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Three-dimensional graphics with
TikZ/PSTricks and the help of GeoGebra

Luciano Battaia

Abstract

In this article we consider the opportunity of using
dynamic geometry software, such as GeoGebra, to
allow easy exporting of three-dimensional geometric
pictures, with subsequent 2D parallel projection, in
PGF/TikZ or PSTricks code. The help of software like
GeoGebra considerably simplifies the production of
very complex pictures in LATEX code, requiring only a
basic knowledge of PGF/TikZ or PSTricks languages
and taking advantage of a substantially mouse driven
program. All examples and sample code here are in
PGF/TikZ, but almost nothing changes if one prefers
PSTricks.

1 Introduction

LATEX users, particularly those writing scientific pa-
pers, have always had a need for high-quality vector
graphics, including labels, that fit the style of the
rest of their documents.

There is no special problem in the case of two-
dimensional graphics, and the two most widespread
tools PSTricks and PGF/TikZ (that from now on
will only be mentioned merely as TikZ), together
with their derived packages, solve almost every prob-
lem very well. As Claudio Beccari has shown [2],
LATEX’s basic picture environment is sufficient for
many situations.

Things change substantially if we are interested
in three-dimensional graphics. Plots of two-variable
functions and of various kinds of surfaces can easily
be handled using dedicated packages, for instance
pst3dplot or pgfplots. Also, for geometric figures
some very interesting packages are available, for ex-
ample pst-solides3d or pst-3d in the PSTricks family
or tikz-3dplot in the TikZ family, but in all cases a
rather deep knowledge of programming techniques
in PSTricks or TikZ is needed and, in our opinion,
this is not at all easy for the average user.

External programs that produce PSTricks or
TikZ codes can help, for instance Sketch by Eugene
Ressler (see for example [3]) and TEXgraph by Patrick
Fradin (texgraph.tuxfamily.org/). The last one
in particular is very powerful and can also produce
POV-Ray code, but, again, it is not within the reach
of most users. Almost the same remarks apply to
Asymptote, whose code can be directly included in a
LATEX source through the asymptote package.

An interesting and detailed introduction to the
problem of producing three-dimensional graphics

with TikZ can be found in an article by Keith Wol-
cott [5]. It was in fact the reading of this article
that led us to study the problem in order to find
a more accessible solution. Wolcott’s article ends
with a figure which shows only the partial solution of
what had been the main purpose of the project: the
drawing of two spheres and their circle of intersection.
The author himself points out that the figure needs
more work.

This is the reason why we begin this article
with figure 1, which exactly reaches Wolcott’s goal.
Explanations on how we obtain it will be given later,
but we immediately point out that our approach to
the problem is completely different from Wolcott’s.
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Abstract

In this article we consider the opportunity of using a
dynamical geometry software like Geogebra in order
to allow an easy export of three-dimensional geomet-
ric pictures, with subsequent 2D parallel projection,
in PGF/TikZ or PSTricks code. The help of a software
like Geogebra makes easy enough the production of
very complex pictures in LATEX code, having only a
basic knowledge of PGF/TikZ or PSTricks languages
and taking advantage of a programming substantially
mouse driven. All examples and sample codes are in
PGF/TikZ, but almost nothing changes if one prefers
PSTricks.

1 Introduction

The need for high quality vector graphics in LATEX
documents, in particular with labels in the same
style as the document, has always been an essential
request by all users, above all for scientific papers.

There is no special problem in the case of two-
dimensional graphics, and the two most widespread
tools PSTricks and PGF/TikZ (that from now on will
only be mentioned shortly as TikZ), together with
their derived packages, solve almost every problem
very well. As shown by Claudio Beccari [2], in many
situations the use of the basic LATEX picture envi-
ronment is sufficient, without any intervention of
external packages.

Things change a lot if we are interested in three-
dimensional graphics. Plots of two variables func-
tions and of various kinds of surfaces can easily
be handled using dedicated packages, for instance
pst3dplot or pgfplots. Also for geometric figures some
very interesting packages are available, for exam-
ple pst-solides3d or pst-3d in the PSTricks family or
tikz-3dplot in the TikZ family, but in all cases a some-
what deep knowledge of programming techniques in
PSTricks or TikZ is needed and, in our opinion, this
is not easy at all for the average user.

External programs that produce PSTricks or
TikZ codes can help, for instance Sketch by Eugene
Ressler, see for example [3], or TEXgraph by Patrick
Fradin (http://texgraph.tuxfamily.org/). The
last one in particular is very powerful and can also
produce POV-Ray code, but, again, it is not within
the reach of most users. Almost the same remarks
apply to Asymptote, whose code can be directly in-
cluded in a LATEX source through the asymptote pack-
age.

An interesting and detailed introduction to the
problem of producing three-dimensional graphics
with TikZ can be found in an article by Keith Wol-
cott [5], and actually it was just the reading of this
article that led us to study the problem in order to
find a more affordable solution. This article ends
indeed with a figure that shows the only partial so-
lution of what was the main purpose of the project:
the drawing of two spheres and their circle of inter-
section. Wolcott himself points out that the figure
needs more work.

That’s the reason why we begin this article with
figure 1 that exactly reaches Wolcott’s goal. Expla-
nations on how to obtain it will be given later, but
we immediately point out that our approach to the
problem is completely different from Wolcott’s one.

Figure 1: The intersection of two spheres with the
circle of intersection

For the sake of completeness, we would like to
point out that a slightly different version of this
article, in Italian, can be found in [1].

2 The coming of Geogebra on the scene

For educational reasons we have been using Geogebra
for a long time, both because its non-commercial use
is free and because its basic use is extremely simple.
With reference to the problem we are dealing with,
the interesting thing is the possibility of producing
complex two-dimensional figures and exporting them
in PSTricks or TikZ code, that can then be copied
and pasted directly in a LATEX source with only very
limited adaptations, mainly regardind the correct
label positioning. The required knowledge of LATEX
packages is minimal and affordable for even inexpe-
rienced users. Substantially you can produce even
complex figures to be included in LATEX documents
with a WYSIWYG technique and extensively using
the mouse. This seems far enough from what a LATEX
user normally does, but we think that in the case
of graphics this strategy should be preferred. Of
course one must know Geogebra well enough, but
this does not require the study of long and complex

Figure 1: The intersection of two spheres with the
circle of intersection

For the sake of completeness, we mention that
a slightly different version of this article, in Italian,
can be found in [1].

2 The coming of GeoGebra on the scene

For educational reasons we have been using GeoGebra
for a long time, both because its non-commercial use
is free and because its basic use is extremely simple.
With reference to the problem we are dealing with,
the interesting thing is the possibility of producing
complex two-dimensional figures and exporting them
in PSTricks or TikZ code, that can then be copied
and pasted directly into a LATEX source with only
very limited adaptations, mainly regarding correct
label positioning. The required knowledge of LATEX
packages is minimal and manageable for even in-
experienced users. In short, anyone can produce
even complex figures to be included in LATEX docu-
ments with a WYSIWYG technique and extensively
using the mouse. This seems far from what a LATEX
user normally does, but we think that in the case of
graphics this strategy is preferable for many users.
Of course one must know GeoGebra well enough,
but this does not require the study of long and com-
plex handbooks and, at any rate, dynamic geometry
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software is of great help in experimenting with the
construction of technical figures. An example of a
complex 2D figure easily produced in GeoGebra and
exported into TikZ almost without intervention in
the generated code is shown in figure 2.
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handbooks and, at any rate, a software of dynamic
geometry is of great help to experiment the construc-
tion of technical figures. An example of a complex
2D figure easily produced in Geogebra and exported
in TikZ almost without any intervention in the code
is proposed in figure 2.
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Figure 2: A picture produced with Geogebra and
exported in TikZ, used for a master degree thesis

Geogebra can export figures both in PSTricks
and TikZ code (and even in Asymptote): in this
article we consider only the case of TikZ with which
all the proposed figures are realized, pointing out
however that substantially nothing changes if you
prefer PSTricks, because, apart some adaptations and
a limited work to clean up the code, everything is
automatically produced. For this reason also, only
very few fragments of source code will be proposed.
In addition to this fact it should be noted that the
codes are not very interesting, as they consist al-
most exclusively of \draw instructions: all needed
calculations have already been done by Geogebra.

Some time ago a new version of Geogebra, that
supports three-dimensional graphics, has been re-
leased. Unfortunately for the 3D version no export
in a LATEX format has been yet implemented and,
in our opinion, this will not be possible, at least
in a reasonably short time. Because of this limi-
tation we decided to experiment the possibility of
directly executing a 3D to 2D projection in Geogebra
and then exporting it in TikZ code: indeed each
3D figure is just an appropriate 2D projection of a
three-dimensional object.

Taking this in mind, the first thing we tried to
do is the reproduction of a sphere originally drawn
by Tomasz M. Trzeciak [4] and also reproduced by
Keith Wolcott [5]. You can easily compare our own
picture, see figure 3, with Trzeciak’s one in Wolcott’s
article.

Figure 3: Sphere with meridians and parallels,
produced with code exported from Geogebra

The two pictures are almost identical but the
TikZ codes are indeed completely different: you can
compare them in detail in the Italian version of this
article [1]. Here we only want to point out the fact
that Trzeciak’s code is much more concise and ele-
gant, but it requires a deep knowledge of PGF pro-
gramming: in fact you must first instruct PGF to
make the correct calculations for the visible and in-
visible parts of each Latitude or Longitude circles,
using appropriate PGF macros, and only after that
you can draw the circles. In our code all calculations
are made by Geogebra, and only the drawing part is
left to TikZ.

3 Some maths behind the scene

Geogebra is a very well structured and powerful soft-
ware of dynamic geometry: there are two different
windows for 2D graphics, a window for 3D graphics,
a fairly complete spreadsheet, a probability calcula-
tor and an algebra window where you can read the
coordinates of the points, the equations of the curves,
and so on. The very important feature is that all the
windows can interact with each other: regarding our
problem all what you obtain in the 3D window can
be appropriately transferred to the main 2D window
(and then exported in LATEX code). Besides that, it
is interesting to note that Geogebra is in any case
“LATEX oriented”: all textual annotations are inserted
in the windows with LATEX code.

Let us consider a Cartesian orthogonal system
in three-dimensional space, that in Geogebra is dis-
played in the 3D window, with an upward vertical
z-axis; call α a rotation around the vertical axis and
β a rotation around a horizontal axis. The paral-
lel projection of this Cartesian system in a plane
(that in our case will be the main 2D window of
Geogebra), can be obtained, for instance, with the

Figure 2: A picture produced with GeoGebra and
exported into TikZ, used for a master’s degree thesis

GeoGebra can export figures into both PSTricks
and TikZ code (and even into Asymptote); in this
article we consider only the case of TikZ, with which
all the figures shown are realized. However, as men-
tioned above, substantially nothing changes if you
prefer PSTricks, because, apart from some adapta-
tions and some limited work to clean up the code,
everything is automatically produced. For this rea-
son also, only a few fragments of source code will be
included. In addition, it should be noted that the
generated code is not very interesting, as it consists
almost exclusively of \draw instructions; all needed
calculations have already been done by GeoGebra.

Some time ago a new version of GeoGebra (Geo-
gebra Classic 5.0) which supports three-dimensional
graphics was released. Unfortunately, for this 3D

version no export into a LATEX format has yet been
implemented and, in our opinion, this will not be pos-
sible, at least not in a reasonably short time. Because
of this limitation we decided to experiment with the
possibility of directly executing a 3D to 2D projec-
tion in GeoGebra and then exporting it into TikZ
code. Indeed, each 3D figure is just an appropriate
2D projection of a three-dimensional object.

Keeping this in mind, the first thing we tried to
reproduce is a sphere originally drawn by Tomasz M.
Trzeciak [4]; it was also reproduced by Keith Wolcott
in [5]. Please compare Trzeciak’s original (figure 3)
with ours (figure 4).

The two pictures are almost identical but the
TikZ codes are indeed completely different; you can
compare them in detail in the Italian version of this
article [1]. Here we only want to point out the fact

Figure 3: Sphere with meridians and parallels,
produced by Tomasz Trzeciak using PGF/TikZ

Figure 4: Sphere with meridians and parallels,
produced with code exported from GeoGebra

that Trzeciak’s code is much more concise and ele-
gant, but it requires a deep knowledge of PGF pro-
gramming. In fact you must first instruct PGF to
make the correct calculations for the visible and in-
visible parts of each latitude or longitude circle, using
appropriate PGF macros, and only after that you
can draw the circles. In our code all calculations are
made by GeoGebra, and only the drawing part is
left to TikZ.

3 Some maths behind the scene

GeoGebra is a very well structured and powerful pro-
gram for dynamic geometry. There are two different
windows for 2D graphics, a window for 3D graphics,
a fairly complete spreadsheet, a probability calcula-
tor and an algebra window where you can read the
coordinates of the points, the equations of the curves,
and so on. The very important feature is that all the
windows can interact with each other. Regarding our
problem, all that is obtained in the 3D window can
be appropriately transferred to the main 2D window

Three-dimensional graphics with TikZ/PSTricks and the help of GeoGebra
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(and then exported into LATEX code). Moreover, it
is interesting to note that GeoGebra is in any case
“LATEX oriented”; all textual annotations are inserted
in the windows with LATEX code.

Let us consider a Cartesian orthogonal system
in three-dimensional space, that in GeoGebra is dis-
played in the 3D window, with an upward vertical
z-axis; call α a rotation around the vertical axis and
β a rotation around a horizontal axis. The paral-
lel projection of this Cartesian system in a plane
(that in our case will be the main 2D window of
GeoGebra), can be obtained, for instance, with the
following formulas:

~i =
(
− cos(α),− sin(α) sin(β)

)
~j =

(
sin(α),− cos(α) sin(β)

)
~k =

(
0, cos(β)

) ,

where~i, ~j, ~k are the vectors of the basis. If you set the
origin to the point O = (0, 0), which is preferable, you
must create two angle sliders with the names α and
β; afterwards the basis vectors can be constructed
with the following GeoGebra code:

i = Vector[O, (− cos(α),− sin(α) sin(β))]

j = Vector[O, (sin(α),− cos(α) sin(β))]

k = Vector[O, (0, cos(β))]

.

Now, if you consider a point P = (xP, yP, zP) in
the 3D window, its projection will be

P′ = xP~i+ yP~j + zP ~k,

or, in the language of GeoGebra,

P′ = x(P) i + y(P) j + z(P) k.

If you consider instead a curve C with paramet-
ric equations (f(t), g(t), h(t)), with the parameter t
appropriately included between two extremes, its 2D

projection, always in the GeoGebra language, will
be

x′ = f(t)x(i) + g(t)x(j) + h(t)x(k)

y′ = f(t) y(i) + g(t) y(j) + h(t) y(k)
.

These formulas allow the 2D projection of every fig-
ure made in the 3D window of GeoGebra. After that
you can experiment to find the best view for the
figure by changing the angles α and β, working in
the 2D window; this is an important feature because
in general it is very difficult to find the appropriate
viewing angle, and only trying over and over again
can lead to the solution. Naturally not even Geo-
Gebra minimizes the problem of 3D graphics as it is
clear that those who need images of this type must
have a good mathematical preparation. Nothing is
obtained for free!

In light of these formulas let’s see in detail, as an
example, how the sphere of figure 4 can be obtained.

Begin by plotting the 3D sphere with center the origin
and radius r and its 2D projection that is simply
the circle with center the origin and again radius
r. Next draw the parallels and meridians simply
intersecting the sphere with appropriate planes. If,
for instance, you need five parallels they will be found
at the latitudes −60◦, −30◦, 0◦, 30◦, 60◦ and the
corresponding planes have the following equations

z = r sin(−60◦) ; z = −r
√

3/2

z = r sin(−30◦) ; z = −r/2
z = r sin(0◦) ; z = 0

z = r sin(30◦) ; z = r/2

z = r sin(60◦) ; z = r
√

3/2

.

These planes can be plotted simply by writing the
equations in the input bar. Now ask GeoGebra to
find the intersection circle of the planes with the
sphere and choose (for instance using the mouse)
five points on each circle. After projecting these
points on the 2D window, plot the conic through
them, using the specific Command; this will be the
projected parallel. Do the same for the meridians.
Now, after choosing the best viewing angle, highlight
the visible and invisible part of each ellipse. For the
invisible part you can decide if you want to show
it or not, you can choose a broken line, a reduced
thickness, and so on. When everything is perfectly
configured, export into TikZ (or PSTricks) and insert
the code in your LATEX document; it usually works
very well and only small adaptations are normally
needed, for instance regarding the position of the
labels or if you need special shading. The technique
that we have illustrated is absolutely basic; with a
little experience in the use of GeoGebra, everything
can be faster and further automated.

A point that deserves further attention from
what has been previously described is how to treat
the visible or invisible parts of the projected figure
in GeoGebra. The 3D window of the software can
automatically handle the visible or invisible parts,
as shown in the screen shot of figure 5.

The projection of this picture on the 2D window
produces an image where visible and invisible parts
are plotted in the same style, as shown in figure 6;
such a figure can’t be exported as it is.

Now, by comparing the side by side images of
the 3D and 2D windows, and using the Intersect
command of Geogebra, one can correctly highlight
the visible and invisible parts of each curve and
finally obtain the image ready to export. It is shown
in figure 7.

Regarding the intersection of two spheres, plot-
ted in figure 1, there are no further complications
since the intersection circle can be found directly by
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Figure 5: Screenshot of the main 3D window of
GeoGebra for the production of the sphere of figure 4

Figure 6: Screenshot of the 2D projection in
Geogebra of the 3D window shown in figure 5

GeoGebra and then projected on the 2D window as
described. In this case we have chosen not to show
the overlapping parts of the spheres at all, in order
to obtain a more readable figure.

4 A spiral on a sphere

The following example requires a minimum of extra
mathematics, but no further work on the code. The
goal is to plot a complex spiral, with endless turns,
on a sphere, highlighting the property that the angle
between the meridians and the spiral remains con-
stant. The best way to solve the problem is to use

Figure 7: Screenshot of the main 2D window of
Geogebra ready to be exported for the production of
the sphere of figure 4

the following parametric equations of the spiral

x(t) =
r cos t√
1 + a2t2

y(t) =
r sin t√
1 + a2t2

z(t) =
−art√
1 + a2t2

,

where r is the radius of the sphere and a is a pa-
rameter. It is preferable to set up r and a with
sliders in GeoGebra and then choose the best values
after testing different ones. The tracing of the tan-
gent vectors and of the angles identified by them is
straightforward.

The only thing that needs special attention is
the fact that plots of lines such as the one needed
here can’t be drawn directly by TikZ and you need
external software, for instance GNUPLOT, but this
can be done in a straightforward way, and, in any
case, GeoGebra automatically handles this problem
in the export procedure! It should be noticed that
PSTricks handles directly these situations. The final
plot is shown in figure 8.

5 Polyhedra

One of the situations where GeoGebra’s interven-
tion is truly providential is the drawing of polyhedra
and their developments; there are special routines
to draw, in particular, Platonic solids and to show
dynamically their development. The 2D projection of
such figures is indeed very simple because you need
only to find the correct position of the projected
vertices, whose three-dimensional coordinates are au-
tomatically found by GeoGebra. Figure 9 shows the
dodecahedron, while figure 10 shows a step towards
its development in a plane.

Three-dimensional graphics with TikZ/PSTricks and the help of GeoGebra
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Figure 8: A spiral on a sphere
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sliders in Geogebra and then choose the best values
after testing different ones. The tracing of the tan-
gent vectors and of the angles identified by them is
straightforward.

The only thing that needs special attention is the
fact that plots of lines like the one needed here can’t
be drawn directly by TikZ and you need external
softwares, for instance GNUPLOT, but this can be
done in a straightforward way, and, in any case,
Geogebra automatically handles this problem in the
export procedure! It should be noticed that PSTricks
handles directly these situations. The final plot is
shown in figure 4.
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Figure 4: A spiral on a sphere

5 Polyhedra

One of the situations where Geogebra’s intervention
is truly providential is the drawing of polyhedra
and their developments: there are special routines
to draw in particular Platonic solids and to show
dynamically their developments. The 2D projection
of such figures is indeed very simple because you need
only to find the correct position of the projected
vertices, whose three-dimensional coordinates are
automatically found by Geogebra. Figure 5 shows the
dodecahedron, while figure 6 shows a step towards
its development in a plane.

Don’t be fooled by the apparent simplicity of
these pictures: the hand calculation of the coordi-
nates of the vertices of the dodecahedron is not easy
at all, and, even worse, their position during devel-
opment!

Also the drawing of the inscribed and circum-
scribed spheres is straightforward and you can see
an example concerning the octahedron in figure 7.

Even more important is the fact that the draw-
ing of the curves described by the vertices during
development is easy enough. In Geogebra every ver-
tex can leave a track during the development and it

Figure 5: The regular dodecahedron

Figure 6: The regular dodecahedron: a step towards
its development in a plane

Figure 7: The regular octahedron and its inscribed
sphere. L’ottaedro regolare e la sfera inscritta. The
meridians and the parallels through four of the eight
the tangent points are highlighted

is possible to project this track in the 2D window: it
is now very simple to plot, using a Geogebra macro, a
Bezier curve, maybe at intervals, that approximates
this track. Exporting this Bezier curve is a standard
procedure. You can see an example in figure 8: the
curve Γ is a complex curve, while all the others are
simply circle arcs .It is in principle possible to find

Figure 9: The regular dodecahedron
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sliders in Geogebra and then choose the best values
after testing different ones. The tracing of the tan-
gent vectors and of the angles identified by them is
straightforward.

The only thing that needs special attention is the
fact that plots of lines like the one needed here can’t
be drawn directly by TikZ and you need external
softwares, for instance GNUPLOT, but this can be
done in a straightforward way, and, in any case,
Geogebra automatically handles this problem in the
export procedure! It should be noticed that PSTricks
handles directly these situations. The final plot is
shown in figure 4.
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Figure 4: A spiral on a sphere

5 Polyhedra

One of the situations where Geogebra’s intervention
is truly providential is the drawing of polyhedra
and their developments: there are special routines
to draw in particular Platonic solids and to show
dynamically their developments. The 2D projection
of such figures is indeed very simple because you need
only to find the correct position of the projected
vertices, whose three-dimensional coordinates are
automatically found by Geogebra. Figure 5 shows the
dodecahedron, while figure 6 shows a step towards
its development in a plane.

Don’t be fooled by the apparent simplicity of
these pictures: the hand calculation of the coordi-
nates of the vertices of the dodecahedron is not easy
at all, and, even worse, their position during devel-
opment!

Also the drawing of the inscribed and circum-
scribed spheres is straightforward and you can see
an example concerning the octahedron in figure 7.

Even more important is the fact that the draw-
ing of the curves described by the vertices during
development is easy enough. In Geogebra every ver-
tex can leave a track during the development and it

Figure 5: The regular dodecahedron

Figure 6: The regular dodecahedron: a step towards
its development in a plane

Figure 7: The regular octahedron and its inscribed
sphere. L’ottaedro regolare e la sfera inscritta. The
meridians and the parallels through four of the eight
the tangent points are highlighted

is possible to project this track in the 2D window: it
is now very simple to plot, using a Geogebra macro, a
Bezier curve, maybe at intervals, that approximates
this track. Exporting this Bezier curve is a standard
procedure. You can see an example in figure 8: the
curve Γ is a complex curve, while all the others are
simply circle arcs .It is in principle possible to find

Figure 10: The regular dodecahedron: a step towards
its development in a plane

Don’t be fooled by the apparent simplicity of
these pictures. The hand calculation of the coor-
dinates of the vertices of the dodecahedron is not
easy at all, and, even worse, their position during
development!

Also, the drawing of the inscribed and circum-
scribed spheres is straightforward and you can see
an example concerning the octahedron in figure 11.

Figure 11: The regular octahedron and its inscribed
sphere. The meridians and the parallels through four
of the eight tangent points are highlighted

Even more important is the fact that the draw-
ing of the curves described by the vertices during
development is relatively straightforward. In Geo-
Gebra every vertex can leave a track during the de-
velopment and it is possible to project this track in
the 2D window; it is now very simple to plot, using a
GeoGebra macro, a Bezier curve, maybe at intervals,
that approximates this track. Exporting this Bezier
curve is a standard procedure. You can see an exam-
ple in figure 12; the curve Γ is a complex curve, while
all the others are simply circle arcs. It is in principle
possible to find the parametric equations of Γ, but
the use of GeoGebra capabilities makes everything
extremely simple, without any calculation.
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the parametric equations of Γ, but the use of Geoge-
bra capabilities makes everything extremely simple,
without any calculation.
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Figure 8: One of the different plane developments of
the regular octahedron. The curves described by the
vertices during development are highlighted

Once you have built the outline of a dodecahe-
dron in the 3D window of Geogebra, you can also
experiment interesting derived figures. An example
is given in figure 9, where the Leonardo’s Dodeca-
hedron Planum Vacuum is represented: once more
the calculation of the position of the vertices of this
figure is almost straightforward in Geogebra, but it
could be very difficult otherwise.

Figure 9: Dodecahedron Planum Vacuum, in
Leonardo’s style

6 The football

Once you have acquired familiarity with the Platonic
solids, you can experience the expansion of the tech-
nique to other solids, i.e. the Archimedean solids.
These can be obtained in various ways from the Pla-
tonic ones, for example by truncation starting from
the vertices. In figure 10 we show the case of the
icosahedron: given the Platonic solid, we consider,
for each vertex, a sphere centered at the vertex itself

and with variable radius. The intersection of this
sphere with the sides of the polyhedron gives rise
to regular pentagons and hexagons: the latter be-
come regular when the radius of the sphere is exactly
1/3 of the side of the polyhedron and this situation
corresponds to the truncated icosahedron. Using Ge-
ogebra it is very easy again to document this process:
simply project the truncation at the desired stage
and then export it.

Figure 10: Outline of the truncation of the
icosahedron starting from the vertices

Figure 11 shows the final result. Nothing new
is required in Geogebra to obtain this last figure: it
is exactly the same construction used for the pre-
vious figure 10, only with a different radius for the
truncating spheres.

Figure 11: The truncated icosahedron

As is well known, the football is simply the pro-
jection of the truncated icosahedron on the circum-
scribed sphere. This can can be achieved in different
ways. In our opinion the simplest one is to project
each side of the polyhedron onto the sphere by means
of a parametric equation and then again to project
the obtained arc in the 2D window. Following we de-
scribe the outline of this technique. Given a segment
AB with bounds (xA, yA, zA) and (xB, yB, zB), write
the standard parametric equations of the segment

Figure 12: One of the different plane developments of
the regular octahedron. The curves described by the
vertices during development are highlighted

Once you have built the outline of a dodeca-
hedron in the 3D window of GeoGebra, you can
also experiment with interesting derived figures. An
example is given in figure 13, where Leonardo’s Do-
decahedron Planum Vacuum is represented. Once
more the calculation of the position of the vertices

Luciano Battaia
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of this figure is almost straightforward in GeoGebra,
but it could be very difficult otherwise.
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the parametric equations of Γ, but the use of Geoge-
bra capabilities makes everything extremely simple,
without any calculation.

A
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Figure 8: One of the different plane developments of
the regular octahedron. The curves described by the
vertices during development are highlighted

Once you have built the outline of a dodecahe-
dron in the 3D window of Geogebra, you can also
experiment interesting derived figures. An example
is given in figure 9, where the Leonardo’s Dodeca-
hedron Planum Vacuum is represented: once more
the calculation of the position of the vertices of this
figure is almost straightforward in Geogebra, but it
could be very difficult otherwise.

Figure 9: Dodecahedron Planum Vacuum, in
Leonardo’s style

6 The football

Once you have acquired familiarity with the Platonic
solids, you can experience the expansion of the tech-
nique to other solids, i.e. the Archimedean solids.
These can be obtained in various ways from the Pla-
tonic ones, for example by truncation starting from
the vertices. In figure 10 we show the case of the
icosahedron: given the Platonic solid, we consider,
for each vertex, a sphere centered at the vertex itself

and with variable radius. The intersection of this
sphere with the sides of the polyhedron gives rise
to regular pentagons and hexagons: the latter be-
come regular when the radius of the sphere is exactly
1/3 of the side of the polyhedron and this situation
corresponds to the truncated icosahedron. Using Ge-
ogebra it is very easy again to document this process:
simply project the truncation at the desired stage
and then export it.

Figure 10: Outline of the truncation of the
icosahedron starting from the vertices

Figure 11 shows the final result. Nothing new
is required in Geogebra to obtain this last figure: it
is exactly the same construction used for the pre-
vious figure 10, only with a different radius for the
truncating spheres.

Figure 11: The truncated icosahedron

As is well known, the football is simply the pro-
jection of the truncated icosahedron on the circum-
scribed sphere. This can can be achieved in different
ways. In our opinion the simplest one is to project
each side of the polyhedron onto the sphere by means
of a parametric equation and then again to project
the obtained arc in the 2D window. Following we de-
scribe the outline of this technique. Given a segment
AB with bounds (xA, yA, zA) and (xB, yB, zB), write
the standard parametric equations of the segment

Figure 13: Dodecahedron Planum Vacuum, in
Leonardo’s style

6 The football

Once you have acquired familiarity with the Platonic
solids, you can experience the expansion of the tech-
nique to other solids, i.e., the Archimedean solids.
These can be obtained in various ways from the Pla-
tonics, for example by truncation starting from the
vertices. In figure 14 we show the case of the icosahe-
dron; given the Platonic solid, we consider, for each
vertex, a sphere centered at the vertex itself and
with variable radius. The intersection of this sphere
with the sides of the polyhedron gives rise to regular
pentagons and hexagons. The latter become regular
when the radius of the sphere is exactly 1/3 of the
side of the polyhedron and this situation corresponds
to the truncated icosahedron. Using GeoGebra it
is very easy again to document this process; simply
project the truncation at the desired stage and then
export it.

Figure 15 shows the final result. Nothing new
is required in GeoGebra to obtain this last figure.
It is exactly the same construction used for the pre-
vious figure 14, only with a different radius for the
truncating spheres.

As is well known, the football is simply the
projection of the truncated icosahedron on the cir-
cumscribed sphere. This can be achieved in different
ways. In our opinion the simplest one is to project
each side of the polyhedron onto the sphere by means
of a parametric equation and then again to project
the obtained arc in the 2D window. Following we de-
scribe the outline of this technique. Given a segment
AB with bounds (xA, yA, zA) and (xB, yB, zB), write
the standard parametric equations of the segment
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the parametric equations of Γ, but the use of Geoge-
bra capabilities makes everything extremely simple,
without any calculation.
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Figure 8: One of the different plane developments of
the regular octahedron. The curves described by the
vertices during development are highlighted

Once you have built the outline of a dodecahe-
dron in the 3D window of Geogebra, you can also
experiment interesting derived figures. An example
is given in figure 9, where the Leonardo’s Dodeca-
hedron Planum Vacuum is represented: once more
the calculation of the position of the vertices of this
figure is almost straightforward in Geogebra, but it
could be very difficult otherwise.

Figure 9: Dodecahedron Planum Vacuum, in
Leonardo’s style

6 The football

Once you have acquired familiarity with the Platonic
solids, you can experience the expansion of the tech-
nique to other solids, i.e. the Archimedean solids.
These can be obtained in various ways from the Pla-
tonic ones, for example by truncation starting from
the vertices. In figure 10 we show the case of the
icosahedron: given the Platonic solid, we consider,
for each vertex, a sphere centered at the vertex itself

and with variable radius. The intersection of this
sphere with the sides of the polyhedron gives rise
to regular pentagons and hexagons: the latter be-
come regular when the radius of the sphere is exactly
1/3 of the side of the polyhedron and this situation
corresponds to the truncated icosahedron. Using Ge-
ogebra it is very easy again to document this process:
simply project the truncation at the desired stage
and then export it.

Figure 10: Outline of the truncation of the
icosahedron starting from the vertices

Figure 11 shows the final result. Nothing new
is required in Geogebra to obtain this last figure: it
is exactly the same construction used for the pre-
vious figure 10, only with a different radius for the
truncating spheres.

Figure 11: The truncated icosahedron

As is well known, the football is simply the pro-
jection of the truncated icosahedron on the circum-
scribed sphere. This can can be achieved in different
ways. In our opinion the simplest one is to project
each side of the polyhedron onto the sphere by means
of a parametric equation and then again to project
the obtained arc in the 2D window. Following we de-
scribe the outline of this technique. Given a segment
AB with bounds (xA, yA, zA) and (xB, yB, zB), write
the standard parametric equations of the segment

Figure 14: Outline of the truncation of the
icosahedron starting from the vertices
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the parametric equations of Γ, but the use of Geoge-
bra capabilities makes everything extremely simple,
without any calculation.
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Figure 8: One of the different plane developments of
the regular octahedron. The curves described by the
vertices during development are highlighted

Once you have built the outline of a dodecahe-
dron in the 3D window of Geogebra, you can also
experiment interesting derived figures. An example
is given in figure 9, where the Leonardo’s Dodeca-
hedron Planum Vacuum is represented: once more
the calculation of the position of the vertices of this
figure is almost straightforward in Geogebra, but it
could be very difficult otherwise.

Figure 9: Dodecahedron Planum Vacuum, in
Leonardo’s style

6 The football

Once you have acquired familiarity with the Platonic
solids, you can experience the expansion of the tech-
nique to other solids, i.e. the Archimedean solids.
These can be obtained in various ways from the Pla-
tonic ones, for example by truncation starting from
the vertices. In figure 10 we show the case of the
icosahedron: given the Platonic solid, we consider,
for each vertex, a sphere centered at the vertex itself

and with variable radius. The intersection of this
sphere with the sides of the polyhedron gives rise
to regular pentagons and hexagons: the latter be-
come regular when the radius of the sphere is exactly
1/3 of the side of the polyhedron and this situation
corresponds to the truncated icosahedron. Using Ge-
ogebra it is very easy again to document this process:
simply project the truncation at the desired stage
and then export it.

Figure 10: Outline of the truncation of the
icosahedron starting from the vertices

Figure 11 shows the final result. Nothing new
is required in Geogebra to obtain this last figure: it
is exactly the same construction used for the pre-
vious figure 10, only with a different radius for the
truncating spheres.

Figure 11: The truncated icosahedron

As is well known, the football is simply the pro-
jection of the truncated icosahedron on the circum-
scribed sphere. This can can be achieved in different
ways. In our opinion the simplest one is to project
each side of the polyhedron onto the sphere by means
of a parametric equation and then again to project
the obtained arc in the 2D window. Following we de-
scribe the outline of this technique. Given a segment
AB with bounds (xA, yA, zA) and (xB, yB, zB), write
the standard parametric equations of the segment

Figure 15: The truncated icosahedron

itself:

P(t):

 f(t) = xA + (xB − xA)t
g(t) = yA + (yB − yA)t
h(t) = zA + (zB − zA)t

, 0 ≤ t ≤ 1.

Then find the norm of P(t):

||P(t)|| =
√
f2(t) + g2(t) + h2(t).

The projection of the segment AB on the unit sphere
has the following parametric equations:

Q(t) =
P(t)

||P(t)||
.

At this point there is nothing to do but use the
already considered parallel projection form 3D to 2D

to obtain a 2D curve. The final result for the football
is shown in figure 16.

One last practical tip: the TikZ code of a figure
like figure 16 is very long and complex (about 250
rows!) and it is useful to export it from GeoGebra
one piece at a time, and not all together, especially if
you need to paint the different parts in different ways
(in our figure only black sphere pentagons and white
sphere hexagons). It will be simpler to correctly
fill the various parts of the figure, or to check if
everything works correctly.

Three-dimensional graphics with TikZ/PSTricks and the help of GeoGebra
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Figure 16: The football obtained by the projection of
the truncated icosahedron on the circumscribed sphere

A simple but interesting application of this tech-
nique is shown in figure 17 where we have projected
on the circumscribed sphere the regular tetrahedron.
This figure solves an interesting problem: is it possi-
ble to cut an apple into four equivalent parts in an
uncommon way?

Figure 17: An apple cut in four parts in a non
standard way

Before ending this “sport” section of our arti-
cle we present a simple figure obtained from the
truncated icosahedron: the molecule of the Buck-
minsterfullerene. In this case we have simply re-
placed the segments that make up the sides of the
polyhedron by tubes and the vertices by shaded
spheres. The following code for the tubes is taken
from https://tex.stackexchange.com:

\newcommand{\Tube}[6][]%

{\colorlet{InColor}{#4}

\colorlet{OutColor}{#5}

\foreach \I in {1,...,#3}

{\pgfmathsetlengthmacro{\h}{(\I-1)/#3*#2}

\pgfmathsetlengthmacro{\r}{sqrt(pow(#2,2)

-pow(\h,2))}

\pgfmathsetmacro{\c}{(\I-0.5)/#3*100}

\draw[InColor!\c!OutColor, line width=\r,#1]

#6;

}

}

Figure 18: The molecule of Buckminsterfullerene

In a figure like this, in order to hide the invisible
parts you need only to plot the rear parts first. As
usual, you can easily locate them using the GeoGebra
figure.

7 Conic and spherical sections

A very relevant problem for people interested in 3D

graphics is the drawing of plots concerning conic
sections. We only show some examples without ex-
tended details; the technique to be used is now fa-
miliar because, naturally, the involved curves are
conics that GeoGebra can deal with using standard
commands.

Figure 19 illustrates the two series of circular
sections in an oblique cone; the sections parallel to
the basis and the subcontrary sections, as considered
by Apollonius. The complexity of this figure is due to
mathematical calculations; you must find the correct
angle for the plane that produces the subcontrary
section, and the best way to do this is the original
Apollonius description.

Figure 20 shows how to section a cone in order
to obtain a hyperbola. The technique to obtain such
a figure is simple in GeoGebra; after plotting the
entire cone and the hyperbola on the cone you can
hide, directly in GeoGebra, one of the two parts,
leaving only the remaining one. After exporting the
code you can shift, for instance, the right part using
the following very standard code:

Luciano Battaia
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Figure 19: The two series of circular sections that can
be obtained in an oblique cone
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7 Conic and spherical sections

A very relevant problem for people interested in 3D

graphics is the drawing of plots concerning conic sec-
tions. We only show some examples without detailed
infos: the technique to be used is now straightforward
because, naturally, the involved curves are conics that
Geogebra can deal with standard commands.

Figure 15 illustrates the two series of circular
sections in an oblique cone: the sections parallel to
the basis and the subcontrary sections, as considered
by Apollonius. The complexity of this figure is due to
mathematical calculations: you must find the correct
angle for the plane that produces the subcontrary
section, and the best way to do this is the original
Apollonius description.

Figure 15: The two series of circular sections that can
be obtained in an oblique cone

Figure 16 shows how to section a cone in order to
obtain a hyperbola. The technique to obtain such a
figure is simple in Geogebra: after plotting the entire
cone and the hyperbola on the cone you can hide,
directly in Geogebra, one of the two parts, leaving
only the remaining one. After exporting the code
you can shift, for instance, the right part using the
following very standard code:

\begin{scope}[xshift=2.4cm]

<code of the second part>

\end{scope}

The last figure of this section, figure 17, is some-
what more complicated, because Geogebra can’t han-
dle directly (at least for the moment) the intersection
between a cylinder and a sphere: anyhow the inter-
section curve is a Vivianis’s window and their para-
metric equations can be easily found in all curve’s
books. The rest of the construction does not require
special attention: there are only parts of a cylinder
and of a sphere.

Figure 16: Section of a cone to obtain a hyperbola

Figure 17: Intersection between a cylinder and a
sphere

8 Some more advanced images

The technique based on exports from Geogebra can
also handle more complicated figures, but, naturally,
a somewhat advanced knowledge of Geogebra is re-
quired for this: in our opinion the effort is worth the
candle because what you can obtain is very interest-
ing. We only set two images up as an example.

The first figure is the compound of five tetrahe-
dra, that is one of the five regular polyhedral com-
pounds. It can be constructed by arranging five
tetrahedra inside a dodecahedron, having no com-
mon vertex. The correct construction of such a figure
requires full attention in particular to understand
which are the actual sides and which instead are
only fake sides, that must not be highlighted in the
figure. Besides that in this case it is better to hide
completely the non visible part of the figure.

The second and third figures figure are reproduc-
tions of originals by Kepler, published in the 1596 in

Figure 20: Section of a cone to obtain a hyperbola

\begin{scope}[xshift=2.4cm]

〈code of the second part〉
\end{scope}

The last figure of this section, figure 21, is some-
what more complicated, because GeoGebra can’t
handle directly (at least at the moment) the inter-
section between a cylinder and a sphere. Anyhow,
the intersection curve is a Vivianis’s window and
the parametric equations can be found easily in all
books of curves. The rest of the construction does
not require special attention; there are only parts of
a cylinder and of a sphere.

8 Some more advanced images

The technique based on exports from GeoGebra can
also handle more complicated figures, but, naturally,
a somewhat advanced knowledge of GeoGebra is re-
quired for this. In our opinion the effort is worth the
candle because what you can obtain is very interest-
ing. We give three images as examples.

Figure 21: Intersection between a cylinder and a
sphere
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Figure 18: The compound of five tetrahedra

Mysterium Cosmographicum: they deal with a pic-
ture concerning the solar system as known in those
days and consist of the five platonic solids inscribed
one into the other, while the inscribed/circumscribed
spheres to each polyhedron contain the orbits of the
six planets, earth included, with the sun at the cen-
ter. As in the original by Kepler we propose both
the set of all the platonic solids and a detail of the
four interior spheres with the corresponding three
polyhedra.

Figure 19: Reproduction of the solar system
originally drawn by Kepler in 1596

As with figure 14, one of the secrets for drawing
correctly is to start from the backs and to finally
draw the front parts of the figure.

9 Conclusion

We believe that the proposed technique can be ad-
vantageously used for the production of a large part
of the geometric type figures required in a mathemat-

Figure 20: Reproduction of the solar system
originally drawn by Kepler in 1596: detail of the
central part

ical paper. This technique paired with pgf-plots or
the corresponding packages for the PSTricks family
allows the production of complex scientific books
using LATEX and without any external software.

As already mentioned, particularly when draw-
ing complex figures, a somewhat deep knowledge of
Geogebra is required, but, in our experience, the
learning curve of Geogebra is much flatter than that
of TikZ and furthermore the use of Geogebra offers
the numerous advantages we have described in this
article.

Naturally there is no rose without thorns and it
is not possible to achieve the effects we have described
without hard work and experimentation.
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Figure 22: The compound of five tetrahedra

The first figure is the compound of five tetra-
hedra, which is one of the five regular polyhedral
compounds. It can be constructed by arranging five
tetrahedra inside a dodecahedron, having no com-
mon vertex. The correct construction of such a figure
requires full attention, in particular to understand
which are the actual sides and which instead are
only fake sides, that must not be highlighted in the
figure. Furthermore, in this case it is better to hide
completely the non-visible part of the figure.

The second and third figures are reproductions
of originals by Kepler, published in the 1596 in Mys-
terium Cosmographicum. They deal with a picture
concerning the solar system as known in those times
and consist of the five Platonic solids inscribed one
into the other, while the inscribed/circumscribed
spheres to each polyhedron contain the orbits of the
six planets, earth included, with the sun at the cen-
ter. As in the original by Kepler we propose both

Three-dimensional graphics with TikZ/PSTricks and the help of GeoGebra
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the set of all the Platonic solids and a detail of the
four interior spheres with the corresponding three
polyhedra.

Figure 23: Reproduction of the solar system, as
originally drawn by Kepler in 1596

Figure 24: Reproduction of the solar system
originally drawn by Kepler in 1596: detail of the
central part

As with figure 18, one of the secrets for drawing
correctly is to start from the back and to end by
drawing the front parts of the figure.

9 Conclusion

We believe that the proposed technique can be ad-
vantageously used for the production of a large part
of the geometric type figures required in a mathemat-
ical paper. This technique paired with pgf-plots or
the corresponding packages for the PSTricks family
allows the production of complex scientific books
using LATEX and without any external software.

As already mentioned, particularly when draw-
ing complex figures, a somewhat deep knowledge of
GeoGebra is required, but, in our experience, the
learning curve of GeoGebra is much flatter than that
of TikZ; the use of GeoGebra also offers the numerous
advantages we have described in this article.

Naturally there is no rose without thorns and it
is not possible to achieve the effects we have described
without hard work and experimentation.
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