Converting TEX from WEB to cweb
Martin Ruckert

Why translate TEX from WEB to cweb?

A long term goal brought me to construct the pro-
gram web2w that translates TEX from WEB to cweb:
I plan to derive from the TEX sources a new kind of
TEX that is influenced by the means and necessities
of current software and hardware.

The major change in that new kind of TEX will
be the separation of the TEX frontend: the process-
ing of .tex files, from the TEX backend: the render-
ing of paragraphs and pages.

Let’s look, for example, at ebooks: Current
ebooks are of rather modest typographic quality.
Just compiling TEX documents to a standard ebook
format, for example epub, does not work because a
lot of information that is used by TEX to produce
good looking pages is not available in these formats.
So I need to cut TEX in two pieces: a frontend that
reads TEX input, and a backend that renders pixels
on a page. The frontend will not know about the fi-
nal page size because the size of the output medium
may change while we read—for example by turning
a mobile device from landscape to portrait mode.
On the other hand, the computational resources of
the backend are usually limited because a mobile
device has a limited supply of electrical energy. So
we should do as much as we can in the frontend and
postpone only what needs to be postponed to the
backend. In between front and back, we need a nice
new file format that is compact and efficient and
transports the necessary information between both
parts.

For the work described above, I will need to
work with the TEX source code and make substan-
tial changes. The common tool chain from the TEX
Live project uses tangle to convert tex.web into
Pascal code (tex.pas) which is then translated by
web2c into C code. In the course of this process
also other features of a modern TEX distribution
are added. Hence the translation process is not just
a syntactic transformation but also introduces se-
mantic changes. So it seemed not the best solution
for my project. Instead, I wanted to have cweb [7]
source code for TEX, which I could modify and trans-
late to C simply by running ctangle.

The result of my conversion effort was surpris-
ingly good, so I decided to make it available on
ctan.org [10] and to present it here, in the hope
others may find it useful when tinkering with TEX.

354

How the program web2w was written

On December 9, 2016, I started to implement web2w
with the overall goal to generate a tex.w file that
is as close as possible to the tex.web input file, and
can be used to produce tex.tex and tex.c simply
by running the standard tools ctangle and cweave.

web2w was not written following an established
software engineering workflow as we teach it in our
software engineering classes. Instead the develop-
ment was driven by an ongoing exploration of the
problem at hand where the daily dose of success or
failure would determine the direction I would go on
the next day.

This description of my program development
approach sounds a bit like “rapid prototyping”. But
“prototype” implies the future existence of a “final
version” and I do not intend to produce such a “final
version”. Actually I have no intention to finish the
prototype either, and I might change it in the future
in unpredictable ways. Instead I have documented
the development process as a literate program [6].
So in terms of literature, this is not an epic novel
with a carefully designed plot, but more like the
diary of an explorer who sets out to travel through
yet uncharted territories.

The territory ahead of me was the program
TEX written by Donald E. Knuth using the WEB lan-
guage [4] as a literate program. As such, it contains
snippets of code in the programming language Pas-
cal—Pascal-H to be precise. Pascal-H is Charles
Hedrick’s modification of a compiler for the DEC-
system-10 that was originally developed at the Uni-
versity of Hamburg (cf. [1], see [5]). So I could not
expect to find a pure “Standard Pascal”. But then
the implementation of TEX deliberately does not use
the full set of features that the Pascal language of-
fers. Hence at the beginning, it was unclear to me
what problems I would encounter with the subset of
Pascal that is actually used in TEX.

Further, the problem was not the translation
of Pascal to C. A program that does this is avail-
able as part of the TEX Live project: web2c [11]
translates the Pascal code that is produced using
tangle from tex.web into C code. The C code that
is generated this way cannot, however, be regarded
as human readable source. The following example
might illustrate this: figure 1 shows the WEB code for
the function new_null_bozx. The result of translating
it to C by web2c can be seen in figure 3. In contrast,
figure 2 shows what web2w will achieve.

web2c has desugared the sweet code written by
Knuth to make it unpalatable to human beings; the

Martin Ruckert

TUGDboat, Volume 38 (2017), No. 3

136. The new-null_box function returns a pointer to
an hlist_node in which all subfields have the values cor-
responding to ‘\hbox{}. The subtype field is set to
min_quarterword, since that’s the desired span_count
value if this hlist_node is changed to an unset_node.
function new_null_box: pointer;

{ creates a new box node }
{the new node}
begin p + get_node (boz_node_size);

var p: pointer;

type (p) + hlist_node; subtype (p) < min_quarterword;
width (p) < 0; depth(p) < 0; height (p) + 0;
shift_amount (p) < 0; list_ptr (p) < null;
glue_sign (p) < normal; glue_order (p) normal;
set_glue_ratio_zero (glue_set (p)); new_null_box «+ p;
end;

Fig. 1: WEB code of new_null_box

136. The new_null_box function returns a pointer to
an hlist_node in which all subfields have the values cor-
responding to ‘\hbox{}’. The subtype field is set to
min_quarterword, since that’s the desired span_count
value if this hlist_node is changed to an unset_node.

pointer new_null_boz (void)
/* creates a new box node x/

{ pointer p; /«the new nodex/

p = get_node (box_node_size); type(p) = hlist_node;
subtype (p) = min_quarterword ; width (p) = 0;
depth (p) = 0; height (p) = 0; shift_.amount (p) = 0;
list_ptr (p) = null; glue_sign(p) = normal;
glue_order (p) = normal;

set_glue_ratio_zero (glue_set (p)); return p;

Fig. 2: cweb code of new_null_box

only use you can make of it is feeding it to a C com-
piler. In contrast, web2w tries to create source code
that is as close to the original as possible but still
translates Pascal to C. For example, see the last
statement in the new_null_boz function: where C has
a return statement, Pascal assigns the return value
to the function name. A simple translation, suffi-
cient for a C compiler, can just replace the function
name by “Result” (an identifier that is not used
in the implementation of TEX) and add “return
Result;” at the end of the function (see figure 3). A
translation that strives to produce nice code should,
however, avoid such ugly code.

The structure of web2w

The program web2w works in three phases: First I
run the input file tex.web through a scanner pro-
ducing tokens. The pattern matching is done using
flex. During scanning, information about macros,

TUGDboat, Volume 38 (2017), No. 3

halfword
newnullbox (void)
{
register halfword Result; newnullbox_regmem
halfword p ;
p = getnode (7) ;
mem [p].hh.b0 = 0 ;

mem [p].hh.bl = 0 ;

mem [p + 1 J.cint = 0 ;

mem [p + 2 J.cint = 0 ;

mem [p + 3 J.cint = 0 ;

mem [p + 4 J.cint = 0 ;

mem [p + 5].hh .v.RH = -268435455L ;
mem [p + 5]1.hh.b0 = 0 ;

mem [p + 5].hh.bl = 0 ;

mem [p + 6].gr = 0.0 ;

Result = p ;

return Result ;

Fig. 3: web2c code of new_null_box

identifiers, and modules is gathered and stored. The
tokens then form a doubly linked list, so that later
I can traverse the source file forward and backward.
Further, every token has a link field which is used
to connect related tokens. For example, I link an
opening parenthesis to the matching closing paren-
thesis, and the start of a comment to the end of the
comment.

After scanning comes parsing. The parser is
generated using bison from a modified Pascal gram-
mar [3]. To run the parser, I feed it with tokens,
rearranged to the order that tangle would produce,
expanding macros and modules as I go. While pars-
ing, I gather information about the Pascal code.
At the beginning, I tended to use this information
immediately to rearrange the token sequence just
parsed. Later, I learned the hard way (modules that
were modified on the first encounter would later be
fed to the parser in the modified form) that it is bet-
ter to leave the token sequence untouched and just
annotate it with information needed to transform it
in the next stage.

A technique that proved to be very useful is
connecting the key tokens of a Pascal structure using
the 1ink field. For example, connecting the “case”
token with its “do” token makes it easy to print
the expression that is between these tokens with-
out knowing anything about its actual structure and
placing it between “switch (” and “)”.

The final stage is the generation of cweb output.
Here the token sequence is traversed again in input
file order. This time the traversal will stop at the
warning signs put up during the first two passes,

355

function new_character (f : internal_font_number;
c: eight_bits): pointer;
label exit;
var p: pointer; {newly allocated node }
begin if font_bc[f] < ¢ then
if font_ec[f] > c then
if char_ezists(char_info(f)(qi(c))) then
begin p <+ get_avail; font(p) < f;
character (p) < qi(c); new_character < p;
return;
end;
char_warning (f, c); new_character < null;
exit: end;

Fig. 4: WEB code of new_character

pointer new_character (internal_font_number
f,eight_bits c)
{ pointer p;
if (font_be[f] < ¢)
if (font_ec[f] > ¢)
if (char_exists (char_info(f)(qi(c)))) {
p = get-avail(); font(p) = f;
character (p) = qi(c); return p;

}

char_warning (f,c); return null;

}

/*newly allocated node /

Fig. 5: cweb code of new_character

use the information gathered so far, and rewrite the
token sequence as gently and respectfully as possible
from Pascal to C.

Et voila! tex.w is ready — well, almost. I have
to apply a last patch file, for instance to adapt doc-
umentation relying on webmac.tex so that it will
work with cwebmac.tex, and make changes that
do not deserve a more general treatment. The fi-
nal file is then called ctex.w from which I obtain
ctex.c and ctex.tex merely by applying ctangle
and cweave. Using “cc ctex.c -1m -o ctex”, I
get a running ctex that passes the trip test.

Major challenges

I have already illustrated the different treatment of
function return values in Pascal and C with figures 1
and 2. Of course, replacing “new_null_box <+ p;”
by “return p;” is a valid transformation only if the
assignment is in a tail position. A tail position is
a position where the control flow directly leads to
the end of the function body as illustrated by fig-
ure 4 and 5. It is possible to detect tail positions by
traversing the Pascal parse tree constructed during
phase 2.

The return statement inside the if in figure 5 is
correct because the Pascal code in figure 4 contains

Converting TEX from WEB to cweb

356

a “return”. This “return”, however, is a macro de-
fined as “goto exit”, and “exit” is a numeric macro
defined as “10”. In C, “return” is a reserved word
and “exit” is a function in the C standard library, so
something has to be done. Fortunately, if all goto-
statements that lead to a given label can be elim-
inated, as is the case in figure 5, the label can be
eliminated as well. So you see no “exit:” preceding
the final “}”.

Another seemingly small problem is the differ-
ent use of semicolons in C and Pascal. While in C
a semicolon follows an expression to make it into
a statement, in Pascal the semicolon connects two
statements into a statement sequence. For example,
if an assignment precedes an “else”, in Pascal you
write “x:=0 else” whereas in C you write “x=0;
else”; but no additional semicolon is needed if a
compound statement precedes the “else”. When
converting tex.web, a total of 1119 semicolons need
to be inserted at the right places. Speaking of the
right place: Consider the following WEB code:

if s > str_ptr then s < "777"
{ this can’t happen }
else if s < 256 then

Where should the semicolon go? Directly preceding
the “else”? Probably not! I should insert the semi-
colon after the last token of the assignment. But this
turns out to be rather difficult: assignments can be
spread over several macros or modules which can be
used multiple times; so the right place to insert a
semicolon in one instance can be the wrong place in
another instance. web2w starts at the else, searches
backward, skips the comment and the newlines, and
then places the semicolon like this:

if (s> stroptr) s = ("77?77" 1381);
/*this can’t happen x/
else if (s < 256)

But look at what happened to the string "777".
Strings enclosed in C-like double quotes receive a
special treatment by tangle: the strings are col-
lected in a string pool file and are replaced by string
numbers in the Pascal output. No such mechanism
is available in ctangle. My first attempt was to re-
place the string handling of TEX and keep the C-like
strings in the source code. The string pool is, how-
ever, hardwired into the program and it is used not
only for static strings but also for strings created at
runtime, for example to hold the names of control
sequences. So I tried a hybrid approach: keeping
strings that are used only for output (error messages
for example) and translating other strings to string
numbers using the module expansion mechanism of
ctangle, like this:

Martin Ruckert

TUGDboat, Volume 38 (2017), No. 3

1381.

#define str 256 "777"

("???" 1381) = 256

This code is used in section 59.

I generate for each string a module, that will ex-
pand to the correct number, here 256; and I define a
macro str_256 that I use to initialize the string pool
variables.

In retrospect, seeing how nicely this method
works, I ponder if I should have decided to avoid the
hybrid approach and used modules for all strings. It
would have reduced the number of changes to the
source file considerably.

Another major difference between Pascal and
C is the use of subrange types. In Pascal subrange
types are used to specify the range of valid indices
when defining arrays. While most arrays used in
TEX start with index zero, not all do. In the first
case they can be implemented as C arrays which
always start at index zero; in the latter case, I define
a zero based array having the right size, and add a
“0” to the name. Then I define a constant pointer
initialized by the address of the zero based array
plus/minus a suitable offset so that I can use this
pointer as a replacement for the Pascal array.

When subrange types are used to define vari-
ables, I replace subrange types by the next largest
C standard integer type as defined in stdint.h—
which works most of the time. But consider the code

var p: 0 .. nest_size; {index into nest }

for p + nest_ptr downto 0 do
where nest_size = 40. Translating this to

uint8_t p; /xindex into nest */

for (p = nest_ptr; p>0; p—)

would result in an infinite loop because p would
never become less than zero; instead it would wrap
around. So in this (and 21 similar cases), variables
used in for loops must be declared to be of type int.

Related work

As described by Taco Hoekwater in “LuaTiEX says
goodbye to Pascal” [2], the source code of TEX was
rewritten as a part of LuaTEX project as a collec-
tion of cweb files. This conversion proceeded in
two steps: first TEX.WEB was converted into separate
plain C files while keeping the comments; at a much
later date, those separate files were converted back

TUGDboat, Volume 38 (2017), No. 3

341. Now we’re ready to take the plunge into get_next
itself. Parts of this routine are executed more often than
any other instructions of TEX.

define switch =25 {a label in get_next }
define start_.cs =26 {another }

procedure get_next;
{sets cur_cmd, cur_chr, cur—cs to next token }
label restart, {go here to get the next input token }
switch,,

{ go here to eat the next character from a file }
reswitch, {go here to digest it again }
start_cs, {go here to start looking for a control

sequence }
found, {go here when a control sequence has been
found }

{ go here when the next input token has
been got }
var k: 0.. buf_size; {an index into buffer }

t: halfword; {a token }

cat: 0 .. mazx_char_code;

exit;

{ cat_code(cur_chr), usually }
¢, cc: ASCII_code;
{ constituents of a possible expanded code }
d: 2..3;
expanded code }
begin restart: cur_cs < 0;

{ number of excess characters in an

if state # token_list then (Input from external file,
goto restart if no input found 343)

else (Input from token list, goto restart if end of list
or if a parameter needs to be expanded 357);

(If an alignment entry has just ended, take

appropriate action 342);
exit: end;
Fig. 6: WEB code of get_next

to cweb format. In this process, not only the spe-
cific extensions of the LuaTgX project were added,
but TEX was also enhanced by adding features using
the e-TEX, pdfTEX, and Aleph/Omega change files.
These extensions are required for IATEX and mod-
ern, convenient TEX distributions. The conversion
was done manually except for a few global regular
expression replacements. I have included three ver-
sions of the get_next function to illustrate the dif-
ferences between the traditional TEX.WEB by Don
Knuth (Fig. 6), my code (Fig. 7), the code found as
part of LuaTEX (Fig. 8).

One can see that web2w has eliminated the la-
bel declarations, but left the comments in the code.
Certainly this is something that could be improved
in a later version of web2w, by moving such com-
ments to the line where the label is defined in C.

357

341. Now we’re ready to take the plunge into get_next
itself. Parts of this routine are executed more often than
any other instructions of TEX.

void get_next(void)
/xsets cur_emd, cur_chr, cur_cs to next token */
{ /* go here to get the next input token */
/* go here to eat the next character from a file x/
/* go here to
start looking for a control sequence */

/*go here to digest it again */

/* go here when a control sequence has been
found x/
token has been got */

uintl6_t k; /+an index into buffer %/
halfword ¢; /xa tokenx/
uint8_t cat; /* cat_code(cur_chr), usually */
ASCII_code ¢, cc;
/* constituents of a possible expanded code */
uint8_t d;
expanded code */

/* go here when the next input

/+*number of excess characters in an

restart: cur-cs = 0;

if (state # token_list) (Input from external file,
goto restart if no input found 343)

else (Input from token list, goto restart if
end of list or if a parameter needs to be
expanded 357);

(If an alignment entry has just ended, take

appropriate action 342);

Fig. 7: web2w code of get_next

In the LuaTgX version, these comments have dis-
appeared together with the labels, while the com-
ment that follows after the procedure header was
converted into the text of a new section.

web2w retained the definitions of local variables,
converting the subrange types to the closest possible
type from stdint.h. For example, “k: 0 .. buf size”
was converted to “uintl16_t k”. buf_size is defined
earlier in ctex.w as buf_size = 500. Note that
changing this to buf_size = 70000 would not force a
corresponding change to uint32_t in the definition
of k. Only changing the definition in TEX.WEB and
rerunning web2w would propagate this change. This
is an inherent difficulty of the translation from Pas-
cal to C. In the LuaTgX version, the local variables
have disappeared and were moved to the subroutines
called by get_next.

The module references present in the original
WEB code (namely (Input from external file ...),
(Input from token list ...), (If an alignment entry

..)), are not retained in the LuaTEX version. In-
stead, LuaTEX converts them either to function calls
or expands the modules turning the module name

Converting TEX from WEB to cweb

358

34. Now we're ready to take the plunge into get_next
itself. Parts of this routine are executed more often than
any other instructions of TEX.

35. sets cur_cmd, cur_chr, cur_cs to next token

void get_next(void)
{
RESTART: cur_cs = 0;
if (istate # token_list) {
file, goto restart if no input found */
if (—get_next_file()) goto RESTART,;
}
else {
if (iloc = null) {
end_token_list ();
goto RESTART;
/* list exhausted, resume previous level */

/* Input from external

}

else if (—get_next_tokenlist()) {
goto RESTART;
/* parameter needs to be expanded #*/
}
} /x If an alignment entry has just ended, take
appropriate action */
if ((cur-emd = tab-mark_cmd V cur-cmd =
car_ret_emd) A align_state = 0) {
insert_yj_template ();
goto RESTART;

}
}

Fig. 8: LuaTEX code of get_next

into a comment. Part of the problem of turning
modules into subroutines is the translation of the
goto restart statements without creating non-local
gotos. LuaTgX solves the problem by using boolean
functions that tell the calling routine through their
return values whether a goto restart is called for. In
contrast, the automatic translation by web2w stays
close to the original code, avoiding this problem by
retaining the modules.

Conclusion

Using the web2w program, the TEX source code can
be converted to the cweb language, designed for
the generation of C code and pretty documentation.
The resulting code is very close to the original code
by Knuth; its readability is surprisingly good. While
manual translation is considerably more work, it of-
fers the possibility (and temptation) of changing the
code more drastically. Automatic translation can be
achieved with limited effort but is less flexible and
its result is by necessity closer to the original code.

Martin Ruckert

TUGDboat, Volume 38 (2017), No. 3

The web2w.w program itself and the converted
TEX source code, ctex.w, are available on CTAN for
download [8, 10]. Since web2w is a literate program,
you can also buy it as a book [9].

References

[1] C. O. Grosse-Lindemann and H. H. Nagel.
Postlude to a PASCAL-compiler bootstrap
on a DECsystem-10. Software: Practice and
Ezperience, 6(1):29-42, 1976.

[2] Taco Hoekwater. LuaTgX says goodbye
to Pascal. TUGboat, 30(3):136-140, 2009.
https://tug.org/TUGboat/tb30-3/
tb96hoekwater—-pascal.pdf.

[3] Kathleen Jensen and Niklaus Wirth.
PASCAL: User Manual and Report.
Springer Verlag, New York, 1975.

[4] Donald E. Knuth. The WEB system
of structured documentation. Stanford
University, Computer Science Dept.,
Stanford, CA, 1983. STAN-CS-83-980.
https://ctan.org/pkg/cweb.

[5] Donald E. Knuth. TgX: The Program.
Computers & Typesetting, Volume B.
Addison-Wesley, 1986.

[6] Donald E. Knuth. Literate Programming.
CSLI Lecture Notes Number 27. Center for
the Study of Language and Information,
Stanford, CA, 1992.

[7] Donald E. Knuth and Silvio Levy. The CWEB
System of Structured Documentation. Addison
Wesley, 1994. https://ctan.org/pkg/cweb.

[8] Martin Ruckert. ctex.w: A TEX
implementation. http://mirrors.ctan.org/
web/web2w/ctex.w, 2017.

[9] Martin Ruckert. WEB to cweb.
CreateSpace, 2017. ISBN 1-548-58234-4.
https://amazon.com/dp/1548582344.

[10] Martin Ruckert. web2u:
Converting TEX from WEB to cweb.
https://ctan.org/pkg/web2w, 2017.

[11] Web2C: A TEX implementation.
https://tug.org/web2c.

¢ Martin Ruckert
Hochschule Miinchen
Lothstrasse 64
80336 Miinchen
Germany
ruckert (at) cs dot hm dot edu

