TUGboat, Volume 38 (2017), No. 3

Testing indexes: testidx.sty
Nicola L. C. Talbot

Abstract

The testidx package [10] provides a simple method
of generating a test document with a multi-paged
index for testing purposes. The dummy text and
index produced is designed to replicate problems
commonly encountered in real documents.

The words and phrases indexed cover the basic
Latin set A(a), ..., Z(z) and some extended Latin
characters, such as O(g), E(zx), E(ce), A(a), P(b)
and L(1), to test the indexing application’s ability to
sort according to various Latin alphabets (such as
Swedish or Icelandic). Version 1.1 also includes some
words starting with digraphs, Dd(dd), Dz(dz), Ff(ff),
1J(ij), LI(11), Ly(ly), Ng(ng), and a trigraph Dzs(dzs),
to test alphabets where these are considered separate
letters (such as Welsh, Dutch or Hungarian).

There are also some numbers and symbols in-
dexed that don’t have a natural word order.

1 Introduction

There are a number of problems that can occur when
generating an index using I/ TEX. These may relate to
the index style (\printindex), the way the indexing
information is written to an external file (\index)
or the way the indexing application (such as xindy
or makeindex) performs. A large document may
have a complicated and slow build process, which
can be frustrating when making minor adjustments
to the index layout. The testidx package provides
a way to create a test document that can be used
to enhance the required style. Section 5 shows how
the sample text can be extended to include tests for
other languages or scripts.

The simplest test document is:
\documentclass{article}
\usepackage{makeidx}
\usepackage{testidx}
\makeindex
\begin{document}
\testidx
\printindex
\end{document}
Version 1.1 of testidx comes with the supplemen-
tary package testidx-glossaries, which uses the inter-
face provided by the glossaries package [9] instead of
testing \index and \printindex. In this case, the
simplest test document is:
\documentclass{article}
\usepackage{testidx-glossaries}
\tstidxmakegloss
\begin{document}

373

\testidx
\tstidxprintglossaries
\end{document}

2 Intentional issues

The dummy text is designed to introduce issues that
your style or build process may need to guard against.
These allow you to test the document style, the way
the indexing information is written to the external
file, and the way the indexing application processes
that information.

2.1 Stylistic issues

The style issues are those which need addressing
through the use of INTEX code within the document
itself, or in the class or package that deals with the
index style, or within a style file or module used by
the indexing application which controls the IXTEX
code that’s written to the output file. The test doc-
ument should load the appropriate document class
and indexing package to match your real document.

2.1.1 Page breaking

There are enough entries for the index to span mul-
tiple pages. If you have letter group headings in
your index style there’s a good chance that there will
be at least one instance of a page or column break
occurring between a heading and the first entry of
that letter group. There’s also a chance that a break
will also occur between a main entry and the first of
its sub-entries.

This does, of course, depend on the font and
page dimensions. You may need to adjust the geome-
try to cause an unwanted break before experimenting
with adjusting the style to prohibit it.

2.1.2 Headers and footers

Since the index spans multiple pages, it’s possible to
test the headers and footers for the first page of the
index as well as subsequent even and odd pages. This
is useful if the header or footer content needs to vary
and you need to check that this is done correctly.

2.1.3 Line breaking

The index contains a mixture of single words, com-
pound words, phrases, names, places and titles. This
means that some of the entries are quite wide, which
can cause line breaking problems in narrow columns.

2.1.4 Whatsits

Some of the entries are indexed immediately before
the term, for example

\index{page break}page break

and some are indexed immediately after the term,
for example

Testing indexes: testidx.sty

374

paragraph\index{paragraph}

The whatsit introduced by \index can cause prob-
lems. This is most noticeable in an example equation
where the indexing interferes with the limits of a sum-
mation. In practice, the \index would need to be
moved to a more suitable location, but the example
provided by the dummy text helps to highlight the
problem.

2.2 Index recording issues

The way that indexing typically works is to write the
entry data (using \index) to an external file that’s
then input and processed by the indexing application.
This write operation can sometimes go wrong causing
incorrect information to be written to the external
file. (There’s no test for incorrect syntax within the
argument of \index. It’s assumed you know how to
correctly index entries. The tests here are for the
underlying operation of \index.)

The glossaries package uses a similar method but
instead of using \index, the file write instruction
is internally performed by commands like \gls and
\glsadd.

2.2.1 Page breaking

The dummy text has some long paragraphs with
indexing scattered about them. This increases the
chance of a page break occurring mid-paragraph
(although again it depends on the font and page
dimensions). TEX’s asynchronous output routine can
cause page numbers to go awry, and this provides a
useful way to check that the page number is written
correctly to the external file.

2.2.2 Extended Latin characters

The indexed entries include terms that contain non-
ASCII letters (either through accent commands like
\’ or using UTF-8 characters). The UTF-8 encoding
isn’t an issue for the modern XqIATEX or LualATEX
engines, but it is a problem for the older IXTEX
formats. If your engine doesn’t natively support
UTF-8 and you have characters outside the basic
Latin set, then this is something that needs to be
tested. The testidx package has four modes to test
this, depending on your set-up.
1. ASCII with IATEX commands stripped.
(‘Bare ASCII')

This mode is triggered through the use of
IATEX with testidx’s stripaccents option and
without the inputenc package [2]. This option
is the default, so the first test example above
is in this mode. This mode emulates doing, for
example:

\index{elite@\'elite}

Nicola L. C. Talbot

TUGhboat, Volume 38 (2017), No. 3

So if this is the way that you’re indexing words
in your real document, this is the mode you need
in the test document.

. Unmodified ASCII. (‘ASCII Accents’)

This mode is triggered by running KTEX with
testidx’s nostripaccents option and without
the inputenc package. This mode emulates doing
\index{\'elite@\'elite}

Use this mode if in your real document you are
simply doing, for example, \index{\'elite}.

. Active UTF-8.

This mode is triggered if the inputenc package
with the utf8 option is loaded and testidx is
loaded afterwards with the nosanitize option.
This emulates doing
\index{élite}

Since the inputenc package makes the first octet
of a UTF-8 character active, this causes the entry
to be expanded as it’s written to the index file,
so that it appears as:

\IeC {\'e}lite

Use this mode if in your real document you
are doing, for example, \index{élite} and you
want to test how it’s written to the index file.
(This mode is the default when using XgITEX
or LualATEX, but the characters aren’t active,
so it’s much the same as the next mode.)

. Sanitized UTF-8.

The three modes listed above are for emu-
lating different \index usage. This last mode
really belongs in the next section as it’s provided
for testing the indexing application’s UTF-8 sup-
port, but is included in this list for completeness.

This mode is triggered if inputenc is loaded
with the utf8 option and testidx is loaded after-
wards with the sanitize option. This emulates
doing
\def\word{élite}\@onelevel@sanitize\word
\expandafter\index\expandafter{\word}

The sanitization isn’t applied to any remain-
ing content of \index, such as the encap. For
example,

\index{d|see{eth (3)}}

is implemented such that only the 3 part be-
fore the encap is sanitized so this would end up
written to the index file as
dlsee{eth (\IeC {\dh })}

(testidx doesn’t modify the \index command,
but uses the \expandafter approach where the
control sequence has a combination of sanitized
and non-sanitized content.)

There’s no support for other encodings.

TUGboat, Volume 38 (2017), No. 3

2.3 Indexing application issues

An indexing application typically reads the external
file created by ITEX (the input file that contains
data, discussed in the previous section) and produces
another file (the output file that contains typeset-
ting instructions) which can then be read by IWTEX
(through commands like \printindex). The termi-
nology here is a little confusing as the input file from
the indexing application’s point of view is an output
file from IATEX’s point of view and vice versa. For
consistency, the indexing application’s point of view
is used here.

The dummy entries are designed to test the in-
dexing application’s ability to collate entries into an
ordered list where each entry has an associated set of
page references (locations) or cross-references. The
list may be sub-divided into letter groups, according
to the initial letter of each entry. The definition of
a ‘letter’ depends on the collation rule. For exam-
ple, ‘aeroplane’, ‘Angelholm’, ‘Angstror’ and ‘Aflar’
may all belong to the ‘A’ letter group according to
one rule (such as English) but may belong to differ-
ent letter groups according to another rule (such as
Swedish). In some languages, a ‘letter’ may actually
be a digraph (such as ‘dz’) or a trigraph (such as
‘dzs’). Entries that don’t belong in any of the recog-
nised letter groups are typically put into a default
or ‘symbols’ group.

2.3.1 Extended Latin characters, digraphs
and trigraphs

As mentioned above, the test entries include some
words with extended Latin characters, digraphs and
a trigraph to test the localisation support of the
indexing application used in the document build
process. There are three digraphs (11, ij and dz) that
may instead be represented by a single UTF-8 glyph
(#, ij and dz). The diglyphs option will switch to
using these glyphs instead, but remember that the
document font must support those characters if you
want to try this.

2.3.2 Collation-level homographs

The words ‘resume’ and ‘résumé’ are both indexed.
These should be treated as separate entries even if
the comparator used by the indexing application
considers them identical. Check that both words
appear in the index. Similarly for index/\index and
recover /re-cover.

2.3.3 Compound words

The test entries include space- or hyphen-separated
compound words to test the sort rule. Different rules
have different ways of treating spaces or hyphens.

375

One rule may ignore those characters (for example,
‘vice-president’ < ‘viceroy’ < ‘vice versa’) whereas
another rule may treat a space as coming before a
hyphen (for example, ‘vice versa’ < ‘vice-president’
< ‘viceroy’).

2.3.4 Numbers

The test entries include some numbers (2, 10, 16, 42,
100). The indexing application may identify these
as numbers and order them numerically, or it may
simply order them as a sequence of non-alphabetical
characters (so 2 would be placed after 100).

2.3.5 Symbols

The test entries include two types of symbol entries.
The first set are mathematical symbols, such as «
(\alpha). The second set are the markers used in the
dummy text to indicate where the indexing is taking
place. The package options prefix and noprefix
determine how these entries are indexed.

The prefix option (default) inserts the charac-
ter > before the sort value for mathematical symbols
and inserts the character < before the sort value for
the markers. For example:

\index{>alpha@α}
for a and
\index

{<tstidxmarker@\csname tstidxmarker\endcsname
\space (\tstidxcsfmt {tstidxmarker})}

for the symbol - produced by testidx’s marker com-
mand \tstidxmarker. This naturally gathers the
two types of symbols. A sophisticated indexing appli-
cation may then be customized to treat the character
> as the ‘maths’ letter group and < as the ‘marker’
letter group.

The noprefix option doesn’t insert these char-
acters. This emulates simply doing
\index{alpha@α}
for a (which puts a in the ‘A’ letter group) and
\index
{tstidxmarker@\csname tstidxmarker\endcsname
\space (\tstidxcsfmt {tstidxmarker})}

for the marker (which puts this symbol in the ‘T’
letter group).

A real document will likely provide syntactic
commands for this type of indexing. For example, to
index a maths symbol that’s produced using a single
control sequence (such as \alpha):
\newcommand{\indexmsym} [1]{%

\index{#10@$\csname #1\endcsname$}}
The symbol is then indexed as, for example,

\indexmsym{alpha}

Testing indexes: testidx.sty

376

The prefix option simply emulates a minor adjust-
ment to such a command to alter the sorting.

There are additional maths symbols that aren’t
governed by the prefix options as they start with
alphabetical characters. These are simply indexed
in the form:

\index{f (x)@$f (\protect\vec{x}) $}

so they end up in the associated letter group (‘F’ in
the above example).

There are also terms starting with a hyphen
(command line switches) to test sorting. For example:
\index{-1 (makeindex)@\protect
\tstidxappoptfmt{-1}
(\protect\tstidxappfmt{makeindex}}

These again aren’t affected by the prefix options as
the hyphen forms part of the term. Conversely, there
are some terms starting with a backslash that have
the leading backslash omitted from the sort term.
For example

\index{index@\protect\tstidxcsfmt{index}}

2.3.6 Multiple encaps

There are three test commands, which simply change
the text colour, used as page encapsulator (encap)
values. One of the dummy blocks of text has the
same word (‘paragraph’) indexed multiple times with
different encap values. For example, no encap:
\index{paragraph}

The first test encap (\tstidxencapi):
\index{paragraph|tstidxencapi}

Similarly for the second (\tstidxencapii) and third
(\tstidxencapiii) test encaps. If all instances oc-
cur on the same page then this causes an encap clash
for that entry on that page. The indexing application
may or may not have a method for dealing with this
situation.

2.3.7 Inconsistent encap in a range

There are some explicit ranges formed using (and)
at the start of the encap value. For example, block 4
of the dummy text includes

\index{range| (}
which is closed in block 9 with
\index{range|)}

However in block 5, this term is indexed with one of
the test encaps:

\index{range|tstidxencapi}

This can’t be naturally merged into the range and
causes an inconsistency. The indexing application
may or may not have a method for dealing with this.

Nicola L. C. Talbot

TUGhboat, Volume 38 (2017), No. 3

2.3.8 Cross-referenced terms

Some terms are considered a synonym of another
term. Instead of duplicating the location lists for
both terms, it’s simpler for one term to redirect to
the other in an index. This is typically done with
the see encap. For example:

\index{gobbledegook|see{gibberish}}

The dummy text, like a real world document, will
only index this type of term once so it only has
one location which is encapsulated by \see{{other
word)}{(page)}. Since this command ignores the
second argument, no actual location will be visible
in the page list.

The other type of cross-reference is done with
the seealso encap (which has the same syntax as
see). For example

\index{padding|seealso{filler}}

These types of entries will be indexed in other places
as well to create a location list that has both page
references and the cross-referenced term. In some
cases (as in the above example) the encap’s argument
exactly matches the referenced term, but in other
cases it doesn’t. This inconsistency may or may not
cause a problem for the indexing application.

One term in particular that’s tested needs check-
ing. The word ‘lyuk’ is first indexed without an
encap, then indexed with the seealso encap and
later indexed again without an encap. If the index-
ing application simply treats the seealso encap as
just another formatting command, this can end up
with the rather odd occurrence of the cross-reference
appearing in the middle of the location list.

2.3.9 Untidy page lists

Some of the entries are indexed sporadically through-
out the dummy text. Depending on the font size and
page dimensions, this could result in a sequence of
consecutive page numbers that can be concatenated
into a neat range or it could lead to an untidy list
that has odd gaps that prevent a range formation.

3 testidx-glossaries

The supplementary testidx-glossaries package loads
testidx and glossaries. The commands used in the
dummy text are altered to use \glsadd or \gls. The
dummy entries all need to be first defined and the
indexing activated. This is done with

\tstidxmakegloss

The glossary is then displayed with
\tstidxprintglossary

or with

\tstidxprintglossaries

TUGboat, Volume 38 (2017), No. 3

(which will display all defined glossaries using the
analogous command).

There are some minor differences in the package
options shared by both testidx and testidx-glossaries,
and there are some supplementary options only avail-
able with testidx-glossaries:
extra Load the extension package glossaries-extra [8].

nodesc Each entry is defined with an empty descrip-
tion (default). The mcolindexgroup style is set.
You can override this in the usual way. For
example:

\setglossarystyle{mcolindexspannav}
desc Each entry is defined with a description. In

this case, the indexgroup style is set, but again
you can override it.

makeindex This option is passed to glossaries and
ensures that \tstidxmakegloss uses

\makeglossaries
and \tstidxprintglossary uses
\printglossary

The indexing should be done by makeindex, in-
voked directly or via the makeglossaries Perl
script or the makeglossaries-lite Lua script.

xindy This option is passed to glossaries and again
ensures that \tstidxmakegloss uses

\makeglossaries
and \tstidxprintglossary uses
\printglossary
The indexing should be performed by xindy
(again either invoked directly or through one of
the provided scripts).

tex This ensures that \tstidxmakegloss uses
\makenoidxglossaries
and \tstidxprintglossary uses
\printnoidxglossary
The indexing is performed by TEX and is slow —

the document build may appear as though it
has hung.

bib2gls This implicitly specifies extra and also
passes the record option to the glossaries-extra
package. In this case, \tstidxmakegloss uses

\GlsXtrLoadResources [(options)]
and \tstidxprintglossary uses
\printunsrtglossary

In this case, the indexing should be performed
by bib2gls [7], a Java command line appli-
cation designed to work with glossaries-extra.
The (options) and the number of instances of

377

\GlsXtrLoadResources varies according to the
package settings (such as prefix or diglyphs).
More detail is provided later on (see page 391).

manual Use this option if you don’t want to use
the helper commands \tstidxmakegloss and
\tstidxprintglossary. You will need to en-
sure you pass the appropriate options to the
glossaries or glossaries-extra package and load
the files containing the entry definitions.

4 Examples

The following examples can be used to test the vari-
ous indexing methods. To compile them, you need to
have at least testidx version 1.1. For the examples us-
ing testidx-glossaries, it’s best to have at least version
4.30 of glossaries and version 1.16 of glossaries-extra.

The letter groups created by each example are
shown in Table 1 (in the order they appear in the
index). In the table, ‘Symbols’ indicates the symbols
group (which in xindy parlance is the default group),
‘Numbers’ indicates the group containing numerical
terms and ‘Other’ indicates a headless group beyond
the end of the alphabet. Some of the examples create
their own custom groups. If a group contains initial
letters that may not be expected to appear in that
group (such as accented versions) then those letters
are included afterwards in parentheses.

The contents of the symbols group for each ex-
ample are shown in Table 2, where ‘markers’ indicates
the marker commands prefixed with <, ‘maths’ in-
dicates the mathematical symbols prefixed with >,
‘switches’ indicates the terms starting with a hyphen,
‘non-ASCII’ indicates the terms where the sort value
starts with a non-letter ASCII character (typically
the backslash \ at the start of accent or ligature
commands, such as \’ or \oe) and ‘UTF-8’ indicates
the terms where the sort value starts with a UTF-8
character that doesn’t fall into any of the recognised
letter groups, according to the indexer’s alphabet.

The ordering of the switches is shown in Ta-
ble 3, and the ordering of the mathematical symbols
is shown in Table 4 with the corresponding sort val-
ues shown in parentheses. These may all be in the
symbols group or in their own group or scattered
throughout the index in the various letter groups, as
indicated in Table 1.

The ordering of the numbers (which may or may
not be in their own group) is shown in Table 5, the
collation-level homographs in Table 6, and a selection
of compound words in Table 7.

The place name Aflar contains an eszett (8). In
the bare ASCII mode this is indexed as
\index{Asslar@A\ss lar}

while in the ASCII accents mode it’s indexed as

Testing indexes: testidx.sty

378

\index{A\ss lar}
and in UTF-8 mode it’s indexed as
\index{ABlar}

Although ASflar always appears in the ‘A’ group,
its location within that group varies, as shown in
Table 8.

Further tables show location lists:

e Table 9: for the entry with multiple encaps
(‘paragraph’, Section 2.3.6);

e Table 10: for the entry with the explicit range
interruption (‘range’, Section 2.3.7);

e Table 11: for the entry with the mid-seealso
encap (‘lyuk’; Section 2.3.8);

e Table 12: for an entry with a ragged page list
(‘block’, Section 2.3.9).

A shell script was created for each example with
the build process so that the complete document
build could be timed (using the Unix time command).
The elapsed real time (minutes):(seconds) for each
example is shown in Tables 13 for testidx and 14 for
testidx-glossaries.

» Example 1 (makeindex and bare ASCII mode)
This builds on the example shown earlier with a
makeindex style file to enable the group headings, the
fontenc package [4] to provide the commands \dh (9),
\th (b) and \TH (P), and the amssymb package [5] to
provide the spin-weighted partial derivative \eth (3).
These extra packages allow for more test entries that
would otherwise be omitted.

\documentclass{article}
\usepackage [a4dpaper] {geometry}
\usepackage{filecontents}
\usepackage [T1] {fontenc}
\usepackage{amssymb}
\usepackage{makeidx}
\usepackage{testidx}
\makeindex
\begin{filecontents}{\jobname.ist}
headings_flag 1
heading_prefix "\\heading{"
heading_suffix "}\n"
\end{filecontents}
\newcommand{\heading}[1]{%
\item\textbf{#1}\indexspace}

\begin{document}

\testidx

\printindex

\end{document}

This uses the default settings prefix and (since
there’s no UTF-8 support) stripaccents. The head-
ing command is simplistic as these examples are test-
ing the indexing applications rather than the index
style. The build process is:

Nicola L. C. Talbot

TUGhboat, Volume 38 (2017), No. 3

pdflatex doc
makeindex -s doc.ist doc
pdflatex doc

(where the file is called doc.tex).

The terms that are placed in the alphabetical
groups have been ordered using a case-insensitive
word comparator, the numbers have been sorted nu-
merically (Table 5) and the symbols have been sorted
using a case-sensitive comparator, as can be seen by
the ordering of the switches (Table 3). Since the
accent commands have been stripped, the words are
all placed in the basic Latin letter groups (Table 1).

» Example 2 (makeindex and ASCII accents mode)
This is the same as the previous example except for
the package option:

\usepackage [nostripaccents] {testidx}

b

This doesn’t strip the accents so, for example, ‘élite
is indexed as \'elite. This causes all the words
starting with extended Latin characters to appear
in the symbols group (Table 2) due to the leading
backslash in the control sequences. Since \AA ex-
pands to \r A, A ends up between ce (\oe) and b
(\th). ‘ABlar’ is placed at the start of the ‘A’ letter
group before ‘aardvark’ (Table 8) since the second
character in the sort key is a backslash (from the
start of \ss) which comes before ‘a’.

» Example 3 (makeindex, bare ASCII mode and no
prefixes)

This is the same as Example 1 except for the package
option:

\usepackage [noprefix] {testidx}

This doesn’t insert the < and > prefixes that kept
the markers and maths together in Example 1. The
markers remain close to each other as they still start
with the same sub-string (now tstidx instead of
<tstidx) but they have been moved to the ‘T’ letter
group. The maths symbols are now scattered about
the index (Table 1), for example, a is in the ‘A’ letter
group (since its sort value is now alpha). Only the
switches remain in the symbols group (Table 2).

» Example 4 (makeindex, ASCII accents mode and
no prefixes)

This is the same as Example 2 except for the extra
package option:

\usepackage [nostripaccents,noprefix] {testidx}

As with Example 3, the marker and maths entries
are no longer in the symbols group (Table 1), but as
with Example 2 that group (Table 2) now contains
the terms starting with accent commands (as well as
the switches).

TUGboat, Volume 38 (2017), No. 3

» Example 5 (makeindex -1)

This is the same as Example 1 except for the build
process which uses makeindex’s -1 switch:
pdflatex doc

makeindex -1 -s doc.ist doc

pdflatex doc

This changes the ordering of the compound words
shown in Table 7 (except for ‘yo-yo’). The ordering
is still case-insensitive for words (Table 8) and case-
sensitive for symbols (Table 3).

» Example 6 (makeindex and sanitized UTF-8)
This is like Example 1 but UTF-8 support has been
enabled through the inputenc package:

\usepackage [utf8] {inputenc}

The default sanitize option is on, which means that
the UTF-8 characters in the sort key are sanitized
and so don’t expand when writing the input file.
The build process used in Example 1 fails because
makeindex isn’t configured for UTF-8 and the result-
ing output file is corrupt. This can almost be fixed
with iconv except near the end of the file, which
triggers the error

\heading{iconv: illegal input sequence

This is because only the first octet (C3) of a two-octet
character has been put in the argument of \heading.
The only way to avoid this is to omit the headings,
so the build process is:

pdflatex doc

makeindex -o doc.tmp doc

iconv -f utf8 doc.tmp > doc.ind

pdflatex doc

The ‘Other’ groups shown in Table 1 highlight
the way that makeindex is sorting according to each

octet, so the first group after Z contains A (C3 81), A
(€3 84), A (03 85), I (C38D), O (C396), O (C3 98),
U (C39A), P (C3 9E), = (C3 A6), é (C3 A9), d (C3
B0) and b (C3 BE). From makeindex’s point of view,
these all belong to the C3 letter group (which is why
it tried to write the character C3 as the argument of

\heading when the headings setting was on).

The next few examples use xindy to perform
the indexing. The makeindex style file (.ist) is no
longer applicable. An xindy module (.xdy) is used
instead. A straight substitution of makeindex with
texindy causes an error message with the sample
entries:

ERROR: Cross-reference-target

("\\tstidxstyfmt {inputencl}") does not exist!
Unlike makeindex, texindy recognises the see and
seealso encaps as cross-references (rather than just
a formatting command). This error is the result of

379

\index{fontencpackage@\tstidxstyfmt {fontenc}
package|seealso{\tstidxstyfmt {inputenc}}}
(‘fontenc package, see also inputenc’). texindy checks
that the cross-referenced term also exists, but there’s
no exact match here as the cross-referenced term was
indexed slightly differently using

\index{inputenc package@\tstidxstyfmt
{inputenc} package}

(‘inputenc package’). This inconsistency is the result
of a stylistic choice to avoid the repetition of the
word ‘package’ in the exact match ‘fontenc package,
see also inputenc package’.

If you want to ignore these kinds of inconsisten-
cies, you can switch off the automatic verification in
the .xdy file when defining a cross-reference class.
For example:

(define-crossref-class "seealso"
:unverified)
Unfortunately with texindy this causes the error

ERROR: replacing location-reference-class
“"seealso"' is not allowed !

since the seealso class has already been defined (in
the file makeindex.xdy, which is loaded by texindy
to provide compatibility with makeindex). One pos-
sible workaround is to define a custom module and
use xindy directly (instead of using texindy).

In your real document you can circumvent this
issue by ensuring an exact match in your see and
seealso encap arguments or by writing your own
custom xindy module that defines the seealso class
as unverified.

Alternatively, you can create your own custom
cross-reference encap. For example
(define-crossref-class "uncheckedseealso"

:unverified)
(markup-crossref-list

:class "uncheckedseealso"

:open "\seealso" :close "{}")
and use this instead. The testidx package allows you
to try this out by providing a command to set your
own cross-reference encap value. For example:
\tstidxSetSeeAlsoEncap{uncheckedseealso}
The problematic cross-reference now becomes
\index{fontencpackage@\tstidxstyfmt{fontenc}
package |uncheckedseealso{\tstidxstyfmt
{inputencl}}}
which uses uncheckedseealso instead of seealso.

The examples below circumvent this issue by
using xindy directly with a custom module.

» Example 7 (xindy and sanitized UTF-8)
The sample xindy style provided here mostly repli-
cates texindy.xdy but doesn’t load makeindex.xdy.

Testing indexes: testidx.sty

380

The cross-reference classes (see and seealso) both
have the verification check switched off. This custom
module also has to define the location classes pro-
vided by makeindex.xdy and define the test encap
values used by testidx.

\documentclass{article}
\usepackage [a4paper] {geometry}
\usepackage{filecontents}
\usepackage[T1]{fontenc}
\usepackage [utf8] {inputenc}
\usepackage{amssymb}
\usepackage{makeidx}
\usepackage{testidx}

\makeindex

\begin{filecontents*}{\jobname.xdy}
(require "latex.xdy")

(require "latex-loc-fmts.xdy")
(require "latin-lettergroups.xdy")

(define-crossref-class "see" :unverified)
(markup-crossref-list :class "see"
:open "\see{" :sep "; " :close "}}")

(define-crossref-class "seealso" :unverified)
(markup-crossref-list :class "seealso"
:open "\seealso{" :sep "; "

:close "}{}")
(markup-crossref-layer-list :sep ", ")

(define-location-class-order

("roman-page-numbers"
"arabic-page-numbers"
"alpha-page-numbers"
"Roman-page-numbers"
"Alpha-page-numbers"
llseell
"seealso"))

; list of allowed attributes
(define-attributes ((
"tstidxencapi"
"tstidxencapii"
"tstidxencapiii")))

; define format to use for locations
(markup-locref :open "\tstidxencapi{"
:close "}" :attr "tstidxencapi')
(markup-locref :open "\tstidxencapii{"
:close "}" :attr "tstidxencapii")
(markup-locref :open "\tstidxencapiii{"
:close "}" :attr "tstidxencapiii")

; location list separators
(markup-locref-list :sep ", ")
(markup-range :sep "--")

\end{filecontents*}

\begin{document}
\testidx
\printindex
\end{document}

The build process is

Nicola L. C. Talbot

TUGhboat, Volume 38 (2017), No. 3

pdflatex doc

xindy -M doc -L english -C utf8 -t doc.ilg \
doc.idx

pdflatex doc

The ordering for some of the extended characters
is a little odd with the english setting. For example,
B comes between ‘n’ and ‘p’ (Table 8) and A, A, A,
[and U are all in the O letter group (Table 1).
They have not been considered either symbols (like
C, which doesn’t occur in English words) or sorted
according to their base letter (like é, which does).
Better results are obtained with the language set to
general, which is used later in Example 17.

The switches aren’t placed in the symbols group
but have instead been placed in the alphabetical
letter groups (ignoring the initial hyphen). The num-
bers (which are now in the symbols group) have been
sorted as strings rather than numerically (Table 5).

The term \index is present, but the word ‘in-
dex’ has been omitted (Table 6) and its page list
has been merged with the \index locations. A real
world document would need to ensure unique sort
keys. (For example, use index.cs as the sort value
for \index.) The other collation-level homographs
‘recover’ /‘re-cover’ and ‘resume’/‘résumé’ don’t have
this problem as the sort values for each pair are non-
identical even though the comparator may consider
them equivalent.

» Example 8 (xindy, sanitized UTF-8 and letter
order)

The sorting in Example 7 can be adjusted to letter
ordering by adding the following line to the custom
.xdy file:

(require "letter-order.xdy")

This alters the ordering of the compound words
(see Table 7), but this doesn’t quite match the order
produced by makeindex’s letter order option used
in Example 5 for the hyphenated words. The terms
‘\index’ and ‘index’ have again been merged due to
their identical sort values (Table 6), and the switches
are in the alphabetical letter groups (Table 1) but
their locations within those groups have changed as
a result of the spaces being ignored.

» Example 9 (xindy, sanitized UTF-8 and ignore
hyphen)

The previous example can be slightly altered by
changing letter-order to ignore-hyphen. There’s
no difference here from Example 8 in the order of the
collation-level homographs ‘recover’ and ‘re-cover’
(Table 6). There is a difference in the ordering of the
compound words shown in Table 7, which is back to
the word order from Example 7, and the switches are

TUGboat, Volume 38 (2017), No. 3

still in the alphabetical groups, so there’s no notice-
able difference between this example and Example 7.
It seems that xindy always ignores hyphens regard-
less of whether or not the ignore-hyphen module is
loaded.

» Example 10 (xindy, sanitized UTF-8 and ignore
punctuation)

Another option is to use the ignore-punctuation
module. However, swapping ignore-hyphen in the
previous example for ignore-punctuation causes
an error while reading ignore-punctuation.xdy:
#<0UTPUT STRING-OUTPUT-STREAM>> ends within

a token after multiple escape character

The problem seems to come from the line
(sort—rule Il\ll non u)

If T remove

(require "ignore-punctuation.xdy")

and replace it with the contents of that file without
the problematic line, the document is able to compile.

This example differs from the previous one, as
it also causes the prefix characters < and > to be
ignored, so this behaves much like the noprefix
option with the maths and markers placed in the
alphabetical letter groups (Table 1).

The sorting is still case-insensitive, but the dif-
ference caused by the ignored punctuation can be
seen in the ordering of the switches. For example, the
term -1 (makeindex) is now treated as lmakeindex
(all punctuation stripped) instead of 1(makeindex)
(only hyphen and space stripped), so it’s now after -L
icelandic (xindy) (since ‘I’ < ‘m’) whereas in the
previous example it came before -L. danish (xindy)
(‘C < d).

» Example 11 (xindy, sanitized UTF-8 and numeric
sort)

Example 7 can be easily modified to sort the numbers
numerically by adding the line:

(require "numeric-sort.xdy")

to the start of the .xdy file. A separate group for
the numbers can also be defined in this file:
(define-letter-group "Numbers"
:prefixes (lloll |l1|| "2" ll3|| ||4l| "5" ||6’|
Il7ll |l8l| Ilgll) :before IIAII)

The ordering of the defined attributes tells xindy
the order of precedence when there’s an encap clash
(see Section 2.3.6). In the previous example, the
tstidxencapi encap took precedence in the conflict
in the ‘paragraph’ entry (see Table 9), but there are
still two instances of page 2 in the location list as the
default encap (where no encap has been specified)
has been kept as well as the dominant tstidxencapi

381

encap. This can be fixed by adding default to the
end of the list of allowed attributes:
(define-attributes ((

"tstidxencapi" "tstidxencapii"
"tstidxencapiii" "default")))

This will cause a warning

WARNING: ignoring redefinition of
attribute "default" in
(DEFINE-ATTRIBUTES

(("tstidxencapi" "tstidxencapii"
"tstidxencapiii" "default")))

This is because latex-loc-fmts.xdy already con-
tains an attribute list containing default:

(define-attributes (("default" "textbf"
"textit" "hyperpage")))

To remove the warning, delete the line
(require "latex-loc-fmts.xdy")

from the custom .xdy file. Any of the usual KTEX
attributes, such as hyperpage, that are provided in
the file latex-loc-fmts.xdy can be added to the
custom attributes list if required.

» Example 12 (xindy, sanitized UTF-8, no prefixes
and numeric sort)

The previous example is modified here so that it
doesn’t use the > and < prefixes. The testidx package
is now loaded using;:

\usepackage [noprefix] {testidx}

inputenc is again loaded to enable UTF-8 support.
The markers and maths symbols are now placed in
the letter groups (Table 1). For example, @ now has
the sort value alpha, so it’s in the A letter group,
and 0 has the sort value partial, so it’s in the P
letter group.

» Example 13 (xindy, active UTF-8 and numeric
sort)

Example 11 is modified here so that it doesn’t sanitize
the sort value. The testidx package is now loaded
using:

\usepackage [nosanitize] {testidx}

The inputenc package is again loaded to enable UTF-8
support, which means that the first octets of the
UTF-8 characters are active so they are expanded
when written to the index file. This causes the xindy
error

ERROR: CHAR: index O should be less than

the length of the string

This error occurs when the sort value is empty.
Recall from Example 7 that the example’s cus-

tom module loads the file latex.xdy. This in turn

loads tex.xdy which strips commands and braces

Testing indexes: testidx.sty

382

from the sort key. This means that the sort keys
that solely consist of commands (such as \IeC{\TH})
collapse to an empty string, which triggers this error.

As a result of the error, no output file is created,
so the document doesn’t contain an index. One way
to force this example document to have an index is
to remove the line

(require "latex.xdy")
and add the content of latex.xdy without the line
(require "tex.xdy")

but this means that all the words starting with ex-
tended characters end up in the symbols group since
the initial backslash in \IeC is a symbol (which is
what we’d get if we use makeindex instead).

An alternative approach is to keep latex.xdy
and add a merge rule for the problematic entries:
(merge-rule "\\TH *" "TH" :eregexp :again)
(merge-rule "\\th *" "th" :eregexp :again)

(and similarly for other commands like \ss and \dh)
before loading latex.xdy.

This example uses this simpler method, which
strips all the \IeC commands but converts the com-
mands (such as \TH) representing characters. This
essentially reduces the sort values to much the same
as the bare ASCII mode in Example 1. In both this
example and Example 1, the sort value for ‘résumé’
becomes ‘resume’ This means that two distinct
terms have identical sort values. In makeindex’s
case, the terms are deemed separate entries as the
actual part is different, but xindy merges entries
with identical sort values, so only one of these two
terms (‘résumé’) appears in the index. (As happens
with ‘index’ and ‘\index’, and again it’s the first
term to be indexed that takes precedence.)

The alphabetical ordering is now reasonable for
English, but not for other languages, such as Swedish
or Icelandic, that have extended characters, such as
¢ or b, that form their own letter groups. (This
wouldn’t change even if the language option specified
with -L changes as there are no actual extended
characters in the index file, just control sequences
representing them.)

This example provides a useful illustration be-
tween using TEX engines that natively support UTF-8
and simply enabling UTF-8 support through inputenc.
Replacing inputenc and fontenc with fontspec and
switching to XgIATEX or LualATEX shows a notice-
able difference. It’s therefore not enough to have a
Unicode-aware indexing application, but it’s also nec-
essary to ensure the extended characters are correctly
written to the indexer’s input file.

Nicola L. C. Talbot

TUGhboat, Volume 38 (2017), No. 3

» Example 14 (xindy, sanitized UTF-8, custom
groups and numeric sort)

This example returns to using the sanitize option
so that the UTF-8 characters appear correctly in the
index file. We can build on Example 11 to create two
custom groups that recognise the < and > prefixes:

(define-letter-group "Maths"
:prefixes (">") :before "Numbers")

(define-letter-group "Markers"
:prefixes ("<") :before "Maths")

I also tried to define a similar group for the switches:

(define-letter-group "Switches"
:prefixes ("-"))

but this doesn’t work (Table 1) as the hyphen is by
default ignored (see Example 9). Setting a sort rule
for the hyphen doesn’t seem to make a difference.

Now the default symbols group (Table 2) only
contains the UTF-8 characters that aren’t recognised
by the language module.

» Example 15 (xindy -L icelandic, sanitized
UTF-8, custom groups and numeric sort)

It’s time to try out some other languages. This
example uses the same document and style from
Example 14 but substitutes icelandic for english
in the xindy call. This results in some extra letter
groups (see Table 1).

The Icelandic alphabet has ten extra letters (in
addition to the basic Latin set) A(a), D(d), E(é), i({),
0(6), U(1), Y(¥), P(b), E(ze) and O(5). There is a
letter group for the 0 entry, but it’s headed with the
lower case 0 rather than the upper case . (All the
other letter groups are headed with an upper case
character, including P.) There are also letter groups
for P, & and O, but not for the acute accents.

The non-native characters have a more logical
ordering than in the English examples with 8 treated
as ‘ss’ (Table 8), but A and ce are in the & group
(Table 1) and @ is in the O letter group. The symbols
group contains the remaining extended characters
(Table 2).

» Example 16 (xindy -L hungarian, sanitized
UTF-8, custom groups and numeric sort)

As above but now using -L hungarian. This also
results in some extra letter groups (such as O), but
there are some missing groups that should be in the
Hungarian alphabet, such as the digraphs Dz(dz)
and Ly(ly), and the trigraph Dzs(dzs).

The O letter group contains an odd collection of
extended characters, such as A, A, P and 3. As with
the english setting, $ has an unexpected location
between ‘n” and ‘p’ (Table 8).

TUGboat, Volume 38 (2017), No. 3

In theory it should be possible to add letter
groups for digraphs and trigraphs using a similar
method as the other custom groups:
(define-letter-group "Dz"

:prefixes ("DZ" "Dz" "dz")

:after "D" :before "E")
Unfortunately this doesn’t work as the ‘D’ letter
group takes precedence because it was defined first.
(The language modules are loaded before the cus-
tom module.) A complete new language module is
needed to make this work correctly, which is beyond
the scope of this article. Another possibility is to
use glyphs instead of the digraphs, but this is only
possible for digraphs that have a glyph alternative.

» Example 17 (xindy, sanitized UTF-8, selected
digraph glyphs, custom groups and numeric sort)
This example is like Example 14 but the diglyphs
option is used.

\usepackage [diglyphs] {testidx}

This means that instead of using the two characters
‘dz’ in words like ‘dzéta’, the single glyph dz is used.
It should now be possible to create the Dz letter
group as in the example above but with the glyphs
DZ, Dz and dz.
(define-letter-group "Iz"

:prefixes ("D" "D" "&")

:after "D" :before "E")
Similarly for 1J, ij and IL, #. There’s no glyph used
in the trigraph dzs.

Since these characters are not easily supported
by inputenc and fontenc, it’s necessary to use XqKTEX
or Lual&TEX instead. This means replacing inputenc
and fontenc with fontspec.

\usepackage{fontspec}

Some fonts don’t support these glyphs (ij is the most
commonly supported of this set), so the choice here is
quite limited. Some fonts support the glyphs in only
one family or weight. For example, Linux Libertine
O and FreeSerif support all glyphs in the default
medium weight but the # and IL glyphs are missing
from bold. I’ve chosen DejaVu Serif for the document
font in this example as it has the best support of all
my available fonts:

\setmainfont{DejaVu Serif}

The change in font slightly alters some of the page
lists in the index. The build process is now:
xelatex doc
xindy -M doc -L general -C utf8 \

-t doc.ilg doc.idx
xelatex doc

(T've set the language to general to reflect the mix-
ture of alphabets.)

383

This example generates a warning from xindy:

WARNING: Found a :close-range in the
index that wasn't opened before!
Location-reference is 5 in keyword (range)
I'll continue and ignore this.

The altered page breaking caused by the font change
has resulted in both the opening range produced
with

\index{rangel| (>

and the interrupting encap produced with

\index{range|tstidxencapi}

to occur on page 2. The open range encap is dropped
in favour of the tstidxencapi encap. This means
that the closing range

\index{rangel)}

on page 5 no longer has a matching opening range,
so no range is formed (Table 10).

As can be seen from Table 1, there’s no symbols
group for this example. The markers and maths
have been assigned to their own groups through
the use of their < and > prefixes, the numbers are
in their own number group, the glyphs dz, ij, and
#t have been assigned to separate groups, and the
remaining UTF-8 characters have all been assigned
to the basic Latin letter groups, as a result of the
general language setting. The switches still have
the hyphen ignored and so are in the letter groups.

The trigraph dzs is still unrecognised, as are
the dd, ff, ly and Ng digraphs, which haven’t been
replaced with glyphs. (As most TEX users will know,
there is a glyph for the ff digraph in most fonts, but
although the sequence ff is usually converted to a
ligature when typesetting, it’s written to the index
file as two characters. There’s no corresponding
glyph for the title case version Ff.)

The examples now switch to testidx-glossaries,
which provides extra sorting methods. Some of the
informational blocks of text are altered by this pack-
age, so the page numbers may be different in the
location lists due to the difference in some paragraph
lengths.

Instead of using \index, the terms are first de-
fined using

\newglossaryentry{(label)}H(options)}

where (label) (which can’t contain special charac-
ters) uniquely identifies the term and {options) is a
(key)=(value) list. The main keys are name (the way
the term appears in the glossary) and description.
By default the sort value is the same as the name
(as \index when @ isn’t used) but the sort key can

Testing indexes: testidx.sty

384

be used to provide a different value. The files con-
taining these definitions are automatically loaded by
\tstidxmakegloss.

The terms are then displayed and indexed using
commands like \gls{(label)} throughout the docu-
ment text. This will display the value of the text
key, which if omitted defaults to the same as name.

For example, with the normal indexing methods,
the term f(X) can be displayed and indexed in the
text using
\[£f(\vec{x})\index{f (x) @$f (\vec{x})$} \]

whereas with glossaries the term is first defined in
the preamble:
\newglossaryentry{fx}{name={$f (\vec{x}) $},
text={f (\vec{x})},
sort={f(x)},
description={}}
and then used in the document:
\[\gls{fx} \]

In the text this does f(\vec{x}) (the value of the
text key), in the index this does $f (\vec{x})$ (the
value of the name key), and it’s sorted by £ (x) (the
value of the sort key).

Cross-references are performed using the see
key, for example:
\newglossaryentry{padding}{name={padding},

see={[\seealsoname]filler},description={}}
(where the see value is a comma-separated list of
labels optionally preceded by a tag) or using \glssee,
for example,
\glssee[\seealsoname] {padding}{filler}

The glossaries-extra package provides the seealso
key, which is essentially the same as see with the
tag set to \seealsoname. If this key is detected, it
will be used instead. For example:
\newglossaryentry{padding}{name={padding},
seealso={filler},description={}}

These methods essentially index the reference as:

padding?\glossentry
{padding}|glsseeformat [\seealsoname] {filler}
with Z as the location (the glossaries package uses ?
instead of @ as the actual character).

Since makeindex by default lists upper case al-
phabetical locations last, this automatically moves
the cross-reference to the end of the list.

» Example 18 (testidx-glossaries and makeindex)
The basic test document is:
\documentclass{article}

\usepackage [adpaper] {geometry}
\usepackage[T1]{fontenc}

\usepackage{amssymb}

Nicola L. C. Talbot

TUGhboat, Volume 38 (2017), No. 3

\usepackage{testidx-glossaries}
\tstidxmakegloss

\renewcommand*{\glstreenamefmt} [1]{#1}
\renewcommand*{\glstreegroupheaderfmt} [1]{}
\textbf{#1}}

\begin{document}
\testidx
\tstidxprintglossaries
\end{document}
The mcolindexgroup glossary style sets the name in
bold by default, so I've redefined \glstreenamefmt
to prevent this. (There’s no need to distinguish the
name when there are no descriptions.)
For this example, my build process is
pdflatex doc
makeglossaries-lite doc
pdflatex doc

This uses the Lua script rather than the Perl script.
The Lua script simply determines the required in-
dexing application (in this case makeindex) and the
correct options from the .aux file and runs it. The
makeglossaries Perl script does more than this and
is used in the next example.

For comparison, an explicit call to makeindex
was also used:
pdflatex doc
makeindex -t doc.glg -o doc.gls -s doc.ist \

doc.glo

pdflatex doc

The only difference in the result is in the build time,
which is slightly faster. The times for both build
methods are shown in Table 14.

Since the inputenc package isn’t used, accents
are stripped as with Example 1. This means it’s
emulating, for example:
\newglossaryentry{elite}{name={\'elite},

sort={elite},description={3}}

There are some differences between the index
produced in this example and that produced in Ex-
ample 1 (aside from the page numbering and the
differences between the index and glossary styles).
The ordering of \index and ‘index’ have changed
(Table 6). In Example 1, the control sequence \index
is indexed as

index@\tstidxcsfmt{index}
and the term ‘index’ is just indexed as index. With

glossaries the control sequence is effectively indexed
as

index?\glossentry{cs.index}
and the term is effectively

index?\glossentry{index}

TUGboat, Volume 38 (2017), No. 3

When makeindex encounters terms with identical
sort values, it seems to give precedence to terms
where the sort value is identical to the actual value.
So in the first example, ‘index’ (which has no separate
sort) comes before \index. With glossaries, both
have a distinct sort and actual value.

A similar thing happens with ‘resume’
resume?\glossentry{resume}
and ‘résumé’
resume?\glossentry{resumee}

Since the accents have been stripped, both terms
have ‘resume’ as the sort value. (Since active char-
acters can’t be used in labels and labels must be
unique, the label for the second term is resumee.)

» Example 19 (testidx-glossaries and
makeglossaries)

This example uses the same document as the previous
one above, but uses the makeglossaries Perl script
in the build process instead of the Lua script:
pdflatex doc

makeglossaries doc

pdflatex doc

The difference here can be seen in the location list for
the ‘paragraph’ entry (see Table 9). The script has
detected makeindex’s multiple encap warning and
tried to correct the problem. Version 2.20 incorrectly
gives precedence to a non-range encap over an explicit
range encap which then causes makeindex to trigger
the error

-- Extra range opening operator (.

This is the same problem that occurred with xindy in
Example 17. makeglossaries version 2.21 (provided
with glossaries v4.30) corrects this and gives the range
encaps precedence. The only problem that remains
is just the inconsistent page encapsulator within a
range warning.

» Example 20 (testidx-glossaries, bare ASCII mode
and xindy)

The test document from Example 18 can be modified
to use xindy instead of makeindex by adding the
xindy package option:
\usepackage [xindy] {testidx-glossaries}

The glossaries package provides a custom xindy mod-
ule (automatically generated by \makeglossaries).
Minor adjustments can be made before the module
is written using commands or package options. For
example, to add the test encaps:
\GlsAddXdyAttribute{tstidxencapi}
\GlsAddXdyAttribute{tstidxencapii}
\GlsAddXdyAttribute{tstidxencapiii}

Again we can take advantage of the < and > prefixes:

385

\GlsAddLetterGroup{Maths}{:prefixes (">")
:before "glsnumbers"}

\GlsAddLetterGroup{Markers}{:prefixes ("<")
:before "Maths"}

(The glossaries package provides its own version of
the numbers group called glsnumbers.)

The numeric-sort module isn’t loaded by de-
fault, so it needs to be explicitly added if numerical
ordering is required:

\GlsAddXdyStyle{numeric-sort}
The above lines all need to go before
\tstidxmakegloss

The build process is:

pdflatex doc
makeglossaries doc
pdflatex doc

The Lua alternative can also be used, or a direct call
to xindy:
xindy -L english -I xindy -M doc -o doc.gls \
-t doc.glg doc.glo
The difference between this example and the ear-
lier xindy examples is that the indexing information
is written in xindy’s native format, for example

(indexentry
:tkey (("elite" "\\glossentry{elite}"))
:locref "{}{3}"
:attr "pageglsnumberformat")

(pageglsnumberformat is the default encap used by
glossaries in xindy mode when the format key hasn’t
been set and the page counter is used for the loca-
tions.)

The example document doesn’t load inputenc,
which means the bare ASCII mode is on, which is why
the accent doesn’t appear in the sort field (identified
in :tkey). This means that the sort value for ‘résumé’
is once again ‘resume’ and the conflicting unaccented
‘resume’ is lost (Table 6). The hyphens are again
ignored so the switches are placed in the alphabetical
letter groups (Table 1).

» Example 21 (testidx-glossaries, sanitized UTF-8
and xindy)

This example makes a minor adjustment to the pre-
vious one by adding

\usepackage [utf8]{inputenc}

This enables the sanitized UTF-8 mode so the sort
values contain UTF-8 characters. (The glossaries
package automatically sanitizes the sort key by de-
fault, but the testidx-glossaries package will ensure
that its own nosanitize option is honoured, which
just passes sanitizesort=false to glossaries.)

Testing indexes: testidx.sty

386

The build process again uses makeglossaries.
Since the document hasn’t loaded any language pack-
ages, the language option written to the .aux file
defaults to English so makeglossaries calls xindy
with -L english. This means the extended charac-
ters are ordered in the same way as in Example 14
(Table 1).

» Example 22 (testidx-glossaries, xindy and
non-standard page numbering)
makeindex can only recognise roman (i, I), arabic
(1) and alphabetic (a, A) locations. xindy has more
flexibility, so this example makes a minor adjustment
to the previous example to use an unusual page num-
ber scheme. This requires etoolbox [3] (automatically
loaded by glossaries) for \newrobustcmd, and the stix
package [1] for the six dice commands \dicei, ...,
\dicevi:
\newrobustcmd{\tally}[1]1{%
\ifnum\number#1<7
$\csname dice\romannumeral#1l\endcsname$’,
\else
\diceviy,
\expandafter\tally\expandafter{\numexpr#1-6}J
\fi
}
\renewcommand{\thepage}{\tally{\arabic{pagel}}}
The page numbers are now represented by dice. For
example, page 2 is [J and page 10 is [[3.

Since the stix package by default automatically
changes the document font, which will alter the page
breaking, I’ve used the notext option to prevent
this:

\usepackage [notext] {stix}

This allows a better comparison with the previous
example.

The locations are now written to the indexing
file in the form \\tally {(n)}, where (n) is the page
number. (The backslash is automatically escaped by
glossaries. The space is significant.) xindy needs to
be informed of this new location format:
\GlsAddXdyLocation{tally}{

:sep "\string\tally\space{"

"arabic-numbers" :sep "}"}
Aside from the location presentation, there is one
difference between this example and the previous
one when used with versions of glossaries below 4.30,
and that’s the cross-reference location. For example,
with glossaries v4.29, the ‘lyuk’ entry appears as ‘see
also digraph, O, B’ but for v4.30 it appears as ‘[,
[, see also digraph’ (Table 11). This is due to a
bug that has been corrected in v4.30.

» Example 23 (testidx-glossaries, bare accents mode

and TEX)

Nicola L. C. Talbot

TUGhboat, Volume 38 (2017), No. 3

If, for some reason, you’re unable or unwilling to
use an external indexing application, the glossaries
package provides a method of alphabetical sorting
using TEX. The document from Example 18 can
be adapted to use this method by adding the tex
option:

\usepackage [tex] {testidx-glossaries}

The accents are stripped by default so the sorting is
just performed on the basic Latin set.
The build process is simply

pdflatex doc
pdflatex doc

This method is considerably longer than the others
(see Table 14) and has the worst results.

There’s no numbers group with this method.
The numbers are included with the symbols (Ta-
ble 2), but are ordered numerically (Table 5). The
ordering of the compound words has changed (Ta-
ble 7) with somewhat eccentric results. There are
no range formations, even for explicit ranges, and
the range interruption (Table 10) interrupts the list
formatting (a space is missing).

The ‘see also’ cross-reference in Table 11 doesn’t
interrupt the location list, but this is only because
the see key was used when defining the entry (which
is why it’s at the start of the list). If \glssee had
been used instead within the document, it would
have produced the same result as Example 1.

» Example 24 (testidx-glossaries, bare accents mode
and TEX with letter ordering)

The previous example used the glossaries package’s
default sort=standard setting, which sets the entry
sort key, if omitted, to the name key and optionally
sanitizes it. The command \printnoidxglossary
also accepts a sort key in the optional argument to
allow different ordering for different glossaries. (This
capability is not available with \printglossary.)
The localised sort key allows the values word and
letter for word and letter ordering, so this example
replaces

\tstidxprintglossaries
with
\printnoidxglossary[sort=letter]

to test letter order sorting with TEX. This again
takes a long time (Table 14). The ordering of the
compound words (Table 7) now matches the xindy
letter order in Example 8. There’s a change in the
order of one of the collation-level homographs from
the previous example: ‘re-cover’ is now after ‘recover’
(Table 6). Other than that, this method produces
much the same results as the previous example.

TUGboat, Volume 38 (2017), No. 3

So far the examples have all used alphabetical
ordering for the majority of the entries based on
the value of the sort key (or the name, if sort is
omitted). The glossaries package also allows sorting
according to definition or use. The next few examples
illustrate this.

» Example 25 (testidx-glossaries and order of
definition with makeindex)

The glossaries package provides the options sort=def
and sort=use to switch to order of definition or
first use within the document. The code used in
Example 19 needs to be adjusted to pass this option
since glossaries is being loaded implicitly:
\PassOptionsToPackage{sort=def}{glossaries}
\usepackage{testidx-glossaries}

Alternatively (glossaries v4.30):

\usepackage{testidx-glossaries}
\setupglossaries{sort=def}

This method works by overriding the sort value
so that it’s just a number that is incremented ev-
ery time a new entry is defined. This means that
makeindex orders numerically, and all entries are
placed in the numbers group (Table 1). It therefore
makes no sense to use a style with group headings
with this option. The entries that are actual numbers
(Table 5) are no longer in numerical order according
to their value given in the name field.

The build process again uses makeglossaries,
which deals with the conflicting encaps for page 3
(Table 9). This method is faster than Example 18
(Table 14) as it’s simpler to compare two integers
than to perform a case-insensitive word-order com-
parison between two strings.

» Example 26 (testidx-glossaries and order of
definition with xindy)

This is like the previous example, but xindy is used:
\PassOptionsToPackage{sort=def}{glossaries}
\usepackage [xindy] {testidx-glossaries}

The attributes (encaps) need to be specified as in
Example 20, but since we’re sorting by order of
definition it’s not possible to define the maths or
markers groups.

Since numeric comparisons are faster than string
comparisons, the numeric-sort style from Exam-
ple 20 is also used (Table 14). This example will
still work without that style as the sort values are
zero-padded to six digits. (If you have 1,000,000 or
more entries, you’ll need numeric-sort to enforce
numerical comparisons.)

The glossaries package automatically defines the
numbers group, so all entries are placed in that. If
the package option glsnumbers=false is also passed

387

to glossaries, then the entries will instead be placed
in the default group.

There’s no longer a problem with the collation-
level homographs (Table 6) as the sort values are
now unique numbers, so ‘index’ and ‘resume’ have
reappeared in the index.

» Example 27 (testidx-glossaries and order of
definition with TEX)

This example makes a minor change to the document
used in Example 24:

\printnoidxglossary[sort=def ,nogroupskip,
style=mcolindex]

This orders by definition but no actual sorting is
performed here. The glossaries package keeps track
of which entries have been defined in an internal list
associated with the glossary that contains the given
entry. The entry label is appended to the list when
it’s defined, so the list is already in the correct order.
Each time an entry is used in the document, a record
is added to the .aux file. This also provides a list of
all entries that have been indexed, which is naturally
in the order required by sort=use (order of use). All
that is needed is to iterate over the appropriate list
and display each entry that has a record.

Now that TEX doesn’t have to sort the entries,
the build process is much faster (Table 14). The only
problem here is that the style must be changed to
one that doesn’t use group headings, as otherwise
TEX has to determine the correct heading from the
sort value. Unlike the previous two examples, the
sort key isn’t altered to a numeric value (because
sort=def wasn’t passed as a package option). This
means that a new group will be started with pretty
much every entry unless the entries happen to be
defined in alphabetical order. So in this example
I’ve switched the style to mcolindex and used the
nogroupskip option. The build process is the same
as for Example 23.

This method has a problem with sub-entries.
Unlike makeindex and xindy, there’s no hierarchical
sorting with this method (because there’s no actual
sorting) so if a sub-entry isn’t defined immediately
after its parent is defined then it won’t appear imme-
diately after its parent in the glossary. Furthermore,
if a sub-entry is used, its parent won’t automatically
be indexed.

The dummy text contains a number of top-level
entries that are duplicated as sub-entries. For exam-
ple, the book Ulysses is defined as:
\newglossaryentry{Ulysses}
{name={\tstidxbookfmt{Ulysses}},

sort={Ulysses},description={}
}

Testing indexes: testidx.sty

388

but a sub-entry is defined immediately after:

\newglossaryentry{books.Ulysses}

{name={\tstidxbookfmt{Ulyssesl}},
parent={books},
sort={Ulysses},description={}

}

These are then referenced using;:
\gls{Ulysses}\glsadd{books.Ulysses}

The parent entry (books) hasn’t been used in the
dummy text, so it doesn’t appear in the glossary.
This leads to the rather odd result:

Ulysses
Ulysses

The first instance is the top-level entry and the sec-
ond instance is the sub-entry. Even if the parent
entry (books) had been used, it would still be sepa-
rated from its sub-entry (books.Ulysses) as it’s not
defined immediately before it, but is one of the first
entries to be defined.

The location ranges (Table 10) have the same
problems as for Example 23, but the build time is
significantly faster, although it’s still slower than
using makeglossaries (Table 14).

This method is essentially for non-hierarchical
symbols that don’t have a natural alphabetical order
and the available build tools are somehow restricted.

The glossaries-extra package extends the base
glossaries package, providing new features (such as
the category key and associated attributes) and re-
implementing existing methods (such as the abbre-
viation handling). This package can automatically
be loaded by testidx-glossaries through the option
extra. This also ensures that each entry is assigned
a category. For example, the Ulysses entry is now:
\newglossaryentry{Ulysses}
{name={\tstidxbookfmt{Ulysses}},

category={book},

sort={Ulysses},description={}
}

(and similarly for the sub-entry). This doesn’t alter
the indexing, but it can be used to modify the way
the entries are displayed.

» Example 28 (testidx-glossaries and glossaries-extra
in order of definition)

The glossaries-extra package provides another way of
displaying the list of entries in order of definition.
Unlike the above examples, this includes all entries,
not just the ones that have been indexed. This is
done with

\printunsrtglossary [(options)]

Nicola L. C. Talbot

TUGhboat, Volume 38 (2017), No. 3

which simply iterates over all defined entries in that
glossary, displaying each one in turn according to its
handler, so it’s similar to Example 27 but doesn’t
check if the term has been indexed.

This method doesn’t create any external index-
ing files, so \tstidxmakegloss isn’t needed in this
example. The .tex files containing the definitions
for the dummy entries can be loaded using \input
or \loadglsentries, but it’s simpler to just use:

\tstidxloadsamples

which means you don’t have to worry about remem-
bering the file names. However there’s a problem
here. The see key can only be used after the index-
ing has been initialised (through \makeglossaries
or \makenoidxglossaries). This was a precaution-
ary measure introduced because the cross-reference
information can’t be indexed before the associated
file has been opened, and users who defined entries
before using \makeglossaries were puzzled as to
why the cross-references didn’t show up. The error
alerts them to the problem.

The simplest solution is to prevent the use of
the see key in the test entries with the noseekey
option provided by testidx-glossaries.

\documentclass{article}

\usepackage [adpaper] {geometry}
\usepackage [T1] {fontenc}

\usepackage{amssymb}

\usepackage [extra,noseekey] {testidx-glossaries}

\tstidxloadsamples

\setglossarystyle{mcolindex}
\renewcommand*{\glstreenamefmt} [1] {#13}

\begin{document}

\testidx

\printunsrtglossary [nogroupskip]
\end{document}

(An alternative is to pass seenoindex=ignore to the
glossaries package or pass autoseeindex=false to
the glossaries-extra package.) The document build
process is simply:

pdflatex doc

Some terms that are used in the original dummy
text provided by testidx aren’t present in the slightly
altered version produced by testidx-glossaries. (This
is why imakeidx is missing from the glossary exam-
ples listed in Table 6.) These terms are still de-
fined by testidx-glossaries to provide an additional
test, if required, for the treatment of non-indexed

TUGboat, Volume 38 (2017), No. 3

entries. Since \printunsrtglossary includes all en-
tries, imakeidx is once again in the index even though
it’s not in the dummy text.

The most noticeable difference is the absence of
page lists (Tables 9, 10, 12) and cross-references (Ta-
ble 11). No indexing has been performed so there’s
no record of where the entries have been used. There
are no groups (Table 1). This method suffers from
the same problem as Example 27 with the sub-entries
separated from their parents.

This example is faster than all the other ex-
amples using testidx-glossaries (Table 14), but the
build only requires a single IANTEX call and doesn’t
perform any sorting, so that’s hardly surprising. It’s
slower than Example 1 (Table 13): makeidx is a small,
simple package and therefore fast to load whereas
glossaries and glossaries-extra are complicated and
rely on a number of other packages.

A few seconds can be shaved off the build time
by adding
\setupglossaries{sort=none}

before the entries are defined. (Only available with
glossaries version 4.30 onwards.) This skips the code
used to set up the sort values (such as sanitizing and
escaping special characters for makeindex or xindy).

The iteration handler recognises three special
fields, group, location and loclist, which don’t
have a key provided by default. The group value
should be a label identifying the letter group, and
will only be checked for by the handler if the group
key is defined. For example:

\glsaddstoragekey{group}{}{\glsgroup}

The location value may contain any valid code that
produces the location list. Although the group field
must have an associated key of the same name for
the handler to recognise it, the location field can
simply be set using \GlsXtrSetField.

The loclist value must be in the same format
as the internal lists provided by etoolbox where each
item is in the format
\glsnoidxdisplayloc{(prefix)}

{(counter)}{{encap)}{{location)}

for locations, or
\glsseeformat [(tag)]{(label)}{}

for cross-references. (This is the same command used
by makeindex and xindy when the see key is used.
The final argument is the location for the benefit
of makeindex but is always ignored.) The loclist
value can’t be provided as a key since it requires a
specific separator used by etoolbox. Instead, each
item can be added to the list using

\glsxtrfieldlistadd{(label)}{{field)}{(item)}

389

The group value must be a label (no special char-
acters) because it’s used as a hypertarget with the
‘hyper’ or ‘nav’ glossary styles. The corresponding
title can be set using

\glsxtrsetgrouptitle{(label)}{(title)}

If not set, the handler will try \(label)groupname
(for compatibility with glossaries) and if that’s not
defined the label will be used as the title.

If the location field is set then that value will
be used as the location list otherwise if loclist is
set then the list given by that field will be iterated
over using the same method used by the handler for
\printnoidxglossary (which is quite primitive, as
can be seen in the results for Examples 23, 24 and
27 in Table 10).

It’s therefore possible to manually produce a
glossary with groups and locations like this:

\documentclass{article}
\usepackage{glossaries-extra}

\setglossarystyle{indexgroup}
\renewcommand*{\glstreenamefmt} [1] {#1}

\glsaddstoragekey{group}{}{\glsgroup}

\glsxtrsetgrouptitle{42}{B}
\glsxtrsetgrouptitle{D8}{\0}

\newglossaryentry{books}
{name={books}, group={42},description={}}

\newglossaryentry{books.Dubliners}
{name={\emph{Dubliners}},parent={books},
description={}}
\GlsXtrSetField{books.Dubliners}{location}
{1--3}

\newglossaryentry{books.Ulysses}
{name={\emph{Ulysses}},parent={books},
description={}}
\GlsXtrSetField{books.Ulysses}{location}{2}

\newglossaryentry{0lstykkeStenlose}

{name={\0 lstykke-Stenl\o sel},group={D8},
description={}}
\GlsXtrSetField{OlstykkeStenlose}{location}{8}

\newglossaryentry{Oresund}

{name={\0 resund},group={D8},description={}}
\GlsXtrSetField{Oresund}{location}

{9, \emph{see also} \O resund Bridge}

\begin{document}

\printunsrtglossary
\end{document}

Testing indexes: testidx.sty

390

This produces:

B

books
Dubliners 1-3
Ulysses 2

]

Dlstykke-Stenlgse 8
@resund 9, see also POresund Bridge

On the face of it, this method seems contrary to
one of INTEX’s biggest advantages in its ability to
automate cross-referencing and indexing. However,
it’s just this method that’s used by bib2gls, which
performs two tasks:

1. fetches entry information from a .bib file;

2. performs hierarchical sorting, optionally assigns
letter groups, collates location lists and writes
the entry definitions to a file that can be input
by \GlsXtrLoadResources.

The first task is akin to using bibtex or biber.
The second task is similar to that performed by
makeindex or xindy.

The KTEX code generated by bib2gls has the
entry definitions written in the order obtained from
sorting, with parent entries defined immediately be-
fore their child entries. The information required
by bib2gls is provided in the .aux file, but this
needs to be enabled by passing the record option to
glossaries-extra.

An additional build may be required to ensure
the locations are up-to-date as the page-breaking may
be slightly different on the first IATEX run due to un-
known references being replaced with ‘??’, which can
be significantly shorter than the actual text produced
when the reference is known.

The command \glsaddall can’t be used in this
mode, but it’s possible to instruct bib2gls to se-
lect all entries. By default it only selects those en-
tries that have been indexed and their dependencies
(which includes their ancestors). Since only the re-
quired entries have been defined and they have been
defined in the correct order, the glossary can be
displayed using \printunsrtglossary.

» Example 29 (testidx-glossaries and bib2gls)
This example uses bib2gls, so this needs:

\usepackage [bib2gls]{testidx-glossaries}

The entries are defined in various .bib files provided
with testidx. The test document is:

\documentclass{article}

\usepackage [a4dpaper] {geometry}
\usepackage [T1] {fontenc}

Nicola L. C. Talbot

TUGhboat, Volume 38 (2017), No. 3

\usepackage [ut£8] {inputenc}
\usepackage{amssymb}
\usepackage [bib2gls]{testidx-glossaries}

\tstidxmakegloss

\renewcommand*{\glstreenamefmt} [1]{#1}
\renewcommand*{\glstreegroupheaderfmt} [1]{}
\textbf{#1}}

\begin{document}
\testidx
\tstidxprintglossaries
\end{document}
The document build process is:
pdflatex doc
bib2gls --group doc
pdflatex doc
The --group switch enables the letter group for-
mation, which is off by default. Note that UTF-8
support is needed with this switch as the groups may
contain extended characters. The build times shown
in Table 14 use the above build sequence for the
bib2gls examples. However, the first instance (or
when new entries are referenced) will need:
pdflatex doc
bib2gls --group doc
pdflatex doc
bib2gls --group doc
pdflatex doc
to ensure the location lists are correct. The .1log file
will warn about undefined references on the first run,
so build processes that allow for conditional actions
can perform a check for these warnings. For example,
using arara v4.0:
% arara: pdflatex
% arara: bib2gls if found ("log", "Warning:
Glossary entry")
% arara: pdflatex if found ("log", "Warning:
Glossary entry")
% arara: bib2gls: {group: on}
% arara: pdflatex
The file testidx-glossaries-samples-ascii.bib
contains definitions using commands for extended
characters, for example:
@index{elite,

name={{\'e}lite},

category={word},

description={group of people regarded

as the best of a particular society

or organisation}

}

(The initial \'e is grouped to allow it to work with
the case-changing \Gls.) None of the sample .bib
files provide a sort key, but bib2gls has a primitive

TUGboat, Volume 38 (2017), No. 3

TEX interpreter that recognises accent commands,
S0 it determines that the sort value for this entry is
élite. This means that it can place this word in the
E letter group (if appropriate to the collation rule).
In the case of \0 resund, bib2gls determines that
it belongs to the @ letter group (again, depending
on the rule). Since with inputenc @ is an active char-
acter, bib2gls uses numeric identifiers as the group
labels (to avoid problems with hyperref). Although
the entry definition is written with the original \0
used in the .bib file, the letter group title is an ex-
tended character taken from the sort value, which is
why either UTF-8 support is needed or the —-group
option should be omitted.

In ASCII mode, \tstidxmakegloss selects the
*-ascii.bib file, whereas with UTF-8 support, this
command selects UTF-8 versions (*-utf8.bib) and
terms such as élite no longer need the interpreter.
(Only terms containing \ { } or $ are passed to the
interpreter.)

The definition of the test interface command
\tstidxmakegloss varies according to the package
options. If you add the verbose option, the tran-
script will list the exact sequence of resource com-
mands. So for this example, the .log file includes:

\GlsXtrLoadResources[
src={testidx-glossaries-mathsym},
group={Maths},
sort={letter-case},
selection={recorded and deps and see},
ignore-fields={description}]

This mimics the prefix setting used in earlier ex-
amples. The maths symbols are defined in the file
testidx-glossaries-mathsym.bib like this:

@symbol{spinderiv,
name={\eth},
text={\eth},
category={mathsymbol},
description={spin-weighted partial
derivative}

}

Entries defined using @symbol or @number fall back
to the label if the sort field is missing. This means
that 0 now has a different sort value (spinderiv)
from the earlier examples where it was either >eth or
eth. This is reflected in Table 4 where the ordering
has changed.

The value of the src key identifies the .bib
file (where the extension is omitted). This may be
a comma-separated list. The group key sets the
group field for all the selected entries, which overrides
the default method of obtaining the group from the
entry’s sort value. (This will be ignored if bib2gls is

391

run without the --group switch.) The sort setting

letter-case indicates case-sensitive letter order.

The selection value recorded and deps and
see instructs bib2gls to select all entries that have
been indexed (recorded) in the document (through
commands like \gls) and their dependencies (such
as parent entries) and their cross-references. This
ensures that sub-entries, such as books.Ulysses,
have their parent entry listed. The hierarchical sort
ensures the sub-entries are defined immediately after
their parent entry to keep them together.

The final key ignore-fields tells bib2gls to
ignore the description field (to honour the default
nodesc package option). The @index entry type
allows a missing description, unlike the @entry type
(not used in any of the provided .bib files) which
requires that field.

The above is the first resource command, which
instructs bib2gls to create a file called doc.glstex
(where the main document file is called doc.tex)
with the required definitions in the appropriate or-
der. A separate file is created for each instance of
\GlsXtrLoadResources. This allows different order-
ing within sub-units of the glossary (or index). The
use of the group key assigns the sub-unit to a single
group.

The next resource command is quite similar:
\GlsXtrLoadResources[

src={testidx-glossaries-markers},
group={Markers},

sort={letter-casel},
selection={recorded and deps and see},
ignore-fields={description}]

This loads the .bib file that contains the definitions

of all the markers, again using @symbol. The KTEX

code is written to doc-1.glstex.

The third command is:

\GlsXtrLoadResources[
src={testidx-glossaries-numbers},
sort={integer},
selection={recorded and deps and see},
ignore-fields={description}]

This loads the .bib file that contains the definitions

of all the numbers in the form:

@number{10,

name={10},
category={number},
description={ten}

}

The sort key has been set to integer to order these
entries numerically. This automatically assigns them
to the ‘Numbers’ group so no group option is used
here. The IXTEX code for this resource set is written
to doc-2.glstex.

Testing indexes: testidx.sty

392

The final resource command is:
\GlsXtrLoadResources [
src={testidx-glossaries-samples,
testidx-glossaries—samples-utf8,
testidx-glossaries-nodiglyphs-utf8},
selection={recorded and deps and see},
ignore-fields={description}]
The .bib files listed in src vary according to the
testidx-glossaries package options and document en-
coding. There’s no sort option in this resource
set. The glossaries package loads tracklang [11] (de-
scribed in a previous issue of TUGboat [6]). If a
document language is detected, glossaries-extra will
use the tracklang interface to write the locale infor-
mation to the .aux file, which bib2gls will detect
and will use as the default sort. If there is no doc-
ument language (as in this case), bib2gls will fall
back on the operating system’s locale. In my case,
this is en-GB so the entries will be sorted according
British English. Another user with a different locale
may find that the resulting letter groups are different
to those shown in Table 1. The optional argument
of \tstidxmakegloss is appended to this final in-
stance of \GlsXtrLoadResources (but not to any of
the others), so to replicate this example, you can do
\tstidxmakegloss [sort=en-GB]
(or just sort=en).

The non-native (for English) letters @ and L
have been combined into a single group after Z. The
rules used by sort=(locale) are in the form (ignore
chars) < {char group 1) < {char group 2) (You
can see the rule in the transcript by running bib2gls
with the --debug switch.) Any characters that don’t
appear in the rule (such as @ and L) are always placed
at the end of the alphabet. bib2gls determines the
letter group title from the first entry in the group.

The remaining letter groups in this example are
sensible for this locale as they are included in the en
rule. D is placed between D and E, and 8 is treated
as ‘ss’ (Table 8).

The sort value for each entry is converted to a
set of collation keys, where each key is an integer
representing a ‘letter’ as defined by the collation
rule. The letter may be more than one character, for
example, if the rule includes digraphs or trigraphs.
Ignored characters aren’t included in the key set.
The comparison is performed on this key set rather
than on the sort string.

Group titles are determined by taking the first
collation key from the set and looking up the corre-
sponding sub-string from the sort value. This sub-
string is then converted to lower case and any modi-
fiers are stripped using a normalizer (where possible).
If the result is considered equivalent to the original

Nicola L. C. Talbot

TUGhboat, Volume 38 (2017), No. 3

sub-string according to the collator, then the normal-
ized version is considered the group title and the first
character is converted to upper case (except for the
Dutch ‘jj’, which is converted to 1J, see Example 33).
For example, the first letter of élite is ‘¢’ which is
normalised to ‘e’ Since the sort rule considers é and
e to belong to the same letter group, the group title
becomes E. In the case of @Oresund, the result of the
normalisation ‘o0’ doesn’t match the original, so the
group title is @.

The multiple encap (Table 9) generates a warn-
ing from bib2gls. It gives precedence to the first
non-default of the conflicting set (tstidxencapi, in
this case). Precedence can be given to a different
encap through the —-map-format switch.

The range interruption has been moved before
the start of the explicit range (Table 10) but the
explicit range 2-5 (created with the open and close
formats) hasn’t been merged with the individual loca-
tions 1 and 6 on either side of it. The notestencaps
option doesn’t use any of the test encaps, so with
\usepackage [bib2gls,notestencaps]

{testidx-glossaries}
the interrupting entry now has the same format as
the explicit range. This means that it can be ab-
sorbed into the range, but an explicit range doesn’t
merge with neighbouring locations, so the location
list becomes 1, 2-5, 6.

The space and hyphen characters are in the
(ignore chars) part of the rule. This means that
the locale sorting naturally used by Java (in which
bib2gls is written) is typically letter order. To im-
plement word-ordering, the sort value is split on
word boundaries and joined with | (which is usually
in its own letter group before digits). For example,
‘sea lion” becomes seal|lion| (there’s always a fi-
nal marker so ‘seal’ becomes seall). This ensures
that bib2gls defaults to word ordering, matching
makeindex and xindy (Table 7). Java’s word itera-
tor doesn’t consider hyphens as word boundaries so
‘yo-yo’ becomes yo-yol.

» Example 30 (testidx-glossaries, bib2gls and letter
order)

In this example, the insertion of the break points is
disabled:

\tstidxmakegloss[sort=en-GB,break-at=none]

This results in letter ordering (Table 7). Note that
this isn’t the same as sort=letter-case which sim-
ply sorts according to the Unicode values rather than
according to a rule.

The ‘L’ letter group includes the -1 and -L
switches (Table 1), but these are in a different order
(Table 3) than the previous example. In this case

TUGboat, Volume 38 (2017), No. 3

-1 (makeindex) appears at the start of the group
whereas in the previous case it came between -L
icelandic (xindy) and -L polish (xindy).

» Example 31 (testidx-glossaries, bib2gls and
Icelandic)

For comparison with Example 15, this example sorts
according to the Icelandic alphabet:

\tstidxmakegloss[sort=is]

This correctly identifies all the Icelandic letter groups
as shown in Table 1. (There’s no O or Y letter group
as there are no terms starting with those letters.)
The non-native letters C, (E, Q, W, Z and ¥ have also
been assigned their own letter groups. The ordering
of ‘resume’ and ‘résumé’ (Table 6) is different from
the previous example since E comes after E in the
Icelandic alphabet (and are considered separate let-
ters). They are no longer collation-level homographs.
The non-native 8 is treated as ‘ss’ (Table 8).

» Example 32 (testidx-glossaries, bib2gls and
Hungarian)

For comparison with Example 16, this example sorts
according to the Hungarian alphabet:

\tstidxmakegloss [sort=hul

In addition to the basic Latin letters A-Z, the Hun-
garian alphabet also has A, Cs, Dz, Dzs, E, Gy, i,
Ly, Ny, 0 O, O, Sz, Ty, U, U, U and Zs. The sample
entries don’t include any terms starting with Cs, Gy,
Ny, 0, Sz, Ty, U, U or Zs. Of the other letters, only
Ly and O have correctly formed letter groups (Ta-
ble 1). The non-native letters B and (E have formed
separate groups, B has been treated as ‘sz’ rather
than ‘ss’ (Table 8), and @ and L are collected at the
end of the alphabet as they aren’t in the rule-set.

This has more success than xindy at forming
a digraph letter group (Ly) but has missed the Dz
digraph and Dzs trigraph.

Since I have Java 8 installed, the above examples
are using the locale rules from the CLDR (Common
Locale Data Repository). The results may differ with
Java 7 which can only use the locale information
provided with the JRE (Java Runtime Environment).
The locale identifier can include a variant as well as
a region, for example, sort=de-CH-1996 indicates
Swiss German new orthography.

» Example 33 (testidx-glossaries, bib2gls with
custom rules)

This example requires some customisation, so I can’t
use the convenient \tstidxmakegloss. I need to let
testidx-glossaries know this with the manual option
to prevent an error occurring:

393

\usepackage [bib2gls,manual] {testidx-glossaries}
I also need to explicitly use
\printunsrtglossary

So far, the maths group (where it has been
formed) only contains symbols such as a. There
are some other maths terms that have a natural al-
phabetic ordering (such as f(X) and E) which have
been placed in the letter groups. This example gath-
ers them all together into a single group. As men-
tioned earlier, terms like @ have the category set
to mathsymbol. The other mathematical terms are
in testidx-glossaries-samples.bib and have the
category set to math. It’s possible to apply a filter
so that only these terms are selected:
\GlsXtrLoadResources [

src={testidx-glossaries-mathsym,

testidx-glossaries-samples},

group={Maths},

sort={letter-case},

sort-field={name},

match-op={or},
match={{category=mathsymbol},{category=math}},
selection={recorded and deps and see},
ignore-fields={description}]
I've set the sort field to name, which means that
bib2gls will try to interpret the TEX code. It recog-
nises standard maths commands like \alpha and
can also detect a limited number of packages, such
as amssymb. This means that the sort code for 0
becomes the Unicode character FO (eth).

The markers use the same code shown in Ex-
ample 29. After that is the number group, which
is much the same, but for illustrative purposes, I've
inverted the number ordering:
\GlsXtrLoadResources[

src={testidx-glossaries-numbers},
sort={integer-reverse},
selection={recorded and deps and see},
ignore-fields={description}]

Next I want to create a group for the switches.
The switches also occur as sub-entries (under the
name of the application), so I need to select those
switches that don’t have a parent:
\GlsXtrLoadResources[

src={testidx-glossaries-samples},
group={Switches},
sort={letter-nocasel},
match-op={and},
match={{category=applicationoption},{parent={}1}},
selection={recorded and deps and see},
ignore-fields={description}]
I’ve used the case-insensitive letter sort which first
converts the sort key to lower case and then behaves
like letter-case.

Testing indexes: testidx.sty

394

The remaining entries are the alphabetic terms.
The terms that have been previously selected will be
ignored (with a warning) as duplicates. I've used a
custom sort rule here:

\GlsXtrLoadResources [
src={testidx-glossaries-samples,
testidx-glossaries-samples-utf8,
testidx-glossaries-nodiglyphs-utf8},
selection={recorded and deps and see},
ignore-fields={description},
max-loc-diff=3,
sort=custom,
SOIt‘I‘LllQ:{' [P |’| < l(l < |)| < |/| < ||| < 1=
< a,A & AE,\string\uE6,\string\uC6 % \ae
& \string\uE1l,\string\uCl % \'a
& \string\uE4,\string\uC4 % \"a
& \string\uE5, \string\uC5 % \aa
b,B
c,C & \string\ul07,\string\ul06 % \'c
d,D < dd,Dd,DD
dz,Dz,DZ < dzs,Dzs,DZS
\string\uF0,\string\uDO % \dh
e,E & \string\uC9,\string\uE9
f,F < ff,Ff,FF < g,G < h,H
i,I & \string\uED,\string\uCD 7% \'i
ij,1J < j,J < k,K < 1,L <11,L1,LL
ly,Ly,LY < m,M < n,N < ng,Ng,NG
0,0 & OE,\string\ul53,\string\ul52 % \oe
& \string\uF6,\string\uD6é 7% \"O
p,P < q,Q < r,R
s,S & SS,\string\uDF
& \string\uibB,\string\ulbA % \'s
t,T
th,\string\uFE,Th,TH, \string\uDE % \th
u,U & \string\uFA,\string\uDA % \'U
v,V < w,W<x,X<y,Y
z,Z & \string\ul7C,\string\ul7B % \.Z
\string\uF8,\string\uD8 %, \o
\string\ul42,\string\ui4l % \1

A AANANANNANANANANANNA

A

AANANANANANAN

}
]

The sort=custom option requires the sort-rule key
to be also set. Extended characters can be identified
with \u(hez) but \string is needed to prevent ex-
pansion when the information is written to the .aux
file. With XqIATEX or Lual&TEX the characters can
be written directly.

This rule has only a limited number of punctua-
tion characters for brevity. Extra characters should
be added to the rule if required. This is the only
example that successfully creates the Dzs trigraph
letter group (Table 1). There are also letter groups
for the Welsh Dd, Ff, Ll and Ng digraphs, the Dutch
1J digraph, and the Hungarian Dz and Ly digraphs
(although the word beginning with ‘ly’ is actually
Polish). There’s also a group for both b and the
Th digraph. The eszett 8 has been treated as ‘ss’
(Table 8).

I've listed the hyphen immediately before A
(and after the break point marker), which affects the
ordering of the compound words (Table 7). This

Nicola L. C. Talbot

TUGhboat, Volume 38 (2017), No. 3

also means that ‘recover’ and ‘re-cover’ are no longer
collation-level homographs (Table 6) since the hy-
phen is no longer ignored.

The additional seealso key provided by v1.16
of glossaries-extra allows bib2gls to treat the see
and seealso cross-references differently. (An en-
try may have one or the other of those fields, but
not both with bib2gls.) The seealso field can
be positioned at the start of the location list us-
ing the resource option seealso=before or omitted
entirely using seealso=omit. The default setting
is seealso=after, which puts it at the end of the
list. The separator between the list and the cross-
reference is given by \bibglsseealsosep, which can
be redefined after the resources are loaded. In this
example, I've done:
\renewcommand*{\bibglsseealsosep}{ }
\renewcommand*{\glsxtruseseealsoformat} [1]{%

(\glsseeformat [\seealsoname] {#1}{})}
This puts the ‘see also’ cross-references in parenthe-
ses, but doesn’t affect the ‘see’ cross-references. For
example, ‘range separator’ is defined with the see
field, and the result is ‘range separator see location
list’, but ‘padding’ is defined with the seealso field,
so the result is ‘padding 2 (see also filler)

Implicit ranges are formed from consecutive lo-
cations. This can lead to some ragged location lists,
such as 1, 2, 4, 5, 7. A tidier approach is to show this
as 1-7 passim, where ‘passim’ indicates the references
are scattered here and there throughout the range.
The max-loc-diff option indicates the maximum
difference between two locations to consider them
consecutive. The default value is 1, which means
that 2 and 3 are consecutive but 2 and 4 aren’t. I've
set the value to 3 in this example, which means that
the location list 2, 5, 6 can be tidied into 2-6 passim.
The ragged list for ‘paragraph’ (Table 9) can’t be
tidied as there are different encaps. The ‘passim’
suffix can be altered or removed as required.

» Example 34 (testidx-glossaries, bib2gls and
non-standard page numbering)

This example uses the same custom \tally com-
mand from Example 22 for the page numbering. The
only modification to Example 33 is the addition of:
\usepackage [notext] {stix}

and the definition of \tally and \thepage from
Example 22.

bib2gls will allow any location format. If it
can deduce an associated numeric value, it will try
to determine if a range can be formed, otherwise
the location will be considered an isolated value that
can’t be concatenated. (With glossaries-extra, it’s
possible to override the normal location value when

TUGboat, Volume 38 (2017), No. 3

using thevalue with \gls. . ., for example, \glsadd
[thevalue={Suppl.\ info.}]1{{label)}.) One of the
patterns bib2gls checks for is \(csname){(num)},
which it interprets as having the numeric value (num).
The regular expression for {num) can detect roman
numerals (I, I, ... or i, ii, ...) or numeric values or
single alphabetical characters.

The alphabetic test uses \p{javaUpperCase}
for the upper case version or \p{javaLowerCase}
for the lower case version which not only matches
A, B, etc., or a, b, etc., but also matches alphabetic
characters in other scripts, such as A, B, etc. The
numeric value representing the location is obtained
from the Unicode value. For example, Latin A has
the value 65 whereas Cyrillic A has the value 1040.

The numeric test uses \p{javaDigit} to match
a digit, which means it not only matches the digits
0, 1, 2, etc., but also digits from other scripts, such
as the Devanagari numbering system o, 9, 2, etc.

The results from this example are much the
same as the previous example except for the page
number representation (Tables 9, 10, 11 and 12).

5 Extending the dummy text

New blocks can be added using \tstidxnewblock.
For example:

\tstidxnewblock{The \tstidxword{cat} sat

on the \tstidxword{mat}. The

\tstidxphrase{man in the moon} fell off

the \tstidxphrase{four-poster bed}.}

The starred version can be used to capture the block
number in a control sequence:

\tstidxnewblock*{\moonblock}{The
\tstidxword{cat} sat on the \tstidxword{mat}.
The \tstidxphrase{man in the moon} fell off
the \tstidxphrase{four-poster bed}.}

You can then display just this block with
\testidx [\moonblock]

There are other commands as well, including com-
mands for UTF-8 terms. For example:

\tstindexutfword{ch\ ateau} [chateau] {chiteau}

The first argument is the ASCII version and the
final argument is the UTF-8 version. The optional
argument is the label, which is only used by testidx-
glossaries. If you want this support for the glossaries
package, you’ll need to define the terms as well:
\tstidxnewword{cat}{feline animal}
\tstidxnewword{mat}{piece of material

placed on the floor}

\tstidxnewphrase{man in the moon}{pareidolic
image seen in the moon}
\tstidxnewphrase{four-poster bed}{type of bed}

395

The UTF-8 example needs to be defined as follows:
\tstidxnewutfword{chateau}{ch\~ateau}{chateau}
{castle}

where the first argument is the label.

To integrate this with \tstidxmakegloss, just
add the definition file name to the comma-separated
list given by \tstidxtexfiles. For example (us-
ing etoolbox), if the terms are defined in the file
my-samples.tex:
\appto{\tstidxtexfiles}{,my-samples}

With bib2gls, the definitions will need to go

in a .bib file. For example:
@index{cat,

category={word},

description={feline animal}
}
@index{fourposterbed,

category={phrase}l,

name={four-poster bed},

description={type of bed}

}
(Note that the hyphen and space are stripped from
the name to create the label. The name field may
be omitted if it’s identical to the label.) The UTF-8
support is dealt with by having two separate .bib
files. One contains the ASCII version:
@index{chateau,

category={word},

name={ch\"ateau},

description={castle}
}
and the other contains the UTF-8 version:
@index{chateau,

category={word},

name={chiteau},

description={castle}
}
These can also be integrated into \tstidxmakegloss
as follows. The .bib file that doesn’t require UTF-8
support (the one containing ‘cat’ in the above) needs
to be added to \tstidxbasebibfiles (a comma-
separated list). For example, if that file is called
my-samples.bib then:
\appto{\tstidxbasebibfiles}{,my-samples}

The UTF-8 file (the one containing chateau) needs
to be added to \tstidxutfbibfiles. For example,
if the file is called my-samples-ut£f8.bib:
\appto{\tstidxutfbibfiles}{,my-samples-utf8}
and the corresponding ASCII file needs to be added
to \tstidxasciibibfiles. For example, if the file
is called my-samples-ascii.bib:
\appto{\tstidxasciibibfiles}{,my-samples-ascii}

Testing indexes: testidx.sty

396

Example

TUGhboat, Volume 38 (2017), No. 3

Table 1: Letter groups
Group ordering

1, 5, 18,
19

79

10

11

12

13

14, 21, 22
15
(Icelandic)

31
(Icelandic)

16

(Hungarian)

32

(Hungarian)

17

20

23, 24

29, 30

33, 34

25-28

Symbols Numbers A (inc. &, A, A, A) B C (inc. C) D (inc. 0) E (inc. é) F G H I (inc. f) J K L (inc.
£) M N O (inc. e, @, O) P QR S (inc. S) T (inc. b, P) U (inc. U) VW X Y Z (inc. Z)

Symbols Numbers ABCDEFGHIJKLMNOPQRSTUVWXYZ

Symbols Numbers A (inc. @, a, A, A, A) B (inc. g) C (inc. C) D (inc. d) E (inc. é, 8) F G (inc. y) H
I (inc. T) J K L (inc. £) M N O (inc. ce, @, O) P (inc.) Q R S (inc. S, ¥) T (inc. b, P) U (inc. U)

VWXY Z (inc. Z)

Symbols Numbers A (inc. a) B (inc. §) CD E (inc.) FG (y) HIJKL M N O P (inc. 9) QR S
(inc.) TUVW X Y Z

Symbols Numbers ABCDEFCGHIJKLMNOPQRSTUV W XY ZOther (A, A, AT,
0,0, U, b, =, é,0, b) Other (C) Other (L, ce, S, 7)

Symbols A (inc. 22) B C D (inc. 0) E (inc. é) F G (inc. -g) HI J K L (inc. -1, -L) M (inc. -M) N O
(inc. A, A, A, 1,0,0,U,O) PQRSTUVWXYZP

Symbols A (inc. e, @) B (inc. §) C D (inc. 0) E (inc. é, 8) F G (inc. -g, y) HI J K L (inc. -L, -1) M
(inc. -M) N O (inc. A, &, A, 1, e, @, U, O) P (inc. 9) QR S (inc. Y) TUVWX Y ZP

Symbols Numbers A (inc. &) B C D (inc. 0) E (inc. é) F G (inc. -g) HI J K L (inc. -1, -L) M (inc.
-M) N O (inc. A, A, A, 1,00,0,U,0)PQRSTUVWXYZDP

Symbols Numbers A (inc. 2,) B (inc. f) C D (inc. 8) E (inc. é, 0) F G (inc. -g, y) HI J K L (inc.
-1, -L) M (inc. -M) N O (inc. A, A, A, I, ce, @, U, O) P (inc. 9) QR S (inc. Y)) TUVW XY Z P
Symbols Numbers A (inc. @, A, A, A) B C (inc. €) D (inc.) E (inc. é) F G (inc. -g) H I (inc. T) J
K L (inc. -1, -L, £) M (inc. -M) N O (inc. e, @, O) P Q R S (inc. S) T (inc. b, P) U (inc. U) VW X
Y Z (inc. 7)

Symbols Markers Maths Numbers A (inc. &) B C D (inc. 0) E (inc. é) F G (inc. -g) HI J K L (inc.
-1, -L) M (inc. -M) N O (inc. A, &, A, I, e, 0, U,O)PQRSTUVWXYZP

Symbols Markers Maths Numbers A (inc. A) BC D d E (inc. é) F G (inc. -g) H I (inc.) J K L (inc.
-1,-L) M (inc. -M) NOPQRSTU (inc. Uy VWXYZP A (inc. A, ce) O (inc. @) A

Maths Markers Numbers A (inc. A, A) A B C (inc. () DD EEF G (inc. -g) HITJ K L (inc. -L,
-1) M (inc. -M) NOEBP QRS (inc.) TUUV W XY Z (inc. Z) P £ O (inc. @) L

Symbols Markers Maths Numbers A (inc. A) B C D (inc. dz, dzs) E (inc. é) F G (inc. -g) H I (inc.
1) JK L (inc. -1, -L, ly) M (inc. -M) N O (inc. &, A, @, P, &, 0,p) OP QRS T U (inc. U) VW X
Y Z

Maths Markers Numbers A (inc. @ A A A) B C (inc. C) D (inc. dz, dzs) D E (inc. é) F G (inc. -g)
H I (inc.) J K L (inc. -L, -1) Ly M (inc. -M) NO O B P QR S (inc. S) T (inc. b, P) U (inc. U) V
W XY Z (inc. Z) @ (inc. L)

Markers Maths Numbers A (inc. @, A, A, A) B C (inc. C), D (inc. dd and dzs) Dz E (inc. é) F (inc.
ff) G (inc. -g) HT (inc. I) U J K L (inc. -1, -L, £, ly) IL M (inc. -M) N (inc. Ng) O (inc. ce, P, 3, @,
O,p) PQRS (inc. S) T U (inc. U) VW X Y Z (inc. Z)

Markers Maths Numbers A (inc. 2, A, A, A) B C (inc. €¢) D (inc. 8) E (inc. é) F G (inc. -g) H I
(inc. I) J K L (inc. -1, -L, £) M (inc. -M) N O (inc. ce, @, O) P Q R S (inc. S) T (inc. b, P) U (inc.
U) VW X Y Z (inc. Z)

Symbols A (inc. 2, A, A, A) B C (inc. €) D (inc. d) E (inc. é) F G HI (inc. I) J K L (inc. &) M N
O (inc. @, 0) P QR S (inc. S) T (inc. b, P) U (inc. U) VW X Y Z (inc. Z)

Maths Markers Numbers A (inc. @, A, &, A) B C (inc. ¢) D B E (inc. é) F G (inc. -g) H 1 (inc.) J
K L (inc. -L, -1) M (inc. -M) N O (inc. ce, O) P Q R S (inc. S) T (inc. b, P) U (inc. U) VW X Y Z
(inc. Z) @ (inc. 1)

Maths Markers Numbers Switches A (inc. @, A, A, A) B C (inc. ¢) D Dd Dz Dzs P E (inc. é) F Ff
GHI (inc.) IJJKLLI Ly MN Ng O (inc. ce, O) P QR S (inc. S) T Th (inc. b, P) U (inc. U) V
W XYZ(inc. Z) O L

no groups or all entries in one group

Nicola L. C. Talbot

TUGboat, Volume 38 (2017), No. 3

Table 2: Symbols

397

Table 5: Numbers

Example Number ordering

1-6, 2, 10, 16, 42, 100
11-24,
29-32
7-10 10, 100, 16, 2, 42
33, 34 100, 42, 16, 10, 2
25-28 order of definition

Table 6: Collation-level homographs
Example Ordering

1-6 imakeidx package, index, \index,
indexing application

17 imakeidx package, \index, indexing
application (‘index’ omitted)

18, 19, 23, illustration, \index, index, indexing

24, 29-34 application

2022 illustration, \index, indexing application
(“index’ omitted)

1-6, 18, range separator, re-cover, recover,
19, 23, 33, reference
34

7-17, 24, range separator, recover, re-cover,
2022, reference
29-32

Example Symbol group contents

1, 5, 18, switches markers maths

19

2 switches markers maths non-ASCII (4,
07 A7 C’ i? S7 U7 é7 Z7 L7 ®7 p7 &7 67 (E7
A, b)
switches
switches non-ASCII (A, O, A, G, 1, S, U,
é’ Z7 L7 ®’ p? %7 6’ %7 A? b)
switches markers maths

79 numbers markers maths UTF-8 (C, L,
S, 7)

10 numbers UTF-8 (C, £, S, Z)

11 markers maths UTF-8 (C, £, S, Z)

12, 14, 15, UTF-8 (C, L, S, Z)

21, 22

13 markers maths

16 UTF-8 (C, |, ce, S, 7)

23, 24 switches markers maths numbers

17, 20, group missing

25-34

Table 3: Switches

Example Switches ordering

1-6, 18, -L-M-g-1

19, 23, 24

7-9, -g -1 -L -M

11-17,

20-22, 30,

33, 34

10, 29, 31, -g-L -1 -M

32

2528 order of definition

Table 4: Maths

Example Maths ordering

1, 2, 5-11, « (>alpha), f (>beta), d (>eth),

13-24 y (>gamma), 0 (>partial), Y (>sum).

3, 4,12 a (alpha), f (beta), d (eth), y (gamma),
0 (partial),) (sum).

29-32 « (alpha), p (beta), y (gamma),
0 (partial), d (spinderiv), Y (sum).

33, 34 E (45), f(X) (66 28 78 20D7 29), n (6E),
d (Fo), 0 (2202), Y (2211), « (1D6FC), B
(1D6FD), y (1D6FE).

25-28 order of definition

1, 3, 5, repetition, resume, résumé, rhinoceros
7-12,

14-17, 21,

22, 31

18, 19, 23, repetition, résumé, resume, rhinoceros
24, 29, 30,

32-34

2,4 (start of group) résumé, Redovre, raft,
..., repetition, resume, rhinoceros

6 repetition, resume, rhinoceros, ...,
roundabout, résumé, Rgdovre

13, 20 repetition, résumé, rhinoceros (‘resume’
omitted)

25-28 order of definition

Testing indexes: testidx.sty

TUGDboat, Volume 38 (2017), No. 3

Table 9: Multiple encap (‘paragraph’)

Example

Location List

1-6

7-10
11-16

17

18

19, 25
20, 21, 26,
29-33

22, 34
23, 24, 27
28

2,2, 2,
2,235
2,3,5

2,3,4,6
2,3, 3, 3,
2, , 4,6
2,3,4,6

;3,0

4,6

0, B, O, B
2727 ki ’376

locations missing

Table 10: Explicit range interruption (‘range’)

Example

Location List

1-6

7-16

17

18, 19, 25
20, 21, 26
22

23, 24, 27
29-33

34

28

2,1-4, 6
14,2, 6

1,2,6

3, 1-6

1-6, 3

O-8, B
1,2,25,6
1,3,25,6

O, B, 0-8, @

locations missing

Table 11: Cross-reference interruption (‘lyuk’)

398
Table 7: Compound words
Example Ordering
1-4, 6, 7, sea, sea lion, seaborne, seal, sealant gun
9-22, 29,
31-34
5, 8, 24, sea, seaborne, seal, sealant gun, sea lion
30
23 sea, sealant gun, sea lion, seaborne, seal
1-4, 6, 7, vice admiral, vice chancellor, vice versa,
9-22, 29, vice-president, viceregal, viceroy
31-34
5 vice-president, vice admiral, vice
chancellor, viceregal, viceroy, vice versa
8,24, 30 vice admiral, vice chancellor,
vice-president, viceregal, viceroy,
vice versa
23 vice chancellor, viceregal, vice versa, vice
admiral, vice-president, viceroy
1-6, 18, yawn, yo-yo, yoghurt
19, 33, 34
7-17, youthful, yo-yo, yuck
2022, 24,
29-32
23 yoghurt, yo-yo, youthful
2528 order of definition
Table 8: Eszett (‘ABlar’)
Example Ordering
1, 3,5, assailed, Af3lar, astounded
13, 15,
1720, 23,
24, 29-31,
33, 34
2,4 (start of group) ABlar, aardvark
6 attributes, ABlar (end of group)
7-12, 14, anonymous reviewer, Af3lar, applications
16, 21, 22
32 astounded, Afllar, attaché case
2528 order of definition

Nicola L. C. Talbot

Example Location List
1-6, 1, see also digraph, 3
717 1, 3, see also digraph
18-21, 25, 2, 3, see also digraph
26, 29-32
22 (1, [, see also digraph
23, 24, 27 see also digraph, 1, 3
33 2, 3 (see also digraph)
34 O, & (see also digraph)
28 locations missing

Table 12: Ragged page list (‘block’)
Example Location List
1-16 1,2,4-6
17-21, 2,5,6
23-27,
29-32
22 0, &,
33 2-6 passim
34 [J-[EJ passim
28 locations missing

TUGboat, Volume 38 (2017), No. 3

Table 13: Build time (testidx)

Example Elapsed real time External tool

1 0:00.73 makeindex
2 0:00.64 makeindex
3 0:00.64 makeindex
4 0:00.69 makeindex
5 0:00.56 makeindex
6 0:00.61 makeindex
7 0:01.17 xindy
8 0:01.13 xindy
9 0:01.07 xindy
10 0:01.13 xindy
11 0:01.12 xindy
12 0:01.32 xindy
13 0:01.38 xindy
14 0:01.19 xindy
15 0:01.13 xindy
16 0:01.17 xindy
17 0:02.43 xindy

Table 14: Build time (testidx-glossaries)

Example Elapsed External tool
real time
18 0:02.45 makeglossaries-lite
0:02.08 makeindex (explicit)
19 0:02.42 makeglossaries
(makeindex)

20 0:03.19 makeglossaries
(xindy)

21 0:03.18 makeglossaries
(xindy)

22 0:03.29 makeglossaries
(xindy)

23 3:31.69 none

24 3:34.38 none

25 0:02.24 makeglossaries

(makeindex)

26 0:03.18 makeglossaries
(xindy)

27 0:03.79 none

28 0:01.57 none

29 0:05.33 bib2gls

30 0:05.08 bib2gls

31 0:05.03 bib2gls

32 0:05.06 bib2gls

33 0:06.04 bib2gls

34 0:05.50 bib2gls

399

References

1]

2]

[9]
[10]

[11]

STI Pub Companies. The stix package, 2015.
ctan.org/pkg/stix.

Alan Jeffrey and Frank Mittelbach. The
inputenc package, 2015.
ctan.org/pkg/inputenc.

Philipp Lehman and Joseph Wright. The
etoolbox package, 2015.
ctan.org/pkg/etoolbox.

Frank Mittelbach, Robin Fairbairns, and
Werner Lemberg. The fontenc package, 2016.
ctan.org/pkg/fontenc.

American Mathematical Society. The amssymb
package, 2013. ctan.org/pkg/amsfonts.

Nicola Talbot. Localisation of TEX documents:
tracklang. TUGboat, 37(3):337-351, 2016.
tug.org/TUGboat/tb37-3/tbl17talbot . pdf.
Nicola Talbot. bib2gls: A command line
Java application to convert .bib files to
glossaries-extra.sty resource files, 2017.

Nicola Talbot. The glossaries-extra package,
2017. ctan.org/pkg/glossaries-extra.

Nicola Talbot. The glossaries package, 2017.
ctan.org/pkg/glossaries.

Nicola Talbot. The testidx package, 2017.
ctan.org/pkg/testidx.

Nicola Talbot. The tracklang package, 2017.
ctan.org/pkg/tracklang.

o Nicola L. C. Talbot
School of Computing Sciences
University of East Anglia
Norwich Research Park
Norwich
NR4 7TJ
United Kingdom
N.Talbot (at) uea dot ac dot uk
http://www.dickimaw-books.com/

Testing indexes: testidx.sty

ctan.org/pkg/stix
ctan.org/pkg/inputenc
ctan.org/pkg/etoolbox
ctan.org/pkg/fontenc
ctan.org/pkg/amsfonts
tug.org/TUGboat/tb37-3/tb117talbot.pdf
ctan.org/pkg/glossaries-extra
ctan.org/pkg/glossaries
ctan.org/pkg/testidx
ctan.org/pkg/tracklang

	Introduction
	Intentional issues
	Stylistic issues
	Page breaking
	Headers and footers
	Line breaking
	Whatsits

	Index recording issues
	Page breaking
	Extended Latin characters

	Indexing application issues
	Extended Latin characters, digraphs and trigraphs
	Collation-level homographs
	Compound words
	Numbers
	Symbols
	Multiple encaps
	Inconsistent encap in a range
	Cross-referenced terms
	Untidy page lists

	testidx-glossaries
	Examples
	Extending the dummy text

