
A note on \linepenalty

Udo Wermuth

Abstract

This article analyzes the effect of the line-breaking
parameter \linepenalty. First, its rôle in the prob-
lem of typesetting a text in one line or in two lines is
studied theoretically. Then the effect of different val-
ues for \linepenalty are demonstrated for longer
paragraphs. Finally, \linepenalty is compared to
\looseness.

1 Introduction

The line-breaking algorithm of TEX selects a short-
est path in a network of possible breakpoints ([2]
or the reprint in [7], p. 107) using a cost function
that calculates demerits. For every line, four values
are involved in the computation of its demerits and
then the sum of all line demerits stands for the total
demerits of a paragraph. Three of the four values
are directly related to the characteristics of the cre-
ated line, while the fourth value is a constant for all
lines of a paragraph: the \linepenalty. In TEX78
this constant was hard-coded into the program but
with TEX82 it became an integer parameter that the
user can change ([5], or the reprint in [6], pp. 273–
274). The plain format sets the default value of
\linepenalty.

The next section gives a brief overview of the
rules by which TEX’s line-breaking algorithm calcu-
lates the demerits. It also introduces some notation
in accordance with [9] but as there are only a few
symbols in this article the conventions are not re-
peated here. Section 3 analyzes what happens to a
text, for example, a heading, that can be typeset
either in one line or in two lines. Even this simple
case gets rather complex and Section 4 summarizes
some of the theoretical results and applies them to
normal text. The fifth section looks at longer para-
graphs and finds some insights when the value of
\linepenalty is changed. Section 6 compares the
effects of the two integer parameters \linepenalty
and \looseness.

The phrases “(possible) solution” or “path in
the network”, etc., refer to the network of line breaks
[2, Fig. 13] that exists for the given text. They do
not mean either that this is the shortest path in
the network and thus the typeset solution of the
line-breaking problem, or that the path is part of
the network which is actually created by TEX’s line-
breaking algorithm. Usually, this algorithm removes

400 TUGboat, Volume 38 (2017), No. 3

the initial segment of a path and thus the path from
its memory as soon as it learns that this begin-
ning cannot lead to the shortest path. The phrases
here state only that a certain path exists in the
whole network.

2 Calculation of demerits

Section 2 of [8] contains a detailed description of
the rules that TEX uses to compute the demerits.
In order to introduce the notation for this article a
brief summary of these rules follows.

The formula ([3], p. 98) that computes the de-
merits of a line, stated as Λ, is

Λ = (λ+ β)2 + sgn(π)π2 + δ (1)

which names the four parameters with Greek letters.

λ is the \linepenalty, a constant value set in
the plain TEX format to 10.

The badness assigned to the line is called β. The
badness is itself the result of a computation which
looks at the ratio of used and available stretch- or
shrinkability in the line ([3], p. 97). It is a nonneg-
ative number ≤ \pretolerance in the first pass;
otherwise ≤ \tolerance.

Depending on the type of line break a penalty
π is charged for the break ([3], p. 96). The value
is squared but the sign is kept so that the line de-
merits are lowered when a negative penalty is given.
Penalties lie in the range −10000 < π ≤ 10000;
π = −10000 forces a break but does not add to the
line demerits. A break at glue gets π = 0; otherwise
a break at a hyphen uses either \hyphenpenalty

or \exhyphenpenalty, a break in math mode ei-
ther \binoppenalty or \relpenalty, and a break
at an explicit \penalty command uses the given
value. The plain TEX format sets the value of the
four mentioned parameters to 50, 50, 700, and 500,
respectively.

The last parameter is named the additional de-
merits δ. Lines interact with their predecessors: If
visually incompatible lines would be output or if
two hyphens in a row occur or if the penultimate
line of the paragraph ends with a hyphen then ad-
ditional demerits are added. The term δ is the sum
of the parameters for these three mentioned cases:
\adjdemerits, \doublehyphendemerits, and only
for the last line \finalhyphendemerits. The de-
fault values in plain TEX are 10000, 10000, and 5000,
respectively.

The Pascal code in [4, §859] shows that the first
summand on the right hand side of equation (1)
takes a minimum of two numbers and involves the
absolute value of λ + β. Actually the summand is

Udo Wermuth

coded as
(

min(10000, |λ+ β|)
)2
.

Of course, in the plain TEX format λ + β < 10000;
but the code states that the value

10000−max(\pretolerance, \tolerance)−1 (2)

builds an upper limit for a positive \linepenalty.
If the line demerits are calculated for line num-

ber ι then Λ, β, π, and δ receive ι as a subscript.
So the total demerits Λt of a paragraph with µ lines
is given by

Λt =

µ
∑

ι=1

Λι =

µ
∑

ι=1

(

(λ+ βι)
2 + sgn(πι)π

2
ι + δι

)

= µλ2 + 2λB +

µ
∑

ι=1

(

β2
ι + sgn(πι)π

2
ι + δι

)

(3)

where the sum of all badness values is called B for
short, i.e., B :=

∑µ
ι=1 βι.

The total demerits of a paragraph sum certain
values that are associated with the path through
the network of line breaks that TEX has identified
as the shortest path according to its cost function.
This calculation can be performed for any path in
this network so the notation Λp for path demerits

is introduced.
If the value of \linepenalty is important it is

given as an argument to Λt or Λp, for example, the
left hand side of (3) can be written as Λt(λ).

The total demerits also have an upper limit. In
[4, §833] this limit is coded and it is best to have

Λt < 230 − 1 = 1,073,741,823 (4)

otherwise TEX might output overfull lines although
line breaks seem to be possible. TEX does not stop
working but except for the end of the paragraph it
does not create useful feasible breakpoints that are
required for TEX’s line-breaking decisions [4, §835].

In order to get familiar with the notation a sim-
ple lemma is proved. (The symbol ‘ ’ marks the end
of a proof or of an example.)

Lemma 1. If \linepenalty ≥ 0 and if for a line

that has neither penalties nor additional demerits

the line demerits are larger than the line demerits of

a second line with a penalty ≥ 0, additional demerits

≥ 0, and a summand ǫ ≥ 0 then the badness of the

first line is larger than the badness of the second.

Proof : With (1) the lemma claims for two lines with
line demerits Λ and Λ′ that with ǫ ≥ 0

Λ > Λ′ + ǫ =⇒ β > β′

if there are no penalties and additional demerits in
Λ, i.e., π = 0 and δ = 0, and if π′ ≥ 0 and δ′ ≥ 0.

Λ > Λ′ + ǫ

(β + λ)2 > (β′ + λ)2 + sgn(π′)π′2 + δ′ + ǫ⇐⇒

TUGboat, Volume 38 (2017), No. 3 401

by (1). The sum sgn(π′)π′2 + δ′+ ǫ is ≥ 0 as π′ ≥ 0,
δ′ ≥ 0, and ǫ ≥ 0. It follows that

(β + λ)2 − (β′ + λ)2 > π′2 + δ′ + ǫ

(β − β′)(β + β′ + 2λ) > 0.=⇒
Badness values are ≥ 0 and λ ≥ 0 so that the

term β+β′+2λ must be > 0. Its product with β−β′

is greater than 0 so that β − β′ > 0 or β > β′.

Next another well-known property of plain TEX
is stated as a lemma.

Lemma 2. In plain TEX the last line of a para-

graph that does not end with a penalty item of value

−10000 has either badness 0 or its glue shrinks.

Proof : If the last line contains infinite glue the bad-
ness is 0 ([3], p. 97).

Otherwise all glue is finite. In plain TEX the
\parfillskip is defined as 0pt plus 1fil. With-
out the \parfillskip, which is added by TEX af-
ter removing the last glue item in a paragraph ([3,
pp. 99–100]), the last line either contains only text
or its glue stretches, or shrinks, or has its natural
width. In the first two cases the stretchability of
\parfillskip makes the badness 0. In the last two
cases it does not change anything; a line in which
the glue has its natural width has badness 0.

3 When is a single line broken by TEX?

Let’s start with perhaps the simplest case in which
the effect of \linepenalty as a factor for TEX’s line-
breaking decisions can be analyzed: The network of
breakpoints allows TEX to typeset either a single line
or a pair of lines. Under what conditions does TEX
prefer two lines?

Three assumptions are made in this section:

1. The \linepenalty is nonnegative, i.e., ≥ 0.
2. The \parfillskip is 0pt plus 1fil.
3. The line width of the second line for the para-

graph is wider than the width of the material
that is moved from the first to the second line.

Negative values for \linepenalty are discussed in
Section 5. The reason for the (quite natural) third
assumption, which states that a line break produces
at most one additional line, is explained in Section 4.

The line demerits of the single line are called Λ1.
The two-line solution is marked with a prime and its
line demerits are called Λ′

1 and Λ′

2.
Note that the network must be built from the

first pass of the line-breaking algorithm, as a sin-
gle line is a valid solution. Of course, the single line
must shrink its glue, as a line with badness 0 is never
a candidate to be typeset in two lines if the user has
not entered a \penalty command with a negative

A note on \linepenalty

value. Without such a penalty a line with badness 0
has the line demerits Λ1 = λ2 and a two-line so-
lution must have at least this value for its second
line alone: Λ′

2 ≥ λ2. The first line adds the positive
value Λ′

1 to the path demerits as no negative penal-
ties are involved, making a two-line solution worse
than the one-line result. There is no other case for
the glue of the single line as by Lemma 2 the glue
cannot stretch.

But let’s look at the general case. The path
demerits of the single line are computed as

Λp = Λ1 = (λ+ β1)
2 (5)

because no penalty is added in a first pass; i.e., π1 =
0. δ1 = 0 except if the line is very loose but that
cannot happen by Lemma 2; so this summand can
be dropped too.

For the two-line solution the calculation is

Λ′

p = Λ′

1 + Λ′

2

= (λ+ β′

1)
2 + sgn(π′

1)π
′

1
2 + δ′1 + λ2 + δ′2 (6)

because β′

2 = π′

2 = 0 as the second line must have
badness 0 because of the assumptions about the line
width and the \parfillskip. At a break with a
hyphen π′

1 is either the value of \exhyphenpenalty
if the hyphen is part of the text or \hyphenpenalty
for user entered discretionary hyphens. In both cases
the additional demerits of the second line, δ′2, must
contain the value of \finalhyphendemerits, called
δf . And δ′1 is either 0, or if this line is very loose
\adjdemerits, named δa. In this case δ′2 contains
δa too. A break in math or at an explicit \penalty
does not influence the additional demerits.

TEX will break the text into two lines if and
only if Λt = Λ′

p < Λp.

Case 1: No penalty. This means π′

1 = 0 and δ′2
does not contain δf ; thus (6) simplifies to

Λ′

p = (λ+ β′

1)
2 + δ′1 + λ2 + δ′2. (7)

A path that generates two lines is preferred by
TEX if the right hand side of (7) is smaller than the
right hand side of (5):

(λ+ β1)
2 > (λ+ β′

1)
2 + δ′1 + λ2 + δ′2. (8)

To make this inequality true β′

1 must be smaller than
β1 by Lemma 1; the difference is called the “change”
χ of badness for the two-line solution, i.e., β1 −χ =
β′

1 with χ > 0. As the badness β′

1 is greater than or
equal to 0 one more inequality is known

β1 ≥ χ. (9)

All solutions must have a badness of the single line
that lies on or above the identity function g(χ) = χ.

Now β′

1 < 100 so the first line of the pair is
not very loose, thus δ′1 = δ′2 = 0 and inequality (8)

402 TUGboat, Volume 38 (2017), No. 3

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

f(χ) = ⌈(10− χ)2/(2χ)⌉

g(χ) = χ

change χ

\linepenalty = 10

b
ad

n
es
s
of

th
e
si
n
gl
e
li
n
e

Figure 1: Graphs for functions of Theorem 1

becomes with β′

1 = β1−χ

(λ+ β1)
2 > (λ+ β1 − χ)2 + λ2 (10)

⇐⇒ 2β1χ > (λ− χ)2. (11)

As χ > 0, inequality (11) can be written as

β1 >
(λ− χ)2

2χ
. (12)

With (9) the left hand side of (11) is kept equal or
made smaller when β1 is replaced by χ. If this new
inequality holds then (12) holds too.

2χ2 > (λ− χ)2

⇐⇒
√
2χ > λ− χ ∨

√
2χ > χ− λ

⇐⇒ χ > (
√
2− 1)λ ∨ χ > −(

√
2 + 1)λ.

The right-side inequality doesn’t say anything new,
as χ > 0. If λ = 0 both inequalities state χ > 0 so
that only (12) counts.

This computation proves the following theorem.

Theorem 1. In plain TEX with \linepenalty ≥ 0
a text that fits into one line is typeset in two lines

containing a line break without penalties if the dif-

ference between the badness of the single line and

the badness of the first line of the pair is larger than

(
√
2− 1)\linepenalty

or this difference, named “change”, is larger than

zero and the badness of the single line is larger than

(\linepenalty − change)2/(2× change).

When plain TEX’s settings are used the value 10
can be plugged in for \linepenalty. Thus the iden-
tity function is used as lower limit for the badness
when the change is larger than 4 as (

√
2− 1)× 10 ≈

Udo Wermuth

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

λ = 10

λ = 100

λ = 200

change χ

λ := \linepenalty
b
ad

n
es
s
of

th
e
si
n
gl
e
li
n
e

Figure 2: Solution sets for three \linepenalty values

4.14. For (1, 2, 3, 4) the badness of the single line
must be larger than or equal to (41, 17, 9, 5), respec-
tively; see (12). Figure 1 shows the graphs of two
functions for the integer values from 1 to 100. First,
the identity is shown as g. The second function f
represents in essence the formula of the right hand
side of (12). If the badness of the single line lies on
or above the thick points for a given χ then two lines
are typeset. The gray area forms the solution set.

Of course, the \linepenalty can be changed.
Figure 2 shows the solution sets for three different
values of \linepenalty: For λ = 10 all three gray
areas count (compare the areas to the solution set
shown in Fig. 1), for λ = 100 the light-colored area is
excluded, and for λ = 200 only the dark area builds
the solution set.

Case 2a: Break at hyphen. This important spe-
cial case of a break with penalties is treated first.
The break must be either at an explicit hyphen in
the text or at an inserted discretionary break as the
network is built from the first pass of TEX’s line-
breaking algorithm. This means that π′

1 equals ei-
ther \exhyphenpenalty or \hyphenpenalty and as
explained above there are additional demerits δ′2 =
\finalhyphendemerits = δf .

Now (10) and thus (12) get additional constant
terms on their right hand sides; (12) becomes:

β1 >
(λ− χ)2 + sgn(π′

1)π
′

1
2 + δf

2χ
.

As in plain TEX π′

1 = 50 and δf = 5000, the
sum sgn(π′

1)π
′

1
2 + δf is 7500. A graph for the above

inequality similar to Fig. 1 is shown in Fig. 3. The

TUGboat, Volume 38 (2017), No. 3 403

change must be at least 43 to get two lines. With
β1 = 78 the change must be larger than 75. The
comparison of Figs. 1 and 3 shows that in essence the
point from which the identity function dominates
the other function is moved on this line to a higher
value. (The same effect occurs in Fig. 2.)

Case 2b: Break at positive penalty. Lemma 1 is
applicable. So starting in (10) with an ǫ ≥ 0, which
is the sum of the penalty of the first line of the pair
and the additional demerits of both lines added to
the right hand side, the equivalent of (12) is

β1 >
(λ− χ)2 + ǫ

2χ
.

Similarly, starting with inequality (11) and replacing
β1 by χ gives

2χ2 > (λ− χ)2 + ǫ

⇐⇒ (χ+ λ)2 > 2λ2 + ǫ

⇐⇒ χ >
√

2λ2 + ǫ− λ ∨ χ < −
√

2λ2 + ǫ− λ.

Obviously the second inequality is not relevant.
Thus a generalization of Theorem 1 is proved:

Theorem 2. Given a text that fits into one line or

can be typeset in two lines with a line break that

has the value ǫ ≥ 0 as the sum of penalties and

additional demerits. Let \linepenalty ≥ 0.
The two-line solution is used by plain TEX if

the change > 0 is either at least
√

2\linepenalty2 + ǫ− \linepenalty

or the badness of the single line is larger than
(

(\linepenalty − change)2 + ǫ
)

/(2× change).

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

h(χ)=⌈((10−χ)2+7500)/(2χ)⌉

g(χ) = χ

change χ

\linepenalty = 10

b
ad

n
es
s
of

th
e
si
n
gl
e
li
n
e

Figure 3: Graphs of functions for a break at hyphen

A note on \linepenalty

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

ǫ = 102

ǫ = 502

ǫ = 902

change χ

\linepenalty = 10
b
ad

n
es
s
of

th
e
si
n
gl
e
li
n
e

Figure 4: Solution sets for three different penalties

Figure 4 compares the solution sets for three
different ǫ similar to Fig. 2.

When the \linepenalty is increased to 100
the solution set shrinks as shown in Fig. 2. But
Theorem 2 mentions two limits, and the formula
√

2λ2 + ǫ−λ gives for the three penalties 10, 50, and
90, i.e., the three ǫ amounts 102, 502, and 902:

ǫ = 102 502 902

λ = 10 =⇒
√
200 + ǫ− 10 ≈ 7.3 41.9 81.1

λ = 100 =⇒
√
20000 + ǫ− 100 ≈ 41.7 50 67.6

Thus the values of the limit get larger for ǫ =
102 and ǫ = 502 when λ is changed to 100 but for
ǫ = 902 it is smaller! Its solution set is not a subset
of the solution set when λ = 10. Figure 5 shows the
solution sets for the three values of ǫ with λ = 100.

Case 2c: Negative penalties. In this case, the
inequality (8) is changed to

(λ+ β1)
2 > (λ+ β′

1)
2 + δ′1 + λ2 − ǫ (13)

in which ǫ > 0 stands for the sum of penalties of the
first line and additional demerits of the second line
as in case 2b. That means δ′2 is contained in ǫ and
thus not mentioned in (13). δ′1 = 0 except the first
line of the two-line solution, named L′1, is very loose.
Then δ′1 is the value of \adjdemerits = δa. The
bracket notation is used to identify this summand:
δa[L

′

1 very loose]. And this means the additional de-
merits of the second line contains δa too. But ǫ is
not changed; instead the term δa is added twice.

Lemma 1 is not applicable and β′

1 can be larger
than β1. For some “change” χ, −100 ≤ χ ≤ 100, let
β1−χ = β′

1. In other words: Instead of (9), now two

404 TUGboat, Volume 38 (2017), No. 3

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

ǫ = 102
ǫ = 502

ǫ = 902

change χ

\linepenalty = 100

b
ad

n
es
s
of

th
e
si
n
gl
e
li
n
e

Figure 5: Like Fig. 4 for larger \linepenalty

limits for the badness of the single line are required:

β1 ≥ χ, if χ > 0; (14a)

β1 ≤ 100 + χ, if χ < 0. (14b)

Inequality (13) becomes

(λ+β1)
2 > (λ+β1−χ)2+2δa[L

′

1 very loose]+λ2−ǫ

or after the usual transformations

2β1χ > (χ− λ)2 + 2δa[L
′

1 very loose]− ǫ.

If χ = 0 this inequality states that ǫ must be
larger than λ2+2δa[L

′

1 very loose] in order to typeset
two lines.

If χ > 0 then β′

1 6= 100, i.e., L′1 cannot be very
loose and

β1 >
(χ− λ)2 − ǫ

2χ
. (15)

As before χ is used to replace β1 with (14a) to get

2χ2 > χ2 − 2λχ+ λ2 − ǫ

(χ+ λ)2 > 2λ2 − ǫ⇐⇒

χ >
√

2λ2 − ǫ− λ ∨ χ < −
√

2λ2 − ǫ− λ.⇐⇒
Only the first inequality states something new: If
ǫ ≥ 2λ2 two lines are typeset. Otherwise ǫ < 2λ2

and either χ >
√

2λ2 − ǫ − λ or the badness of the
first line fulfilling (15) are needed to get two lines.

If χ < 0 the first line of the two-line solution
might be very loose and χmust obey (14b).

First, the inequality (15) changes to

β1 <
(χ− λ)2 + 2δa[L

′

1 very loose]− ǫ

2χ
. (16)

Starting from

2β1χ > (χ− λ)2 + 2δa[L
′

1 very loose]− ǫ

Udo Wermuth

as above, now (14b) must be used to replace β1:

2(100 + χ)χ > (χ− λ)2 + 2δa[L
′

1 very loose]− ǫ.

With the usual transformations this leads to the rel-
evant solution

χ >
√

(100 + λ)2 + λ2 + 2δa[L
′

1 very loose]− ǫ

− 100− λ.

Thus a somewhat complex third theorem is proved:

Theorem 3. Given a text that fits into one line or

can be typeset in two lines with a line break that

has the value −ǫ < 0 as the sum of penalties and

additional demerits except for \adjdemerits if the

first line is very loose. Let \linepenalty ≥ 0.
If the change is 0 then there are two cases: If

the first line of the pair is very loose ǫ must be

larger than \linepenalty2 + 2\adjdemerits; oth-
erwise ǫ > \linepenalty2 is sufficient.

If the change is > 0 then ǫ ≥ 2\linepenalty2

typeset two lines; otherwise if ǫ < 2\linepenalty2

then either the change must be larger than
√

2\linepenalty2 − ǫ− \linepenalty

or the badness of the single line is larger than

(change− \linepenalty)2 − ǫ

2× change
(∗)

to output two lines.

If the change is smaller than 0 but the first line

is not very loose and ǫ ≥ (100 + λ)2 + λ2 then two

lines are created. Otherwise if ǫ is smaller then either

the change must be larger than
√

(100 + \linepenalty)2 + \linepenalty2 − ǫ

− 100− \linepenalty

or the badness of the single line must be smaller

than (∗) to output two lines.

If the first line of the pair is very loose then two

lines are typeset if either the change is smaller than
√

(100 + \linepenalty)2 + \linepenalty2

+ 2\adjdemerits − ǫ

− 100− \linepenalty

and (∗) + \adjdemerits/change is larger than the

badness of the single line or ǫ is larger than

(100 + \linepenalty)2 + \linepenalty2

+ 2\adjdemerits.

Figure 6 shows in the style of previous figures
three instances of negative penalties. All gray areas
represent the solution set if ǫ = 1592. The dots show
the limit when the first line of the pair is very loose.
If the dots and the lightest gray area are excluded
the diagram shows the solution set for ǫ = 682. It

TUGboat, Volume 38 (2017), No. 3 405

0

10

20

30

40

50

60

70

80

90

100

−100 −50 0 50 100

ǫ = 52

ǫ = 682

ǫ = 1592

dots: L′1 is
very loose

change χ

\linepenalty = 10

b
ad

n
es
s
of

th
e
si
n
gl
e
li
n
e

Figure 6: Solution sets for three negative values

doesn’t capture all negative change but the small-
est positive values build the identity function. If
ǫ = 52 only the darkest area counts and even for
positive change the identity function is not achieved
for small values.

Setting \linepenalty = 100 makes all areas
smaller, the dots disappear, and for ǫ = 1592 the
left edge of the solution set drops from (−43, 57)
to (−59, 0).

4 A few consequences of the theorems

The developed theory helps to understand certain
cases for plain TEX when a single line can be broken.

Theorem 1 shows how the two-line solution
can be made more likely when no penalties are in-
volved: Reduce the value of \linepenalty! The as-
signment 2 requires a change that must be larger
than 2(

√
2 − 1) < 1 for all badness values, i.e., a

change of 1 or more typesets the two lines.
Theorem 1 also states that with a large value of

\linepenalty TEX will typeset a single line, for ex-
ample, with a value 242 the line break is impossible
as the change must be larger than 242(

√
2−1) > 100.

Theorem 2 makes, among other things, state-
ments about penalties. It proves that a penalty of
110 forces the single line as

(

(10−100)2+1102
)

/(2×
100) > 100.

Theorem 3 implies that a \penalty of −180
typesets always two lines even if the first line of this
pair is very loose and \adjdemerits are involved.

Larger \linepenalty might break a single line.

One interesting consequence of Theorem 2 is that a

A note on \linepenalty

larger \linepenalty in combination with a posi-
tive \penalty breaks a line that would be kept as
a single line if the default value of \linepenalty is
used. See the discussion after Theorem 2 comparing
Figs. 4 and 5.

Example 1: Description

A single line is broken when \linepenalty is increased.

TEX input

\toks0={\noindent It’s a surprise, but it’s true.

See for yourself now. So~it\penalty95\ is.}

\linepenalty=10 \the\toks0\par

\linepenalty=100 \the\toks0\par

TEX output

It’s a surprise, but it’s true. See for yourself now. So it is.
It’s a surprise, but it’s true. See for yourself now. So it
is.

The single line has badness 86 and without the
“is.” the badness drops to 0, that is, the first line of
the two-line solution produces a change of 86. Using
the formula of Theorem 2, once the values 10 and
952 and 100 and 952 are used for \linepenalty and
for ǫ, respectively, the results are that the change
must be larger than 86 in the first case and larger
than 70 in the second to create two lines. Thus, in
the first case the break is avoided and in the second
it is made.

Instead of an explicit penalty a hyphen can be
the reason for a line break:

Example 1 continued: TEX input

\toks0={Bob, tell us, what made you

want to look up {\sl run-in\/}?}

\linepenalty=10 \the\toks0\par

\linepenalty=100 \the\toks0\par

TEX output

Bob, tell us, what made you want to look up run-in?
Bob, tell us, what made you want to look up run-

in?

Three lines with one line break. The theory was
developed with the starting point that a line break
generates two lines; see assumption 3 in Section 3.
But TEX is very flexible and a user can construct
situations in which a line break generates two addi-

tional lines.

Example 2: Description

An unusual \parshape is presented that otherwise is not
considered in this article.

TEX input

\def\weirdparshape{\setbox0=\hbox{\ninerm is}

\parshape 3 0pt \hsize 0pt \wd0 0pt \hsize

Do! not! do! it! Never! No!

This \cs{parshape} is bad.}

\linepenalty=242 \weirdparshape\par

\linepenalty=10 \weirdparshape\par

406 TUGboat, Volume 38 (2017), No. 3

TEX output

Do! not! do! it! Never! No! This \parshape is bad.

Do! not! do! it! Never! No! This \parshape

is
bad.

Of course, the theory could be extended, but
it does not seem worth the effort. Such settings of
\parshape are never applied to normal text. The
author wants to generate a certain effect and con-
trols the situation.

Longer paragraphs. The theoretical results do
not apply without change to paragraphs with more
than one line because the penultimate line in a long
paragraph might be changed too when the last line
is broken, i.e., (Lµ−1, Lµ) → (L′µ−1, L

′

µ, L
′

µ+1) with
Lµ−1 6= L′µ−1. And even if it stays unchanged, i.e.,
Lµ−1 = L′µ−1, the line characteristic might influence
the next line through additional demerits in different
ways. Finally, the paragraph might be broken in the
second pass of TEX’s line-breaking algorithm, thus
the badness of L′µ might be larger than the badness
of Lµ even if the change is positive.

OK, enough warning notices: There are never-
theless cases in which the theory is applicable to
longer paragraphs.

Example 3: Description

Typeset a short text twice with plain TEX. First with
the default settings, next with \linepenalty = 2.

TEX output

When you start to count where do you start? With zero
or with one? Hmm, I start at 1! A CS nerd uses a 0, or?
When you start to count where do you start? With zero
or with one? Hmm, I start at 1! A CS nerd uses a 0,
or?

Later in Section 5 it is shown that the value 4
for \linepenalty is sufficient. It turns out that the
value −2 works in this case too; see Section 6.

Next the technique with the penalty of 110 is
used. The example also demonstrates that a large
\linepenalty does not break the last line if the the-
ory is applicable. Here the minimal required value
for \linepenalty is used.

Example 4: Description

Typeset a short text thrice with plain TEX. First with
plain TEX’s default settings, second with a \penalty110

inserted between the last two words and a third time
without this penalty but with \linepenalty = 199.

TEX definitions

\toks0{\noindent This text can be typeset, yes,

either in two or in three lines and the theory

of this section applies to the}

\toks1={\the\toks0{} last line.}

\toks2={\the\toks0{} last\penalty110\ line.}

Udo Wermuth

TEX input

\linepenalty=10 \the\toks1\par \the\toks2\par

\linepenalty=199 \the\toks1\par

TEX output

This text can be typeset, yes, either in two or in three
lines and the theory of this section applies to the last
line.
This text can be typeset, yes, either in two or in three
lines and the theory of this section applies to the last line.
This text can be typeset, yes, either in two or in three
lines and the theory of this section applies to the last line.

As expected the \penalty110 prevents the line
break. A tie would do the job too but if the text later
grows, a break at the \penalty is still possible.

On the other hand if the text is typeset twice in
one paragraph the theory is not applicable; with a
line break in the last line the word “three” is moved
from the penultimate line of the four-line paragraph
to the penultimate line of the five-line paragraph.

Example 5: Description

Typeset the paragraph of example 4 two times as one
paragraph: once with plain TEX’s defaults and once with
\linepenalty = 385.

TEX input

\linepenalty=10 \the\toks1{} \the\toks1\par

\linepenalty=385 \the\toks1{} \the\toks1\par

TEX output

This text can be typeset, yes, either in two or in three
lines and the theory of this section applies to the last
line. This text can be typeset, yes, either in two or in
three lines and the theory of this section applies to the
last line.
This text can be typeset, yes, either in two or in three
lines and the theory of this section applies to the last line.
This text can be typeset, yes, either in two or in three
lines and the theory of this section applies to the last line.

In order to bring this paragraph to four lines
\linepenalty must be set to 385.

5 Changing the value of \linepenalty

The parameter \linepenalty can be changed by
the user. In this section an analysis is made when
a different \linepenalty results in different line
breaks and what the trade-offs are.

Example 6: Description

Typeset a paragraph several times with different values
for \linepenalty. Start with TEX’s default settings.

TEX definitions

\linepenalty=10

TEX output

The line-breaking algorithm of TEX selects a short-
est path in a network of feasible breakpoints using a
cost function that calculates demerits. For every line

TUGboat, Volume 38 (2017), No. 3 407

four values are used to compute the demerits for this
line and then the sum of all line demerits stands for the
total demerits of a paragraph.

The line-breaking decisions of TEX are listed in
the log file if \tracingparagraphs is set to 1. This
output helps to explain the effect on the line breaks
when \linepenalty is changed; therefore the trace
data is shown. See The TEXbook [3], pp. 98–99, or
[8], Section 3, for a description of this data.

Example 6 continued: \tracingparagraphs’ data

1. @firstpass

2. @secondpass

3. []\ninerm The line-breaking al-go-rithm of

T[]X se-lects a short-

4. @\discretionary via @@0 b=5 p=50 d=2725

5. @@1: line 1.2- t=2725 -> @@0

6. est path in a net-work of fea-si-ble break-

points us-ing a

7. @ via @@1 b=82 p=0 d=8464

8. @@2: line 2.1 t=11189 -> @@1

9. cost

10. @ via @@1 b=20 p=0 d=900

11. @@3: line 2.3 t=3625 -> @@1

12. func-tion that cal-cu-lates \ninesl

de-mer-its\ninerm . For ev-ery line

13. @ via @@2 b=48 p=0 d=3364

14. @@4: line 3.1 t=14553 -> @@2

15. four

16. @ via @@3 b=45 p=0 d=13025

17. @@5: line 3.1 t=16650 -> @@3

18. val-

19. @\discretionary via @@3 b=83 p=50 d=11149

20. @@6: line 3.3- t=14774 -> @@3

21. ues are used to com-pute the de-mer-its for

this

22. @ via @@4 b=39 p=0 d=2401

23. @@7: line 4.1 t=16954 -> @@4

24. line

25. @ via @@4 b=36 p=0 d=12116

26. @ via @@5 b=63 p=0 d=5329

27. @@8: line 4.1 t=21979 -> @@5

28. @@9: line 4.3 t=26669 -> @@4

29. and

30. @ via @@5 b=20 p=0 d=10900

31. @ via @@6 b=5 p=0 d=225

32. @@10: line 4.2 t=14999 -> @@6

33. then the sum of all line de-mer-its stands

for

34. @ via @@7 b=84 p=0 d=8836

35. @@11: line 5.1 t=25790 -> @@7

36. the

37. @ via @@7 b=0 p=0 d=100

38. @ via @@8 b=114 p=0 d=15376

39. @ via @@9 b=114 p=0 d=25376

40. @@12: line 5.2 t=17054 -> @@7

41. to-

42. @\discretionary via @@8 b=0 p=50 d=2600

43. @\discretionary via @@9 b=0 p=50 d=2600

A note on \linepenalty

44. @@13: line 5.2- t=24579 -> @@8

45. tal

46. @ via @@8 b=15 p=0 d=10625

47. @ via @@9 b=15 p=0 d=625

48. @ via @@10 b=46 p=0 d=3136

49. @@14: line 5.1 t=18135 -> @@10

50. @@15: line 5.3 t=27294 -> @@9

51. de-

52. @\discretionary via @@10 b=3 p=50 d=2669

53. @@16: line 5.2- t=17668 -> @@10

54. mer-its of a para-graph.

55. @\par via @@11 b=0 p=-10000 d=100

56. @\par via @@12 b=0 p=-10000 d=100

57. @\par via @@13 b=0 p=-10000 d=5100

58. @\par via @@14 b=0 p=-10000 d=100

59. @\par via @@15 b=0 p=-10000 d=100

60. @\par via @@16 b=0 p=-10000 d=5100

61. @@17: line 6.2- t=17154 -> @@12

62.

Here are a few reasons why this paragraph is a
good candidate to see the effect of different values
for \linepenalty.

Reason 1: The first line breaks at a hyphen so
the paragraph needs a second pass; see lines 1–2
of the listing. Thus penalties might occur, the ad-
ditional demerits are not limited to \adjdemerits,
and very loose lines are possible.

Reason 2: There are many possible paths in the
network; see lines 55–60. (Of course, this is normal
for most longer paragraphs.) Thus there are other
ways to typeset the text.

Reason 3: Some lines have a rather high bad-
ness, but it is possible by adding a word from the
neighboring line to lower the badness dramatically;
for example, see lines 6–10. The shortest path con-
tains some lines that have one of those large badness
values; see lines 4, 7, 13, 22, 37.

Reason 4: Some of the possible line breaks for a
penultimate line makes this line end with a hyphen
(lines 51–53 and 60 as well as lines 41–44 and 57). So
\finalhyphendemerits are available as additional
demerits.

Reason 5: On the other hand, some possible
lines avoiding the hyphen at the end of the penulti-
mate line are very loose; see lines 38–40. Thus very
loose lines are indeed available, and not just a pos-
sibility as stated in reason 1.

Reasons 1–4 are useful to see an effect for higher
positive values of \linepenalty, the last one to see
an effect if the value is negative.

Table 1 summarizes the paths identified in lines
55–60 of the trace data. The table shows in the
first two columns the information of the @@-lines:
the sequence number and the fitness class abbrevi-
ated to the first letter of very loose, loose, decent, or
tight. Then six columns for the possible paths are

408 TUGboat, Volume 38 (2017), No. 3

Table 1: Badness, penalties, and additional demerits
of the line breaks for the six paths of the trace listing

\par via @@ (* is typeset)
@@ Class 110 *120 130 140 150 160

1 d 550 550 550 550 550 550
2 l 82 82 82
3 t 20 20 20
4 l 48 48 48
5 l 45a

6 t 8350 8350
7 l 39 39
8 l 63
9 t 36a

10 d 5 5
11 l 84
12 d 0
13 d 050
14 l 46
15 t 15
16 d 350
17 d 0 0 0f 0 0 0f

µ = 6 6 6 6 6 6
B = 258 174 133 159 186 116

Λp(10) = 25890 17154 29679 18235 27394 22768

presented (lines 55–60); the heading gives the se-
quence number after the “via @@”; the subscript 0
is explained later. The table entries are the bad-
ness values. A subscript signals that a penalty oc-
curs at the break, a superscript of ‘f’ or ‘a’ that
\finalhyphendemerits or \adjdemerits, respec-
tively, are applied. Line 61 of the listing reports that
the line breaks follow the path of the column la-
beled 120. The column head contains an asterisk to
indicate this selection by TEX.

The last three rows state the number of lines,
µ, the sum of the badness values of the path, B, and
the path demerits Λp. These values are not found
directly in the trace data. They have been computed
from the information in the columns.

The theory. An increase of λ by κ > 0 changes
the first summand of the formula (1) for the line
demerits

(λ+ κ+ β)2 = (λ+ β)2 + 2βκ+ 2λκ+ κ2.

The two summands 2λκ and κ2 form a “constant”
that is added to every line and therefore they do not
change the line-breaking decisions by TEX—as long
as the limits (2) and (4) are obeyed. The third sum-
mand 2βκ increases the influence of the badness β.
That means, the penalties and the additional demer-
its in (1) are less important: If κ is large enough TEX
selects a path for which more penalties or additional
demerits are charged if only the badness values can
be made smaller.

Udo Wermuth

In fact, the increment that is necessary to go
from one path to another can be calculated with (1)
and (3). The path demerits become

Λp(λ+ κ) =

µ
∑

ι=1

(

(λ+ κ+ βι)
2 + sgn(πι)π

2
ι + δι

)

= µ(λ+ κ)2 + 2κB+ Λp(λ)− µλ2.

The task is to determine κ > 0 to change the total
line demerits to a path with a lower sum of bad-
ness—this path gets all subscripted variables and
their sums primed. Therefore starting with B′ < B
and Λt(λ) = Λp(λ) < Λ′

p(λ) find κ > 0 such that

Λp(λ+ κ) > Λ′

p(λ+ κ) = Λt(λ+ κ).

In the longer form the inequality is

µ(λ+ κ)2 + 2κB+ Λp(λ)− µλ2 >

µ′(λ+ κ)2 + 2κB′ + Λ′

p(λ)− µ′λ2.

A few simple transformations when µ = µ′ give

2κ(B− B′) > Λ′

p(λ)− Λp(λ)

or as B > B′

κ >
Λ′

p(λ)− Λp(λ)

2(B− B′)
. (17)

Its application. Table 1 shows that there are three
paths with a lower sum of badness value than col-
umn 120: 140 with sum 159, 130 with sum 133, and
160 with sum 116. Inequality (17) states the follow-
ing conditions for κ:

Path (Column) 130 140 160

κ > 152 36 48

(Note, only integer parts of the numbers are shown.)
So κ = 37 (or λ = 47) typesets the path of col-

umn 140. The path of column 130 cannot be reached:
160 has a lower sum of badness and needs a lower κ.

Example 6 continued: TEX definitions

\linepenalty=47

TEX output

The line-breaking algorithm of TEX selects a short-
est path in a network of feasible breakpoints using a cost
function that calculates demerits. For every line four val-
ues are used to compute the demerits for this line and
then the sum of all line demerits stands for the total
demerits of a paragraph.

Of course, the typeset result has one more hy-
phenated line. Low badness values have been traded
in for more penalties. A value κ > 48 selects the
path of column 160 but it might not be the value 49.
The formula does not know that there is a column in
between; so 49 still creates the path of column 140.
Using (17) the calculation of κ to go from column 140

to column 160 gives κ = 53 or λ = 63.

TUGboat, Volume 38 (2017), No. 3 409

Example 6 continued: TEX definitions

\linepenalty=63

TEX output

The line-breaking algorithm of TEX selects a short-
est path in a network of feasible breakpoints using a cost
function that calculates demerits. For every line four val-
ues are used to compute the demerits for this line and
then the sum of all line demerits stands for the total de-
merits of a paragraph.

All paths with a smaller sum of badness have
been used. But these are not all possible paths as
TEX ignores a path that cannot become the short-
est. Except \linepenalty 6= 10 might change TEX’s
viewpoint but unfortunately the path is not shown
explicitly in the available trace. In total there are six
more paths hidden in the data; Table 1′ lists them.
The paths are still named by the par information
and now the subscript identifies the variant. The
notations (10) and (t) mean that the correspond-
ing @-line does not have its own @@-line in the trace
and @@10 follows next. With this data all values of
κ for the transitions to a path with a smaller sum
of badness can be computed if the paths are sorted
by their sum of badness values B:

161 160 130 141 151 140 131 120

161 0
160 272 0
130 70 −204 0
141 52 −201 −185 0
151 23 −156 −101 −80 0
140 129 52 220 272 657 0
131 6 −106 −62 −52 −37 −673 0
120 112 48 152 179 299 36 2869 0

As noted above 36 is the smallest number in the
last row, selecting path 140. In the row for 140 52 is
the smallest number selecting 160 and in its row 272
is selecting 161. So only one more path can be shown
for κ > 272, i.e., κmust be 273 and λ = κ+10 = 283.

Example 6 continued: TEX definitions

\linepenalty=283

TEX output

The line-breaking algorithm of TEX selects a short-
est path in a network of feasible breakpoints using a cost
function that calculates demerits. For every line four
values are used to compute the demerits for this line and
then the sum of all line demerits stands for the total de-
merits of a paragraph.

Negative values. A negative amount for the inte-
ger \linepenalty does not act directly as a bonus
if a line is created, as the sum with the badness is
squared in equation (1). But a negative value re-
verts the meaning of badness! For example, a value

A note on \linepenalty

Table 1′: Badness, penalties, and additional demerits
of the line breaks for not-shown paths of the trace listing

variant of \par via @@

@@ Class 122 121 131 141 151 161

1 d 550 550 550 550 550 550
2 l 82 82
3 t 20 20 20 20
4 l 48 48
5 l 45a 45a 45a 45a

8 l 63 63
9 t 36a 36a

(10) (t) 20a 20a

(12) (v) 114a 114
13 d 050
14 l 46
15 t 15a

16 d 350
17 d 0a 0 0f 0 0 0f

µ = 6 6 6 6 6 6
B = 285 247 171 136 148 93

Λp(10) = 62145 37455 34369 30786 32704 35319

of −110 for \linepenalty assigns lines with bad-
ness 0 the same demerits as lines with badness 100
get with plain TEX’s default settings. And a line
with badness 100 gets the value that previously a
line with badness 0 received. TEX creates lines that
have large badness values if possible! Higher nega-
tive values retain this effect, so they act differently
from large positive values.

Tables 1 and 1′ show that there are paths that
have a larger sum of badness than the path of col-
umn 120. Inequality (17) is changed as in this case
B < B′. Thus division by 2(B− B′) < 0 inverts the
relation:

κ <
Λ′

p(λ)− Λp(λ)

2(B− B′)
. (18)

As in the case of smaller sum of badness values
a diagonal matrix with values that are larger than
B of 120 can be built.

120 150 121 110 122

120 0 −426 −139 −52 −202
150 0 −82 11 −175
121 0 526 −324
110 0 −671
122 0

So this time κ = −53, i.e., λ = −43, selects col-
umn 110.

Example 6 continued: TEX definitions

\linepenalty=-43

TEX output

The line-breaking algorithm of TEX selects a short-
est path in a network of feasible breakpoints using a
cost function that calculates demerits. For every line

410 TUGboat, Volume 38 (2017), No. 3

four values are used to compute the demerits for this
line and then the sum of all line demerits stands for
the total demerits of a paragraph.

The matrix states that from row 110 the value
κ = −672 moves on to path 122.

Example 6 continued: TEX definitions

\linepenalty=-662

TEX output

The line-breaking algorithm of TEX selects a short-
est path in a network of feasible breakpoints using a
cost function that calculates demerits. For every line
four values are used to compute the demerits for this line
and then the sum of all line demerits stands for the
total demerits of a paragraph.

The limit. The \linepenalty has a limit as stated
in (2). The setting of 10000 is larger than this limit
and the badness values are completely ignored—
they do not even have a “little influence” [1, p. 171].
(The effects that are shown in [1] can neither be re-
produced with the font cmr10 nor are they explained
by the developed theory.) As badness plays no rôle
anymore, TEX tries to avoid hyphens and visually
incompatible lines as they add to the line demerits;
see (1). In the current example the same line breaks
as with \linepenalty = 10 are used.

But other paragraphs, with a \linepenalty

value above the limit (2), switch to a path that oth-
erwise can be reached only by a negative penalty.

Table 2: Badness, penalties, and additional demerits
of the line breaks for the two paths of example 7

\par via @@ (* is typeset)
@@ Class *6 7

1 v
2 d 050
3 t 68
4 d 0
5 d 5
6 l 32
7 d 0
8 d 0 0

µ = 4 4
B = 32 73

Λp(10) = 4564 6509

Example 7: Description

Typeset a paragraph three times in a forced second pass,
i.e., \pretolerance = −1: first with \linepenalty =
10, second with \linepenalty = −14, and third with
\linepenalty = 10000.

TEX output

Hi! TEX! Tell me: How is the following long word bro-
ken ‘pneumonoultramicroscopicsilicovolcanoconiosis’? I
am sure that you are an expert in hyphenation, right
TEX? Or shall I ask Siri?

Udo Wermuth

Hi! TEX! Tell me: How is the following long word broken
‘pneumonoultramicroscopicsilicovolcanoconiosis’? I am
sure that you are an expert in hyphenation, right TEX?
Or shall I ask Siri?

Hi! TEX! Tell me: How is the following long word broken
‘pneumonoultramicroscopicsilicovolcanoconiosis’? I am
sure that you are an expert in hyphenation, right TEX?
Or shall I ask Siri?

Table 2 shows: κ < −23.7 ≈ (6509−4564)/−82
by (18), that is λ = −14, selects the path in col-
umn 7. As the path in column 6 contains a hyphen a
\linepenalty of 10000 selects the path in column 7,
which has no penalties or additional demerits.

Paths with fewer lines. In example 5, the param-
eter \linepenalty must be set to a large value in
order to reduce the number of lines that are typeset
from five to four. This is not covered by (17) as now
µ = µ′ + 1.

To determine the κ that selects a path with
fewer lines the initial inequality must distinguish be-
tween µ and µ′ = µ− 1:

µ(λ+ κ)2 + 2κB+ Λp(λ)− µλ2 >

(µ− 1)(λ+ κ)2 + 2κB′ + Λ′

p(λ)− (µ− 1)λ2.

The difference between µ and µ′ adds the summand
(λ + κ)2 − λ2 to the left hand side and this allows
that the sum of badness can be larger for the shorter
paragraph.

A simple rearrangement of the terms gives

κ2 + 2κ(λ+ B− B′) > Λ′

p(λ)− Λp(λ). (19)

Addition of (λ + B − B′)2 to both sides gives a
quadratic term on the left

(κ+ λ+ B− B′)2 > (λ+ B− B′)2 +Λ′

p(λ)− Λp(λ)

and as the right hand side is positive, the square
root can be taken. Therefore the following relevant
inequality is found

κ > B′ − B− λ

+
√

(λ+ B− B′)2 + Λ′

p(λ)− Λp(λ) .
(20)

Table 3 shows the data of the corresponding
trace listing for the text of example 5. The notation
(10) is explained above; see also “No information in
the trace data” in [8], p. 370ff. The path of column 8

is typeset and it has the lowest value for the sum of
badness B. Using this data inequality (20) gives κ >
374.8 . . . for column 6. The required \linepenalty

must be set to 385—as mentioned after example 5.

Paths with more lines. In example 3 the parame-
ter \linepenalty was set to 2 to enlarge the number
of typeset lines. So this case should be analyzed too.

TUGboat, Volume 38 (2017), No. 3 411

Table 3: Badness, penalties, and additional demerits
of the line breaks for the four paths of example 5

\par via @@ (* is typeset)
@@ Class 6 7 *8 9

1 d 2 2 2 2
2 l 19 19
3 t 96 96
4 l 87
5 d 5
6 d 2 2
7 l 13
8 d 1
9 l 19110
(10) (t) 96
10 d 0 0 0

µ = 4 5 5 5
B = 196 121 27 119

Λp(10) = 22760 11023 1431 24565

This time κ > 0 is subtracted from λ:

Λp(λ− κ) =

µ
∑

ι=1

(

(λ− κ+ βι)
2 + sgn(πι)π

2
ι + δι

)

= µ(λ− κ)2 − 2κB+ Λp(λ)− µλ2.

Thus the inequality for the path demerits becomes

µ(λ− κ)2 − 2κB+ Λp(λ)− µλ2 <

µ′(λ− κ)2 − 2κB′ + Λ′

p(λ)− µ′λ2

and with µ′ = µ+ 1 this is

Λp(λ)− Λ′

p(λ) < κ2 − 2κ(B− B′ − λ).

This time add the term (λ + B′ − B)2 to both
sides and take square roots; then the useful result is

κ > λ+B′ − B

−
√

(λ+B′ − B)2 + Λp(λ)− Λ′

p(λ) .
(21)

The data of Table 4 gives for the transition from
the path of column 2 to 6 with (21): κ > 5.3. There-
fore \linepenalty = 10−6 = 4 typesets three lines
as mentioned above.

Table 4: Badness, penalties, and additional demerits
of the line breaks for the five paths of example 3

\par via @@ (* is typeset)
@@ Class *2 3 4 5 6

1 l 86 86
2 d 4 4 4
3 d 4
4 l 57
5 d 0
6 d 6
7 d 7
(7) (d) 0 0 0 0

µ = 2 3 3 3 3
B = 11 100 61 86 10

Λp(10) = 485 9512 4785 9416 552

A note on \linepenalty

Summary. When the \linepenalty value is in-
creased, TEX’s line-breaking algorithm focuses more
on the badness values. If a path exists in the network
of line breaks that has the same number of lines but
a lower sum of badness compared to the path se-
lected with the default settings, that path might be
chosen with the larger \linepenalty. This means
that more breaks in mathematics and/or at positive
\penalty commands and/or more hyphens and/or
more stacks of hyphens and/or more visually incom-
patible lines are typeset and at least one of these
items is increased.

If a path exists that uses fewer lines for the
paragraph, this path can be selected with a large
\linepenalty even if its sum of badness is higher
than that of the paragraph with the default settings.
Similarly a path can be selected that has more lines
if \linepenalty stays positive but is made smaller
than 10.

Negative values for \linepenalty typically cre-
ate rather ugly paragraphs as TEX then prefers large
badness values for the lines. This effect is not nor-
mally desirable for justified text.

6 \linepenalty versus \looseness

The TEXbook has an exercise in which the value 100
for the parameter \linepenalty is suggested as a
replacement for a negative \looseness in an ap-
plication to a single paragraph ([3], exercise 14.25).
The reason refers to efficiency to “achieve almost the
same result” if the user is not willing to pay the cost
that a nonzero \looseness generates. (\looseness
is explained in [3], pp. 103–104 or see Section 5 of [8]
for an analysis of this parameter.)

Figure 2 shows that there are a lot of cases in
which two lines are typeset instead of only one if
\linepenalty = 100. And example 1 proves that
the increase of \linepenalty can make a paragraph
longer. Therefore this parameter might not only fail
to reduce the number of lines it might be coun-
terproductive. Although passes can have different
numbers of lines for the shortest path, with a small
enough negative \looseness a paragraph can never
get more lines than it has in the earliest pass that
typesets it if \pretolerance ≤ \tolerance, as the
paths of the first pass are part of the network of line
breaks of the second pass.

Inequality (19) can be used to determine in
which cases a \linepenalty of 100, i.e., κ = 90, can
be successful in general. Here the plain TEX values
are used:

902 + 2 · 90(10 + B− B′) > Λ′

p(10)− Λt(10)

9900− 180(B′ − B) > Λ′

p(10)− Λt(10).⇐⇒

412 TUGboat, Volume 38 (2017), No. 3

Therefore the difference between the sum of bad-
ness values must be less than 55 = 9900/180, but of
course it must often be much smaller as the differ-
ence of the path demerits on the right hand side is
positive and usually not very small.

Although Theorem 1 proves that the value 242
for \linepenalty acts like \looseness = −1 for a
single line the scenario represents only a special case.
For example, as noted in Section 3, the single line
is always typeset by TEX’s line-breaking algorithm
in the first pass. In general these two parameters
behave quite differently.

Second pass. This is the fundamental difference
between these two parameters: \looseness will try
hyphenation, i.e., the second pass, if it is not suc-
cessful in the first.

Thus, hyphens might be introduced at the end
of the lines if \looseness is used although no re-
duction of the number of lines is achieved.

Example 8: Description

Typeset the text of example 7 twice: first with plain
TEX’s defaults and second with \looseness = −1.

TEX output

Hi! TEX! Tell me: How is the following long word broken
‘pneumonoultramicroscopicsilicovolcanoconiosis’? I am
sure that you are an expert in hyphenation, right TEX?
Or shall I ask Siri?
Hi! TEX! Tell me: How is the following long word bro-
ken ‘pneumonoultramicroscopicsilicovolcanoconiosis’? I
am sure that you are an expert in hyphenation, right
TEX? Or shall I ask Siri?

The change of \linepenalty never forces TEX’s
line-breaking algorithm to execute another pass. It
uses the pass that is necessary to break the lines
when \linepenalty = 10.

Example 9: Description

Typeset a paragraph twice: first with \linepenalty =
9799 and second with the default \linepenalty = 10
and \looseness = −1.

TEX output

A short text that cannot be typeset in two lines
although looseness does it in the 2nd pass. A surprise!
Or?

A short text that cannot be typeset in two lines al-
though looseness does it in the 2nd pass. A surprise! Or?

TEX typesets the text of the first paragraph in
the first pass. The line-breaking algorithm cannot
eliminate the third line in this pass. On the other
hand this means that the first pass is a failure in
TEX’s view if \looseness = −1. But the second
pass is a success: Although it also prefers three lines,
there is a way to output only two. The demerits for
the three line solution are 6926, those for the pair of
lines 15773.

Udo Wermuth

Different cost functions. This leads to the next
difference: \looseness can choose a line-breaking
solution that does not represent the shortest path
in the network. This never happens for any setting
of \linepenalty; it must pick the shortest path.

As \looseness has a different cost function
to be optimized, penalties larger than −10000 and
smaller than 10000 mark places that are as good as
others for a line break.

Example 10: Description

A text with two penalties is typeset twice: first with
\linepenalty = 9799 and second with \looseness =
−1 and \linepenalty = 10.

TEX input

OK! Even 4-digit penalties, positive or negative,

are\penalty9999\ not important for looseness but

linepenalty obeys\penalty-9999\ them.

TEX output

OK! Even 4-digit penalties, positive or negative,
are not important for looseness but linepenalty obeys
them.

OK! Even 4-digit penalties, positive or negative, are
not important for looseness but linepenalty obeys them.

Both paragraphs are typeset in the first pass.
The \linepenalty must pick the shortest path in
the network with the cost function of demerits and
thus TEX typesets three lines. This cost function is
not relevant for \looseness if the number of lines
of the paragraph can be changed. Only if this is
not possible does TEX select the shortest path in
the current pass as usual. This means a parameter
that does not inhibit some behavior does not count
if \looseness can be successful.

Success rate. No single value of \linepenalty

works for all paragraphs but \looseness is always
successful if the paragraph can be typeset with fewer
lines.

Example 4 shows a text that can be typeset in
two or three lines; a pair is output if \linepenalty
is set to 199. Example 5 typesets the text twice and
it needs \linepenalty = 385 to keep four lines.
Each additional repetition of the original text re-
quires a larger \linepenalty:

number of copies 1 2 3 4 5 6 7
\linepenalty = 199 385 557 738 918 1098 1278

Of course, this is a constructed example, but
nevertheless with 25 iterations the \linepenalty

must be 4519. The next step, i.e., a paragraph with
only 52 lines in the shortest form, cannot be typeset
with a \linepenalty of 4541 anymore and it would
need 4599 if the progression continues as before. It
violates TEX’s limit for the total demerits, see (4),

TUGboat, Volume 38 (2017), No. 3 413

and the text is not typeset correctly. With the de-
fault \linepenalty together with \looseness =
−1 no problem occurs.

Note: The large value 9799 for \linepenalty,
which was used in the last two examples, can be
applied for paragraphs with at most ten lines. In
order to demonstrate certain effects in examples its
usage is needed, but such a large value would not be
used for normal copy.

Quality of output. If the number of lines of a
paragraph cannot be lowered then \looseness still
tries to find a line-breaking solution that avoids vis-
ually incompatible lines and stacks of hyphens, i.e.,
it obeys the additional demerits \adjdemerits and
\doublehyphendemerits if possible.

But Section 5 shows that \linepenalty trades
the smaller sum of badness for penalties and addi-
tional demerits. This means that a text that con-
tains no math, no explicit \penalty command, and
no explicit hyphens must get visually incompatible
lines in a first pass if TEX changes the line breaks.

In the second pass \linepenalty considers hy-
phens as \looseness does. The latter treats the pa-
rameters \double... and \finalhyphendemerits

as usual while the former parameter trades them like
\adjdemerits for a smaller sum of badness values.
That is, TEX not only might typeset more hyphens,
but also there might be more visually incompatible
lines, more stacks of hyphens, and more hyphenated
penultimate lines.

Efficiency. The advantage of increasing the pa-
rameter \linepenalty instead of using \looseness
is that \linepenalty’s value is always added in the
code of the line-breaking algorithm—even if it is
zero. A nonzero \looseness invokes otherwise un-
used code and thus slows the algorithm down [4,
§§ 873, 875]. As expected, this loss in efficiency is
hardly noticed in normal copy with modern equip-
ment.

My outdated computer from 2011 (a 1.8GHz
Dual-Core i7) with my own TEX installation shows
the following factors by which the runtime increases.
The reference value 1 is used for the time needed by
plain TEX to typeset the two lines of example 4 with
\looseness = 0.

copies \looseness = 0 \looseness = −1
1 1 1

100 3 11
225 6 100

But even the abnormally long paragraph of the
last case with 450 lines needs only one second to get
typeset if \looseness = −1.

A note on \linepenalty

\looseness can be positive. A value larger than
zero for the parameter \looseness tries to make the
paragraph longer.

Negative values for \linepenalty usually type-
set low quality paragraphs. This was proved in Sec-
tion 5. Thus it is not a good idea to use them except
when they would lengthen paragraphs; Section 5
shows that values < 10 can be succesful.

Example 3 uses the value 2 for \linepenalty

to typeset three instead of two lines. It happens that
the \linepenalty can be −2 (but not −3).

Example 11: Description

Typeset example 3 with \linepenalty = −2.

TEX output

When you start to count where do you start? With zero
or with one? Hmm, I start at 1! A CS nerd uses a 0,
or?

The next example uses a small positive and a
high negative value for \linepenalty. But even in a
forced second pass (used by \looseness = 1) these
values do not make TEX typeset an additional line.

Example 12: Description

Typeset a paragraph four times: first with plain TEX’s
settings, second with \looseness = 1, third in a forced
second pass with \linepenalty = 1, and finally, still in
the second pass, with a \linepenalty of −9999.

TEX output

This is a short paragraph and two words can have
a hyphen in it. The rest of the text is made up of short
words only. Well, I think the first sentence is wrong.
Wait then one more must be wrong. Two are wrong.

This is a short paragraph and two words can have
a hyphen in it. The rest of the text is made up of
short words only. Well, I think the first sentence is
wrong. Wait then one more must be wrong. Two are
wrong.

This is a short paragraph and two words can have
a hyphen in it. The rest of the text is made up of short
words only. Well, I think the first sentence is wrong.
Wait then one more must be wrong. Two are wrong.

This is a short paragraph and two words can have a
hyphen in it. The rest of the text is made up of short
words only. Well, I think the first sentence is wrong.
Wait then one more must be wrong. Two are wrong.

Summary. TEX must work harder if \looseness
is negative but a large value of \linepenalty is
not a replacement. A large value for the parame-
ter \linepenalty might even increase the number
of lines output for a paragraph.
• If a paragraph can be typeset with fewer lines

than TEX’s default settings produce then

\looseness = n for some n ≤ −1 is successful;
\linepenalty > 10 might be successful but only if

the pass has not to be changed; otherwise the
paragraph is treated like an unsuccessful case.

414 TUGboat, Volume 38 (2017), No. 3

• If fewer lines for the paragraph are impossible

\looseness tries the final pass and thus might in-
sert hyphens but outputs the shortest path;

\linepenalty outputs the (new) shortest path that
might now have lines with lower badness, but
then more breaks in mathematics or at positive
\penalty commands or more hyphens or more
stacks of hyphens or more visually incompatible
lines are used.

Both parameters might have a “negative im-
pact” on paragraphs that cannot be shortened but
the outcome with a large \linepenalty seems to be
worse. Its only advantage is that it does not change
the pass and that it obeys other TEX parameters.

References

[1] David Bausum, TEX Reference Manual, Norwell,
Massachusetts: Kluwer Academic Publishers, 2002
tug.org/utilities/plain/cseq.html#linepenalty-rp

[2] Donald E. Knuth and Michael F. Plass, “Breaking
paragraphs into lines”, Software—Practice and

Experience 11 (1981), 1119–1184; reprinted with
an addendum as Chapter 3 in [7], 67–155

[3] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984

[4] Donald E. Knuth, TEX : The Program, Volume B
of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986

[5] Donald E. Knuth, “The Errors of TEX”, Software—
Practice and Experience 19 (1989), 607–685;
reprinted as Chapter 10 in [6], 243–291

[6] Donald E. Knuth, Literate Programming, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 27, 1992

[7] Donald E. Knuth, Digital Typography, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 78, 1999

[8] Udo Wermuth, “Tracing paragraphs”, TUGboat

37:3 (2016), 358–373
tug.org/TUGboat/tb37-3/tb117wermuth.pdf

[9] Udo Wermuth, “The optimal value for
\emergencystretch”, TUGboat 38:1 (2017), 64–86
tug.org/TUGboat/tb38-1/tb118wermuth.pdf

⋄ Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

Errata for previous articles. Here are two correc-
tions for errors that are not merely typographical.

In [8], p. 365, left column, the \hsize of the books
The Art of Computer Programming by D. E. Knuth
should be 348 pt.

In [9], p. 75, left column no. 10, the value of t is
wrong; the stated value represents 2t.

Udo Wermuth

