TUGboat, Volume 38 (2017), No. 3

dvisvgm: Generating scalable vector
graphics from DVI and EPS files

Martin Gieseking
Abstract

dvisvgm is a command-line utility that converts DVI
and EPS files to the XML-based vector graphics for-
mat SVG, an open standard developed by the W3C.
Today, SVG is supported by many applications in-
cluding text processors, graphics editors, and web
browsers. Therefore, it’s a convenient format with
which to enrich websites and non-TEX documents
with self-contained, arbitrarily scalable TEX output.
This article gives an overview of selected features of
dvisvgm and addresses some challenges faced in its
development.

1 How it all started

In 2005 I was working on a wiki-based cross media
publishing system called media2mult [3], which was
supposed to produce documents in various output for-
mats from a single source without the need to force
the authors to scatter format and layout specific
settings throughout the input document. Since the
conversion back-end was built on the XML format-
ting technology XSL-FO, which at that time didn’t
provide sufficient math support through MathML, I
needed a way to embed scalable TEX output in the
XSL-FO files. The preferred format for this task was
SVG, because it is XML-based and therefore fit nicely
into the other involved XML technologies; for exam-
ple, the files could be post-processed easily by apply-
ing XSLT and XQuery scripts. Furthermore, SVG was
decently supported by Apache’s open-source XSL-FO
processor FOP and the related Batik SVG toolkit.

Fortunately, two DVI to SVG converters were
already available, dvisvg [7] by Rudolf Sabo and
dvi2svg [2] by Adrian Frischauf. Both utilities looked
promising, and created nice results from my initial
test files. dvi2svg even supported color and hyperref
specials, which was another advanced requirement
for my needs. However, the main drawback for the
planned document conversion engine was that both
tools relied on pre-converted SVG font files derived
from a selection of common TEX fonts, notably the
Computer Modern family. There was no simple way
to process DVI files referencing arbitrary fonts sup-
ported by the TEX ecosystem. The latter had to
be generated in advance by some kind of DVI pre-
processing and by extracting the glyph data from
PostScript or TrueType fonts, e.g. as described in [4,
pp. 272-274).

Sadly, around that time, the development of

359

both utilities apparently stalled, and the website of
dvi2svg disappeared several months later. The al-
ternative approach of creating SVG files from PDF
didn’t work satisfactorily either, due to the missing
conversion of hyperlinks across pages inside the doc-
ument, and the weak support of METAFONT-based
fonts, which were embedded as bitmap fonts if no
vector versions were available.

Since I had already written a couple of small DVI
utilities before and therefore had working DVI and
TFM readers available, I started to build a simple
SVG converter on top of them. The first public
release of dvisvgm was in August 2005. Since then,
it’s been a private free-time project and has evolved
a lot over the years, largely because of wonderful
feedback, detailed bug reports and interesting feature
suggestions. dvisvgm is included in TEX Live and
MiKTgX, and is also available through MacPorts.

2 About dvisvgm and basic usage

dvisvgm is a command-line utility written in C++. It
supports standard DVI files with a version identifier
of 2, as well as DVI files created by pTEX in vertical
mode (version 3) and XHTEX (versions 5 to 7).} The
latter are also known as XDV files and are created if
XATEX is called with option —no-pdf.

The basic usage of dvisvgm is straightforward
and similar to other DVI drivers. If no other options
are specified, it converts the first page of the given
DVI file to an SVG file with the same name. If the
DVI file has more than one page, the page number
is appended to the base name. For example,

dvisvgm myfile.dvi
creates the file myfile.svg if myfile.dvi consists
of a single page only, else myfile-01.svg. This
was originally because the initial releases of dvisvgm
could process only single DVI pages in one run; the
behavior is still retained for compatibility. To select a
different page or a sequence of page ranges, the option
--page is required. It accepts a single page number
or a comma-separated list of ranges. Regardless of
whether any page numbers are specified multiple
times, e.g. by overlapping range specification, all
selected pages are converted to separate SVG files
only once. The command

dvisvgm --page=1,3,5-9,8-10 myfile.dvi
is identical to

dvisvgm --page=1,3,5-10 myfile.dvi
and converts the pages 1, 3, and 5 through 10. The
file names get the corresponding number suffixes as

1 When an incompatible change in Xf{IEX’s XDV format
is made, the DVI version identifier is increased. The recent
XATEX revision 0.99998 creates DVI files of version 7.

dvisvgm: Generating scalable vector graphics from DVI and EPS files

360

--output=(pattern) SVG file name of page 1

%t myfile.svg

hE-%p myfile-01.svg
newfile-%p newfile-01.svg
hE-hap-of-%P myfile-0001-0f-20.svg
hE-ha(p-1) myfile-0000.svg
hE-%(P-p+1) myfile-20.svg

./ hE/svg/ h3p ../myfile/svg/001.svg

Table 1: Effect of several output patterns applied to
myfile.dvi consisting of 20 pages.

above. It’s also possible to give open page ranges by
omitting the start or end number:
dvisvgm --page=-5,10-

converts all pages from the beginning up to page 5,
as well as page 10 and all following ones. Regardless
of the number of pages converted, dvisvgm always
prescans the entire DVI file in advance to collect
global data, like font definitions, PostScript headers
and hyperlink targets. In this way it is possible
to convert selected pages correctly even if required
information is located on excluded pages.

In order to change the names of the generated
SVG files, -—output can be used. It supports pat-
terns containing the placeholders %f, %p, and %P
which expand to the base name of the DVI file, the
current physical page number, and the total number
of pages in the DVI file, respectively. The command

dvisvgm --output=%4f-%p-%P myfile

converts the first page of myfile.dvi to the SVG file
myfile-01-20.svg, given that the DVI file contains
20 pages. The number of digits used for %p is adapted
to that of %P but can be explicitly determined by a
prepended number, e.g., %4p. Table 1 shows some
further examples of specifying the naming scheme of
the generated files. More details can be found in the
dvisvgm manual page.?

Because of the lengthy text-based nature of XML
documents, SVG files tend to be bigger than other
vector graphics formats. To reduce the file size, the
SVG standard specifies gzip- and deflate-compressed
SVG files which normally use the extension .svgz.
To create compressed files on the fly during a DVI
conversion, the option --zip is available.

3 Font support

In contrast to PostScript and PDF, DVI provides no
means to embed fonts into the file. Fonts are speci-
fied merely through their name, size, and a couple
of additional parameters allowing the DVI driver to
retrieve further data from the user’s TEX environ-

2 dvisvgm.sf.net/Manpage#specials

Martin Gieseking

TUGhboat, Volume 38 (2017), No. 3

ment. While this approach keeps DVI files compact,
it also reduces their cross-platform portability and
delegates significant processing to the driver. On
the other hand, the requirement for a working TEX
system enables full access to all font data, including
those usually not embedded into PDF files. This
is especially important regarding METAFONT-based
fonts not available in other formats.

Since I was confronted with a wide variety of
documents using a wide variety of fonts, it was impor-
tant to provide dvisvgm with comprehensive font sup-
port including virtual fonts, various font encodings,
CMaps, sub-font definitions, font maps, handling of
glyph names and Japanese fonts which often use an
extended TFM format called JFM. The proper map-
ping of PostScript character names, as used in Type 1
fonts, to corresponding Unicode points, required the
inclusion of the Adobe Glyph List (AGL).?

Furthermore, the generated SVG files needed
to be compatible with XSL-FO converters and SVG
renderers, like web browsers. It turned out that each
type of applications evidently focused on different
aspects of the SVG standard, as some elements are
not evaluated completely, leading to incorrect or in-
complete visual results. To work around this, I added
command-line options to alter the representation of
glyphs and other graphic components in the gen-
erated SVG files as needed. The following sections
cover some of the challenges involved in this area.

3.1 Vectorization of bitmap fonts

Today, many popular fonts used in (I4)TEX docu-
ments are available in OpenType, TrueType or Post-
Script Type 1 format, greatly simplifying their con-
version to SVG as they are already vectorized. This
also includes many fonts originally developed with
METRAFONT, such as the beautiful Old German deco-
rative initials by Yannis Haralambous. However, dur-
ing the first releases of dvisvgm, I regularly stumbled
over documents that could not be converted com-
pletely because they relied on fonts only available as
METAFONT source. Some of these were designed by
the document authors to provide special characters
or little drawings.

The problem is that although METAFONT allows
detailed, high-level vectorial descriptions of glyphs,
it doesn’t create vector but bitmap output, in the
form of GF (Generic Font) files. While it’s possible
to utilize bitmap fonts with SVG, the results are not
satisfying, and this approach would not meet our
objectives. Thus, it was necessary to find a way to

3 github.com/adobe-type-tools/agl-specification

dvisvgm.sf.net/Manpage#specials
github.com/adobe-type-tools/agl-specification

TUGboat, Volume 38 (2017), No. 3

Figure 1: The Schwabacher “round s” extracted from
GF font yswab.600gf (600 ppi) and the vectorization of
the same glyph based on yswab.2400gf. It’s composed
of three closed oriented paths, with enclosed regions
filled according to the non-zero rule, i.e. areas with a
winding number # 0 are considered “inside”.

vectorize the GF fonts during a DVI to SVG conver-
sion without the need to perform this task separately
in advance. Fortunately, there were already some
open-source tracers available that could be incorpo-
rated into dvisvgm to do the hard work. Especially,
the free potrace library [8] by Peter Selinger produces
amazing results from monochromatic bitmaps, like
the glyphs of GF fonts (see figure 1).

To avoid unintentional distortions of the gener-
ated paths, a high-resolution bitmap of the glyph is
required. By default, dvisvgm calls METAFONT to
create a GF font with a resolution of 2400 pixels per
inch, which turned out to be a suitable choice, and
runs potrace on the needed glyphs afterwards. The
computed vector descriptions are then converted to
SVG glyph or path elements and inserted into the
SVG document tree. Furthermore, dvisvgm stores
the vector data in a font cache located in the user’s
home directory to avoid repeated vectorizations of
the same glyphs. When subsequently converting the
same DVI file again, the glyph outlines are read from
the cache, drastically increasing processing speed. In-
formation on the data currently stored in the cache
can be retrieved with the option --cache.

By default, dvisvgm vectorizes only the glyphs
actually used on the processed DVI pages. Hence,
only these are added to the cache. If the document is
modified so that further, currently uncached glyphs
are required, METAFONT and the vectorizer are run
again to create the missing data. If desired, it’s
also possible to vectorize the entire GF font at once
so that all its glyphs are cached instantly, with the
option --trace-all.

While the automatic vectorization of GF fonts
works pretty well, the results can’t beat the manually

361

optimized glyphs provided by native vector fonts.
Thus, it has been implemented as a fallback routine
only triggered if no vector version of a required font
is available in the user’s TEX environment.

3.2 Font elements vs. graphics paths

The initial release of dvisvgm was designed to embed
font data only in terms of SVG font, font-face,
and glyph elements, as the SVG standard provided
them for this very purpose. Once defined, the glyphs
can be referenced by selecting the font and using
the corresponding UTF-8-encoded characters inside a
text element, as shown in the following SVG excerpt.
Due to the elaborate nature of the XML syntax, only
a single, relatively short glyph element defining a
period is shown here, abridged:

<font-face ascent="751" descent="249"
font-family="yswab" units-per-em="1000"/>

<glyph d="m149 1511-59 -59c-7 -7 -15 -14 -20
-2315 -8174 -74h1159 59c¢7 7 15 14 20 231-5
81-75 74z" glyph-name="period" unicode="."
horiz-adv-x="306" vert-adv-y="306"/>

<text font-family="yswab" font-size="14.35"
x="50" y="100">Hello.</text>

The advantage of this method is that the SVG file
contains both the textual information and the ap-
pearance of the characters. This enables SVG viewers
to provide features such as text search and copying,
which works nicely with Apache’s Squiggle viewer, for
example. Conversion tools, like the XSIL-FO proces-
sor FOP, are written to maintain the text properties
and can propagate them to other file formats. On
the other hand, the big disadvantage is that few SVG
renderers actually support font elements. In par-
ticular, all popular web browsers come with partial
SVG support—and none of them evaluate fonts de-
fined as shown above. Therefore, the displayed text
is selectable and searchable but very likely does not
look as expected (see figure 2). As stated by Daan
Leijen [6], this is an irritating problem for applica-
tions like his authoring system Madoko, which would
like to embed math formulas in terms of SVG files
into HTML documents.

A workaround for this issue is to forgo font and
character information and to convert the glyphs to
plain graphic objects in the form of path elements.
These are correctly processed by all SVG renderers
and lead to the desired visual results. If dvisvgm
is called with the option --no-fonts, the above

dvisvgm: Generating scalable vector graphics from DVI and EPS files

362
/& \+ J@\+
ie Orgd, dr Fldd, dd)Fa Tie Orgel, ver §ligel, tas Sor
g ibliHen Clavierin(une: brandlidfien Clavierinftrumente
Hil de e Fefimdng) He f die fine Erfindung bes S
gy gawadn iC nen W, gemeinnigig aewoerden ijt; man
Haimm e B gean bin. FI)iC bierinnen nody nidt genau Geflimmen. €8 ift ¢
dr Bajdahry gt ailjdrmwatke ber Begleitung qut ausnehmen werde.

Figure 2: Screenshots of two SVG files opened in
Firefox. Both were generated from the same DVI file.
The left image uses font, the right path elements.

example is transformed to the following sequence of
SVG elements:

<defs>

<path d="m2.14 -2.171-0.85 0.85c-0.1 0.1
-0.22 0.2 -0.29 0.3310.07 0.1111.06 1.06
h0.0110.85 -0.85c0.1 -0.1 0.22 -0.2 0.29
-0.331-0.07 -0.11-1.08 -1.06z" id="g2-46"/>

</defs>

<use x="50" y="100" xlink:href="#g2-72"/>
<use x="59.8" y="100" xlink:href="#g2-101"/>
<use x="64.3" y="100" xlink:href="#g2-108"/>
<use x="70.5" y="100" xlink:href="#g2-108"/>

<use x="71.1" y="100" xlink:href="#g2-111"/>
<use x="77.8" y="100" xlink:href="#g2-46"/>

Based on font parameters like the partition of the
em square and the font size, all glyph descriptions
are now condensed to isolated graphics path objects
tagged with a unique identifier. The latter is uti-
lized to reference the object through use elements
in order to place instances of it at the appropriate
positions. Although the resulting SVG files no longer
contain textual information, the visual outcome is
indistinguishable from the correctly rendered font
data, while simultaneously maintaining high porta-
bility across SVG renderers.

3.3 Generating WOFF fonts

Although the conversion of glyphs to graphics paths
leads to satisfying visual results, the lack of access to
the text is a considerable disadvantage. Fortunately,
all main web browsers come with full-featured sup-
port of WOFF, WOFF2, and TrueType fonts. The
CSS rule @font-face allows linking the name of a
font family with a font file, which may be either
referenced by its name, or completely embedded into
the CSS code in terms of base64-encoded data.

As of version 2, dvisvgm provides the option
--font-format to select between several different
formats. Currently, it accepts the arguments woff,
woff2, ttf, and (the default) svg. Similar to the

Martin Gieseking

TUGhboat, Volume 38 (2017), No. 3

treatment of SVG fonts, all data of the newly sup-
ported font formats is embedded into the SVG files
in order to maximize portability. The alternative
approach, to reference local font files already present
on the user’s system, would clearly significantly de-
crease the size of the generated files, but is avoided
at present due to a couple of drawbacks. Especially,
the fact that SVG relies on Unicode tables provided
by the font files which don’t necessarily have to cover
all glyphs present in the font is a problem. If the
Unicode table doesn’t define a mapping for a certain
glyph, it is inaccessible from the SVG document. This
turns out to be the case for many displaystyle math
operators or character variants defined by several
fonts, like the XITS math font, for example. Thus,
dvisvgm derives a new font from the original one and
assigns random code points in the Unicode Private
Use Area to the “hidden” glyphs. The resulting file is
then embedded into the corresponding SVG file. For
a future version, it might be a nice feature to create
external font files containing all glyphs required for
the entire DVI document and then reference them
inside the various SVG files.

4 Bounding boxes

In contrast to DVI converters like dvips or dvipdfm(x)
which are usually utilized to create self-contained
final documents, the main application scenario of
dvisvgm is to generate graphics files to be embed-
ded into other documents, like web sites, EPUB or
XSL-FO files. A typical example is the alignment
of mathematical formulas typeset by TEX with the
text of an HTML page. Therefore, the generated
SVG graphics normally should get a minimal bound-
ing rectangle that tightly encloses all visible parts
without surrounding space so that the spacing and
positioning of the graphics can be easily controlled
inside the main document. Additional static mar-
gins present in the SVG file would make this more
difficult. For this reason, dvisvgm computes tight
bounding boxes for all converted pages. If a different
bounding box is needed, though, the option --bbox
can be used to add additional space around graphics
(e.g. ——bbox=5pt), to set an arbitrary box by speci-
fying the coordinates of two diagonal corners, or to
assign a common paper format, e.g. A4 or letter (e.g.
--bbox=letter).

4.1 Tight text boxes

In order to compute tight bounding boxes, the con-
verter requires information on the extents of each
glyph present on the current page. The easiest way
to get them is either to read the corresponding values
directly from the font file or to use the width, height,

TUGDboat, Volume 38 (2017), No. 3

and depth values stored in a font’s TFM (TEX Font
Metrics) file. dvisvgm always prefers the latter if
possible, because the TFM data tends to be more
precise and usually leads to better results. This ap-
proach isn’t perfect either, though. TFM files are
primarily designed to provide TEX’s algorithms with
the font metrics needed to determine the optimal
character positions of the processed document. The
actual shapes of the characters don’t matter for these
computations and are in fact never seen by TEX. Fur-
thermore, the character boxes defined by the width,
height, and depth values don’t have to enclose the
characters’ glyphs tightly. The boxes are especially
allowed to be smaller so that parts of the glyphs can
exceed their box as the top and bottom areas of the
letter in the following example:

height

fe———

baseline —¢
depth

width

Obviously, this box is also somewhat wider than
the enclosed glyph. Depending on the amount of di-
vergence, the computation of the global SVG bound-
ing box based on these values may eventually lead to
visibly cropped characters and/or unwanted space at
the borders of the generated graphics. That’s why
dvisvgm’s option --exact was implemented some
time ago. It tells the converter to trace the outlines
of each glyph present on the page and to calculate
their exact bounds. The path descriptions required
for this task are taken from one of the available vec-
tor font files or, as a fallback, from the results of
the above mentioned vectorization of METAFONT’s
bitmap output. While slightly more time-consuming,
this approach works pretty well and helps to avoid
the described text-related bounding box issues.

4.2 Aligning baselines

Another common problem that needs attention when
embedding graphical INTEX snippets in e.g. HTML
documents is the alignment of the baselines. Since
the total height of the generated graphics comprises
the height and depth of the shown text, the graph-
ics must be shifted down by the depth value in or-
der to properly line up with the surrounding HTML
text. The vertical position can be changed with CSS
property vertical-align, but how do we get the

363

required depth values? Unfortunately, plain DVI
files don’t provide any high-level information such as
typographic data. They essentially contain only the
positions of single characters and rules. Thus, it’s
not easily possible to extract the baseline position
in a reliable way.* Especially, two-dimensional math
formulas with characters at several vertical positions,
as shown in the figure below, are difficult to analyze
at the DVI level without further assistance from TEX.

ka

-~ . height
Y. — ———
J v xZT —I— 1 idepth

baseline

T

width |

One helpful tool to work around this limitation
is the preview package by David Kastrup. Partic-
ularly, its package option tightpage [5, p. 4] en-
riches the DVI file with additional data regarding
height and depth which allows computing the ver-
tical coordinate of the baseline. dvisvgm uses this
information to calculate height and depth of the
previously determined tight bounding box, which
usually differs from the box extents provided by the
preview data due to further preview settings, such
as the length \PreviewBorder. The resulting box
values are printed to the console and can be read
by third-party applications afterwards to adjust the
embedded SVG graphics accordingly. This happens
automatically without the need to request this infor-
mation explicitly. For instance, the conversion of the
unscaled above formula typeset in 10 pt size leads to
the following additional output:

width=39.02pt, height=10.43pt, depth=4.28pt,
where the unit pt denotes TEX points (72.27 pt =
lin). If dvisvgm should apply the original, unmodi-
fied tightpage extents present in the DVI file, the
command-line option --bbox=preview can be spec-
ified. Of course, the length values reported to the
console then change appropriately as well.

It’s important to consider that the extraction of
the tightpage data requires a dvisvgm binary with
enabled PostScript support (see section 6) because
the preview package adds the box extents in terms
of PostScript specials to the DVI file. If PostScript
support is disabled for some reason, dvisvgm prints a

4 There are some tricks to detect line breaks and the prob-
able locations of the new starting baselines. One approach is
to check the height of the DVI stack every time the virtual
DVI cursor is moved by a positional operation. If the stack
height underruns a certain threshold, a line break most likely
occurred. While this technique works well for splitting hyper-
link markings for example, it doesn’t work reliably enough to
derive the true baseline positions.

dvisvgm: Generating scalable vector graphics from DVI and EPS files

364

corresponding warning message and silently ignores
the preview information and behaves as if no preview
data were present.

A limitation of the current baseline computation
is the restriction to unrotated single-line graphics.
Graphics showing multiple lines of text are usually
difficult to align with surrounding text and need
special treatment not presently covered. The depth
of such graphics is currently set to the depth of the
lowest line, whereas everything above extends into
the height part of the box.

4.3 papersize specials

Another way to define the size of the bounding rectan-
gle is to add papersize specials to the TEX file, e.g.
\special{papersize=5cm,2.5cm}, where the two
comma-separated lengths denote width and height
of the page. Since it’s not very practical to manu-
ally enrich the documents with these commands, a
couple of packages like standalone are available that
compute the extents according to the page content
and insert the specials transparently. Once present
in the DVI file, dvisvgm can be told to evaluate the
papersize specials and to apply the given extents
as bounding box to the generated SVG files. Due
to compatibility reasons with previous releases, this
doesn’t happen automatically but must be enabled
with the option --bbox=papersize.

While the meaning of the papersize special it-
self is almost unambiguous and documented in the
dvips manual, the semantics of multiple instances of
the special present on the same page is not explicitly
specified. Indeed, as recently discussed on the TEX
Live mailing list, different DVI processors handle
sequences of these specials differently. For example,
dvips used to pick the first one on the page and ignore
the rest, whereas dvipdfmx and others apply the last
one — which, unsurprisingly, leads to different results.
Since several popular packages, notably hyperref and
geometry, insert papersize specials, it’s likely that
DVI pages often contain more than one and the user
might stumble over this inconsistency at times. As
of version 5.997 (2017), dvips got the new option -L
to tweak this behavior. By default, it now also uses
the last special, corresponding to -L1, whereas -LO
restores the old behavior. dvisvgm’s papersize sup-
port became available only after this unification effort
and could therefore respect the preferred semantics
without breaking previous behavior. So, it also al-
ways uses the last special present on a DVI page.

A further property of papersize specials is their
global scope. Once applied, the size settings affect
not only the current but also all subsequent pages
until another papersize is seen. Thus, if all pages

Martin Gieseking

TUGhboat, Volume 38 (2017), No. 3

should have the same size, it’s sufficient to specify the
special only once at the beginning of the document.

5 Evaluation of specials

Although DVI is a very compact binary format to
describe the visual layout of a typeset document, it
is rather limited regarding the types of objects that
can be placed on a page—only characters and solid
rectangles are supported natively. Color, rotated
text, graphics, hyperlinks and other features to en-
rich the documents are not covered by the format
specification. To handle this, the DVI standard pro-
vides an operation called zzz which corresponds to
TEX’s \special command. It has no inherent seman-
tics but merely holds the expanded, usually textual,
argument of a \special command passed from the
TEX document to the DVI file. Since it also doesn’t
affect the state of the DVI engine, each DVI driver
is allowed to decide whether to evaluate any of the
xxr operations or to ignore them altogether. Based
on this mechanism, authors of TEX packages and
DVI processors can specify various special commands
with defined syntax and semantics to enhance the
capabilities of plain DVI documents, as already seen
in the previous section about papersize specials.

Over the decades of TEX use, many sets of spe-
cials have been introduced. Some are well established
and used by various packages. These include, among
others, the color, hyperref, and PostScript specials.
The recent version of dvisvgm supports these, as
well as PDF font map specials, tpic specials, and
the line drawing statements of the emTEX specials.
To check the availability of a certain special han-
dler in the current version of dvisvgm, the option
--list-specials can be used. It prints a short sum-
mary of the supported special sets. It’s also possible
to ignore some or all specials during a DVI conversion
with option —-no-specials; this accepts an optional
list of comma-separated handler names, which are
identical to those listed by --1ist-specials, in or-
der to disable only selected specials. For example,
--no-specials=color,html disables the processing
of all color and hyperref specials.

While a detailed description of all supported
special commands is beyond the scope of this article,
the following sections give some brief information on
the hyperref and dvisvgm specials which might be
helpful to know. Aspects of the PostScript handler
are addressed in the subsequent section 6.

5.1 hyperref specials

The hyperref package provides commands to add
hyperlinks to a A TEX document. Depending on the
selected driver, it produces code for dvips, dvipdfmx,

TUGboat, Volume 38 (2017), No. 3

--linkmark=(style) visual result

box (default)
box:blue
line linked text
line:#00ff00 linked text
yellow linked text
yellow:violet
none linked text

Table 2: Examples showing the visual effect of
—--linkmark on hyperlinked texts.

XATEX, or any of the many other supported targets.
In order to create hyperlink specials understood by
dvisvgm, hyperref must be told to emit “HyperTEX”
specials, with the package option hypertex.

By default, a linked area in the SVG file is high-
lighted by a box drawn around it in the currently
selected color. On the request of several users, the
option —-linkmark was added to allow changing this
behavior. It requires an argument determining the
style of the marking. While box is the default, argu-
ment line underlines the clickable area rather than
framing it, and none suppresses any visual highlight-
ing of hyperlinks completely. A dvips color name
or hexadecimal RGB value appended to these styles
and separated by a colon, assigns a static color to
the box or line. Finally, a style argument of the form
colorl :color2 leads to a box filled with color! and
framed with color2. Table 2 shows some examples
to give an idea of the effect of the style arguments.

5.2 dvisvgm specials

Besides the mentioned sets of special commands,
dvisvgm also provides some of its own to allow au-
thors of IMTEX packages to insert additional SVG
fragments into the generated files and to interact
with the computation of the bounding box. Their
general syntax looks like this:
\special{dvisvgm:{cmd) (params)}
The ¢md denotes the command name and params the
corresponding parameters. For the sake of simplicity,
only the text after the colon is mentioned when
referring to dvisvgm specials herein.

The command raw followed by arbitrary text
appends the text to the group element representing
the current page. The sibling command rawdef does
almost the same but appends the text to the initial
defs element present at the beginning of the SVG
file. Both specials are allowed to insert any string
and thus can contain XML metacharacters, such as
angle brackets, e.g.:

raw <circle cx="{7x}" cy="{?y}" r="5"/>.

365

The macros {?x} and {?x} expand to the x and y co-
ordinate of the current DVI position in the “big point”
units (72bp = 1in) required in SVG files. The entire
character string is then copied to a literal text node
of the SVG tree and not evaluated further. There-
fore, it’s crucial to ensure that the insertions don’t
break the validity of the resulting SVG document,
especially if multiple raw or rawdef commands are
used to assemble complex element structures.
Another aspect to take care of regarding raw

insertions is the adaptation of the bounding box.
As outlined in section 4, dvisvgm computes a tight
bounding box for the generated SVG graphics by
default. Graphical or textual elements inserted via
the raw commands are not taken into account. As
a consequence, the bounding box may be too small,
so that some parts of the graphic lie outside the
viewport. To work around this, dvisvgm offers a
special that allows for intervening in the calculation
of the bounding rectangle. The command

bbox (width) (height)
updates the bounding box so that a virtual rectangle
of the given width and height and located at the
current DVI position will be fully enclosed. It’s also
possible to append an optional depth parameter to
the command:

bbox (width) (height) (depth)
This encloses another rectangle of the same width
but with the negative height depth. At present, the
dimensions must be given as plain floating point
numbers in TEX pt units without a unit specifier. In
a future release, it will be possible to use the various
common length units to ease usage of this command.
For example, to update the bounding box for the
above raw circle element, the two successive dvisvgm
specials bbox 5 5 5 and bbox -5 5 5 can be used.

In addition to these relative bounding box spe-

cials, two absolute variants are supported, which
are only briefly mentioned here. More details about
them can be found on the manual page.

bbox abs (z1) (y1) (z2) (y2)

bbox fix (z1) (y1) (22) (y2)
The first variant encloses a virtual rectangle given
by the coordinates (x1,y1) and (z2,y2) of two diag-
onal corners, whereas the second one sets the final
coordinates of the SVG bounding box, which will not
be changed or reset afterwards.

6 PostScript support

One of the biggest enhancements of the DVI format
was certainly the introduction of PostScript specials
and their processing by Tomas Rokicki’s dvips. Be-
sides placing advanced drawings in TEX documents,

dvisvgm: Generating scalable vector graphics from DVI and EPS files

366

it supports injecting code between DVI commands,
allowing for the implementation of text transforma-
tions, coloring and much more. While dvips can copy
the code of the PostScript specials almost literally to
the generated files and delegate their processing to
the PostScript interpreter, DVI drivers targeting a
different output format have to evaluate it somehow.

The implementation of a full-featured PostScript
interpreter was certainly out of the scope of dvisvgm.
However, I wanted the utility to be able to prop-
erly convert as many DVI files as possible, ideally
including ones created using PSTricks or TikZ. The
most straightforward approach to achieve this was to
delegate the complex processing of PostScript code
to the free PostScript interpreter Ghostscript and let
it emit a reduced set of easily parsable statements
that dvisvgm could evaluate. This turned out to
work reasonably well, especially as a fair amount
of PostScript code can completely be processed by
Ghostscript without the need to worry about the
involved operations. Only a relatively small set of
operators that affect the graphics state must be over-
ridden and forwarded to dvisvgm in order to create
appropriate SVG components or to update drawing
properties.

In contrast to the other programming libraries
dvisvgm relies on and which are directly linked into
the binary, the Ghostscript library (1ibgs) can be
tied to dvisvgm in two different ways. Besides dis-
abling PostScript support completely, it’s possible
to either link to the Ghostscript library directly, or
to load it dynamically at runtime. In the first case,
PostScript support is always enabled, while in the
second one it depends on the accessibility of the
Ghostscript library on the user’s system. If 1ibgs
can’t be found or accessed for some reason, dvisvgm
prints a warning message and disables the processing
of PostScript specials, which of course will likely lead
to inaccurate conversion results. To help dvisvgm
locate the library, the option --libgs or environ-
ment variable LIBGS can be used, e.g. to specify the
absolute path of the correct file. More detailed infor-
mation on this topic can be found on the FAQ page
of the project website.?

Although dvisvgm can properly convert a fair
amount of PostScript code, there are still some op-
erators and features it does not support yet. These
include all bitmap-related operations as well as linear,
radial, and function-based shading fills. Furthermore,
text output triggered by PostScript code is always
converted to SVG path elements similar to those de-
scribed in section 3.2. The differentiated handling of

5 dvisvgm.sf.net/FAQ

Martin Gieseking

TUGhboat, Volume 38 (2017), No. 3

fonts including the conversion to WOFF only works
in conjunction with DVI font definitions.

6.1 Handling clipping path intersections

In order to restrict the area where drawing commands
lead to visible results, SVG allows the definition of
clipping paths. Every clipping path is defined by a set
of closed vector paths consisting of an arbitrary num-
ber of straight and curved line segments. The regions
enclosed by these paths define the visible area, i.e.
after applying a clipping path, only those portions
of the subsequently drawn graphics that fall inside
the enclosed area are visible, while everything else is
discarded. Clipping is a basic functionality of com-
puter graphics and supported by various formats and
languages, like PostScript, Asymptote, METAPOST,
and TikZ. So why is it mentioned here? Because one
variant of defining clipping paths in SVG may lead
to unpredictable, flawed visual results due to absent
or incomplete support in SVG renderers.

Besides defining the clipping path explicitly,
which is nicely supported by almost all renderers
I know of, it’s also possible to tell the SVG renderer
to compute the intersection of two or more paths
and restrict the subsequent drawing actions to the
resulting area. The following example defines a lens-
shaped path called lens by combining two arcs of 90
degrees. The result is assigned to clipping path clip1.
The second clipping path clip2 reuses path lens but
rotated by 90 degrees clockwise around its center.
<clipPath id="clip1">

<path id="lens" d="

MOO

A 50 50 0 0 1 50 50

A505000100 2"/>
</clipPath>

<clipPath id="clip2" clip-path="url(#clip1)">
<use xlink:href="#lens"
transform="rotate(90,25,25)"/>
</clipPath>
The crucial part of this definition is the clip-path
attribute, which restricts the drawing area of clip2
to the interior of clip! so that the resulting clipping
region leads to a curved square, as shown in figure 3.
Graphic elements restricted to clip2, like the
following rectangle, are now supposed to be clipped
at the border of this square.
<rect x="17" y="0" width="16" height="50"
clip-path="url (#clip2)"/>
Unfortunately, this isn’t the case with all SVG ren-
derers.® Since successive calls of the PostScript op-
erators clip and eoclip cause consecutive path in-
tersections, which dvisvgm translates to clipPath

6 Examples can be seen at dvisvgm.sf.net/Clipping.

dvisvgm.sf.net/FAQ
dvisvgm.sf.net/Clipping

TUGDboat, Volume 38 (2017), No. 3

Figure 3: Intersection of two lens-shaped paths (left),
and a rectangle clipped on the resulting area.

elements with clip-path attributes by default, the
generated SVG files are not portable either. In order
to prevent the creation of these, the -~—clipjoin op-
tion was added some time ago. It tells dvisvgm to
compute the path intersections itself with the help of
Angus Johnson’s great Clipper library”, which pro-
vides an implementation of the Vatti polygon clipping
algorithm. For this purpose, dvisvgm approximates
all clipping paths by polygons, runs the Vatti algo-
rithm on them to compute the boundaries of the
intersection areas, and reconstructs the curved seg-
ments of the resulting paths afterwards. In this way,
we usually get a compact yet smoothly approximated
outline of the final clipping paths. The application
of option --clipjoin to clipping path clip2 of the
above example leads to the following self-contained
path definition composed of four cubic Bézier curve
segments:
<clipPath id="clip2">
<path d="

M 43.2 25

C 38.8 32.5 32.5 38.8 25 43.2

C 17.5 38.8 11.2 32.5 6.8 25

C 11.2 17.5 17.5 11.2 25 6.8

C 32.5 11.2 38.8 17.5 43.2 25 Z2"/>
</clipPath>

6.2 Approximation of gradient fills

One of the more powerful and impressive PostScript
features is the advanced support of various shading
algorithms to fill a region with smooth transitions of
colors in several color spaces. These algorithms in-
clude Gouraud-shaded triangle meshes, tensor-prod-
uct patch meshes, and flexible function-based shad-
ings, as well as linear and radial gradients. The
current SVG standard 1.1 provides elements to spec-
ify gradient fills too but they are limited to the last
two mentioned above, and are furthermore some-
what less flexible than the PostScript equivalents.
Therefore, it’s not possible to map arbitrary gradient
definitions present in EPS files or PostScript specials
to plain SVG gradient elements. In order to nonethe-

7 angusj.com/delphi/clipper.php

367

Figure 4: Approximation of tensor product shading
using a grid of 10 x 10 and 30 x 30 color segments,
respectively.

less convert a subset of them, dvisvgm approximates
color gradients by filling the specified area with small
monochromatic segments as shown in figure 4.

Each segment gets the average color of the cov-
ered area according to the selected gradient type
and color space. The maximum number of segments
created per column or row can be changed by option
--grad-segments. Greater values certainly lead to
better approximations, but concurrently increase the
computation time, the size of the SVG file, and,
perhaps most important, the effort required to ren-
der the file. To slightly counteract this drawback,
dvisvgm reduces the level of detail if the extent of
the segments falls below a certain limit. In case
of tensor-product patches, the segments are usually
delimited by four cubic Bézier curves and will then
be simplified to quadrilaterals. The limit at which
this simplification takes place can be set by option
--grad-simplify.

An issue that can occur in conjunction with gra-
dient fills is the phenomenon of visible gaps between
adjacent segments, even though they should touch
seamlessly according to their coordinates. This effect
results from the anti-aliasing applied by most SVG
renderers in order to produce smooth segment con-
tours which usually takes not only the foreground but
also the background color into account. Therefore,
the background color becomes visible at the joints of
the segments. If desired, the option --grad-overlap
can be used to prevent this effect. It tells dvisvgm
to create bigger, overlapping segments that extend
into the region of their right and bottom neighbors.
Since the latter are drawn on top of the overlapping
parts, which now cover the former joint lines, the
visible size of all segments remains unchanged. In
this manner we get visual results similar to those
shown in figure 4.

dvisvgm: Generating scalable vector graphics from DVI and EPS files

angusj.com/delphi/clipper.php

368

6.3 Converting EPS files to SVG

Besides the family of special commands provided
to embed literal PostScript code directly into DVI
files, dvips also introduced a special called psfile.
Its purpose is to reference an external PS or EPS
file and insert its content, possibly after some pro-
cessing, at the current location of the document.
The ETEX command \includegraphics from the
graphicx package, for instance, produces a psfile
special if the dvips driver is selected. Also, the vector
graphics language Asymptote [1] uses this special in
its intermediate DVT files to combine the graphical
and typeset components of the resulting drawings.
Because of these major application areas, it was
important to make dvisvgm capable of processing
psfile specials, in order to cover a broader range of
documents.

Since the technical details of the command are
probably not of much interest for general users, they
are not discussed here in more depth. However, one
nice bonus feature that was technically available
instantly after finishing the implementation of the
psfile handler can be mentioned. Due to the han-
dler being able to process separate files, it seemed
natural to make this functionality available through
the command-line interface and so provide an EPS to
SVG converter. Little additional code was required
to realize this. Thus, as of version 1.2, dvisvgm offers
option —-eps which tells the converter not to expect
a DVI but an EPS input file and to convert it to SVG.
For example,

dvisvgm --eps myfile
produces the SVG file myfile.svg from myfile.eps.
This is implemented by creating a single psfile spe-
cial called together with the bounding box informa-
tion given in the EPS file’s DSC header. To do the
conversion, only the PostScript handler is required,
with none of the DVI-related routines and associated
functionality, like font and other special processing.

Since there are already some standalone utilities
like ImageMagick and Inkscape available that can
do this, dvisvgm’s EPS to SVG functionality is prob-
ably needed less frequently but might nonetheless be
beneficial for the TEX community.

7 Acknowledgments

I would like to thank Karl Berry, Mojca Miklavec,
and, posthumously, Peter Breitenlohner for their
invaluable work to make dvisvgm available in TEX
Live and help in tracking down several issues. Also,

Martin Gieseking

TUGhboat, Volume 38 (2017), No. 3

thank you to Khaled Hosny for implementing the
command-line option --no-merge and for providing
a Python port of my formerly XSLT-based helper
script opt2cpp. 1 furthermore appreciate the amazing
work of John Bowman and Till Tantau who added
support of dvisvgm to Asymptote and TikZ/PGF,
respectively.

There are many more people whom I can’t list
here individually but who helped enormously to im-
prove the program by reporting bugs, providing code,
and sending feature suggestions. Thank you very
much to all of you.

References

[1] John Bowman. Asymptote: Interactive TEX-aware
3D vector graphics. TUGboat, 31(2):203-205, 2010.
tug.org/TUGboat/tb31-2/tb98bowman . pdf.

[2] Adrian Frischauf and Paul Libbrecht.
dvi2svg: Using BTEX layout on the web.
TUGboat, 27(2):197-201, 2006.
tug.org/TUGboat/tb27-2/tb87frischauf.pdf.

[3] Martin Gieseking and Oliver Vornberger.
media2mult: A wiki-based authoring tool for
collaborative development of multimedial
documents. In Miguel Baptista Nunes and Maggie
McPherson, editors, Proceedings of the IADIS
International Conference on e-Learning, pages
295-303, Amsterdam, Netherlands, 2008.

[4] Michel Goossens and Vesa Sivunen. ITEX, SVG,
Fonts. TUGboat: The Communications of the TEX
Users Group, 22(4):269-280, 2001.
tug.org/TUGboat/tb22-4/tb72goos . pdf.

[5] David Kastrup. The preview package for BTEX.
ctan.org/pkg/preview, April 2017.

[6] Daan Leijen. Rendering mathematics for
the web using Madoko. In Robert Sablatnig
and Tamir Hassan, editors, Proceedings of
the 2016 ACM Symposium on Document
Engineering, pages 111-114, Vienna, Austria, 2016.
www.microsoft.com/en-us/research/wp-content/
uploads/2016/08/docengl6.pdf.

[7] Rudolf Sabo. DVISVG. Master’s thesis,
Masarykova Univerzita, Brno, Czech Republic,
2004. dvisvg.sourceforge.net/dipl.pdf.

[8] Peter Selinger. Potrace: A polygon-based tracing
algorithm. potrace.sourceforge.net, 2003.

¢ Martin Gieseking
University of Osnabriick
Heger-Tor-Wall 12
49074 Osnabriick, Germany

martin dot gieseking (at) uos dot de

tug.org/TUGboat/tb31-2/tb98bowman.pdf
tug.org/TUGboat/tb27-2/tb87frischauf.pdf
tug.org/TUGboat/tb22-4/tb72goos.pdf
ctan.org/pkg/preview
www.microsoft.com/en-us/research/wp-content/uploads/2016/08/doceng16.pdf
www.microsoft.com/en-us/research/wp-content/uploads/2016/08/doceng16.pdf
dvisvg.sourceforge.net/dipl.pdf
potrace.sourceforge.net

	How it all started
	About dvisvgm and basic usage
	Font support
	Vectorization of bitmap fonts
	Font elements vs. graphics paths
	Generating WOFF fonts

	Bounding boxes
	Tight text boxes
	Aligning baselines
	papersize specials

	Evaluation of specials
	hyperref specials
	dvisvgm specials

	PostScript support
	Handling clipping path intersections
	Approximation of gradient fills
	Converting EPS files to SVG

	Acknowledgments

