draws a path with a segment surrounding the in-
tersection with that path cut-out, resulting in two
(sub)path segments. This operator is of such general
use that it has been added to the Metafun base.

Figure 9 crossingunder

Another illustration of the crossingunder operator
in use is shown in figure 9. Because the diagrams are
all defined and drawn in MetaPost, one can easily
use the power of MetaPost to extend a simple node
drawing with any kind of graphical decoration.

This brings up an important point that has
limited the development of a full-featured Con-
TEXt node module up to now. A pure Meta-
Post interface affords much more flexibility than
can be conveniently reduced to a set of TEX
macros; the ConTEXt interface has been written
to provide only basic functionality. (One can use
\nodeMPcode{} to inject arbitrary MetaPost code
within a \startnode...\stopnode pair, although
in this example one is probably better off using the
straight MetaPost interface.)

TUGboat, Volume 39 (2018), No. 1 73

A. Braslau, I. Hamid, and H. Hagen

4 Cyclic diagrams
For a somewhat more complicated example, let us
consider the representation of a catalytic process
such as that given by Krebs [2]. The input is shown
coming into the cycle from the center of a circle; the
products of the cycle are spun off from the outside
of the circle. We start by defining a circular path
where each point corresponds to a step in the cyclic
process. Our example will use six steps.

We also want to define a second circular path
with the same number of points at the interior of this
first circle for the input, and a third circular path at
the exterior for the output (see Figure 10).

p0
1

2

3

4

5

6
p1

p2

Figure 10 The paths that we will use for the
anchoring of nodes.

The code is as follows:
\startMPcode

save p ; path p[] ;
% define a fullcircle path
% with nodes at 60° (rather than 45°)
p1 := (for i=0 step 60 until 300:

dir(90-i) .. endfor cycle)
scaled 1.8cm ;

p0 := p1 scaled .5 ;
p2 := p1 scaled 1.5 ;

for i=0 upto 2:
draw p[i] ;
for j=1 upto length p[i]:

draw point j of p[i]
withpen currentpen scaled 10 ;

if i=1:
label.autoalign(angle

point j of p[i])
(decimal j, point j of p[i]) ;

fi
endfor
label.bot("\bf p" & decimal i,

point 0 of p[i]) ;
endfor

\stopMPcode

(autoalign() is a feature defined within Metafun.)
Nodes will then be drawn on each of these three

circles and arrows will be used to connect the various
nodes, either on the same path or else between paths.

The MetaPost function fromto() is used to give
a path segment that points from one node to an-
other. It assumes the path named nodepath, and in
fact calls the function fromtopaths that explicitly
takes path names as arguments. That is, fromto
(d, i, j, ...) is equivalent to fromtopaths (d,
nodepath, i, nodepath, j, ...).

As stated above, this segment can be a straight
line, or a path can be bowed away from this straight
line by a transverse displacement given by the func-
tion’s first argument (given in units of the straight
segment length). When both nodes are located on
a single, defined path, this segment can be made to
lie on or follow this path, such as one of the circular
paths defined above. This behavior is obtained by
using any non-numeric value (such as true) in place
of the first argument. Of course, this cannot work if
the two nodes are not located on the same path.

In figure 11, the circular arc segments labeled
a–f are drawn using the following:
drawarrow fromtopaths.urt

(true,p1,0,p1,1,"\nodeGray{a}") ;

Here, \nodeGray is a frame that inherits from \node,
changing style and color:
\defineframed

[nodeGray]
[node]
[foregroundcolor=darkgray,
foregroundstyle=italic]

The bowed arrows feeding into the cyclic process
and leading out to the products — between different
paths, from the path p0 to the path p1 and from
the path p1 to the path p2, respectively — are drawn
using the deviations +3/10 and -1/10 (to and from
half-integer indices, thus mid-step, on path p1):
drawarrow fromtopaths(3/10,p0,0,p1,0.5)

withcolor .6white ;
drawarrow fromtopaths(-1/10,p1,0.5,p2,1)

withcolor .6white ;

4.1 A lesson in MetaPost
An ‘array’ of paths is declared through path p[]; it
is not a formal array, but rather a syntactic definition
of a collection of path variables p0, p1, . . . , each of
whose names is prefixed with the tag “p” followed by
any number, not necessarily an integer (e.g., p3.14
is a valid path name). The syntax allows enclosing
this “index” within square brackets, as in p[0] or,
more typically, p[i], where i would be a numeric

74 TUGboat, Volume 39 (2018), No. 1

ConTEXt nodes: commutative diagrams and related graphics

12C

13N

13C

14N

15O

15N

a

b

cd

e

f

1H

1H
1H

1H

4He

𭛾

e+ + 𭜈e

𭛾

𭛾

e+ + 𭜈e

Figure 11 The Bethe cycle for the energy production in
stars [3] in a Krebs representation of a catalytic process [2].

variable or the index of a loop. Note that the use
of brackets is required when using a negative index,
as in p[-1] (since p-1 is interpreted as three tokens,
representing a subtraction). Furthermore, the vari-
able p itself would here be a numeric (by default), so
p[p] would be a valid syntactic construction! One
could, additionally, declare a set of variables path
p[][]; and so forth, defining also p[0][0] (equiva-
lently, p0 0) for example as a valid path, coexisting
with yet different from the path p0.

MetaPost also admits variable names reminis-
cent of structured types in programming; for exam-
ple, the declaration picture p.pic[]; is used inter-
nally in the node macros, but this becomes picture
p[]pic[]; when using a path ‘array’ syntax. These
variable names are associated with the suffix p and
all become undefined by save p;.

5 Putting it together
What follows is an example of a natural transfor-
mation, discovered and articulated in the course of
a philosophical research project (by Idris Samawi
Hamid). Figure 12 represents what is called the
Croce Topos, named after the Italian philosopher
Benedetto Croce (1866–1952). We define it using
the ConTEXt interface to the node package:
\startnodes [dx=3cm,dy=3cm,alternative=arrow]

\placenode [0, 0] {\node{Practical}}
\placenode [1, 0] {\node{Economic}}
\placenode [3.5,0] {\node{Moral}}
\placenode [3.5,1] {\node{Conceptual}}
\placenode [1, 1] {\node{Aesthetic}}
\placenode [0, 1] {\node{Theoretical}}
\connectnodes [5,0] [offset=.1,

position=right,label={\node{γ}}]
\connectnodes [0,5] [offset=.1,

position=left, label={\node{γ'}}]
\connectnodes [4,1] [offset=.1,

position=right,label={\node{$F\gamma$}}]
\connectnodes [1,4] [offset=.1,

position=left, label={\node{$F\gamma'$}}]
\connectnodes [3,2] [offset=.1,

position=right,label={\node{$G\gamma$}}]
\connectnodes [2,3] [offset=.1,

position=left, label={\node{$G\gamma'$}}]
\connectnodes [4,3] [position=top,

label={\node{\it concretization$_1$}}]
\connectnodes [3,4] [position=bottom,

offset=.1,option=dashed,
label={\node{\it abstraction$_1$}}]

\connectnodes [1,2] [position=top,
label={\node{\it concretization$_2$}}]

\connectnodes [2,1] [position=bottom,
offset=.1,option=dashed,
label={\node{\it abstraction$_2$}}]

\stopnodes

6 Tree diagrams
The tree diagram shown in Figure 13 is drawn using
four paths, each one defining a row or generation in
the branching. The definition of the spacing of nodes
was crafted by hand and is somewhat arbitrary: 3.8,
1.7, and 1 for the first, second and third generations.
This might not be the best approach, but it is how I
(Alan) was thinking when I first created this figure.

Ultimately, one can do better by allowing Meta-
Post to solve the relevant equations and determine
this spacing automatically. Because this is a some-
what advanced procedure, this approach will be first
illustrated through a simple example of a diagram
where the nodes will be placed on a declared but un-
defined path:
save p ; % path p ;

The save p; assures that the path is undefined.
This path will later be defined based on the con-
tents of the nodes and a desired relative placement.

TUGboat, Volume 39 (2018), No. 1 75

A. Braslau, I. Hamid, and H. Hagen

𭛾𭛾′ 𭐹𭛾𭐹𭛾′ 𭐺𭛾𭐺𭛾′

concretization1

abstraction1

concretization2

abstraction2

Practical Economic Moral

ConceptualAestheticTheoretical

Figure 12 A representation of the Croce Topos.

DNA interactions with surfaces

repulsive: attractive: adsorption

confinement depletion,
macromolecular

crowding

chemisorption physisorption

immobilized mobile
Figure 13 An example tree diagram.

In fact, it is not even necessary to declare that the
suffix will be a path, as the path will be declared
and automatically built once the positions of all the
nodes are determined. To emphasize this point, the
path declaration above is commented out.
Warning: Solving equations in MetaPost can

be non-trivial for those who are less
mathematically inclined. One needs
to establish a coupled set of equa-
tions that is solvable: that is, fully
but not over-determined.

A few helper functions have been defined:
makenode() returns a suffix (variable name) corre-
sponding to the node’s position. The first such node
can be placed at any finite point, for example the
drawing’s origin. The following nodes can be placed
in relation to this first node:
save nodepath ;
save first, second, third, fourth ;
pair first, second, third, fourth ;
first.i = 0 ; second.i = 1 ;
third.i = 2 ; fourth.i = 3 ;
first = makenode(first.i, "\node{first}");

second = makenode(second.i,"\node{second}");
third = makenode(third.i, "\node{third}");
fourth = makenode(fourth.i,"\node{fourth}");

first = origin ;
second = first

+ betweennodes.urt(nodepath,first.i,
nodepath,second.i,
whatever) ;

third = second
+ betweennodes.lft(nodepath,second.i,

nodepath,third.i,
whatever) ;

fourth = third
+ betweennodes.bot(nodepath,fourth.i,

nodepath,first.i,
3ahlength) ;

The helper function betweennodes() returns a
vector pointing in a certain direction (here follow-
ing the standard MetaPost suffixes urt, lft, and
bot), that takes into account the bounding boxes of
the contents of each node, plus an (optional) addi-
tional distance (here given in units of the arrow-head
length, ahlength). Using the keyword whatever

76 TUGboat, Volume 39 (2018), No. 1

ConTEXt nodes: commutative diagrams and related graphics

tells MetaPost to adjust this distance as necessary.
The above set of equations is incomplete as written,
so a fifth and final relation needs to be added; the
fourth node is also to be located directly to the left
of the very first node:
fourth = first

+ betweennodes.lft(nodepath,fourth.i,
nodepath,first.i,
3ahlength) ;

(Equivalently, we could declare that the first
node located to the right of the fourth node:
first = fourth + betweennodes.rt (nodepath,
first.i, nodepath, fourth.i, 3ahlength);.)

Note that the helper function makenode() can
be used as many times as needed; if given no content,
it merely returns the node’s position. Additional
nodes can be added to this diagram along with ap-
propriate relational equations, keeping in mind that
the equations must, of course, be solvable. This last
issue is the one challenge that most users might face.

The function node(), used previously and re-
turning a picture element to be drawn, itself calls
the function makenode(), used here. The nodes have
not yet been drawn:
for i = first.i,second.i,third.i,fourth.i :

draw node(i) ;
drawarrow fromto(0,i,i+1) ;

endfor

This results in Figure 14. The path is now defined as
one running through the position of all of the defined
nodes, and is cyclic.

first

secondthird

fourth
Figure 14

Using this approach, that of defining but not draw-
ing the nodes until a complete set of equations defin-
ing their relative positions has been constructed, im-
poses several limitations. First, the nodes are ex-
pected to be numbered from 0 to 𭑛, continuously
and without any gaps for each defined path. This
is just an implicit, heuristic convention of the path
construction. Second, when ultimately defining all
the nodes and their positions, the path needs to be
constructed. A function, makenodepath(p) accom-
plishes this; it gets implicitly called (once) upon the
drawing of any node() or connecting fromto. Of
course, makenodepath() can always be called explic-
itly once the set of equations determining the node
positions is completely defined.

We once again stress that the writing of a solv-

able, yet not over-determined, set of equations can
be a common source of error for many MetaPost
users.

Another example is the construction of a simple
tree of descendance, a.k.a. a family tree. There are
many ways to draw such a tree; in Figure 15, we show
only three generations. We leave it as an exercise
to the reader to come up with the equations used to
determine this tree (or one can look at the source of
this document).

The requisite set of equations could be hidden
from users wishing to construct simple, pre-defined
types of diagrams. However, such cases would in-
volve a loss of generality and flexibility. Neverthe-
less, the ConTEXt-Nodes module could be extended
in the future to provide a few simple models. One
might be a branching tree structure, although even
the above example (as drawn) does not easily fit into
a simple, general model.

A user on the ConTEXt mailing list asked if
it is possible to make structure trees for English
sentences with categorical grammar, an example of
which is shown in Figure 16.

Here, I chose to define a series of parallel paths,
one per word, with one path terminating whenever
it joins another path (or paths) at a common parent.
Naturally, labeling each branch of the tree structure
requires a knowledge of the tree structure. The code
is not short, but hopefully it is mostly clear. Note
that diagrams such as those constructed here will
each be significantly different, making the writing
of a general mechanism rather complex. For exam-
ple, one might need to construct a tree branching up
rather than down, or to the right (or left), or even
following an arbitrary path, such as a random walk.
These can all be achieved individually in MetaPost
without too much difficulty.
\startMPcode

save p ; path p[] ;
save n ; n = 0 ;
% rather than parsing a string,
% we can use "suffixes":
forsuffixes $=People,from,the,country,

can,become,quite,lonely :
p[n] = makenode(p[n],0,

"\node{\it" & (str $) & "}")
= (n,0) ;
% we work first with unit paths.

n := n + 1 ;
endfor
save u ; u := MakeupWidth/n ;

% build upward tree

vardef makeparentnode(text t) =

TUGboat, Volume 39 (2018), No. 1 77

A. Braslau, I. Hamid, and H. Hagen

mother father

child1 spouse

grandchild1
spouse

grandchild2
spouse

child2 spouse

grandchild3
spouse

grandchild4
spouse

Figure 15 A tree of descendance.

People from the country can become quite lonely

H:N

Rel:Prep

Dr:Dv H:N M:Aux H:Mv M:Adv H:Adj

M:PP

Ax:NP P:VP PCs:AdjP

S:NP

Pred:PredP

Cl

Figure 16 A categorical grammar structure tree.

save i, xsum, xaverage, ymax ;
i = xsum = 0 ;
forsuffixes $ = t :

clearxy ; z = point infinity of $;
xsum := xsum + x ;
if unknown ymax : ymax = y ;
elseif y > ymax : ymax := y ; fi
i := i + 1 ;

endfor
xaverage = xsum / i ;
ymax := ymax + 1 ;
forsuffixes $ = t :

clearxy ;
z = point infinity of $;
$:= $ & z -- (x,ymax)

if i>1 : -- (xaverage,ymax) fi ;
endfor

enddef ;

makeparentnode(p2,p3) ;
makeparentnode(p4,p5) ;
makeparentnode(p6,p7) ;
makeparentnode(p1,p2) ;
makeparentnode(p0,p1) ;
makeparentnode(p4,p6) ;

makeparentnode(p0,p4) ;
makeparentnode(p0) ;

% the paths are all defined
% but need to be scaled.

for i=0 upto n-1 :
p[i] := p[i] xyscaled (u,.8u) ;
draw node(p[i],0) ;

endfor

save followpath ;
boolean followpath ; followpath = true ;

draw fromtopaths(followpath,p0,0,p0,1,
"\node{H:N}") ;

draw fromtopaths(followpath,p1,0,p1,1,
"\node{Rel:Prep}") ;

draw fromtopaths(followpath,p2,0,p2,1,
"\node{Dr:Dv}") ;

draw fromtopaths(followpath,p3,0,p3,1,
"\node{H:N}") ;

draw fromtopaths(followpath,p4,0,p4,1,
"\node{M:Aux}") ;

draw fromtopaths(followpath,p5,0,p5,1,
"\node{H:Mv}") ;

78 TUGboat, Volume 39 (2018), No. 1

ConTEXt nodes: commutative diagrams and related graphics

draw fromtopaths(followpath,p6,0,p6,1,
"\node{M:Adv}") ;

draw fromtopaths(followpath,p7,0,p7,1,
"\node{H:Adj}") ;

draw fromtopaths(followpath,p1,1,p1,2) ;
draw fromtopaths(followpath,p2,3,p2,4) ;
draw fromtopaths(followpath,p1,2,p1,3,

"\node{M:PP}") ;
draw fromtopaths(followpath,p2,1,p2,2) ;
draw fromtopaths(followpath,p3,1,p3,2) ;
draw fromtopaths(followpath,p2,2,p2,3,

"\node{Ax:NP}") ;
draw fromtopaths(followpath,p4,1,p4,2) ;
draw fromtopaths(followpath,p5,1,p5,2) ;
draw fromtopaths(followpath,p4,2,p4,3,

"\node{P:VP}") ;
draw fromtopaths(followpath,p6,1,p6,2) ;
draw fromtopaths(followpath,p7,1,p7,2) ;
draw fromtopaths(followpath,p6,2,p6,3,

"\node{PCs:AdjP}") ;
draw fromtopaths(followpath,p0,1,p0,2) ;
draw fromtopaths(followpath,p1,3,p1,4) ;
draw fromtopaths(followpath,p0,2,p0,3,

"\node{S:NP}") ;
draw fromtopaths(followpath,p4,3,p4,4) ;
draw fromtopaths(followpath,p6,3,p6,4) ;
draw fromtopaths(followpath,p4,4,p4,5,

"\node{Pred:PredP}") ;
draw node(p0,4.5,"\node{Cl}") ;
draw fromtopaths(followpath,p0,3,p0,4.5);
draw fromtopaths(followpath,p4,5,p4,6) ;

\stopMPcode

7 A 3D projection
Although MetaPost is a 2D drawing language, it can
be easily extended to work in 3D. Several attempts
have been made in the past ranging from simple to
complicated. Here, we will take a simple approach.

The MetaPost language includes a triplet vari-
able type, used to handle rgb colors (it also has
a quadruplet type used for cmyk colors). We will
use this triplet type to hold 3D coordinates.
There is a separate ConTEXt module, entitled three,
which creates a new MetaPost instance (also named
three), which loads a set of macros that can be used
to manipulate these triplet coordinates.
\usemodule [three]

\startMPcode{three}
...
\stopMPcode

For our purposes here, only one function is really
necessary: projection(), which maps a 3D coordi-
nate to a 2D projection on the page. This will not
be a perspective projection having a viewpoint and

a focus point, but rather a very simple oblique pro-
jection, useful for, e.g., pseudo-3D schematic draw-
ings. The Z coordinate is taken to be up and the
Y coordinate taken to be right, both in the plane
of the paper. The third coordinate X is an oblique
projection in a right-hand coordinate system.

Intended for schematic drawings, there is no au-
tomatic hidden-line removal nor effects like shading,
and line crossings need to be handled manually (us-
ing crossingunder introduced previously). In Fig-
ure 17 we draw a simple cubical commutative dia-
gram, with a node at each corner.
\startMPcode{three}

save nodepath ;
path nodepath ;
nodepath = (projection Origin --

projection (1,0,0) --
projection (1,1,0) --
projection (0,1,0) --
projection (0,1,1) --
projection (1,1,1) --
projection (1,0,1) --
projection (0,0,1) --
cycle) scaled 5cm ;

draw node(0, "\node
{${\cal C}_{i\cal P}^{\mathrm{nt}}$}");

draw node(1, "\node
{${\cal C}_{i\cal G}^{\mathrm{nt}}$}");

draw node(2, "\node
{${\cal C}_{j\cal P}^{\mathrm{nt}}$}");

draw node(3, "\node
{${\cal C}_{j\cal G}^{\mathrm{nt}}$}");

draw node(4,
"\node{${\cal C}_{j\cal G}$}") ;

draw node(5,
"\node{${\cal C}_{j\cal P}$}") ;

draw node(6,
"\node{${\cal C}_{i\cal G}$}") ;

draw node(7,
"\node{${\cal C}_{i\cal P}$}") ;

interim crossingscale := 30 ;
drawdoublearrows fromto(0,0,1) ;
drawdoublearrows fromto(0,1,2) ;
drawdoublearrows fromto(0,2,3) ;
drawdoublearrows fromto(0,3,0)

crossingunder fromto(0,2,5) ;
drawdoublearrows fromto(0,7,6) ;
drawdoublearrows fromto(0,6,5) ;
drawdoublearrows fromto.ulft(0,5,4,

"\node{τ_j~}") ;
drawdoublearrows fromto.top (0,7,4,

"\node{σ}") ;
drawdoublearrows fromto.lrt(0,0,7,

"\node{$Ψ^{\mathrm{nt}}$}")
crossingunder fromto(0,6,5) ;

TUGboat, Volume 39 (2018), No. 1 79

A. Braslau, I. Hamid, and H. Hagen

drawdoublearrows fromto(0,1,6) ;
drawdoublearrows fromto(0,2,5) ;
drawdoublearrows fromto(0,3,4) ;

\stopMPcode

𭒞nt
𭑖𭒫

𭒞nt
𭑖𭒢 𭒞nt

𭑗𭒫

𭒞nt
𭑗𭒢

𭒞𭑗𭒢

𭒞𭑗𭒫𭒞𭑖𭒢

𭒞𭑖𭒫

𭜏𭑗

𭜎

Ψnt

Figure 17

Note the use of drawdoublearrows, a new Metafun
command that is introduced here.

8 Two final examples
We end this paper with two examples of more ad-
vanced commutative diagrams. The following exam-
ple, shown in Figure 18, illustrates what in category
theory is called a pullback. It is inspired from an ex-
ample given in the TikZ CD (commutative diagrams)
package.

𭑝

𭑓𭑞

𭑔

(𭑥, 𭑦)

𭑥

𭑦 𭑋 ×𭑍 𭑌 𭑋

𭑍𭑌

𭑇

Figure 18

The arrow labeled “(𭑥, 𭑦)” is drawn dashed
withdots and illustrates how the line gets broken,
implicitly crossingunder its centered label.
\startnodes [dx=2.5cm,dy=2cm,

alternative=arrow]

\placenode [0, 0] {\node{$X\times_Z Y$}}
\placenode [1, 0] {\node{X}}
\placenode [1,-1] {\node{Z}}
\placenode [0,-1] {\node{Y}}
\placenode [-1,1] {\node{T}}

\connectnodes [0,1] [position=top,
label={\nodeSmall{p}}]

\connectnodes [1,2] [position=right,
label={\nodeSmall{f}}]

\connectnodes [0,3] [position=right,
label={\nodeSmall{q}}]

\connectnodes [3,2] [position=top,
label={\nodeSmall{g}}]

\connectnodes [4,0] [option=dotted,
rulethickness=1pt,
label={\nodeSmall{(x,y)}}]

\connectnodes [4,1] [offset=+.13,
position=top,
label={\nodeSmall{x}}]

\connectnodes [4,3] [offset=-.13,
position=topright,
label={\nodeSmall{y}}]

\stopnodes

The previous diagram was drawn using the Con-
TEXt interface. Our final example, shown in Fig-
ure 19, gives another “real-life” example of a categor-
ical pullback, also inspired by TikZ-CD, but this time
drawn through the MetaPost interface and solving
for positions.
\startMPcode

clearnodepath;
save l ; l = 5ahlength ;
save A, B, C, D, E ;
pair A, B, C, D, E ;
A.i = 0 ; B.i = 1 ; C.i = 2 ;
D.i = 3 ; E.i = 4 ;
A = makenode(A.i,"\node

{$\pi_1(U_1\cap U_2)$}") ;
B = makenode(B.i,"\node

{$\pi_1(U_1)\ast_{\pi_1(U_1\cap U_2)}
\pi_1(U_2)$}") ;

C = makenode(C.i,
"\node{$\pi_1(X)$}") ;

D = makenode(D.i,
"\node{$\pi_1(U_2)$}") ;

E = makenode(E.i,
"\node{$\pi_1(U_1)$}") ;

A = origin ;
B = A + betweennodes.rt(nodepath,A.i,

nodepath,B.i)
+ (l,0) ;

C = B + betweennodes.rt(nodepath,B.i,
nodepath,C.i)

+ (.7l,0) ;
D = .5[A,B] + (0,-.9l) ;
E = .5[A,B] + (0, .9l) ;

80 TUGboat, Volume 39 (2018), No. 1

ConTEXt nodes: commutative diagrams and related graphics

𭜋1(𭑈1 ∩ 𭑈2) 𭜋1(𭑈1) ∗𭜋1(𭑈1∩𭑈2) 𭜋1(𭑈2) 𭜋1(𭑋)

𭜋1(𭑈2)

𭜋1(𭑈1)

𭑖2

𭑖1

𭑗1

𭑗2

≃

Figure 19 A categorical pullback diagram, with MetaPost
finding the positions.

for i = A.i, B.i, C.i, D.i, E.i :
draw node(i) ;

endfor
drawarrow fromto.llft(0,A.i,D.i,

"\smallnode{i_2}") ;
drawarrow fromto.ulft(0,A.i,E.i,

"\smallnode{i_1}") ;
drawarrow fromto (0,D.i,B.i) ;
drawarrow fromto (0,E.i,B.i) ;
drawarrow fromto.urt(.1,E.i,C.i,

"\smallnode{j_1}") ;
drawarrow fromto.lrt(-.1,D.i,C.i,

"\smallnode{j_2}") ;
drawarrow fromto.top(0,B.i,C.i)

dashed evenly ;
draw textext.top("{\strut\simeq}")

shifted point .4 of fromto(0,B.i,C.i) ;
\stopMPcode

9 Conclusions
There was initial consensus at the 2017 ConTEXt
Meeting in Maibach, Germany, where a version of
this package was presented, that there was little use
of developing a purely ConTEXt interface. Rather,
the MetaPost package should be sufficiently acces-
sible. Since then, however, we decided that the de-
velopment of a derivative ConTEXt interface imple-
menting some basic functionality could indeed be
useful for many users, although it will necessarily
remain somewhat limited. Users are recommended
to turn to the pure MetaPost interface when more
sophisticated functionality is needed.

10 Acknowledgements
This module was inspired by a request made by
Idris Samawi Hamid to draw a natural transforma-
tion diagram in MetaPost (see Figure 4). The Meta-
Post macros that were then developed have bene-
fited from improvements suggested by Hans Hagen
as well as inspiration provided by Taco Hoekwater.

References
[1] F.W. Lawvere and S.H. Schanuel, Conceptual

Mathematics: A first introduction to categories
(2nd ed.), Cambridge University Press, Cam-
bridge, UK, 2009.

[2] H.A. Krebs, “Cyclic processes in living matter”,
Enzymologia 12, 88–100, 1946.

[3] H.A. Bethe, “Energy Production in Stars”, Phys-
ical Review 55, 103–103, 1939; H.A. Bethe, “En-
ergy Production in Stars”, Physical Review 55,
434–456, 1939.

⋄ A. Braslau, I. Hamid, and H. Hagen
The ConTEXt development team
braslau.list (at) comcast.net,
ishamid (at) colostate.edu,
pragma (at) wxs.nl

