
TUGBOAT

Volume 38, Number 3 / 2017

General Delivery 291 From the president / Boris Veytsman

291 Editorial comments / Barbara Beeton

Contents of TUGboat issues online; Birthday celebration for Donald Knuth;
Public appearances by Don Knuth (online);
The Doves Type: reprise; The Go fonts go Greek;
Calcula, an experimental display typeface; Extra Bold: A forgery foiled

293 Collecting memories of the beginnings of desktop publishing / David Walden

294 Interview: Michael Sharpe / David Walden

299 Advertising TEX / Hans Hagen

Tutorials 301 The DuckBoat—News from TEX.SE: Asking effective questions / Carla Maggi

Typography 306 Review and summaries: The History of Typographic Writing—The 20th century

Volume 2 (ch. 6–8+), from 1950 to 2000 / Charles Bigelow

Fonts 312 Serifed Greek type: Is it “Greek”? / Antonis Tsolomitis

ConTEXt 315 ConTEXt for beginners / Willi Egger

Graphics 324 Art Concret, Basic Design and meta-design / Marcel Herbst

329 The current state of the PSTricks project, part II / Herbert Voß

LATEX 338 Glisterings: Reading lines; paragraph endings; in conclusion / Peter Wilson

342 DocVar: Manage and use document variables / Zunbeltz Izaola and
Paulo Ney de Souza

345 Set my (pdf)pages free / David Walden

345 Automatic generation of herbarium labels from spreadsheet data using LATEX /

R. Sean Thackurdeen and Boris Veytsman

350 Typesetting actuarial symbols easily and consistently with actuarialsymbol and
actuarialangle / David Beauchemin and Vincent Goulet

Software & Tools 353 Converting TEX from WEB to cweb / Martin Ruckert

359 dvisvgm: Generating scalable vector graphics from DVI and EPS files /

Martin Gieseking

369 Tricky fences / Hans Hagen

Macros 373 Testing indexes: testidx.sty / Nicola Talbot

400 A note on \linepenalty / Udo Wermuth

Hints & Tricks 415 The treasure chest / Karl Berry

416 Another seasonal puzzle: XII take II / David Carlisle

Cartoons 416 Typeface; Elefonts / John Atkinson

Book Reviews 417 Book reviews: Shady Characters and The Book by Keith Houston / Peter Wilson

Abstracts 420 Die TEXnische Komödie: Contents of issue 3/2017

420 MAPS: Contents of issue 44 (2013)

TUG Business 290 TUGboat editorial information

290 TUG institutional members

Advertisements 421 TEX consulting and production services

News 423 Practical TEX 2018 announcement

424 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: http://tug.org/TUGboat.

Individual memberships
2017 dues for individual members are as follows:

Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Also, anyone joining or re-
newing before March 31 receives a $20 discount:

Regular members (early bird): $85.
Special rate (early bird): $55.

Members also have the option to receive TUGboat

and other benefits electronically, for an additional
discount.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
organizations and others wishing to receive TUG-

boat in a name other than that of an individual.
The subscription rate for 2017 is $110.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and the TEX Users Group. It also provides a dis-
counted membership rate, site-wide electronic ac-
cess, and other benefits. For further information,
see http://tug.org/instmem.html or contact the
TUG office.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: October 2017]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Reutenauer∗, Vice President
Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Johannes Braams
Kaja Christiansen
Taco Hoekwater
Klaus Höppner
Frank Mittelbach
Ross Moore
Cheryl Ponchin
Norbert Preining
Will Robertson
Herbert Voß
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all past
and present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2017 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another

language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such
approval, the original English permission notice must

be included.

The font the OED uses has become as recognizable
as an old friend. As have the myriad punctuations,
symbols, and abbreviations that cover its pages, and
which are varied enough to be known in full only to
typesetters and longtime readers of this book.

Ammon Shea
Reading the OED

One Man, One Year, 21,370 Pages

(2008)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 38, NUMBER 3, 2017

PORTLAND, OREGON, U.S.A.

TUGboat editorial information

This regular issue (Vol. 38, No. 3) is the last issue of the
2017 volume year.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(tug.org/store), and online at the TUGboat web site
(tug.org/TUGboat). Online publication to non-members
is delayed up to one year after print publication, to give
members the benefit of early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are assumed to be the experts. Ques-
tions regarding content or accuracy should therefore be
directed to the authors, with an information copy to the
Editor.

TUGboat editorial board
Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team
William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns, Robin Laakso,
Steve Peter, Michael Sofka, Christina Thiele

TUGboat advertising
For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html

tug.org/consultants.html

290 TUGboat, Volume 38 (2017), No. 3

Submitting items for publication
Proposals and requests for TUGboat articles are grate-
fully received. Please submit contributions by electronic
mail to TUGboat@tug.org.

The submission deadline for the first 2018 issue is
March 16.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site, and are included in common TEX distributions.
We also accept submissions using ConTEXt. Deadlines,
templates, tips for authors, and more, is available at
tug.org/TUGboat.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make suitable arrangements.

Other TUG publications
TUG is interested in considering additional manuscripts
for publication, such as manuals, instructional materials,
documentation, or works on any other topic that might
be useful to the TEX community in general.

If you have such items or know of any that you
would like considered for publication, please contact the
Publications Committee at tug-pub@tug.org.

TUG
Institutional
Members

TUG institutional members
receive a discount on multiple
memberships, site-wide electronic
access, and other benefits:
tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,
Providence, Rhode Island

Association for Computing
Machinery, New York, New York

Center for Computing Sciences,
Bowie, Maryland

CSTUG, Praha, Czech Republic

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czech Republic

MOSEK ApS,
Copenhagen, Denmark

Nagwa Limited, Windsor, UK

New York University,
Academic Computing Facility,
New York, New York

Overleaf, London, UK

ShareLaTeX, United Kingdom

Springer-Verlag Heidelberg,
Heidelberg, Germany

StackExchange,
New York City, New York

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

TEXFolio, Trivandrum, India

TNQ, Chennai, India

University College, Cork,
Computer Centre,
Cork, Ireland

Université Laval,
Ste-Foy, Québec, Canada

University of Ontario,
Institute of Technology,
Oshawa, Ontario, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

TUGboat, Volume 38 (2017), No. 3 291

From the president

Boris Veytsman

By the time you receive this issue of TUGboat, two
important conferences will be over: the 11th Con-
TEXt meeting in Butzbach-Maibach and GuIT 2017
near Venice. We hope to publish reports about them
on these pages in future issues. Still, there will be
time to register for 2018 meetings: PracTEX2018 in
Troy (NY, USA) in June and TUG 2018 in Rio de
Janeiro (Brazil) in July. Both conferences are going
to be very interesting. Kris Holmes has agreed to
visit PracTEX, and lead a calligraphy workshop there.
As to Rio—TUG will be a satellite conference of the
International Congress of Mathematicians 2018, so
expect many distinguished guests there.

The time since the last TUGboat has been busy.
There were interesting discussions on the EduTEX
list about the ways we can help teachers and other
educators to use and teach TEX. I would like to
repeat the call for participants: if you would like to
help with TEX in schools and universities, please join
the mailing list at lists.tug.org/edutex.

One initiative worth your attention is the im-
provement of the LATEX wikibook (en.wikibooks.
org/wiki/LaTeX). This is a first line resource for
many TEX novices. Thus it is very beneficial to make
it up to date, accurate and well written. If you can
spare some time for checking and editing, please do.

The long time health of any organization de-
pends on its membership. We have had several drives
in recent years aimed at new individual members.
Thus today I would like to talk about another part
of our membership: institutional members. I am
glad to report that the Association for Computing
Machinery, the largest publisher of computer-related
literature in the world, joined the ranks of our in-
stitutional members. It is my conviction that any
organization seriously using TEX in its work should
consider joining TUG, not primarily for the member-
ship benefits—albeit we do provide several—but
because it is the right thing to do. For many of these
organizations: publishers, universities, research in-
stitutions, the continuing existence of TEX and its
support is important. Thus giving back to the com-
munity makes perfect sense. I would like to ask our
members to think whether their organization can be
persuaded to join TUG.

This issue of TUGboat will reach you in the
holiday season. So let me wish you a great holiday
and happy & fruitful New Year! See you in 2018!

⋄ Boris Veytsman
president (at) tug dot org

Editorial comments

Barbara Beeton

Contents of TUGboat issues online

In response to an inquiry from a reader of an old
TUGboat issue online, the maintainers of the archive
have determined to reformat the old full-issue files
to improve access.

Until now, each issue has been posted with indi-
vidual articles and the covers as separate files, with
a “complete” file containing all the internal content.
But the latter file lacks a table of contents, so a
potential reader who has downloaded it to be read
off-line would have to proceed page by page to find
out what is there— inconvenient, to say the least.

From this issue forward, and as time permits
reprocessing earlier issues, the full-issue file will be
arranged in the following manner:

• the TOC (cover 4);
• cover 2 (masthead and general information);
• the issue content;
• cover 3; from 26:2 (2004) onward, a contents

list ordered by difficulty.

The front cover will be omitted; this is often quite
large, and the space saved seems more important
than appreciation of the design. Cover 1 can always
be retrieved separately if desired.

Birthday celebration for Donald Knuth

Don’s 80th birthday will occur on 10 January 2018.
In honor of this occasion, two celebratory events have
been arranged by his friends; both will occur in the
northern Swedish town of Piteå.

The first event will be a scientific symposium,
“Knuth80: Algorithms, Combinatorics, and Informa-
tion”, which will take place from Monday through
Wednesday morning, January 8–10. Talks at the
symposium will include contributions from scientists
in “areas where Don’s influence has been important”.

Wednesday afternoon, January 10, will hold the
world premiere of Fantasia Apocalyptica, a multi-
media work for pipe organ and video written by
Don. Canadian organist Jan Overduin will per-
form the work on the magnificent new pipe organ
in Studio Acusticum in Piteå. More details con-
cerning the symposium and concert can be found at
knuth80.elfbrink.se and on Don’s home page at
Stanford.1 A Facebook “public group”, Knuth80, fea-
tures photos and facilitates communication between
people who are interested in joining the party.

All are welcome — participation is free of charge,
but registration is mandatory.

1 www-cs-faculty.stanford.edu/~knuth/news.html

292 TUGboat, Volume 38 (2017), No. 3

Public appearances by Don Knuth (online)

Don has taken part in two notable (semi-)public
events this year — the celebration of 50 years of Tur-
ing awards by the Association for Computing Ma-
chinery (Don was the 1974 laureate) and a meeting
examining the origins of desktop publishing (DTP)
at the Computer History Museum.

The home page for the Turing celebration is
at www.acm.org/turing-award-50. Don’s talk, on
“computer science as a body of accumulated knowl-
edge”, is linked from there, or can be viewed sepa-
rately.2 The brief talk is followed by a Q&A session
in which one TEX-related question surfaced: when
TEX was first published, Don made a bold wager
regarding the number of bugs that would be found in
the system, with a reward that would double every
year; “How on earth did [he] ever manage to do it?”
(This begins at about 14:20 into the recording.)

On May 22–23, a meeting at the Computer His-
tory Museum in Mountain View, California, brought
together more than 15 participants who had been
pioneers in the creation of the DTP industry. The
first day of the meeting focused on the development
of the underlying technology, and the second, on
the history of the companies involved. Two par-
ticipants of importance to TEX (which, not being
commercial, was an anomaly) were Don Knuth and
Chuck Bigelow. The proceedings were recorded by
video, and are being transcribed. A more detailed
report will appear in the next issue. The museum
normally posts videos on its youtube channel once
transcription is complete.

The Doves Type: reprise

Earlier reports of the recovery of the Doves Press
type were covered in 36:1, page 5. Now an audio
report has been broadcast as Podcast Episode 168
from The Futility Closet.

Listen at www.futilitycloset.com/2017/09/
04/podcast-episode-168. It’s a good story.

The Go fonts go Greek

In the last regular issue (38:1, pages 5–6), the Go
fonts, by Bigelow & Holmes, were reviewed briefly.
These fonts, created for the Go project and released
under an open source license, have now appeared
as the basic font for the web pages— in Greek — of
Antonis Tsolomitis at the University of the Aegean,
a mathematician and long-time LATEX user. This is,
says Chuck Bigelow, “just the sort of thing we were
hoping for. Wide unrestricted use, in this case by an

2 facebook.com/AssociationForComputingMachinery/

videos/10154936961388152/

intelligent and discerning mathematician who likes
typography. :-)” Antonis’ use of the fonts can be
seen at myria.math.aegean.gr/~atsol/newpage/.

And while we’re mentioning Bigelow & Holmes,
their blog, at bigelowandholmes.typepad.com, has
many interesting articles, including:
— “Digital Type Archaeology International: Scien-

tific American 1983” returns to that article, mention-
ing what has happened in the intervening 32 years,
and shows the opening page of the article as it ap-
peared in the English, French, German, Spanish,
Italian, Russian, Japanese and Chinese editions of
the magazine.
— “More Zero versus Oh and ellipses versus superel-
lipses” reviews what has happened since “Oh, oh,
zero!” appeared in TUGboat (34:2, pages 168–181),
as well as earlier efforts to distinguish these often
confusing glyphs.

Calcula, an experimental display typeface

The Calcula typeface began as an assignment in
a typeface design class at the Maryland Institute
College of Art. Its creator, Shiva Nailaperumal,
was interested in ancient Arabic calligraphic tradi-
tions, in particular the geometric Kufic style. In
this style, the letters and the ground are in a strict
positive/negative relationship, and the geometric
character of the style lends itself to the creation of
intertwined monograms.

The considerations that went into development
of the typeface are explained clearly, with illustra-
tions of how it is applied to words using the Latin
alphabet, and to repeating patterns. I find that the
effort needed to read the results is less than I would
have expected, although this is clearly not intended
for serious reading.

See www.typotheque.com/articles/calcula.

Extra Bold: A forgery foiled

The New Yorker issue of 31 July 2017 presents the
response from the Dutch typeface designer, Lucas de
Groot, to an allegation that the font, Calibri, which
he had designed almost fifteen years earlier, had
been used to forge a document that would clear the
Pakistani Prime Minister of a charge of corruption.

The document supposedly had been printed in
2006, whereas the font was not generally released by
Microsoft as part of its Office suite in 2007.

This was not the first time Calibri was involved
in such allegations; others are listed in the arti-
cle, at www.newyorker.com/magazine/2017/07/

31/calibris-scandalous-history.

⋄ Barbara Beeton

tugboat (at) tug dot org

TUGboat, Volume 38 (2017), No. 3 293

Collecting memories of the beginnings of
desktop publishing

David Walden

On May 22–23, 2017, a meeting was held at the
Computer History Museum (CHM)1 of a select set of
pioneers from the early days of desktop publishing
(DTP). Among the small group of participants were
founders and key technologists from Frame Technol-
ogy (creator of the FrameMaker DTP system), Aldus
(creator of PageMaker), Ventura Software (creator
of Ventura Publisher), Adobe (creator of the Post-
Script page description language and the software/
firmware to drive a printer from PostScript images
in a computer), Xerox PARC (where the first what-
you-see-is-what-you-get, WYSIWYG, word processor
interface was demonstrated and where early on they
turned Xerox copier technology into laser printer
technology), and Apple Computer (which promoted
PageMaker running on the Mac with its early graph-
ical user interface and a relatively low cost laser
printer to become a highly popular early DTP sys-
tem). A few other key pioneers also participated
whose innovations preceded the liftoff of DTP or who
moved among the DTP activities making important
connections. Finally, a handful of professional and
amateur computing historians were invited to be
present. The meeting was organized and chaired by
Burt Grad (co-founder of the CHM Software Industry
Special Interest Group, SI SIG2) and David Brock
(director of the CHM’s Center for Software History3).

This meeting was the thirteenth pioneers meet-
ing that the SI SIG has held since its founding 25
years ago. At these meetings, pioneers from vari-
ous parts of the software industry share memories
in meeting sessions that are videotaped and then
transcribed into text for use by future historians.
Individual oral histories are taken from the meeting
participants and other significant software industry
pioneers, and there has been ongoing collection of
original documents. Prior pioneers meetings have re-
sulted in six special issues of the IEEE Annals of the
History of Computing, and hopefully another special
issue will result from the DTP meeting.

While I have been studying the history of desk-
top text formatting systems for the past several years,
I learned many new things as an observer at the DTP

meeting. Below are a few examples.
I had not before heard of Rocappi (Research on

Computer Applications in the Printing and Publish-

1 computerhistory.org
2 computerhistory.org/groups/sisig,

sites.google.com/site/softwareindustrysig
3 computerhistory.org/softwarehistory

ing Industries) Incorporated. This company, founded
by John Seybold in 1963, provided software and con-
sulting for computer-based newspaper and magazine
production systems, for instance to Atex. (Atex was
an early and for a while a highly popular provider
of computer-based newspaper production systems—
more than just the page make-up function.) Ro-
cappi’s work was parallel to and independent of the
RUNOFF-like stream of text processors developed in
universities and industry research laboratories.

There were many other inter-company paths of
connection.

The founder of Aldus (PageMaker) first got into
computer-based publishing when the Minneapolis
Star Tribune where he worked acquired an Atex
system. He worked closely with Atex to specify what
the computer-based newspaper system should do.
Later he joined the Atex staff and, when Atex was
sold to Kodak, started Aldus to build a DTP system.

People at these various companies tended to
read the Seybold Report on Publishing Systems (be-
gun in 1982) and, a little later, the Seybold Report
on Desktop Publishing and to attend the Seybold
Seminars (founded in 1981). Jonathan Seybold, who
had joined his father at Rocappi a couple of years
after its founding, was co-founder of the Reports with
his father and the driving force behind the seminars.

The Seybold reports and meetings were one
way the various DTP companies kept track of the
market and of what each other were doing; and
in collecting material for the reports and meetings
Jonathan Seybold got wind of developments within
various companies and in at least one important case
put the key people in touch with each other. He told
the appropriate Mac marketing manager at Apple,
the founder of Aldus, and the PostScript people at
Adobe that they needed to talk to each other. Out
of this came an informal joint marketing campaign
and Apple’s push of the Mac as a DTP system.

Two pioneers at the DTPmeeting are well known
to the world of TEX: Don Knuth and Chuck Bigelow.
While some meeting participants don’t think of TEX
as being a DTP system (not WYSIWYG, not commer-
cial, not used on a massive scale), Don’s description
of his “business plan” for TEX (public domain, not
for profit, more or less unchanging, widely portable)
was a useful contrast to the goals and plans of the
commercial systems. Chuck’s story was interesting
in how widely he was connected throughout the com-
mercial DTP world as well as with TEX.

⋄ David Walden
walden-family.com/texland

Collecting memories of the beginnings of desktop publishing

294 TUGboat, Volume 38 (2017), No. 3

Interview: Michael Sharpe

David Walden

Michael Sharpe has been using TEX since the mid-
1980s. In more recent years he has been active in
the TEX fonts world.

Dave Walden, interviewer : Please tell me a bit
about yourself.

Michael Sharpe, interviewee : I was born in Syd-
ney, Australia in 1941. After 1945, my father joined
the Commonwealth Public Service, which corresponds
in the US to the federal civil service, and moved fre-
quently in order to advance in the system. I had
a disjointed schooling in various suburbs of Sydney,
Melbourne and Hobart (Tasmania), completing high
school and university in Tasmania. I began as a
student in Electrical Engineering but found Physics
and Mathematics more appealing, thanks in no small
part to some inspiring faculty in those areas, and
eventually graduated with a degree in Mathematics,
after which I completed a Ph.D. in Mathematics at
Yale specializing in Analysis and Probability. The
interests I shared with some faculty members at the
newly formed Mathematics Department at UCSD

(University of California at San Diego) led to a posi-
tion there which continued, except for a year at the
University of Paris VI, until my retirement in 2004.

I fantasize sometimes about how different my
life might have been had Electrical Engineering at
UTAS encompassed what we now know as Computer
Science at the time I was a beginning undergraduate
in 1959. I also fantasize about what might have
been had I continued in physics, though it seemed I
had limited capabilities at lab work. (When I asked
my friends working in experimental physics about
their backgrounds, an unexpectedly high proportion
responded that they were the sons of farmers, who
understood and could repair all farm machinery.) My
youth was misspent on sport, not on understanding

complex machinery, though I did spend a couple of
years working as an assistant to a projectionist in
the local movie theater during my high school years.

DW : When you say “misspent on sport”, what are
you thinking of?

MS : Because we moved regularly, I was motivated
to focus on making new friends as quickly as possible,
and sport was a good way to do it in that environ-
ment. I played cricket, Australian Rules football and
tennis. It was fortunate for my later career that I
was not really good at any of them.

DW : Were you already doing electronics things as
a hobby and enjoying high school math and science
before university?

MS : I was not into electronics as a hobby, finding
the analog radio of those days not very interesting.
I did do well in sciences and math in high school. If
there had been computers available in those days, it
may have been a different story.

DW : What took you away from Australia and to
Yale for your Ph.D. work?

MS : Just previous to my generation of college grad-
uates in Australia, most students wanting to pursue
an advanced degree in sciences and engineering went
to Great Britain if they could manage it. In the
early 1960s the US graduate programs in those areas
expanded greatly due in no small part to the post-
Sputnik flood of funding. From my limited knowledge
of advanced mathematics as an undergraduate, Yale
seemed to have a number of major figures in areas
of mathematics I enjoyed and thought important. I
planned to return to Australia after my Ph.D. and
a post-doc, but I married an American while I was
at graduate school. My wife did not want to live so
far from her family, so I decided to stay in the US

(semi-)permanently.

DW : How did you first become involved with TEX?

MS : From the mid-1970s, I was working on a man-
uscript on Markov processes that I hoped could be
turned into a book. I was using TROFF and spending
much of my research funding to process the source.
In the early 1980s, I heard of TEX and decided to
convert to that system, largely because of cost. I
made much use of UNIX sed scripts to transform the
original source to TEX. The book was eventually
published under the title General Theory of Markov
Processes, Academic Press (1988).

DW : Are you saying that TEX was less expensive
in terms of computer time? That’s a bit of history I
have not heard of before.

David Walden

TUGboat, Volume 38 (2017), No. 3 295

MS : It was more a matter that TROFF had to be
run on the school’s mainframe, for which there was a
cost associated with each run. Even at the cheapest
overnight rate, my research grant took a serious hit. I
learned about Textures in the mid-1980s, and could
purchase a license for about $200 due to our site
license. The idea of almost instant feedback was very
appealing. (In fact, it took close to 40 minutes per
page to process using my early generation Mac.)

DW : Do I gather correctly that you were using TEX
and not LATEX at that early date? (By the way, it
appears to me that your book is available on-line for
the cost of registering on a website1.)

MS : I used plain TEX with the AMSTEX additions
for almost my entire academic career, as my experi-
ments with early LATEX made it seem very slow and
harder to modify than plain TEX, which I understood
well. Mine was one of the first books accepted in TEX
by Academic Press. They were happy to not have
to reprocess it, but asked me to make the chapter
headings and such conform to their standards using
a Times font and a layout they prescribed. That was
my first font job. I understand that they distributed
my macros to their other authors whose manuscripts
were still in progress.

DW : During your years of teaching at UCSD, what
sorts of courses did you teach, and were they mostly
to students of math or also students from other de-
partments? Also, given your considerable knowledge
of TEX, etc., did you end up being a resource on TEX
for your department?

MS : I taught courses of many descriptions. Much
calculus and advanced calculus of course, as the bulk
of our workload was engineering and science majors.
I also taught upper division courses in real and com-
plex analysis, probability, mathematical statistics
and the mathematics of financial models, mostly
taken by majors in math, engineering and economics.
At the graduate level, I taught the basic foundation
courses in real and complex analysis, probability, as
well as advanced topics designed to attract students
to one’s research area. Many of the students who took
my probability courses were electrical engineering
graduate students working in communication theory,
and as a result, I ended up serving on the dissertation
committees of many of them. (That area attracted
a steady flow of very capable students thanks to the
presence of some first rate researchers and the gener-
ous support of QUALCOMM. It was the first time I
ever posed a question to a student that elicited the
response: “I’m sorry, but that information is covered
by a non-disclosure agreement.”)

I did end up as a TEX resource for my depart-
ment, trying to bring the staff and graduate students
up to speed with TEX. In the years of the severe
budgets of the early 1990s, the department had inade-
quate computer support and lacked skilled staff to do
serious document preparation. It took some time for
new staff to learn to use TEX productively, and they
found that processing graphics in TEX documents
was too time consuming, so I ended up trying to help
them use PSTricks. This was not really a success as
PSTricks required regular use to maintain proficiency.
I also set up a number of automated processes to
handle departmental information efficiently, much of
it using TEX for output processing.

My passage to LATEX was fairly sudden. The
department was contacted by the Dean of Natural
Sciences (this was about 2002) saying that one of his
major donors was trying to write a math textbook for
his grand-children, and was having serious problems
getting his chosen fonts to work on his Mac using
LATEX, and could we do something to help. As no one
else stepped forward, I was volunteered. It turned
out he was trying to follow one of the recipes in the
Alan Hoenig book, TEX Unbound, wanting to set up
Adobe Garamond with math from MathTime using
a fontinst script. (He was a very smart man in his
late 80s who had a Ph.D. in Chemistry, and had
set up a very successful corporation that developed
rocket parts and fuels. He said he had always loved
mathematics but felt it was never properly explained
to pre-college students. I visited him in his retirement
home, and he declared that I might be the first
mathematician to make house calls since Bertrand
Russell called on Lady Ottoline.) So, that was my
first real font effort, getting things set up for proper
fontinst run, and moving the output to the non-
standard places expected by Textures. That meant I
had to understand LATEX, and I found it much more
compelling than I had earlier.

After I retired in 2004, I used LATEX for the
first time to write a math paper, having the luxury
of time to learn its fine points. I also became very
interested in PSTricks for a period and wrote some
packages for it, some of which worked its way into the
basic PSTricks packages. That gave me my first real
experience working with Bezier curves, which are the
foundation for work with outline fonts. It was also a
good learning experience with complex TEX packages,
as there is some fiendishly clever code in PSTricks,
mixed with non-trivial PostScript code. Its long-time
maintainer, Herbert Voß, is very knowledgeable and
helpful in all (LA)TEX matters.

After I made some baby font packages, I saw an
opportunity with the TXfonts and PXfonts families,

Interview: Michael Sharpe

296 TUGboat, Volume 38 (2017), No. 3

which had been developed but left in an unfinished
(or, at least, unpolished) state. “How hard could it
be to finish them?”, I thought. The answer is that
it took about four months to be ready for an ini-
tial release, but work has continued for the last five
years through today, fixing bugs, improving metrics,
adding and making changes to symbols, and so forth.
Once I learned what was necessary to produce suit-
able text and math fonts for LATEX, I continued to
look for opportunities to bring new fonts to the TEX
world. I feel strongly that the future of Unicode TEX
is not in making use of system fonts, which are not
the same for everyone, and can be suddenly changed
or withdrawn, but with free fonts that have been en-
hanced enough to meet the needs of the demanding
academic user.

As a side note, I add that I see many journals
abandoning proprietary fonts in favor of free pack-
ages. With submissions using their specified free-font
packages, the editorial work is reduced and the sub-
mitter gains by a reduction in the number of errors
caused by reworking the submission to make use of
a different, sometimes not completely compatible,
package.

DW : Since your “first real font effort, getting things
set up for proper fontinst run, and moving the output
to the non-standard places expected by Textures”,
your CTAN entry2 suggests you have done a lot more
with fonts and a good bit with LATEX. What led you
to get so deeply involved with fonts and can you talk
about the different things that were involved with
two or three of your font efforts?

MS : I never got over the thrill of seeing a page of
mathematical content pop up on the screen with
relatively little effort, especially compared with what
had to be done to prepare manuscripts in the years
prior to TEX. For day to day use, I found that Com-
puter Modern had some drawbacks, not copying well
on machines available in the late 1980s, so home-
work and exams had to be made at very large sizes
to be guaranteed to be readable. I started looking
for other font systems, and purchased MathTime
and Lucida, solving the copying problem. The Gara-
mond+MathTime project after that reawakened my
curiosity about TEX and other fonts.

A second factor was that, after my cleanup pe-
riod following retirement, I needed a serious interest
to occupy my time and my mind, and TEX seemed
to qualify. I studied Hoenig’s book at length and
spent several weeks trying to modify Hoenig’s math-
inst Perl script so that it would actually work as
expected. Though I eventually dropped the project,
I learned in the process a great deal about the use

of fontinst to produce LATEX math font support files,
all of which has influenced my subsequent work on
math fonts for TEX.

Creating a font, and especially a math font, from
scratch is a project of several years duration. I don’t
normally create fonts, I try to rescue them. There are
a number of font projects that have free licenses but
were abandoned, in many cases because the author
eventually needed to make a living. I’ve picked up
some of those projects that seemed promising and
worked to turn them into more polished products
that can, I hope, be used for professional work.

My biggest project has been to rescue the text/
math families TXfonts and PXfonts by Young Ryu,
renaming them to newtx/newpx. They are based on
the URW clones of Times and Palatino and mostly
share a common math core, modulo scaling. Initially,
the main issue was the metrics, and that took several
months to correct. Later, I turned to a complete
reworking of the math extension fonts, where the
extensible delimiters were not matched well. This
required about six weeks of effort. There followed
a complete revision of all the delimiters, redrawing
the smaller ones so that they worked better with
the larger ones. After that came the conversion of
formerly 7-bit math fonts to 8-bit, in an effort to econ-
omize on math families. Following that, I dropped
the TXfonts and PXfonts text fonts and based the
text fonts on the TEX Gyre fonts, which had much
more to offer, extending them with larger small caps
which, in the case of newtx, were metrically equiv-
alent to Adobe Times Small Cap fonts. I would
estimate that I’ve spent over a year working on the
project so far, and more is to come as it has become a
headache to administer, and I’m trying to rework the
entire package so that it is organized more rationally
and can be more easily taken over by another person
when I’m no longer capable. At last count, these
packages are used, sometimes in conjunction with
Libertine, to typeset at least a hundred journals, so
this is quite an important issue.

I would say that LibertinusT1Math has to be
considered my next most important math font pack-
age, based on Khaled Hosny’s LibertinusMath, a
Unicode math font to match Libertinus, his fork of
Libertine. Going backwards, so to speak, from a Uni-
code math font to a LATEX math font family, involved
adding several dozens of glyphs, mostly slanted in-
tegrals and extensible delimiters. I used STIX as
my model for constructing 8-bit math fonts and a
sty file, spending nearly four months on the project
from the beginning to first release. Recently, at the
urging of Claudio Beccari, I added a parallel sans
serif branch to the math fonts so that (a) Liberti-

David Walden

TUGboat, Volume 38 (2017), No. 3 297

nusT1Math could be used without compromise as
an ISO-compliant math font, and (b) the font could
be used as a math font in which all alphanumerics
(Roman and Greek) are sans serif. This took close
to two weeks of additional work.

DW : What kind of feedback have you gotten from
the community regarding your font work, and have
you created a big maintenance task for yourself by
your development work?

MS : The positive responses I’ve had from people
in the TEX world for whom I have great respect—
Karl Berry, Boris Veytsman and Claudio Beccari in
particular—have been very significant to me, helping
me to sustain my energies. I’ve had a steady stream
(one every two to four weeks) of email from users
about bugs, to which I try to respond as quickly as I
can. This is less of a burden than I was expecting. I
also receive requests from users who would like some
new features added. A few of these ask me to take
on some very large scale new projects, and, while
there are some interesting proposals to consider, my
personal interest would have to be very high to agree
to such an effort.

DW : Please talk about the tools and methods, both
computer and anything non-computer you use in
your font work? For instance, do you print out big
proofs of changes and view them off a monitor, study
books and font specimens, do glyph-by-glyph design
and spacing, or does FontForge make it practical to
be more efficient?

MS : I use mainly FontForge, but I turn constantly
to Python to create special scripts to analyze and
gather information about glyphs in a font. (The
sfd file format used by FontForge is plain text and
not hard to parse.) The free ttx program (part of
fonttools) has also been useful, but recent versions
have in some cases required much digging to repair
problems caused by the installer. The version of Font-
Forge I use is the binary with all required libraries
built-in. Unfortunately, it does not allow external
python scripts— i.e., FontForge was not built as an
extension of python. I’ve tried to get this functional-
ity when needed by building FontForge on a Linux
machine as an extension of python. I don’t use it
frequently and find it highly bothersome, as it seems
that I often have to reinstall a new version of Ubuntu
and FontForge just to run a couple of scripts.

DW : Do you have esthetic preferences among fonts?
Which was the most actual fun to work on, and the
least?

MS : My esthetic preferences are not constant in
time. A few years ago, I was most enthusiastic about

old-style fonts, which I take to mean a font either
designed prior to the early eighteenth century, or
a later revival of such a font. I liked their playful
qualities and their close relationship to pre-sixteenth
century formal handwriting. While in this frame of
mind, I found fonts like Utopia and Charter austere
and rather dull, seeming to strive for the opposite
of old-style. My attitude is no longer so rigid, and
for most of my current typesetting purposes, I find
myself leaning toward plainer text fonts. It may be
that I find them much easier to modify.

I enjoyed working on Garamondx at the time
I did it, as the payoff was very pleasing, turning a
rather limited font family into one that many people
seem to find useful for academic writing, especially
in the humanities. The least fun I’ve had was with
Cochineal. It’s not that I didn’t really like Crimson,
the font family it extends, but I agonized a great
deal about whether the many months spent to rework
glyphs and metrics outside the basic Latin area (e.g.,
extending Greek and Cyrillic in italic, bold and bold
italic) would matter to anyone except me. In the
end though, I was happy with Cochineal, and even
happier when I learned that the suftesi package used
by scholars in Italian humanities had taken this as
its default font package.

DW : You have also created many pieces of TEX
utility software3. Please speak to your general ap-
proach/philosophy of creating tools to help you, ver-
sus pushing ahead brute force with a primary task,
perhaps using a couple of examples.

MS : With font work, much of what I have done is
indeed best characterized as brute force, but in a
number of cases it was useful to turn the brute force
approach into a script. Most of the software I have
on github is either earlier versions of font packages or
Python scripts, shell scripts or AppleScripts designed
to automate some common workflows in TEX on the
Mac. Many are specific to TeXShop, Dick Koch’s
very fine front end to TEX Live and some Mac-specific
TEX binaries. TeXShop provides a menu interface
to AppleScripts that can be used to modify the TEX
source or provide access to some of its features. Some
TEX luminaries (e.g., Will Robertson of fontspec
fame) have contributed scripts. I find the available
scripts indispensable in my daily TEX life.

DW : What is your view of how TEX and its de-
rivatives fit into the world today, e.g., within the
evolution of the TEX user community and its place
(if any) in the larger world of typesetting, type design,
and fonts?

MS : You may be asking something here that is be-
yond my pay grade. I interact mostly with academic

Interview: Michael Sharpe

298 TUGboat, Volume 38 (2017), No. 3

types, whether my mathematical colleagues who, if
they write their own papers, do it with some version
of TEX, or with people who use my font packages.
So far, the latter have all been academics or grad-
uate students writing dissertations. In the case of
my more decorative text fonts (Garamondx, newpx,
Cochineal, BaskervilleF) the users are almost always
from the humanities, and with a good number of
them, matching Greek and Cyrillic is important, as
are such supposedly deprecated encodings as OT2
and LGR. This has encouraged me to add support for
them in font families that support those encodings,
and to add the glyphs required for polytonic rather
than monotonic Greek, where possible. I would be
overjoyed if TEX became important to a larger world
in publishing, but I see no interest in this except for
publishers of mathematical content, save for some
Indian companies who have been very innovative
with automating their output streams using TEX.

I think there are people out there who will find
TEX more attractive with a wider selection of fonts
that allow the full range of typeset options expected
in academic writing—choices of figure styles, super-
script and subscript styles, small caps, Greek and
Cyrillic alphabets, and an accompanying math font.
It has been my goal to provide more options for that
group, which I think is critical to TEX’s future.

DW : Has your work with TEX, etc., led to broader
interest in book design, etc.? And, with your consid-
erable efforts with fonts and other aspects of TEX,
does that leave you time for non-typesetting enjoy-
ment?

MS : I have not left myself with much time for other
activities outside what I already do in TEX, fonts
and programs to support TeXShop, but my wife
and I are opera fans and spend much of our spare
time attending performances or watching/listening
to electronic versions of them. There is now an
extraordinary collection of historic opera on youtube
and other Internet sites, the exploration of which is
so absorbing as to concern me about my font future.

DW : Thank you very much for taking the time to
participate in our interview series.

[Interview completed 2017-09-11]

Links
1 http://ebooksdownloads.xyz/search/general-theory-

of-markov-processes
2 https://ctan.org/author/id/sharpe
3 https://mjsharpe.github.io/tex-software/

⋄ David Walden
http://tug.org/interviews

DW : An addendum: is there something you would like to

show from your recent packages or recent additions to

your packages? In addition, could you give us some idea of

any new packages you are thinking about?

MS: (The previous paragraph used Cochineal, similar to

Minion Pro. This paragraph uses XCharter.) I think the

newish changes to XCharter are notable: (a) the addi-

tion of Cyrillic alphabets, including small caps, in T2A en-

coding; (b) the addition of Serbian Cyrillic italic glyphs.

These can be used with pdflatex as well as xelatex and

lualatex. To my knowledge, this is currently the only

package which offers correct rendering of Serbian Cyril-

lic italic under pdflatex. You can see from this paragraph

set in XCharter that it needs to be scaled down a bit, and

has a substantially larger x-height than Computer Mod-

ern and Times.

The font in this paragraph is AlgolRevived, de-

signed for typesetting coding, but marginally

suitable for brief sections of text. (Unlike most

coding fonts, it is not monospaced, though its

figures are. Don’t use this for Fortran.)

(Back to Cochineal.) Here’s a sample of some mathemati-
cal text using sans math available in the libertinust1math
package with preamble

\usepackage{libertine}

\usepackage[sansmath]{libertinust1math}

The text font in this paragraph is Libertine and math is

sans serif (derived from STIX math sans) with symbols

from libertinust1math.

f̃ (α) ≔ 1√
2π

∫
t

0

e
−αx

f (x) dx
My plans for the immediate future are to complete my re-

working of newtxmath and newpxmath to a form where

it is not hard to provide options that will allow the user

to select from a list of alphabets for calligraphic, script,

double-struck and fraktur alphabets without needing ad-

ditional math groups. I would hope to do the same with

libertinust1math. With the latter package, I’m not fond of

the existing very small math binary relation symbols, and

would try to add alternatives more like those in CM and

Times.

With text fonts that have amuch larger x-height than Times

and CM, such as XCharter, Utopia, PTSerif, Erewhon and

Century Schoolbook, a matching math font should be heav-

ier and of larger x-height than Times math, and as far

as I know, the Fourier package, which works currently

only with Utopia and Century Schoolbook, is the only free

choice. Given the time, I would like to work to extend

Fourier math to have the same interchangeable features as

newtxmath.

David Walden

TUGboat, Volume 38 (2017), No. 3 299

Advertising TEX

Hans Hagen

I can get upset when I hear TEXies boast about the
virtues of TEX compared to for instance Microsoft
Word. Not that I feel responsible for defending a
program that I never use(d) but attacking something
for no good reason makes not much sense to me. It is
especially annoying when the attack is accompanied
by a presentation that looks pretty bad in design
and typography. The best advertisements for TEX
should of course come from outside the TEX commu-
nity, by people impressed by its capabilities. How
many TEXies can really claim that Word is bad when
they never tried to make something in it with a sim-
ilar learning curve as they had in TEX or the same
amount of energy spent in editing and perfecting a
word-processor-made document.

In movies where computer technology plays a
role one can encounter weird assumptions about what
computers and programs can do. Run into a server
room, pull one disk out of a RAID-5 array and get
all information from it. Connect some magic device
to a usb port of a phone and copy all data from it
in seconds. Run a high speed picture or fingerprint
scan on a computer (probably on a remote machine)
and show all pictures flying by. Okay, it’s not so
far from other unrealistic aspects in movies, like
talking animals, so maybe it is just a metaphor for
complexity and speed. When zapping channels on
my television I saw figure 1 and as the media box
permits replay I could make a picture. I have no clue
what the movie was about or what movie it was so
a reference is lacking here. Anyway it’s interesting
that seeing a lot of TEX code flying by can impress
someone: the viewer, even if no TEXie will ever see
that on the console unless in some error or tracing
message and even then it’s hard to get that amount.
So, the viewer will never realize that what is seen is
definitely not what a TEXie wants to see.

So, as that kind of free advertisement doesn’t
promote TEX well, what of an occasional mentioning
of TEX in highly-regarded literature? When reading
“From bacteria to Bach and back, the evolution of
minds” by Daniel Dennett I ran into the following:

In Microsoft Word, for instance, there are the
typographical operations of superscript and
subscript, as illustrated by

basepower

and

human female

But try to add another superscript to
basepower—it should work, but it doesn’t! In

Figure 1: TEX in a movie

mathematics, you can raise powers to powers
to powers forever, but you can’t get Microsoft
Word to display these (there are other text-
editing systems, such as TeX, that can). Now,
are we sure that human languages make use
of true recursion, or might some or all of them
be more like Microsoft Word? Might our inter-
pretation of grammars as recursive be rather
an elegant mathematical idealization of the
actual “moving parts” of a grammar?

Now, that book is a wonderfully interesting read
and the author often refers to other sources. When
one reads some reference (with a quote) then one
assumes that what one reads is correct, and I have
no reason to doubt Dennett in this. But this remark
about TEX has some curious inaccuracies.1

First of all a textual raise or lower is normally
not meant to be recursive. Nesting would have inter-
esting consequences for the interline space so one will
avoid it whenever possible. There are fonts that have
superscript and subscript glyphs and even Unicode
has slots for a bunch of characters. I’m not sure what
Word does: take the special glyph or use a scaled
down copy?

Then there is the reference to TEX where we
can accept that the “E” is not lowered but just kept
as a regular “e”. Actually the mentioning of nested
scripts refers to typesetting math and that’s what
the superscripts and subscripts are for in TEX. In
math mode however, one will normally raise or lower
symbols and numbers, not words: that happens in
text mode.

While Word will use the regular text font when
scripting in text mode, a TEX user will either have
to use a macro to make sure that the right size (and

1 Of course one can wonder in general that when one
encounters such an inaccuracy, how valid other examples
and conclusions are. However, consistency in arguments and
confirmation by other sources can help to counter this.

Advertising TEX

300 TUGboat, Volume 38 (2017), No. 3

font) is used, or one can revert to math mode. But
how to explain that one has to enter math and then
explicitly choose the right font? Think of this:

efficient\high{efficient} or

efficient$^{\text{efficient}}$ or

\par

{\bf efficient\high{efficient} or

efficient$^{\text{efficient}}$}

Which gives (in Cambria)efϐicientefϐicient or efϐicientefϐicient or
efϐicientefϐicient or efϐicientefϐicient

Now this,
efficient\high{efficient\high{efficient}} or

efficient$^{\text{efficient$^{\text{efficient}}$}}$ or

\par

{\bf efficient\high{efficient\high{efficient}} or

efficient$^{\text{efficient$^{\text{efficient}}$}}$}

will work okay but the math variant is probably quite
frightening at a glance for an average Word user (or
beginner in TEX) and I can understand why someone
would rather stick to click and point.efϐicientefϐicientefϐicient or efϐicientefϐicientefϐicient or
efϐicientefϐicient

efϐicient
or efϐicientefϐicient

efϐicient

Oh, and it’s tempting to try the following:
efficient{\addff{f:superiors}efficient}

but that only works with fonts that have such a
feature, like Cambria:efϐicientƉƊƊƍƇƍƉⁿƘ

To come back to Dennett’s remark: when type-
setting math in Word, one just has to switch to the
math editing mode and one can have nested scripts!
And, when using TEX one should not use math mode
for text scripts. So in the end in both systems one
has to know what one is doing, and both systems
are equally capable.

The recursion example is needed in order to ex-
plain how (following recent ideas from Chomsky) for
modern humans some recursive mechanism is needed
in our wetware. Now, I won’t go into details about
that (as I can only mess up an excellent explanation)
but if you want to refer to TEX in some way, then
expansion2 of (either combined or not) snippets of
knowledge might be a more interesting model than
recursion, because much of what TEX is capable of
relates to expansion. But I leave that to others to
explore.3

2 Expanding macros actually works well with tail recursion.
3 One quickly starts thinking of how \expandafter,

\noexpand, \unexpanded, \protected and other primitives
can be applied to language, understanding and also
misunderstanding.

Figure 2: Nicer than TEX

Now, comparing TEX to Word is always kind
of tricky: Word is a text editor with typesetting
capabilities and TEX is a typesetting engine with
programming capabilities. Recursion is not really
that relevant in this perspective. Endless recursion in
scripts makes little sense and even TEX has its limits
there: the TEX math engine only distinguishes three
levels (text, script and scriptscript) and sometimes
I’d like to have a level more. Deeper nesting is just
more of scriptscript unless one explicitly enforces
some style. So, it’s recursive in the sense that there
can be many levels, but it also sort of freezes at level
three.

I love TEX and I like what you can do with it and
it keeps surprising me. And although mathematics
is part of that, I seldom have to typeset math myself.
So, I can’t help that figure 2 impresses me more. It
even has the so-familiar-to-TEXies dollar symbols in
it: the poem “Poetry versus Orchestra” written by
Hollie McNish, music composed by Jules Buckley
and artwork by Martin Pyper (I have the DVD but
you can also find it on YouTube). It reminds me of
Don Knuth’s talk at a TUG meeting. In TUGboat

31:2 (2010) you can read Don’s announcement of
his new typesetting engine iTEX: “Output can be
automatically formatted for lasercutters, embroidery
machines, 3D printers, milling machines, and other
CNC devices . . . ”. Now that is something that Word
can’t do!

⋄ Hans Hagen
Pragma ADE
http://pragma-ade.com

Hans Hagen

TUGboat, Volume 38 (2017), No. 3 301

The DuckBoat—News from TEX.SE:
Asking effective questions

Herr Professor Paulinho van Duck

Abstract

Prof. van Duck would like to keep you up to date
about the latest topics discussed in the chat of TEX
StackExchange (TEX.SE), the famous Questions &
Answers site dedicated to TEX, LATEX and friends.
For this installment, he would also like to show you
how to ask a good question on the same site, namely,
how to have a rapid and smart answer by asking in
the correct way.

1 Pleased to meet you!

Prof. van Duck

TEX.SE

Hi, TEX/LATEX friends!
I am Herr Profes-

sor Paulinho van Duck,
if you usually attend
the TEX.SE chat, you
likely know me already.

I was born in São
Paulo, Brazil, but now
I live in Milan, Italy.
I share a flat with my
friend Carla, known as

CarLATEX on TEX.SE. She also helps me writing
my documents and managing my emails: typing is
difficult when you do not have a pointy beak, quack!

I was named Paulinho after Paulo Cereda,1 the
author of the very convenient arara tool. He is
developing a new version of it—we all are looking
forward to using it.

Ulrike Fischer added the van before my surname
as an allusion to the Dutch (not Duck) colonization
of Brazil. I take this opportunity to thank her and
her husband for making me become a donor for
Mönchengladbach zoo.

Barbara Beeton—I think she needs no intro-
duction—gives me the Herr Professor title, in order
to make it (ridiculously) more formal.

Last but not least, I would like to thank sam-
carter for creating the tikzducks package;2 my im-
age and the other ducks you will find here are drawn
by it.

I am a newbie with LATEX, but I am very en-
thusiastic about it. I have read that beginner’s level
articles on this journal are very welcome. Hence,
here I am!

1 His advice about how to write this article was invaluable.
2 https://ctan.org/pkg/tikzducks.

This is the first duck-column. If you like it,
maybe there will be others. Do not hesitate to email
me for suggestions about new topics (I have already
in mind a TikZ Quack Guide) or for any criticisms.

2 Quacking in chat

If you haunt any programmers’ milieux, you have
probably already heard about the famous editor war :
the rivalry between Emacs and Vim users always
gives life to lively conversations also in our chat!

Recently a new war has come up, more or less
with the same savagery: Italians vs. Rest of the
World about the so-called pineapple pizza.

Since I live in Italy, I must say that that thing
is not a pizza (also because, otherwise, Carla will
throw me out). However, there are a lot of people,
all around the world, who like these strange matched
flavors.

If you join our chat in a quiet moment, just
mention this subject to get a lively conversation.

Early this year, while we were quietly making
fun of Paulo because of his never-ending thesis, my
colleague Enrico Gregorio (egreg) shocked us by post-
ing a question on TEX.SE Meta. It happened that
double backslashes disappeared from the code of
some posts. If you know (LA)TEX at all, you will
surely know how important backslashes are.

The issue was due to some software update by
StackExchange, dated back to 2013, and it was im-
possible to address in an automated way.

Hence, David Carlisle, Moriambar, Barbara Bee-
ton, and many others manually (or semi-manually,
with some JavaScript) fixed the codes in about 10,000
questions and answers. We are grateful to all of them!

Now that all the errors are fixed, finally David
can return to complaining about Enrico’s stealing
his ticks.

Another hot (even in the meteorological mean-
ing) topic is the next TEX Users Group meeting in
Rio de Janeiro, Brazil.

Paulo Cereda is preparing some little (or should
I say big?) surprises. Knowing him (and looking at
the pictures3 he posted in chat), I think the next
conference will be the funniest one ever organized.

There will also be a party at the famous Co-
pacabana Beach and you will be able to enjoy the
breath-taking sunsets at Ipanema!

3 From Twitter: https://twitter.com/paulocereda/

status/876420672683167745.

The DuckBoat—News from TEX.SE: Asking effective questions

302 TUGboat, Volume 38 (2017), No. 3

Figure 1: TEX Users Group Meeting 2018 in Brazil.

Therefore, prepare your bathing suit (if you have
the physique du rôle, you can even dare a thong) and
buy a flight to Brazil!

3 Quack Guide No. 1
Asking effective questions on TEX.SE

3.1 How you should not ask

Now and then, a question like the following appears
on TEX.SE:

How can I draw this in LATEX?

Its flaws are (or should be) obvious: a generic
title, followed by a more or less complicated picture
(or table or whatever) without either an explanation
of the problem or a single line of code.

We call these questions just-do-it-for-me, be-
cause they do not show any effort by the OP (i.e. the
Original Poster, in TEX.SE jargon). Please, never
post such stuff, a little duck cries when he sees it!

Another type of bad question is something like:

Why doesn’t my code work?

My code worked till yesterday, but now it gives
me an error. Why?

How can we answer that? Do you think we
have a crystal ball? Or that we can read your mind?

What is the error? Where is an example of your
code?

On the contrary, a smart user always follows
these guidelines:

Van Duck’s rules

1. Read the package manuals.

2. Look at the log generated by the code.

3. Search on TEX.SE and, in general, on the
Internet.

4. Add a minimal working example (MWE)
to your question.

The last point deserves to be examined in depth.
Only a very few questions do not need a minimal
working example, which is to say, a complete (but as
short as possible) document which reproduces your
problem. For example, if you are asking how to set
a feature of your editor, probably an MWE is useless.
For all the other ones, it is indispensable!

Nevertheless, it often happens that it is not
added, especially by newbies.

My in-depth study of this phenomenon has led
me to state:

Van Duck’s equation

Ub = Uk + Uh + Ul

where the users who ask a bad question without an
MWE (Ub) are divided into three categories:

Uk = who do not know what an MWE is

Uh = who vaguely know what an MWE is but do not
know how to create it in a correct way

Ul = who know what an MWE is but are too lazy
to add it.

Needless to say, we are particularly annoyed
by the last type. For the rest of us, I hope this
duck-column may be useful.

On TEX.SE there are a lot of pages which can
help you with the asking process (see Table 1). I
will try to sum them up very briefly in the next
subsections. I would also like to suggest to you some
little tricks, probably unknown by beginners.

3.2 What you should do before asking

One of the pluses of TEX & Co. is the abundant
documentation—take advantage of it.

Herr Professor Paulinho van Duck

TUGboat, Volume 38 (2017), No. 3 303

Table 1: Useful TEX.SE pages concerning the asking-a-question process

No. URL Description

1. tex.meta.stackexchange.com/q/1436 Starter guide

2. tex.stackexchange.com/q/162 List of online resources about TEX, LATEX and friends

3. tex.stackexchange.com/help/searching How to search within TEX.SE

4. tex.stackexchange.com/help/how-to-ask How to ask a good question

5. tex.meta.stackexchange.com/q/228 What a minimal working example (MWE) is

6. tex.meta.stackexchange.com/q/4407 How to create a minimal working example with bibliography
(MWEB)

7. tex.meta.stackexchange.com/q/1852 How to accept an answer

I know that reading the package manuals could
be boring, sometimes even impossible. (I think no-
body on earth has read all of the more than 1,000
pages of the TikZ & PGF manual!)

However, information such as incompatibilities
or cautions in loading the package before/after others
is usually written at the beginning. A rapid look at
the documentation is mandatory!

In part I of the TikZ manual, for example, there
is an excellent tutorial. Reading it is enough to start
using this monster package.

Another fundamental tool is the log, first of all
in the case of errors.

OK, TEX error descriptions are not the ultimate
in clarity. A beginner is usually astonished when s/he
discovers that Undefined control sequence merely
means that a command is misspelled or the package
it belongs to is not loaded.

However, if you search for those mysterious error
messages on the Internet, almost always you find the
solution or, at least, you understand what they mean.

In the log, there is also the position where the
problem was detected, which (almost always) corre-
sponds to the line of the wrong instruction.

Eventually, remember that the most important
error is the first one; the others may be a consequence
of that one.

But I don’t want to teach you how to debug
your code, there is already a gorgeous article by
Barbara Beeton about it (TUGboat 38:2, p. 159,
tug.org/TUGboat/tb38-2/tb119beet.pdf).

Instead, I would like to show you an effective
command: \listfiles. It writes on your log the
versions of all the packages you are using. It is
useful in cases like: Why does this code work on my
friend’s computer but not on mine? or Why does it
work on ShareLATEX but not on Overleaf? Simply
because there are different package versions. Many
problems could be solved merely by updating your
TEX distribution.

To see how it works, run this simple document:

\listfiles

\documentclass{article}

\usepackage{tikzducks}

\begin{document}

\begin{tikzpicture}

\duck

\end{tikzpicture}

\end{document}

Then, in your log, within

File List

...

you will find many packages listed, with their version
besides. Note that, in my example, I have loaded
only tikzducks but the log shows all the packages
loaded by tikzducks itself.

It allows you to avoid loading packages twice,
unless you need to load them with a particular option,
and it is also useful to detect hidden incompatibility.

Another huge source of information is the In-
ternet. If you have a problem, it is very likely that
someone else had the same problem before; search
with your browser, an answer will probably appear.
This may seem trivial, but I assure you that many
times I’ve seen questions on TEX.SE which could have
been rapidly solved that way, quack!

However, pay attention: like everything you find
on the Internet, some information could be incorrect
or obsolete. For instance, \rm in math has been
deprecated for more than twenty years (you should
use \mathrm instead) but it appears here and there
on the net. Look at a couple of online resources
before deciding to use anything. A list of reliable
ones can be found in the post indicated in Table 1,
No. 2.

The DuckBoat—News from TEX.SE: Asking effective questions

304 TUGboat, Volume 38 (2017), No. 3

You can also directly use the search field on the
top right of TEX.SE main site home page (see Table 1,
No. 3). Again, this may seem trivial, but every day
we close questions because they are a duplicate of
other ones!

3.3 How you should ask

If all your searching was fruitless, let us see how to
ask a question.

First of all the title: be specific! Do not write
things like How can I do this in LATEX? or Why
doesn’t my code work? Many users read the questions
only if they think (looking at the title) that they
could answer. If your title is generic or unclear, you
may miss the chance of having a prompt answer.
Moreover, future users with the same problem as
yours will not be able to easily find your post.

Second, in the body of your question give all the
details needed to understand your problem. Don’t
put only the code or, even worse, only an image.

Third, for questions which need it (I dare say
about 99.9% of the total on TEX.SE), add the most
important thing: the MWE. Let us rapidly see the
essential steps to follow to create it (for more details
see Table 1, Nos. 5 and 6).

Do not forget your \documentclass. It is impor-
tant to indicate it, even if you are asking something
about a tikzpicture or a math expression. Many
things can change if you are using beamer instead of
article, for example.

Then, the packages: list all the packages needed
to reproduce your problem, and only those, do not
be verbose!

The same for your code. Put it within

\begin{document}

...

\end{document}

and add all and only the lines strictly necessary to
reproduce your problem. Do not post only code
snippets.

Remember to test your MWE before adding it
to your question! You have to be sure it works or,
if it does not work, it gives the same error you are
struggling with.

It is useful not only for the ones who would
like to answer but—believe me—also for you. I do
not know how many times, while I was building my
MWE, I found the solution by myself!

There are also many packages which help you
to create an MWE.

For instance, lipsum4 and blindtext5 help you
to produce some text with no meaning, just to fill
your pages, preserving your privacy or copyright.
graphicx6 allows you to use some example images.
There is also an mwe7 package—guess what it is for!

Moreover, a testing-purpose one is showframe,8

which shows a simple diagram of the page layout. It
is handy for detecting the infamous Overfull \hbox
and for refining alignment in general. You have just
to load it in your preamble and compile.

For example, this code gives an Overfull \hbox:

\documentclass{book}

\usepackage{showframe}

\usepackage{mwe}

\begin{document}

\blindtext

\includegraphics[width=\linewidth]{%

example-image-a}

\blindtext

\end{document}

If you run it, you will get the output shown in
Figure 2. As you can see, the indentation error is
clearly visible.

If your problem concerns bibliographies, you should
also include your .bib file in your MWEB (minimal
working example with bibliography). Of course, you
do not have to include the complete file, but only
the bibitems which cause your trouble.

The best practice is to create an MWEB with
your .bib file embedded (in this way, people who
would like to help you just have to cut and paste your
code and compile it, and thus increase the probability
of getting a quick answer).

The filecontents* environment9 is your friend
in building such an MWEB.

It is also preferable, instead of inventing a new
name for your test .bib file, to use \jobname.bib.
This automatically uses the same name as the .tex
file, changing only the suffix.

Here is a simple scheme you could follow:

4 https://ctan.org/pkg/lipsum.
5 https://ctan.org/pkg/blindtext.
6 https://ctan.org/pkg/graphicx.
7 https://ctan.org/pkg/mwe.
8 https://ctan.org/pkg/showframe.
9 There is also a filecontents package, https://ctan.

org/pkg/filecontents.

Herr Professor Paulinho van Duck

TUGboat, Volume 38 (2017), No. 3 305

1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis
facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet
mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices
augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie
ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem
ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque.
Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a
leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit
mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis.
Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan
semper.

A
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis

facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet
mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices
augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie
ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem
ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque.
Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a
leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit
mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis.
Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan
semper.

Figure 2: An example of usage of the mwe and showframe

packages. The Overfull \hbox is immediately identifi-
able.

\begin{filecontents*}{\jobname.bib}

% put your bibitems here

...

\end{filecontents*}

\documentclass{...}

% put your packages here

% including the bibliographic one

...

% with biblatex:

\addbibresource{\jobname}

\begin{document}

% put here your code with your citation

...

% and bibliography printing, with biblatex:

\printbibliography

% or with other biblographic packages:

\bibliography{\jobname}

\end{document}

Alternatively, if your problem is not strictly
concerned with your own bibitems, you could use a
test file included in the powerful biblatex10 package:
biblatex-examples.bib.

10 https://ctan.org/pkg/biblatex.

Eventually, to complete your question, you have
to add the correct tags. Again, there are users who
read a question only if it is tagged in a way they
think they could answer. Hence, tags are essential.

Look at the tag description before using it. For
example, latex3 concerns new material being devel-
oped by the LATEX3 project, but it is often wrongly
used as a generic tag for LATEX questions.

3.4 What you should do after asking

Once you have posted your question, your work is
not over.

You have to pay attention to the possible com-
ments of other users and reply to them; usually they
ask for clarifications.

Finally, when someone posts the answer with
the solution you were waiting for, you have to take
a very important action: accept it by clicking the
specific tick (see Table 1, No. 7). Remember that
the users who answered are not paid for it; accepting
the best answer is the correct way to say Thank you!

If you have more than 15 reputation points (and
it is straightforward to get them if you post good
questions), you can also upvote all the answers which
are useful for you. Please do it, quack!

How to thank

Click here to upvote

any useful post

Click here to accept

the best answer
to your question

4 Conclusions

I hope you liked my explanation, and if you have
trouble in asking a question, remember:

You are lucky, there’s a ducky!

⋄ Herr Professor Paulinho van Duck
Quack University
Sempione Park Pond, Milano
Italy
paulinho dot vanduck (at) gmail

dot com

The DuckBoat—News from TEX.SE: Asking effective questions

306 TUGboat, Volume 38 (2017), No. 3

Review and summaries: The History of

Typographic Writing — The 20th century

Volume 2 (ch. 6–8+), from 1950 to 2000

Charles Bigelow

Histoire de l’Écriture Typographique — le XXième
siècle; tome II/II, de 1950 à 2000. Jacques
André, editorial direction. Atelier Perrousseaux,
Gap, France, 2016, ISBN 978-2-36765-006-7,
tinyurl.com/ja-xxieme-ii. 364 pp., 391 figures
(illustrations, photos, diagrams, etc.), illustrated
end papers. Also available as an ebook. The book is
in French. Volume 1 (reviewed in TUGboat 38:1)
covers the years 1900 to 1950; chapters 1–5 of
volume 2 were reviewed in TUGboat 38:2.

Interpolated comments by the reviewer are in
square brackets; the plain text summarizes and con-
denses the original writing, to the best of the re-
viewer’s abilities.

6. Frank Adebiaye: The first commercial
digital fonts (Les premières fontes numériques
commerciales)

The first digital typesetting fonts were developed in
the late 1960s for the Hell Digiset, the first digital
typesetting machine. Digi Grotesk (1968), was a ras-
terized version of sans-serif Neuzeit Grotesk (c. 1930).
In the 1970s, Hell produced original digital typeface
families by Hermann Zapf, including Marconi (1976)
and Edison (1978) for news display and text, respec-
tively. [In the 1980s, Hell produced other original
designs, including Aurelia (1982) by Hermann Zapf,
and Isadora (1983) by Kris Holmes.]

American Linotype produced Bell Centennial
(1976), a digital type family designed by Matthew
Carter for telephone directories. Also for directories,
Ladislas Mandel digitized his Galfra type in 1978.

In the 1980s, several manufacturers of digital
typesetters plagiarized popular typefaces and mar-
keted them under pseudonyms. [CB: The problem
of typeface design protection is a recurrent thread
in this chapter 6. For some history, see “Notes on
typeface protection”, TUGboat 7:3, 1986, tug.org/

TUGboat/tb07-3/tb16bigelow.pdf.]
In the mid-1980s, Xerox, Adobe, and Apple

licensed and produced digital versions of Times and
Helvetica for laser printers and personal computers.

Several other firms developed original digital
designs in the 1980s. Among them were

• Bigelow & Holmes, with Lucida (1984) and
Lucida Sans (1985);

• URW, with URW Grotesk (1985) and URW
Antiqua (1985), both by Hermann Zapf;

• Donald Knuth, with Computer Modern
(1980–1992);

• Bitstream, with Carmina (1987) by Gudrun
Zapf von Hesse, Charter (1987) by Matthew
Carter, and Amerigo (1987) by Gerard Unger;

• Adobe, with ITC Stone (1988) by Sumner
Stone, Adobe Garamond (1989) and Utopia
(1989), both by Rob Slimbach, Trajan (1989),
Lithos (1989), and Charlemagne (1989), all by
Carol Twombly;

• Agfa [formerly Compugraphic] produced
the Rotis (1988) super-family of serif and
sans-serif faces by Otl Aicher.

• “Punk” fonts issued from several firms,
including: Emigré, with Matrix (1986) by
Zuzana Licko, and FontFont, with Beowulf
(1989) by Just van Rossum and Erik van
Blokland.

• In France in the same decade, the independent
type designers of typoGabor developed
original fonts for Alphatype digital
typesetters.

In the early 1990s, publication of Adobe’s PostScript
Type 1 font format and Apple–Microsoft’s TrueType
format resulted in a rush of new and original type-
faces for the expanding digital typography market.

From FontShop and FontFont came FF Scala
(1990) by Martin Majoor, FF Meta (1991) by Erik
Spiekermann, and FF DIN (1995) by Albert-Jan Pool,
among many others. From Apple came TrueType
fonts for New York, Chicago, Monaco, and Geneva

Charles Bigelow

TUGboat, Volume 38 (2017), No. 3 307

(1991) by Bigelow & Holmes, first created as Macin-
tosh bitmap fonts by Susan Kare (1984).

In 1992, Microsoft released TrueType fonts of
Times New Roman, Arial, and Courier New, as well
as a set of fonts equivalent to the Apple LaserWriter
Plus set. Also in 1992, Microsoft released a large
expansion of the Lucida family with new and original
designs of Lucida Bright, Sans, Calligraphy, Blacklet-
ter, Handwriting, Fax, Typewriter, and mathemati-
cal symbol fonts, all from Bigelow & Holmes.

Windows users accepted Arial as a substitute
for Helvetica, evidently being similar enough in ap-
pearance (and metrically identical), but Microsoft’s
distribution of “Book Antiqua” by Monotype (1992)
sparked criticism from typographers that the face
was a plagiarism of Zapf’s Palatino. [The different
reactions to Arial and Book Antiqua suggest that
the grotesque sans-serif genre had become a “swarm”
of vaguely similar and quasi-substitutable typefaces,
whereas a distinctively artistic creation like Palatino
could not be copied without being called either a
travesty, or a rip-off, or both.]

Digital technology not only encouraged the cre-
ation of more typefaces but also enabled more com-
plex designs, especially in the creation of alternate
characters. In some cases, the design was ahead
of the technology. In France, François Boltana cre-
ated Champion, a joining script in English round-
hand style, incorporating thousands of alternative
glyphs, but a decade before OpenType made such
fonts practical. Begun in 1989, the “Champion Pro”
version was released in 2007. [In the late 1990s,
other scripts with extensive alternate character sets
included Apple Chancery (1993) by Kris Holmes
(shown in the endpapers of this volume), Kolibri
(1993) by Holmes for URW, and Zapfino (1999–2001)
by Hermann Zapf.]

The growing free software movement also en-
couraged distribution of authorized free fonts (not
piracies). The earliest (except for the CRT Hershey
fonts) and most extensive free font family was Com-
puter Modern by Donald Knuth, who also published
the fonts’ source code in his Metafont computer lan-
guage. From Knuth’s typography research lab and
the American Mathematical Society came Hermann
Zapf’s AMS Euler (1985) family, freely distributed for
mathematical composition. Adobe released Utopia
for free distribution in 1993, and Bitstream followed
suit with Charter. The 21st century would witness
many more fonts released for free distribution.

[CB: In the article “Digital Typography” in Sci-
entific American, August, 1983, this reviewer pre-
dicted that when digital font technology matured,
there would “surely be a flowering of new letterforms

in the digital era.” He is immensely grateful to the
many industrious and imaginative type designers who
subsequently created thousands of original typefaces
to prove him correct. :-)]

Franck Jalleau: Third interlude: On the
revival of typefaces (Troisième pause : re-créer
des caractères)

“The revival of typefaces is an integral part of typo-
graphic evolution. It is a kind of art of heredity, of
genetics, transmitted over generations, while intro-
ducing infinite variations and successive mutations.”

Rehabilitation, revival, adaptation, interpreta-
tion, copy — there are many words to describe the
translation of typefaces from one era to another, usu-
ally involving technological change. This includes
the profound shift from handwriting to type. The
process can be said to have begun with the earliest
typography, when Gutenberg modeled his types on
the formal handwriting of his era, and when capital
letter forms based on surviving Roman inscriptions
such as the Trajan column, were integrated with
humanist minuscules, our lowercase. In the late 19th
century, typeface revivals arose in an era of change in
typesetting technology, and accelerated in the 20th
century during further technological changes: a look-
ing back to the past while questing toward the future.
Each change in typographic technology imposed a
need to adapt typefaces to new processes while pre-
serving their inherent and inherited qualities created
by designers of the past.

The revival of a typeface requires detailed analy-
sis of the source materials, which may include dif-
ferent sizes of punches, matrices, and cast type, all
preliminaries of the printed image, or, if the metal
materials have been lost, the printed impression itself
must be the sole guide. The shapes, their spacings,
their “color” (gray tone in text) must be considered.

A revival is not a mere copy, but a new creation,
an interpretation of the past. A revival in the dig-
ital era may need at least 256 characters to meet
the de facto standard character repertoire, but the
surviving materials of most historical typefaces have
many fewer characters, so the modern designer must
create new characters in the spirit of the originals.
Moreover, modern typeface families often require a
range of weights, but these do not exist for most
classic typefaces, so again, they must be newly cre-
ated in the spirit of the original. Different designers
interpret classic typefaces differently. Revivals of the
typefaces of Garamond, for example, differ greatly.
Some are based on types of Jean Jannon, others
on true specimens of Garamond, and may differ in
weights, details, and proportions.

Review: The History of Typographic Writing — The 20th century; vol. 2 (ch. 6–8+)

308 TUGboat, Volume 38 (2017), No. 3

This chapter 6 concludes with illustrations of
two examples of revivals with quite different ap-
proaches: Galliard (1978) by Matthew Carter, based
on types cut by Robert Granjon circa 1570, and
Francesco (2010) by Franck Jalleau, based on type
cut by Francesco Griffo for Aldus (1499).

7. Olivier Jean: Working and office fonts
from 1985 to 2000, between maturity and
renewal (Fontes de labeur et de bureautique de
1985 à 2000 : entre maturité et renouveau)

In the 540 years of printing from Gutenberg to 1985,
the craft of typography was practiced by a small
number of people and the art of type design by
even fewer. After 1985, however, mass marketing
of personal computers and laser printers introduced
typography to millions of ordinary users who became
conversant with “fonts”, “points”, and other terms of
typography. In this new era (termed “desktop pub-
lishing” in English), authors, editors, and publishers
gained new freedoms as industrial obstacles fell away.
As technical barriers to entry lowered, more people
became authors, editors, and publishers. As the
power of computer technology increased, the quality
of fonts on screens and from printers improved. The
path from personal computer to print media became
more like a highway. [This trend did not stop with
print. The vast expansion of the Internet and world
wide web, along with improvements in screen resolu-
tions and font rendering made text more readable,
and more widely read, on computer screens, further-
ing the democratization of information compilation,
organization, transmission, and reception.]

The influence of “system fonts”: by 1992, Apple
and Microsoft bundled families of “default” system
fonts: Times Roman (or Times New Roman), Hel-
vetica (or Arial), Courier (or Courier New). These
fostered a “meme” among computer users that there
were three categories of fonts: seriffed, sans-serif,
and monospaced, each in a family of four variants:
regular, italic, bold, bold italic.

Those basic families were initially sufficient for
a majority of office workers and personal computer
users, but as personal computing, printing, and pub-
lishing expanded and encompassed more applications
and niches, the operating systems vendors added
more and more fonts and developed fonts for other
purposes, for example Lucida Console (1993) for ter-
minal emulator windows, and Microsoft Verdana and
Georgia by Matthew Carter (1996) for web usage. It
is impossible to ignore Microsoft Comic Sans (1995)
by Vincent Connare, which became highly popular
yet widely reviled, like a beloved comic book villain,
a font people love to hate.

A consequence of the lower cost of digital typog-
raphy was its spread beyond the highly industrialized
countries of North America and Western Europe to
countries throughout the world, encouraging the de-
velopment of the multilingual and multi-scriptal Uni-
code standard for encoding all the writing systems
of the world.

When standardized font formats made typog-
raphy cross-compatible, several proprietary font li-
braries were spun off as independent firms or were
acquired by other firms. The proliferation of inde-
pendent font designers and font vendors in the early
days of desktop publishing began to coalesce by the
end of the century, as smaller digital font firms were
absorbed by larger ones. [This trend continued into
the 21st century.]

In reaction to the loss of physical materials of
traditional typographic heritage, some firms began
programs of revival of classic typefaces. After Adobe
Garamond, Adobe produced Adobe Caslon by Carol
Twombly (1990). Matthew Carter revived large sizes
of Caslon in Big Caslon (1994), and Adrian Frutiger
reinterpreted Didot for Linotype (1991). There were
also revivals of hand-written alphabets, including
Adobe Trajan, Virgile (Roman rustics) by Franck Jal-
leau (1995), and Apple Chancery (Arrighi’s chancery
cursive as taught by Lloyd Reynolds).

Digital technology enabled, and the burgeoning
market encouraged, development of typeface “super-
families” more extensive than in earlier eras. Ex-
amples include Lucida, ITC Stone, Rotis, Computer
Modern, Thesis (1994) by Lucas de Groot, Le Monde
(1994) by Jean François Porchez [the text fonts in
these books]. Adobe released a new technology called
“Multiple Master”, which enabled type users to mod-
ify and calibrate typefaces through a wide range of
variations. This technology and its fonts were not
commercially successful, however, and were cancelled
before the year 2000.

Digital technology also enabled type designers
to create typefaces for specific corporate clients and
applications. Among many such, there were Colorado
(1997) by Ladislas Mandel with Richard Southall,
Telefont (1993) by Martin Majoor, and Le Monde
and Parisine (1996) by Jean François Porchez.

As styles and variations expanded widely for
Latin typography, digital tools in conjunction with
the Unicode standard spurred expansion of non-Latin
typography. Greek, Cyrillic, Arabic, Devanagari,
Thai, Kanji, Chinese, Korean, and many other scripts
were digitized. Lucida Sans Unicode (1994) was an
early demonstration of Latin harmonized with non-
Latin alphabets in a single TrueType font. The
concept of integrating Latin and non-Latin scripts

Charles Bigelow

TUGboat, Volume 38 (2017), No. 3 309

in a single font was widely adopted and extended by
the end of the century.

8. Hervé Aracil: Hybridization,
(de)-construction and quotation — a view of
typography from 1985 to 2000 (Hybridation,
(dé)-montage et citation – Un regard sur la
typographie des années 1985–2000)
Between the advent of the LaserWriter printer with
Macintosh typographic fonts, and the end of the
20th century, typeface design enjoyed a period of
richness and complexity that can be characterized
by the words “transposition” and “reprise”. Trans-
lation from one medium to another is a form of
transposition, and renewal of historical themes is a
form of reprise. These interweaving tendencies in
end-of-century typography, in opposition to prior
movements like modernism, produced typographic
phenomena equivalent to post-modernism and decon-
struction in architecture, design, and music of the
same period.

Digital technology, which made it easy to copy,
cut, paste, and manipulate letterforms, aided these
tendencies. One result was “hybridization”, the com-
bination of characteristics from two or more different
and distinct typeface categories. A forerunner was
a hybrid letter ’n’ combining sans-serif, slab-serif,
and Elzevir serifs (think Times Roman serifs) in
Thibaudeau’s Manuel français de typographie mod-
erne (1915) [French Manual of Modern Typography;
see accompanying figure].

Hybrid designs from the end of the century in-
cluded, among many others:

• Prototype (1990) [capital + lowercase] by
Jonathan Barnbrook,

• Dead History (1990) [mixed bold rounded +
modern] by P. Scott Makela,

• Fudoni (1991) [Futura + Bodoni] by Max
Kinsman,

• Disturbance (1993) [capitals + lowercase] by
Jeremy Tankard,

• Walker (1993) (serif + ligature variations) by
Matthew Carter,

• Amplifier (1995) [slab + rounded +
Clarendon] by Frank Heine;

• variations of type design in coordination
with literature included Quantage (1988) and
Syntétik (1992) by Pierre di Sciullo.

In summary, such hybridizations, variations, and
idiosyncrasies are not simply quaint experiments
in typographic forms, but also constitute critical
discourse on the philosophical bases of typography
itself, for scholars, authors, readers, and designers to
ponder and explore.

A spread from Thibaudeau’s Manuel.

Alan Marshall: Fourth Interlude: On
the preservation of typographic heritage
(Quatrième pause : La préservation du patrimoine
typographique)
The word “typography” has two meanings. Origi-
nally, it meant the composing and printing of texts
with movable metal type, which stayed much the
same from its invention by Gutenberg in mid-15th
century to the 1970s. At the end of the 19th century,
typography also came to mean publication layout or
typographic design. Typography now means not only
printing on paper but also text on signs, packages,
media, and computer screens. Type is a fundamental
element of visual communication affecting everyone
in literate society, whether through ephemeral or en-
during artifacts: cinema tickets, utility bills, restau-
rant menus, train schedules, posters, magazines, and
books, printed or electronic.

The three pillars of typography are technology,
aesthetics, and cognition. The technology of typog-
raphy changed only incrementally from the 15th to
the 19th century. but has since undergone a series of
technological revolutions [described in earlier chap-
ters of these volumes] which transformed typography
into the basis of our information society.

Typographic aesthetics have also changed. The
stiff typography of posters in the early 19th cen-
tury became the exuberant letterforms on posters
in the Belle Époque at the end of the 19th century.
The graphical appearance of typographic documents
comes from the co-evolution of type technology with
the needs of society.

Cognition connects typographic technology to
aesthetics. From the cuneiform tablet to the com-
puter screen, text has always been interpreted by the
same tools: our eyes and brain. The tools and media
of visual communication are in constant evolution
but perceived through our human instruments.

What is our typographic heritage, and why
should we preserve it? Typographic heritage began
with Gutenberg and continued in metal for centuries.
Today, type is no longer metal, nor photographic,
but computer data. Although type has thus been

Review: The History of Typographic Writing — The 20th century; vol. 2 (ch. 6–8+)

310 TUGboat, Volume 38 (2017), No. 3

dematerialized, it is essential to preserve as much
as possible of the metal punches and matrices, as
well as the negatives of the phototype era, as well
as drawings, proofs, and specimens of characters,
so that we can understand the ancestral processes,
thoughts, aesthetics, and graphical forms that shaped
our modern fonts and layouts. Type comprises not
only letters, but also ornaments, fleurons, dingbats,
and other graphical elements that have evolved over
the centuries, tracing a rich history of abstractions
and patterns, from Jean de Tournes to Giambattista
Bodoni.

In addition to type itself, there are typographic
manuals, catalogues, advertising, and lessons show-
ing how type was classified, organized, understood,
and intended to be used, as well as manifestos pro-
claiming how type should be used. These materials,
publications, and documents of typographic history
constitute a rich source of inspiration, information,
and education for the future of typography, affected
by constant reinvention not only of technology but
of changes in taste, fashion, and social applications.

Typographic preservation is divided among di-
verse institutions, including libraries, archives, mu-
seums of paper, of printing, of computer history.
Although it is impossible to preserve every sort of ty-
pographic and printing material in one establishment,
such institutions prevent the total disappearance of
the materials that allow us to analyze the evolution of
the techniques and forms of graphic communication.

Typographic material from the pre-industrial
era of typography, from Gutenberg to the 19th cen-
tury, is now so rare and valuable that it is preserved
without question, but more plentiful typographic ma-
terials from the 19th and early 20th century pose
the question of what should be preserved with the
regrettably limited funds available to museums and
libraries. For the recent eras of phototype and
early digital type, the question becomes evaluative —
which of the now obsolete materials are more valuable
and worth saving, and which can be lost?
[CB: The preservation of typographic materials illus-
trates a fundamental problem of “disruptive” versus
“sustaining” technology. “Disruptive” technology is
admired because it replaces older technology and
institutions based on it, with newer, more efficient
and effective methods. But, in typography, the dis-
ruptive shifts from metal type to phototype, and
from photo to digital type caused the collapse of
traditional metal font foundries and consequent loss
of priceless collections of unique punches and matri-
ces, hand-crafted by generations of uniquely skilled
type artisans. The tangible, physical results of thou-
sands of person-years spent carving and casting the

most intricate metalwork made by mankind — equiv-
alent to centuries of fine jewelry making — were sold
off for scrap. The fonts displayed on our personal
computers, tablets, and smart phone, the fuel for
worldwide social media, are in large part mere shad-
ows of a deeper cultural heritage lost in a disruptive
scramble.]

Thomas Huot Marchand:
Postface: The metamorphosis of typography
(Postface : Les métamorphoses de la typographie)

Despite several radical changes in technology, which
accelerated in the 20th century, typography has
shown an amazing permanence of forms. Many of
the fonts in use today are modeled on typefaces of
previous centuries. Technological changes have, how-
ever, altered several principles underlying the forms.
These include flattening, abstraction, fluidity, and
instantiation.

“Flattening” is a dematerialization of the for-
merly solid typographic object. Type was three-
dimensional metal for 500 years, but phototype was
two-dimensional film image for 50 years. Digital type
describes two-dimensional forms but is not “material”
per se, but is instead computer code. Flattened 2D
type enables distortions and superimpositions not
feasible in metal type.

Abstraction is a reduction of a form to a set
of parameters and instructions instead of a graphic
object engraved, drawn, or written. In particular, in
the Metafont computer language devised by Donald
Knuth in the late 1970s, the description of a charac-
ter is based on variable parameters of a virtual path
in a plane. Changing parameters alters the form.
The concept of type as a prefabricated instance of
writing is therefore opposed by the variability of pro-
grammatic typefaces like Knuth’s Computer Modern.

Fluidity: [CB: The French term here is “liquéfac-
tion”, evoking odd connotations in English.] Digital
fonts and characters can “flow” from one computer-
ized medium to another, e.g., pixel arrays on display
screens, toner and ink arrays from laser and ink-jet
printers. Digital text can be re-flowed on the screen
when text block dimensions, kernings, line spacings,
and other parameters are altered. Fonts and text are
not bound to specific devices.

Instantiation: [CB: The French term here is
“congélation”, meaning freezing. Although it makes
a nice contrast to “liquefaction”, it doesn’t have
a direct English translation.] In some digital font
technology, pairs or sets of structurally similar char-
acters along some dimension can be interpolated or
extrapolated to generate new characters. For ex-
ample, between a light weight letter ‘a’ and a bold

Charles Bigelow

TUGboat, Volume 38 (2017), No. 3 311

weight ‘a’, many other ‘a’s of intermediate weights
can be interpolated. Interpolation was used in Ikarus
software for type production, and was marketed to
users by Adobe as Multiple Master fonts, and briefly
supported by Apple in GX font technology. [The con-
cepts have recently been reinvigorated as “Variable
Fonts” (OpenType Font Variations).]

Emancipation: In the 20th century, designers
were emancipated from the heavy machinery of ty-
pographic production [see previous chapters in this
volume on phototype, transfer type, and digital type].
Type could be designed and produced more rapidly
and less expensively, and digital type could be dis-
tributed through the Internet, enabling small inde-
pendent digital type “foundries” to enter the font
market.

Proliferation and concentration: Although eman-
cipation enabled small type firms to proliferate, busi-
ness circumstances within the font industry led to
acquisitions of smaller firms by larger ones, result-
ing, for example, in the Monotype firm today, which,
after its acquisitions of [ITC, Linotype, Bitstream,
FontShop] now offers tens of thousands of digital
fonts.

Streaming: [CB: The French term here is “évapo-
ration”, which joins “congélation” and “liquéfaction”
to make an analogy, whether intentional or not, be-
tween the physical states of water and fonts: solid,
liquid, and vapor. My ad hoc translations do not
capture this surprising analogy.] The widespread
adoption of “web fonts” by most web browsers en-
ables the streaming of fonts over the web. Adobe
Typekit, Google Fonts, Monotype web fonts, and
other firms provide on-the-fly downloading of fonts
to documents, some for a fee, some free.

Is there a need for new fonts? Yes, more than
ever. The great masterpieces of past type design
should not lead us to believe there is no longer any
place for invention. As Stanley Morison observed,
“type design moves at the pace of the most conser-
vative reader.” Over time, new designs appear and
are added to our stock of earlier faces without ren-
dering the latter obsolete. This series of books on
the History of Typographic Writing reveals, in ad-
dition to major typographic trends, pathways sel-
dom followed, type styles little known, designs rarely
adopted. There should be a dialogue between typo-
graphic historians, theoreticians, and practitioners
to integrate research in all these areas.

Extension to other writing systems: It may seem
that there are more than enough fonts for Latin
typography, with its history of typeface design and
variation since Gutenberg, but non-Latin writing
systems and scripts, including Arabic [as well as
Indic scripts, Southeast Asian scripts, and East Asian
scripts, which are often more complex and comprise
more characters than Latin-based alphabets, open
up new horizons for typographic creativity around
the world. There are today more than 120,000 fonts
in 129 writing systems.

Bibliography and end materials

The bibliography for volume II contains 405 entries,
subdivided into: (a) earlier volumes in the series;
(b) encyclopedias, dictionaries, and inventories on
typography; (c) specimens; (d) printing, typography,
book arts: general history, theory, technology; (e) his-
tory of typography and graphics arts 1900–2000; plus
sections with bibliographic references for each chap-
ter and interlude. This supplements, with some over-
lap, the 412 entries in the bibliography of Volume I.

Illustrations. As with the first volume, this
second volume is profusely illustrated, containing
some 391 figures and 7 miscellaneous images and
endpapers.

Indexes. There is a three page index to type-
faces cited in the texts, and a six page general and
typographic index.

Awards. At the 2017 Perpignan International
festival of books on art, architecture, photography,
cinema, and graphics, the two volumes of Histoire
de l’Écriture Typographique won the prize for best
book on graphics — a well-deserved honor.

In conclusion. The reviewer has provided ex-
tensive summaries of the chapters because these two
volumes are unique in their extensive survey of 20th
century typography and therefore merit the attention
of English language readers. Depending on subject
matter and potential readership, certain chapters
would be worthwhile in stand-alone English transla-
tions, and a translation of the whole would greatly
benefit typographic scholarship.

Explicit Liber.

⋄ Charles Bigelow
lucidafonts.com

Review: The History of Typographic Writing — The 20th century; vol. 2 (ch. 6–8+)

͑͏͐ TUGboat, Volume ͖͑ (͎͐͏͕), No. ͑

Serifed Greek type: Is it “Greek”?

Antonis Tsolomitis

1 Introduction

I grew up with this idea around me: serifs are not
“Greek”. Fonts that use them in the Greek alphabet
are “latinizations” of the form of the Greek letters.
A kind of æsthetic imperialism. And indeed, many
people still believe this. This idea has been pushed to
extremes, so that for example Matthew Carter in his
article “Which came first, the Greeks or the Romans?”
(see [͏]) feels the need to apologize for having fallen
into this kind of “sin”, saying more or less that the
only excuse he has is that this was the demand of the
Greek market at the time he designed beautiful fonts,
such as his Greek Baskerville.

I am now convinced: this is simply false. In short,
it is false because it is based on the way the first Greek
fonts were developed and not on the history of the
Greek forms themselves.

2 What is “Greek”?

Many changes have occurred on the Greek peninsula
in the last ͎͎͎͑ years. Many things found in this
vast amount of time may be considered non-Greek.
What can not be considered to be “non-Greek” is the
writing of Greek people until the time that the Greek
Gods stopped being worshipped by the great majority
of the inhabitants, approximately at the time of what
came to be known as the “Byzantine Empire”. Several
arguments can be made against the Byzantine era
being deemed a Greek era. But no such argument
can be made for the era before that. Let us see
such an important example. We are in ͏͓͔ CE.
Herodes Atticus, a rich and generous Roman, lives
in Athens, isolated from Rome and fully integrated
into Athenian society. His younger daughter Markia
Athenais dies of an unknown illness. The supreme
court of Athens (Άρȯȳος Πάȭος) before Athenais’ death
votes for putting a statue of her in the Asklipieion,
the temple of the God of Health and his daughter
Hygeia, on the south slope of the Parthenon, to ask
the God for his help. The Greek engravers write
on Pentelic marble (the most famous marble of that
era) the inscription seen in Figure ͏. Is this Greek
script? It definitely is. Does it have serifs? It is
full of serifs of several kinds. The text (with spaces
and punctuation to facilitate reading) is reproduced in
Figure ͐ with the new titling font “Athenais”, in honour
of the family of Herodes Atticus whose generosity
offered so much to Athens. The text is fully serifed
and more than that, it has three ligatures: =Ν+Η
in the word “ȧȘȥȚȢΑȝȖȞȘȢ” (=voted), =Δ+Α in

Figure 1: The pedestal NK͏͒ from the archælogical site of
the Athens Parthenon.

the word “ȕȚȕΑȢțΑȜΟȤ” (=teacher), and =τ+Ε
in the word “șȤȔΑȣȖΡΑ” (=daughter). The letters
ȥ and ȧ dramatically extend below the baseline and
above the capital X-height. The letter Ζ is the letter
Zeta (crossing it becomes a Ξ, Xi). The symbol ι
is an ornament. The inscription also contains many
alternative characters that we will discuss below.

3 Origin of the pedestal

This pedestal is exposed today in the Asklipieion in
the south slope of Athens’ Parthenon. It is located
exactly on the “Peripatos” (=walking path), next to the
Herodion theater. It was brought to my attention by
friends from YSEE, the Supreme Council of Hellenes
Ethnikoi, the people that continue to worship the Greek
Gods and was recently recognized by the Greek State
as one of the few religions in Greece that can produce
legally binding results (e.g., marriages).

According to the Athens Ephorate of Antiquities
[͐], the pedestal is classified as NK͏͒ (see [͑], [͒]
or [͓]), it is made of five fragments of Pentelic mar-
ble welded together. It was found in ͏͖͕͔ in the
Asklipieion area, built into the foundations of a chris-
tian church. It has a rich nape and base. The top

Antonis Tsolomitis

TUGboat, Volume ͖͑ (͎͐͏͕), No. ͑ ͑͏͑

ΤΗΣ ΕΞ ΑΡΕΙΟΥ
ΠΑΓΟΥ ΒΟΥΛΗΣ
ΨΗΦΙΣΑΜΕΣ
ΜΆΡΚΙΑν ΑΘΗ-
ΝΑΙΔΑιΚΛιΗΡΩ-
ΔΟΥιΦΛιΜΑΚΕΡ,
ΦΙΛΟΥ ΚΑΙ ΔΙΣ-
ΚΑΛΟΥ ΘΥΓΑΡΑ.
ΖΑΚΟΡΕΥΟΝΤΟΣ ΕΥΔΗ-
ΜΟΥ ΤΟΥ ΕΡΜΕΙΟΥ ΓΑΡ-
ΓΗΤΤΙΟΥιΥΠΟΖΑΚΟ-
ΡΕΥΟΝΤΟΣ ΕΥΑΓΓΕΛΟΥ
ΤΟΥ ΔΗΜΗΤΡΙΟΥιΓΑΡΓΗΤ.

Figure 2: The text from the pedestal, typeset in the new
Athenais font.

Figure 3: The location of the temple in the area of Athens
Parthenon.

surface has a recess for the placement of the statue
of Markia ΑȲȱναΐς (full name: Marcia Annia Claudia
Alkia Athenais Gavidia Latiaria), the younger daughter
of Herodes Atticus. The area was re-organized after
the discovery of the Asklipieion temple in ͎͐͏͏ (of
course, only the foundations were found); there has
been some partial restoration of a few columns (see
Figure ͒), and the pedestal was put in place recently.

The people of YSEE asked me if I could digitize
the lettering as a font. The result of this work is
demonstrated above. The font, named “Athenais”, is
available from the YSEE site (http://www.ysee.gr).

4 More about the font

The font was designed so that one can use the idea
of the extended ȥ and ȧ. Since these letters appear
rarely in Greek text, more letters use the extended
form in this font. These are

      υ χ 
All extended characters have several heights.

Figure 4: The partially restored temple as it stands today.

As an example, here is the letter T (the first is at
regular height):

τ
Alternative characters are provided and these are:

αΆζλνξστφ
In particular, Alpha is given in three forms as it appears
on the pedestal:

Α α Ά
The last Alpha is very interesting in that it uses a
swash type serif which looks like this magnified:

The serif of ȧ is also very interesting as it reminds us
of serifs from Palatino (say of Palatino Ȧ):

Another type of serif is used on the top right of ȝ.
In the next magnification check that the top left and
top right serifs are not the same:

Serifed Greek type: Is it “Greek”?

͑͏͒ TUGboat, Volume ͖͑ (͎͐͏͕), No. ͑

The ligatures provided are:

       .

In the modern world one can not escape the
need for Arabic numbers and some punctuation. So
these have been added and the numbers ͒, ͔, ͕ and
͗ are provided in variable heights:

0123456789
5 Use of the font

In order to make it possible to use the font in a
beautiful way one needs to scale parts of the title
she͏ is typesetting. And then the need arises to
balance the weight of the scaled parts. Thus the font
is provided in several weights to make this possible.
For example, if we write “University of the Aegean”
in Greek, we may do it this way:

ΠAΠΙΣΗΜΙΟ
αΓΑΙΟΥ

The first word is not at the same size as the second
word so that the extended letters can interact nicely.
To balance the color we used a heavier version for
the first word.

6 Comments on the lowercase Greek

The font does not contain lowercase. It is a titling
font. In this section we return to the first question we
posed. Are serifs a non-Greek characteristic? Lower-
case appeared after the ͖th century CE as an alteration
of the capital letters. They appeared when the monks
were trying to rewrite the ancient texts, since they
were in great demand from the West (and paid well).
They consciously altered the forms of the Greek cap-
ital letters so that they could be written with fewer
strokes, which saved them time and increased their
income. Later, people such as Aldus Manutius and
Claude Garamond designed the Greek lowercase let-
ters in fonts such as Grec de Roi. The monks’ writing,
as well as Grec de Roi, is very hard to read. In my
opinion it is not just an alteration of the Greek letters.
It is clearly a deterioration of the letters as a result of
speedy and bad quality writing of the monks.

Is this Greek? Let us follow this line of thinking:
some people, that consider themselves non-English
by their own writings, copy texts of the best English
calligraphers and really destroy their form. And the
result is “English” letters!? No reasonable person can
accept this.

͏ I dislike slashes in text such as he/she. A coin is flipped,
I will write in feminine.

I think it is proper to say the following: the
existence of lowercase letters is a fact and we are
used to them. To return them to forms that match
capital Greek serifed letters is only making them Greek
and not Latin.

7 Conclusion

A serifed Greek font may be beautifully designed or
ugly. But the existence of serifs or their absence can
not justify Greek or Latin characteristics.

A serious designer that respects the Greek culture
and with intentions not to cause any harm, but rather
to promote type art, can decide to use or not to
use serifs without blaming herself for “latinization” or
anything else.

ΜΑΙΑαΘΗΝAΪΔΆ
References

[͏] Matthew Carter, Which caǐe fiǕǖǗ, Ǘhe GǕeeǎǖ ǒǕ
Ǘhe RǒǐaǑǖ? Greek Letters, From Tablets to Pix-
els, ed. Michael Makrakis, Oak Knoll Press, ͏͔͗͗.

[͐] Personal communication.

[͑] Ȣτ. Α. țουμανούȮȱς, ΑȲήναȳον ͓ (͏͖͕͔) ͑͐͒
αρ. ͑.

[͒] IG II͐ ͎͕͒͑.

[͓] Levensohn M., IǑǖcǕiǓǗiǒǑǖ ǒǑ Ǘhe SǒǘǗh SǏǒǓe
ǒf Ǘhe AcǕǒǓǒǏiǖ, Hesperia ͏͔, ͏͕͗͒, ͕͑ map
number ͏͓͐, fig. ͏.

⋄ Antonis Tsolomitis
University of the Aegean
Department of Mathematics
͖͑͐ ͎͎ Karlovassi
Samos, Greece
http://myria.math.aegean.gr/~atsol

Addendum. This article uses GFSNeoHellenic at ͏͏ pt
for the main text font, designed by the Greek Font
Society in ͏͗͗͑–͏͗͗͒ (ctan.org/pkg/gfs), sponsored
by the Archæological Society at Athens. The samples
are typeset in the new Athenais font.

Antonis Tsolomitis

TUGboat, Volume 38 (2017), No. 3 315

ConTEXt for beginners

Willi Egger

Abstract

In 2017 we had a joint meeting of BachoTEX and
TUG. During this conference a workshop for Con-
TEXt beginners was requested. The following article
comes from this workshop.

As with any typesetting system offering possi-
bilities to handle virtually any project, ConTEXt is
a huge system. As with the workshop, this article
can only lift the veil a little. The workshop was a
hands-on session for playing with basic elements to
create a document. Towards the end there was a
chance to work on a small project — a single-sided
document containing all the elements to build an
invoice.

Keywords: ConTEXt, beginner, workshop

1 About ConTEXt

TEX, developed by Donald Knuth in the 1970s and
1980s, is still widely used. There are three principal
flavours: Plain TEX, LATEX and ConTEXt.

ConTEXt is an advanced macro package which
uses TEX as an engine. ConTEXt is a development
of PRAGMA ADE in Hasselt, The Netherlands. The
code base was written and continues to be actively
maintained by Hans Hagen. It was first developed
for typesetting schoolbooks and school math.

At present two versions of ConTEXt are in use.
ConTEXt MkII makes use of the pdfTEX engine. This
version is not developed any further and the code is
frozen, but bug–fixes are still applied. The current
version ConTEXt MkIV makes use of LuaTEX and
is under continuous development. For new users of
ConTEXt we advise starting with ConTEXt MkIV
with LuaTEX.

In contrast to other macro packages ConTEXt
is a primarily monolithic system. Essentially all
facilities are provided out of the box. Nevertheless,
some modules for add-on features, written by third
parties, can be installed and invoked as necessary.

ConTEXt makes heavy use of MetaPost. The
latter is therefore used as a library which makes it
possible to generate graphics at runtime very effi-
ciently.

ConTEXt can be used for processing TEX-coded
documents but it also provides a fully developed
environment to process XML-coded data. ConTEXt
has interface capabilities with SQL databases.

Graphically the ConTEXt–typesetting system
can be presented as follows:

TEX LUA

METAPOST

ConTEXt

2 Availability

ConTEXt is included in TEX Live, so you may well
already have it. However, for users who wish to use
ConTEXt extensively or exclusively, we recommend
the standalone release, which can be obtained from
the ConTEXt garden wiki: wiki.contextgarden.

net. The garden also has information on instal-
lation of the system for current operating systems,
notably Windows, Mac OS X, and Linux.

3 Documentation

ConTEXt is a highly complex typesetting system. It
comes with many detailed manuals, many of which
are included in the distribution, and all can be down-
loaded from the Pragma website (pragma-ade.com).
Along with this, there are a couple of printed books;
these are available from H2O-books (see also sec-
tion 8.

4 Basic elements

A basic difference compared to other macro packages
is that in ConTEXt almost all commands are defined
as structured elements, enclosed by start . . . stop

commands. This is a prerequisite for working with
XML and provides much control over the beginning
and end of an element.

Each document starts with \starttext and
ends with \stoptext. Other examples of such struc-
tured commands are:

• \startchapter ... \stopchapter

• \startsection ... \stopsection

• \startplacefigure ... \stopplacefigure

The system comes with a reasonable set of pre-
sets for many constructs that are needed while build-
ing a new document. ConTEXt provides maximum
flexibility to adjust almost anything according to
the user’s wishes. For this purpose most commands

ConTEXt for beginners

316 TUGboat, Volume 38 (2017), No. 3

come with a \setup... command, where appropri-
ate variables can be customized. A couple of exam-
ples, taking options in square brackets (common in
ConTEXt):

• \setupframedtext[...][...]

• \setuplayer[...][...]

It is important to note that, in case it’s needed,
ConTEXt still understands most of Plain TEX.

5 Export formats

When running a document with ConTEXt the output
is by default PDF. Correctly coded documents can
also be exported as XML, HTML, XHTML and ePub.

6 A first ConTEXt document

As with other TEX environments, it is best to use a
text editor for coding.

For the first document we can open a TEX file,
say myfirstfile.tex and type e.g.

\starttext

Dzień dobry at the \CONTEXT

beginners tutorial!

\stopptext

After saving this file, we can compile it from the
terminal with context myfirstfile. Provided that
the installation was successful it will result in a docu-
ment typeset as A4 with the name myfirstfile.pdf.

It is worth mentioning that ConTEXt is UTF-8
aware out of the box, so typesetting accented glyphs,
as above, is no problem.

7 Elements of a document

Now that we know that the installation is fine, we
can start describing the common elements of our
documents. In a second step these elements will be
used in a small project for creating a simple invoice.

We will deal in this first step with the paper
size, the general layout of the page, fonts, two types
of table environments, headers and footers, and the
layer mechanism and the basic placement of graphical
elements.

7.1 Paper size

By default ConTEXt produces A4 pages, but of course
one is in no way bound to this format. The system
comes with many predefined paper sizes including
the DIN-A series, American paper sizes and oversized
paper sizes for the print industry.

Because ConTEXt produces A4 by default we
do not have to set up the paper size for that case.
However if you are using letter size you will have
to tell this to the system in the preamble of each
document:

\setuppapersize[letter][letter]

To set a custom paper size the following two
commands are needed:
\definepapersize[Mypsize][width=80mm,height=95mm]

\setuppapersize[Mypsize][A4]

The \setuppapersize command accepts two
arguments, used to make up the page and place it
on paper. The first argument tells ConTEXt the
size of the page, and the second argument tells the
system how to put the page on a certain paper size
for printing. To both arguments one can add the
attributes portrait or landscape. So the above
defines a small layout sized, to be placed on A4
paper.

Of course one often wants the layout size and
printing size to be the same, so both arguments are
the same:
\definepapersize[Mypsize][width=80mm,height=95mm]

\setuppapersize[Mypsize][Mypsize]

Finally, we do not need to define our own paper
sizes when using any of the predefined ones. For
instance, to place an A4 page on an A3 in landscape:
\setuppapersize[A4][A3,landscape]

7.2 Page layout

Although ConTEXt comes out of the box with a
decent set of presets one has all sort of possibilities
to adapt a layout of a page to the needs at hand. In
order to be able to work with this rather extensive
command it is necessary to have a look at the division
of the space of a page.

The following drawing shows all regions which
we can manipulate individually: the outermost areas
indicated by top and bottom as well as leftmargin

and leftedge and such. The edges are normally
only used in interactive documents like presentations.
We will not discuss those here.

left left right right

edge margin text margin edge

top

header

text

footer

bottom

Figure 1: Page layout areas

The one command to set up these different re-
gions of the page is \setuplayout. An example:

Willi Egger

TUGboat, Volume 38 (2017), No. 3 317

\setuplayout

[topspace=15mm,

backspace=15mm,

header=0pt,

footer=1.2\bodyfontsize,

height=middle,

width=middle]

This command has many arguments and needs
to be studied in the documentation. Designing a page
layout is done always on a right-hand (odd) page.
When we need a double-sided document we tell this
to ConTEXt and the system will automatically switch
the backspace and eventually-determined margins to
the right position on the even page.

• The key topspace gives the white space above
the content, and key backspace denotes the
white space left of the content.

• Normally ConTEXt has an active header. If we
do not want a header we switch the key header

to zero, using any of the usual TEX dimensions,
e.g. pt, mm, cm, in. When the header is zero,
automatically the header-distance (not shown
above; it’s the space below the header and above
the text) is set to zero too. The same applies to
the footer.

• The key height specifies the total height in
which any content can occur, i.e. it includes
the header, header-distance, text body, footer-
distance and footer. If we give height=middle,
the system will calculate the height of the type-
setting area such that there is an even distribu-
tion of white on top and bottom of the page.

• The key width allows us to set the width of
the typesetting area for the header, text-body
and footer. width=middle causes ConTEXt to
calculate the width such that at the right side
of the typesetting area is the same amount of
white space as the backspace.

• If the document has content in the margins, we
can set up margins for the left and right, as
well as the distance they should get from the
text body. Margin content is placed into the
backspace and adjacent to the text body at the
right side. When using margins we need to
adjust the backspace and the text body width
in order to keep this content on the paper.

7.2.1 Show me the layout

Specifying your page layout can be difficult in the
beginning. In order to facilitate this there is a handy
command to show the actual page layout graphi-
cally: you can issue \showframe inside \starttext

... \stoptext or outside at the top of the docu-

ment. For an example of how this looks, see the
appendix.

If you want to know all the dimensions set for the
page you can put \showlayout into the document.
It will show all dimensions on one page. The default
values of page parameters in ConTEXt are as follows.

\paperheight 29.7000cm
\paperwidth 21.0000cm
\printpaperheight 29.7000cm
\printpaperwidth 21.0000cm
\topspace 2.4998cm
\backspace 2.5000cm
\makeupheight 25.0000cm
\makeupwidth 14.9999cm
\topheight 0.0000cm
\topdistance 0.0000cm
\headerheight 1.9999cm
\headerdistance 0.0000cm
\textheight 21.0002cm
\footerdistance 0.0000cm
\footerheight 1.9999cm
\bottomdistance 0.0000cm
\bottomheight 0.0000cm
\leftedgewidth 0.0000cm
\leftedgedistance 0.0000cm
\leftmarginwidth 2.6564cm
\leftmargindistance 0.4217cm
\textwidth 14.9999cm
\rightmargindistance 0.4217cm
\rightmarginwidth 2.6564cm
\rightedgedistance 0.0000cm
\rightedgewidth 0.0000pt

\bodyfontsize 10.0000pt
\lineheight 12.5720pt
\strutheightfactor .72
\strutdepthfactor .28
\topskipfactor 1.0
\maxdepthfactor 0.4

7.2.2 Header and footer

If we have set up the page to carry a header and/or
a footer with \setuplayout, we can fill those areas
with content. The commands to put content into the
header and footer are:

\setupheadertexts[lo][ro][re][le]

\setupfootertexts[lo][ro][re][le]

In double sided documents we can have four
different pieces of content, two for the left (odd) and
two for the right (even) page. For a single sided
document we need only two arguments. The above
letters lo .. re are placeholders; to explain their
meaning:

ConTEXt for beginners

318 TUGboat, Volume 38 (2017), No. 3

lo text left on odd pages
ro text right on odd pages
re text right on even pages
le text left on even pages
We can give normal text into the fields or add

commands, e.g. insert the page number or the cur-
rent section title. Assuming we have a single sided
document, we might do
\setupheadertexts

[{\getmarking[chapter]}]

[\userpagenumber/\totalnumberofpages]

\setupfootertexts

[\jobname]

[\currentdate]

We could also put information in the header-
margin as shown in figure 1. In a double-sided docu-
ment it could be
\setupheadertexts

[margin][\userpagenumber][Document A]

In a single-sided document it would be
\setupheadertexts[margin][\userpagenumber]

7.2.3 Marginal text

For a document with content in the margin we have
to set this up with the \setuplayout command. For
instance we could set the parameters to the following
values

topspace 1.5cm
backspace 2.5cm
leftmargin 2.0cm
leftmargindistance 0.2cm
textwidth 15.0cm
rightmargindistance 0.2cm
rightmargin 2.0cm

In the text, we can then say
\inrightmargin {\tfxx text in the margin.}text in the

margin. to get marginal text as shown here. (\tfxx selects a
small typewriter font; we’ll briefly discuss fonts later,
but see wiki.contextgarden.net/Font_Switching

for more.)

7.3 Tables

7.3.1 Tabulation

The tabulation environment is specially suited to
typeset tables in the text flow. The environment
provides many facilities to customize a table, but
there is no support for vertical rules. This environ-
ment uses a template at the beginning of the table,
as shown here:
\starttabulate[|l|c|r|p|]

\NC left \NC center \NC right \NC para \NC\NR

\stoptabulate

The | characters in the template here merely
delimit column specifications, and do not indicate

rules to be typeset. Additional option characters can
be added in a column as follows.

Options for column width:

w(dim) fixed column width
p(dim) fixed paragraph width
p maximum width paragraph

Options for style:

B,I,R,S,T bold, italic, roman, slanted, typewriter
m,M inline math, display math

Then, within the tabulate body, \NC indicates
the next column and \NR the next row, as shown
above. Other commands can be included, for exam-
ple, these can add vertical space between rows:

\TB[halfline] Vertical space of half a line
\TB[line] Vertical space of a whole line
\TB[1cm] Vertical space of 1 cm

7.3.2 Natural tables

Natural tables are an environment for large tables
and provide a huge set of possibilities to customize
cells, columns and or rows. The coding is generally
similar to HTML. A basic table looks like this:

\bTABLE

\bTR \bTD a \eTD \bTD x \eTD \bTD y \eTD \eTR

\bTR \bTD b \eTD \bTD x \eTD \bTD y \eTD \eTR

...

\eTABLE

Thus, the environment is started with the com-
mand \bTABLE and ended with \eTABLE; each row
starts with \bTR and ends with \eTR; and each cell
of a row starts with \bTD and is closed with \eTD.

Default behaviour is tight cells, all frames on.
For customizing we can use \setupTABLE:

\setupTABLE[row]

[number,odd,even,first,last,each][...]

\setupTABLE[column]

[number,odd,even,first,last,each][...]

Options are the same as in the \framed en-
vironment (wiki.contextgarden.net/Framed) and
influence most aspects of how the table appears. So
we have quite a number of [〈option〉=〈key〉] possibil-
ities for setting up the frame (each side), style, color,
rule thickness etc.

If we want a consistent table design throughout
the document we might place these setups at the
beginning of the document. If we then need a lo-
cal adaptation we place the \setupTABLE command
inside the \bTABLE ... \eTABLE construct. We can
also attach to a given \bTR or \bTD options for this
specific row or cell.

Cells can span multiple columns or rows, as in:
\bTD[nx=2], \bTD[ny=3].

Willi Egger

TUGboat, Volume 38 (2017), No. 3 319

Natural tables can break over pages and we can
define a table header for the first page and a table
header for the following pages. It is also possible to
define a table foot.

\bTABLEhead

\bTR \bTD A \eTD \bTD B \eTD \bTD C \eTD \eTR

\eTABLEhead

\bTABLEnext

\bTR \bTD X \eTD \bTD Y \eTD \bTD Z \eTD \eTR

\eTABLEnext

\bTABLEfoot

\bTR[bottomframe=on] \eTR

\eTABLEfoot

\bTABLEbody

\bTR \bTD 1 \bTD 10 \eTD \bTD 100 \eTD \eTR

\bTR \bTD 1 \bTD 10 \eTD \bTD 100 \eTD \eTR

\eTABLEbody

7.4 Layers

In ConTEXt one can place content into specific loca-
tions. This is done with layers. The procedure is to
define the layer, fill it and place it.

7.4.1 Defining a layer

\definelayer[Logo]

[width=3cm, height=4cm]

The layer is by default attached to the left top
corner of the typesetting area, if not stated otherwise.

7.4.2 Fill the layer

To fill a defined layer we use \setlayer, with the
name of the layer as a first bracketed option, and x
and y positioning dimensions relative to the anchor
point as a second option. Finally, the actual content
is given between braces (not brackets) . This can be
any content like figures, tabulations, tables . . .

\setlayer[Logo]

[x=-15mm,y=-35mm]

{\externalfigure[cow][width=3cm]}

7.4.3 Placing the layer

The layer is placed with \placelayer[〈name〉]. A
layer can only be placed (or flushed) if there is already
content on the page. If the flushing is done before
the page is started, the layer will not appear. If we
have to place the layer as the first action we can
use the command \strut or \null, which add the
necessary anchor point.

\strut

\placelayer[Logo]

7.4.4 Dealing with floats

In TEX figures, pictures and tables often are float-
ing objects, meaning that the typesetting system
determines where such an object is to be placed.

ConTEXt supports the following image formats:
JPEG, PNG, PDF, MetaPost; it will also honor EPS
if Ghostscript is installed, as additional converters
can kick in.

Normally pictures and other graphics are sepa-
rate from the TEX sources, so we need to tell ConTEXt
where to look for the required files:
\setupexternalfigures[location={local,default}]

In this case ConTEXt is looking for picture files
locally and secondly in the TEX tree.

If we want ConTEXt to look for the files in a
specific directory, we add the key global and give
the path after the key directory:
\setupexternalfigures

[location={local,default,global},

directory={/MyDocs/Bachotex2017/tut/figures}]

7.4.5 Placing a figure

After the setup is done, we can insert a figure as
follows, here to the right of the text:

\startplacefigure

[title=Cow drawing.,

location=right]

{\externalfigure[cow]

[height=.1\textheight]}

\stopplacefigure

To omit any caption and numbering we can add
the keys title=,number=.

7.5 Fonts

In today’s TEX environments, thanks especially to
the great work by the Polish GUST e-foundry, we
have an excellent collection of fonts available in mod-
ern font formats. The following are included in the
ConTEXt standalone distribution: Latin Modern,
the TEX Gyre collection, Antykwa Torúnska, Iwona,
Kurier, and XITS.1

Of course a great number of additional fonts are
available, included in TEX Live and/or separately
downloadable, such as: Gentium (from SIL Interna-
tional), DejaVU (based on an original design from
Bitstream), . . .

7.5.1 Playing with built-in fonts

If no font is specified, ConTEXt will use Latin Modern
by default. The traditional way of specifying a font
is as follows:
\setupbodyfont[pagella,rm,10pt]

1 Khaled Hosny adapted STIX to TEX needs to make XITS.

ConTEXt for beginners

320 TUGboat, Volume 38 (2017), No. 3

Here we give the name of the font (family), fol-
lowed by the required style and the size.

With the TEX Gyre fonts, we have a nice collec-
tion of fonts in the OpenType format, covering the
so-called “base 35” PostScript fonts.

serif rm termes (Times)
pagella (Palatino)
schola (New Century

Schoolbook)
bonum (Bookman)

sans ss heros (Helvetica)
adventor (Avant Garde)

mono tt cursor (Courier)
calligraphic cg chorus (Zapf Chancery)

In order to be able to use serif, sans serif, mono-
space and math fonts mixed in one document, Con-
TEXt has predefined sets (families), which are called
“typefaces”. E.g. the pagella option offers:

serif pagella
sans latin modern
mono latin modern
math pagella

7.5.2 Another way of using fonts

As long as you do not use commercial fonts, for which
you have to set up the typescripts/font loading in-
structions yourself, you can easily use the predefined
typefaces as shown above.

So especially for the use of fonts, i.e. system
fonts or commercial fonts, there is a font selection
mechanism (written by Wolfgang Schuster) which
is part of the ConTEXt core. For a font that is not
supported out of the box you can define a font family
like this:
\definefontfamily [dejavu] [serif] [DejaVu Serif]

\definefontfamily [dejavu] [sans] [DejaVu Sans]

\definefontfamily [dejavu] [mono] [DejaVu Sans Mono]

\definefontfamily [dejavu] [math] [XITS Math]

[scale=1.1]

\definefontfamily [office] [serif] [Times New Roman]

\definefontfamily [office] [sans] [Arial]

[scale=0.9]

\definefontfamily [office] [mono] [Courier]

\definefontfamily [office] [math]

[TeX Gyre Termes Math]

\definefontfamily [linux] [serif] [Linux Libertine O]

\definefontfamily [linux] [sans] [Linux Biolinum O]

\definefontfamily [linux] [mono] [Latin Modern Mono]

\definefontfamily [linux] [math]

[TeX Gyre Pagella Math] [scale=0.9]

\definefontfamily [myfamily] [mono] [TeX Gyre Cursor]

[features=none]

When you want to combine fonts of which the
design sizes are not directly compatible you can add

a scaling factor to the definitions, as shown above.
[The line breaks above are for TUGboat’s narrow
columns; normally such definitions are written all on
one source line, although this is not required.]

7.5.3 Your own typescripts

The same approach is used for commercial fonts.
Either you use Wolfgang’s core module as above, or
you write your own typescripts, as briefly outlined
here.

In any case, when adding a new font unknown
to ConTEXt the file database must be renewed. The
way to do this is to open a terminal and issue the
command context --generate.

Suppose you have the font Seravek. The set of
typescripts would read as follows. First the font’s
filenames are mapped on a symbolic name inside a
typescript, which takes two arguments: a category
name, such as sans or serif, and a symbolic name.
\starttypescript [sans] [seravek]

\definefontsynonym [Seravek-Regular]

[file:Seravek-Regular][features=default]

\definefontsynonym [Seravek-Bold]

[file:Seravek-Bold][features=default]

\definefontsynonym [Seravek-Italic]

[file:Seravek-RegularItalic][features=default]

\definefontsynonym [Seravek-Bold-Italic]

[file:Seravek-BoldItalic][features=default]

\stoptypescript

In a second step. the symbolic names of the
font files are mapped to ConTEXt’s internal names.
As with the first typescript, this typescript has the
same category name and the symbolic name.
\starttypescript [sans] [seravek]

\definefontsynonym [Sans]

[Seravek-Regular][features=default]

\definefontsynonym [SansItalic]

[Seravek-Italic][features=default]

\definefontsynonym [SansBold]

[Seravek-Bold][features=default]

\definefontsynonym [SansBoldItalic]

[Seravek-Bold-Italic][features=default]

\definefontsynonym [SansCaps]

[Seravek-Regular][features=smallcaps]

\definefontsynonym [SansBoldCaps]

[Seravek-Bold][features=smallcaps]

\definefontsynonym [SansItalicCaps]

[Seravek-Italic][features=smallcaps]

\definefontsynonym [SansBoldItalicCaps]

[Seravek-Bold-Italic][features=smallcaps]

\stoptypescript

Now that the definitions are ready we create a
third typescript, which defines the font family as a
typeface. This typescript has a symbolic name with
which we will use the fonts inside the document.
\starttypescript [Seravek]

\definetypeface[Seravek][ss][sans][seravek] [default]

\definetypeface[Seravek][mm][math][palatino][default]

\stoptypescript

Willi Egger

TUGboat, Volume 38 (2017), No. 3 321

The three typescript definitions can be saved in a
file with the name type-imp-seravek.tex. This file
is best placed in the TEX tree, e.g. (in the standalone
ConTEXt distribution):
.../tex/texmf-context/tex/context/user.

To use this typeface in the document the font
is set up with:
\usetypescriptfile[type-seravek]

\usetypescript[seravek]

\setupbodyfont[Seravek,ss,10pt]

And now the default text font will be Seravek,
in the sans serif style that we’ve defined.

8 Documentation

What has been shown so far is only a glimpse of what
ConTEXt can do. Learning ConTEXt calls for careful
study of the documentation. Many manuals written
by Hans Hagen are included in the distribution; they
can be found in the TEX tree, in (standalone Con-
TEXt) texmf-context/doc/context/documents or
(TEX Live) texmf-dist/doc/context.

Also available is a large wiki containing very
useful help, including command references with many
explanations and examples. In addition, it has both
shorter and longer articles contributed by many Con-
TEXt users. You can find it at wiki.contextgarden.

net. For convenience, a summary reference of the
main commands in this tutorial are also available at
tug.org/TUGboat/tb38-3/tb120egger-cmds.pdf.
(They were prepared using the built-in command
\showsetup, e.g. \showsetup [setuplayout].)

A large set of test files is also available. These
are used in development, but also contain very useful
information for self-study. On the page pragma-ade.

com/download-1.htm you can find a link to them as
context/latest/cont-tst.7z.

Last but not least there is a mailing list to which
you are invited to join. On this list practical issues
with the system and questions are posted. The ad-
dress is ntg-context@ntg.nl (with archives, etc., at
ntg.nl/mailman/listinfo/ntg-context) — don’t
be shy or afraid; also simple questions are answered
promptly!

9 Acknowledgements

TEX is still alive after so many years. I would like
to thank Hans Hagen cordially for his tremendous
work given to us for free. With his system we are
still competitive in the modern environment of type-
setting from different sources, producing PDF from
XML, linking to databases, exporting XML and other
formats like ePub. The transition from pdfTEX to
LuaTEX was and is supported by a number of peo-
ple, notably Taco Hoekwater, Hans Hagen, Helmut

Henkel and Luigi Scarso. We owe them a big thank
you! Another member of the community who spends
a considerable amount of time and effort in support-
ing the system is Wolfgang Schuster. I would like
to thank him for all that he does. Finally, behind
the scenes a lot happens in order to make ConTEXt
available for anybody from the ConTEXt garden. I
would like to thank Mojca Miklavec for all the en-
ergy she puts into the preparation and testing of the
ConTEXt distribution.

⋄ Willi Egger
Maasstraat 2
5836 BB SAMBEEK

The Netherlands
w dot egger (at) boede dot nl

A Bringing the elements together:
An invoice skeleton

The following text shows a basic approach to setting
up an invoice. It starts with a preamble setting up the
body font and other definitions. After \starttext

the invoice is built. The result is a one-page doc-
ument containing all elements for the invoice. It’s
true that it is not yet the most beautiful document
in the world, but it is the base for tuning . . .
% Setup font to be used

\setupbodyfont[pagella,rm,10pt]

% Setup path to find graphics

\setupexternalfigures[location={local,default}]

% Switch off automatic page numbering

\setuppagenumbering[location=]

% Setup page layout

\setuplayout

[topspace=15mm,

backspace=15mm,

header=40mm,

footer=2.2cm,

height=middle,

width=middle,

leftmarginwidth=10mm,

rightmarginwidth=14mm]

% Setup headers and footers

\startsetups[Header]

\framed

[height=\headerheight,

align=lohi,

frame=off,

foregroundcolor=green,

foregroundstyle=\bfd]

{Agricultural Services}

\stopsetups

%

\setupheadertexts[][\setups{Header}][][\setups{Header}]

\startsetups[Footer]

\switchtobodyfont[8pt]

\starttabulate[|p|p|p|p|]

ConTEXt for beginners

322 TUGboat, Volume 38 (2017), No. 3

\NC Bank account \EQ Pl0123 23 3445 678

\NC Address \EQ Jackowskiego 12 m 3 \NC\NR

\NC Chamber of Commerce \EQ North-14 53 21

\NC \NC 61-757 Pozna\’n \NC\NR

\NC VAT number \EQ PL12653007

\NC \NC \NC\NR

\NC Phone \EQ \unknown

\NC e-Mail \NC info at boede.nl \NC\NR

\stoptabulate

\stopsetups

\setupfootertexts[][\setups{Footer}][][\setups{Footer}]

% Setup logo layer

\definelayer

[Logo]

[width=3cm, height=4cm]

% Standard text included on each invoice

\startbuffer[Conditions]

All prices are in EUR unless stated otherwise.

\blank[small]

This invoice is payable within 14 days

after date of issuing.

\blank[small]

Our general terms and conditions apply to all quotes,

contracts and services unless stated otherwise.

The general terms and conditions are deposited

at the record office of the court of justice at

s’-Hertogenbosch, The Netherlands. On request

a copy in the Dutch language is available for free.

\stopbuffer

\startbuffer[Thanks]

Thank you for your order.

\stopbuffer

% for our example

\showframe

\showlayout

% Begin document

\starttext

% Logo

\setlayer

[Logo]

[x=-5mm,

y=-42mm]

{\externalfigure[cow][width=3cm]}

%

\setlayer

[Logo]

[x=148mm,

y=137mm]

{\externalfigure[mill][height=4cm]}

%

\placelayer[Logo]

% Receiver address

\startlines

Name

Company

Street

Postal code Town

\stoplines

\blank[1cm]

% Invoice data

\starttabulate{lllr}

\NC \bfc Invoice \NC \NC\NR

\NC Invoice date \EQ 26-04-2017 \NC\NR

\NC Invoice number \EQ 01-2017 \NC\NR

\stoptabulate

\blank[2cm]

% Invoice content

\setupTABLE[each][each][frame=off]

\setupTABLE[r][1][style=bold]

\setupTABLE[c][1][width=2.5cm]

\setupTABLE[c][2][width=9cm]

\setupTABLE[c][3][width=2.5cm,align=flushright]

\setupTABLE[c][4][width=1.5cm,align=flushright]

\setupTABLE[c][5][width=2.5cm,align=flushright]

\bTABLE

\bTR[bottomframe=on]

\bTD Date \eTD\bTD Description \eTD

\bTD Quantity \eTD\bTD Price \eTD\bTD Amount \eTD

\eTR

\bTR

\bTD 26-04-2017 \eTD\bTD Delivery of goods \eTD

\bTD 10 \eTD\bTD 25.00 \eTD\bTD 250.00 \eTD

\eTR

\bTR[topframe=on,rulethickness=1.5pt]

\bTD \eTD\bTD \eTD\bTD Subtotal \eTD

\bTD \eTD\bTD 250.00 \eTD

\eTR

\bTR

\bTD \eTD\bTD \eTD\bTD VAT 20\% \eTD

\bTD \eTD\bTD 50.00 \eTD

\eTR

\bTR

\bTD \eTD\bTD \eTD\bTD Total \eTD\bTD \eTD

\bTD[bottomframe=on,rulethickness=1.5pt]

300.00\eTD

\eTR

\eTABLE

\vfil

\getbuffer[Thanks]

\blank[2*big]

\getbuffer[Conditions]

\stoptext

The output is on the next page [scaled for TUGboat,
so the absolute dimensions given in the source will
only match proportionally; sorry].

Willi Egger

TUGboat, Volume 38 (2017), No. 3 323

Agricultural Services

Bank account : Pl0123 23 3445 678 Address : Jackowskiego 12 m 3
Chamber of Commerce : North-14 53 21 61-757 Poznań
VAT number : PL12653007
Phone : . . . e-Mail info at boede.nl

Name
Company
Street
Postal code Town

Invoice
Invoice date : 26-04-2017
Invoice number : 01-2017

Date Description Quantity Price Amount

26-04-2017 Delivery of goods 10 25.00 250.00

Subtotal 250.00

VAT 20% 50.00

Total 300.00

Thank you for your order.

All prices are in EUR unless stated otherwise.

This invoice is payable within 14 days after date of issuing.

Our general terms and conditions apply to all quotes, contracts and services unless stated otherwise. The
general terms and conditions are deposited at the record office of the court of justice at s’-Hertogenbosch, The
Netherlands. On request a copy in the dutch language is available for free.

ConTEXt for beginners

324 TUGboat, Volume 38 (2017), No. 3

Art Concret, Basic Design and meta-design

Marcel Herbst

Abstract

This note links Concrete Art (l’art concret), a vis-
ual art form originating around 1925, with Basic
Design as taught in first-year design courses. It ex-
tends this view by approaching the topic from a rule-
based, meta-design perspective using METAPOST

and Nicola Vitacolonna’s engine for TeXShop.

1 Introduction

Art academies of the 19th century had their introduc-
tory courses. The Bauhaus (1919–33), the famous
design school located first in Weimar, then in Dessau,
and eventually in Berlin when the Nazis forced it to
close in 1933, introduced a first year introductory
course that was to serve as a model for other de-
sign schools. This introductory course, the Vorkurs
or Grundlehre, was emulated by schools around the
globe in an attempt to initiate students to the ba-
sics— the fundamental principles—of design.

In post-World-War-II Germany, the idea came
up to found anew a Bauhaus. The plan was formu-
lated by (among others) Inge Scholl, the sister of
Hans and Sophie Scholl; Hans and Sophie were, as
members of the resistance group Weiße Rose, ex-
ecuted by the Nazis. Inge and her husband-to-be,
Otl Aicher, a graphic designer, were involved in the
post-war Ulmer Volkshochschule (Ulm Adult Educa-
tion Center), and they initially pursued the notion
to found a school in Ulm that was to focus on politi-
cal education. When Max Bill (architect, designer
and artist—and former student of the Bauhaus) was
invited to join the planning team, the idea took hold
to found a “new” Bauhaus. John McCloy, the U.S.
High Commissioner in Germany at the time, sup-
ported the project, and eventually the Hochschule
für Gestaltung (HfG) in Ulm opened its doors in 1953
(to be shut, in 1968, by a regressive government) [10].

The HfG had, like the Bauhaus, a formative,
propædeutic year designed to initiate students to
various design professions (product design, architec-
ture, graphic design, et cetera). Part of the curricu-
lum of this first year was a “basic design” studio,
and Max Bill, the first rector of the HfG and an
early advocate of Concrete Art, recruited various
people of similar orientation to teach this course:
Josef Albers (a Bauhaus émigré, former rector of
Black Mountain College in Asheville, NC, and, after
1950, faculty member of Yale University and chair
of its Department of Design—and, presumably, the
person who had coined the term “basic design”),

Otl Aicher (subsequently the corporate identity de-
signer of Lufthansa and the Munich Olympic Games),
Friedrich Vordemberge-Gildewart, Johannes Itten,
Hermann von Baravalle, Tómas Maldonado, and
others. One who enrolled in this studio course was
William S. Huff, an American architecture student
and, later on, an associate of Louis Kahn who went
to Germany on a Fulbright grant to attend the HfG
for the 1956/57 academic year. The course which
Huff took was taught by Maldonado and, upon re-
turning to the U.S., Huff proceeded to teach this
course (even part-time at the HfG during the period
of 1962–66) until his retirement (mainly as a member
of the architecture faculty of the Carnegie Institute
of Technology/Carnegie Mellon University [1960–72]
and the State University of New York at Buffalo
[1974–98]).

As a student of the HfG myself (1958–62), I had
heard of Huff, and had seen some of the works of his
students, but I had never met him in Ulm. I came
to realize the significance of Huff’s work later on,
when I read Douglas Hofstadter’s essay on Huff [7].
Around 2009 I learned that Huff had handed over
the various designs of his students to the archive of
HfG, and in the winter of 2013/14 the Ulm Museum
curated a show based on his legacy: Basic Design—
Von Ulm in die USA und zurück. Perhaps two years
earlier I had established mail contact, and in 2015 I
visited William Huff in Pittsburgh, where he lives.

Huff creatively extended the foci of Basic De-
sign as taught in Ulm, and he implicitly shifted
the limiting æsthetic boundaries of Concrete Art.
Basic Design, as seen by Huff, has a strong rule-
based orientation, and because of this feature it may
be approached via meta-design [4] and can be pro-
grammed. Huff’s students did not use the computer
to create their designs, but I found this feature attrac-
tive and, hence, started to program designs (using
METAPOST, and with the help of our son, Joshua
Aaron) which we had been playing with as students,
or patterns Huff’s students had come up with.

2 Concrete Art and Basic Design

Concrete Art evolved as an offshoot of several ver-
sions of abstract art such as Constuctivism (with
Kasimir Malevitch or El Lissitzky as exponents) and
De Stijl (with Theo van Doesburg, Piet Mondrian
or Georges Vantongerloo as members). A first mani-
festo of De Stijl, dating from 1918, lists nine points,
none of which bear a direct relation to stylistic ele-
ments of design: it is more a call for participation
and a statement regarding social conditions.

Concrete Art, on the other hand, with its in-
tersection of membership, is more specific than the

Marcel Herbst

TUGboat, Volume 38 (2017), No. 3 325

manifesto of De Stijl. The term art concret is said
to have been coined by Theo van Doesburg, and in
a new manifesto, published 1930 [1], six principles
were emphasized, four of which (namely the second
to the fifth) have direct bearing on the style (and on
the particular approach):

• the art work has to be completely pre-conceived
(L’œvre d’art doit être entièrement conçue et
formée avant son exécution);

• the art work must be constructed with elements
which only represent themselves ([. . .] doit être
[. . .] construit avec des éléments purement plas-
tiques [. . .] Un élément pictural [et le tableau]
n’a pas d’autre signification que ‘lui-même’);

• the picture and its elements ought to be simple;

• the technical execution [of the picture] ought to
be exact, anti-impressionistic.

This manifesto is, implicitly, a rejection of abstrac-
tion (as practiced, for instance, by Piet Mondrian).
It is to be seen in the context of a new focus on
machines and technology, shared by a range of artis-
tic movements (including Futurism), and in relation
to a culture which embraced architecture, product
design, graphic design, typography, and art, in the
sense of a Gesamtkunstwerk (synthesis of the arts).
This Neue Sachlichkeit (new objectivity, new sim-
plicity, functionalism), part also of the Bauhaus, was
not restricted only to the visual art and design but
affected philosophy as well [5].

After 1933, Concrete Art gained momentum
where it could (with people like Hans Arp, Sophie
Tæuber-Arp, Friedrich Vordemberge-Gildewart, Ri-
chard Paul Lohse, Max Bill, Verena Lœwensberg).
Many of the works of these artists are not conceived
to follow rules, but some are, particularly those of
Lohse and Bill, and the ones that are rule-based
can be programmed; even those that do not follow
specific rules may be “recreated” (or simulated) using
random variables.

Many of the rule-based works created by con-
crete artists are also problem-based and, hence, can
easily be used in the context of assignments in a Basic
Design course. The advantage of programmed design
is obvious: in the old days, students were given at
least one month to come up with a particular de-
sign; today, program generation can proceed much
faster, and the designer (programmer) can play with
parameters which may produce unexpected—unfore-
seen—results which cannot easily be pre-visualized.
In this way, one can work like Jackson Pollock (an
exponent of abstract expressionism), that is, inter-
actively. Pollock let paint drip onto the canvas to
inspect the intermediate result, and proceeded this

way until he was satisfied with the result. In similar
fashion, the programmer-designer can interactively
play with his program by adjusting parameters, un-
til the design is satisfactory. Because turn-around
times of design production become greatly reduced,
as we all know (and as font designers working with
METAFONT know), design itself, and the didactic
approach to design education, can be seen in a new
light.

Lastly, I should also mention that Basic Design,
approached from a meta-design angle, is not simply
computer generated art. Computer generated art
(making use, for instance, of fractals) normally lacks
the historical link that I have sketched above: it does
not follow the ascetic æsthetic of Concrete Art, it is
frequently rather baroque (or even tacky) in appear-
ance, and often lacks the implicit link to applications
(such as architecture or design).

3 Meta-design

Meta-design, so natural to TEXnicians or users of
TEX-related programs, is not frequently used in art
or design schools (speculation on why this is the case
would require another note). But meta-design was
somehow anticipated at the HfG in Ulm, in that
topics of operations research were part of the general
curriculum (taught by Horst Rittel who subsequently
moved to Berkeley). We were introduced to graph
theory on the basis of Dénes König [9], and later
I acquired the text of Claude Berge [2]. I became
conscious of the four-color problem, of the problem
on subdivision of a square with squares (of unequal
size), and the famous problem of Königsberg which
Leonhard Euler had formulated. For architecture
students, graph theory was seen as a natural ally
because geographic maps or floor plans could be
translated, uniquely, into graphs; but the converse, so
important in practical applications, was not that easy
to find—that is, given a graph (of some relations),
how to produce an associated floor plan.

Meta-design of Basic Design patterns, as I men-
tioned in the Introduction, is a new avocation of
mine, spawned by old age (e.g. instead of solving
crossword puzzles). I am a lover of Concrete Art,
charmed by its frugal æsthetic, and I was taken aback
by its seeming stagnation during the past half cen-
tury. When I realized, after being exposed to Huff’s
design on the basis of the note written by Hofstadter,
that there is a lot of life left in Concrete Art, and af-
ter I had decided to use METAPOST to again occupy
myself with Basic Design, I spent occasional sessions
on this theme, along with my usual work in the field
of higher education management (or the writing of
essays on cultural matters).

Art Concret, Basic Design and meta-design

326 TUGboat, Volume 38 (2017), No. 3

Donald Knuth’s book on METAFONT [8] I have
had on my shelves for some time, but I cannot claim
to have studied it: I had no reason, no motive, to
absorb it and was concerned with other tasks. How-
ever, I had bought and perused the tome because I
wanted to know what it is about. I also acquired,
early on, a technical report by Neenie Billawala [3]
where she introduces her Pandora font and demon-
strates visually the inherent power of METAFONT to
generate variations (of fonts or patterns).

Basic Design, in its meta-design version, could
not only be used in the propædeutic courses of design
schools; it could also be used in high schools (in a
cross-disciplinary way spanning mathematics/pro-
gramming and art education).

4 Examples of Concrete Art

A few examples of Concrete Art should be introduced
here to show the uninitiated what Concrete Art is
about (and then I shall proceed to examples of Basic
Design); I will show three designs. The first is a
rendition of Max Bill that he composed for an exhi-
bition poster (Fig. 1). It shows the ingredients of the
classic Concrete Art: simple shapes, and basic colors.
The second is a composition of Richard Paul Lohse,
using rotation and progression as design principles
(shown in black and white here; see Fig. 2). And
the third is a special one, by Josef Albers, a com-
mentary on perspective and architectural isometric
drawings (Fig. 3). Albers had this one engraved in
black Formica in the wood shop of the Hochschule
für Gestaltung that was run by Paul Hildinger, and
it is now in the possession of Hildinger’s son Peter.
There are a range of such engravings on the market.

Figure 1: Max Bill, composition for a poster (1967)

5 Examples of Basic Design

Basic Design, because of its didactic focus and be-
cause it is (generally) rule-based, is naturally more
structured than Concrete Art. Its focus suggests that
Basic Design starts out with “assignments” and deals
with various problems that affect perception, i.e. vis-
ual comprehension: foreground-background, color
equivalences, moiré, symmetry (various), repetitions,

Figure 2: Richard Paul Lohse, “Bewegungen um ein
Zentrum” (1982)

Figure 3: Josef Albers, “Structural Constellation”
(circa 1955)

rotations, transformations, et cetera, or combinations
thereof.

One of the first patterns that I had created
was a simple dot pattern (Fig. 4). The code is the
following:

beginfig(1)

picture dotimage;

dotimage := image(

u:=15pt;

for i=1 upto 18:

for j=1 upto 12:

pickup pencircle scaled ((-1**(i+j))+1);

draw fullcircle scaled (0.8*u) shifted

((i*u)+((-1**j)),(j*u)+((-1**i)));

draw fullcircle scaled (0.8*u) shifted

((i*u)+((-1**j)),(j*u)+((-1**i)));

endfor;

endfor;

);

draw dotimage scaled 1;

endfig;

end

On the basis of that first dot pattern I created
others (e.g. Fig. 5).

I’ll now show a few patterns which were created
during the various design studios of Basic Design,

Marcel Herbst

TUGboat, Volume 38 (2017), No. 3 327

Figure 4: Simple dot pattern

Figure 5: Dot pattern

e.g. the well-known spiral depicted in Fig. 6; or one
of the mathematical curves that Tómas Maldonado
(at the HfG) loved to use in his assignments (see
Fig. 7— I show it here in a color version). From
Huff’s studio I present two drawings: a refined simple
design of two linked squares (Fig. 8), and one of the
transformations which Hofstadter had liked so much
(Fig. 9) and which prompted me to remark as above,
after seeing these designs, “that there is a lot of life
left in Concrete Art”.

Finally, I shall include a random pattern de-
signed to emulate the designs of Hans Arp (Fig. 10).
The code for that picture is the following:

beginfig(1);

picture dotimage;

dotimage := image(

u:=24pt;

pair p,q,r,s,a,b,c,d;

for i = 1 upto 1:

p := (uniformdeviate 200,

uniformdeviate -200);

q := (uniformdeviate 200,

uniformdeviate -200);

r := (uniformdeviate 200,

uniformdeviate -200);

Figure 6: Transformation

Figure 7: Hilbert curve (programmed by [6], with the
exception of the color gradient)

s := (uniformdeviate 200,

uniformdeviate -200);

a := (uniformdeviate 300,

uniformdeviate 300);

b := (uniformdeviate 300,

uniformdeviate 300);

c := (uniformdeviate 300,

uniformdeviate 300);

d := (uniformdeviate 300,

uniformdeviate 300);

fill p..q..r..s..cycle withpen pencircle;

fill a..b..c..d..cycle withpen pencircle;

draw a..q..c..s..cycle withpen pencircle;

endfor;

);

draw dotimage scaled 1;

endfig;

end

Art Concret, Basic Design and meta-design

328 TUGboat, Volume 38 (2017), No. 3

Figure 8: Linked squares

Figure 9: Transformation

References

[1] Art Concret. Numéro d’introduction. Paris,
April 1930.
https://monoskop.org/Art_concret

[2] Claude Berge. Théorie des graphes et des
applications. Dunod, 1958.

[3] Neenie Billawala. Metamarks: Preliminary
studies for a Pandora’s Box of Shapes.
Technical Report STAN-CS-89-1256,
Computer Science Department, Stanford
University, 1989.

[4] Frederick P. Brooks. The Design of
Design: Essay from a Computer Scientist.
Addison-Wesley, 2010.

Figure 10: After Hans Arp

[5] Rudolf Carnap. Die Überwindung der
Metaphysik durch logische Analyse.
Erkenntnis, 2:219–241, 1931.

[6] J.G. Griffiths. Table-driven algorithms
for generating space-filling curves.
Computer-Aided Design, 17(1):37–41,
January-February 1985.

[7] Douglas R. Hofstadter. Parquet Deformations:
A Subtle, Intricate Art Form. In
Metamathematical Themas: Questing
for the Essence of Mind and Pattern,
chapter 10, pages 191–212. Basic Books, 1985.

[8] Donald E. Knuth. The METAFONTbook,
volume C of Computers & Typesetting.
Addison-Wesley, 1986.

[9] Dénes König. Theorie der endlichen und
unendlichen Graphen: kombinatorische
Topologie der Streckenkomplexe. Chelsea
Publishing Company, 1950.

[10] René Spitz. The Ulm School of Design: A View
Behind the Foreground. Axel Menges, 2002.

⋄ Marcel Herbst
Ostbühlstrasse 55
CH-8038 Zürich
Switzerland
herbst (at) 4mat dot ch

Marcel Herbst

TUGboat, Volume 38 (2017), No. 3 329

The current state of the PSTricks project,
part II

Herbert Voß

Abstract

PSTricks is an abbreviation for PostScript Tricks,
using the enormous graphical capabilities of the pro-
gramming language PostScript, old as it may be. It
is a so-called page description language, created in
1984 by Adobe Systems. In [4] we gave a report of
what was possible with the different packages at that
time. With this article we show what’s new in the
last seven years.

1 From PSTricks to PDF

The traditional route to create a PDF document with
PostScript specials is still latex → dvips → ps2pdf.
This sequence of commands can be put into a script
or defined as a build-command for a GUI to make it
only one mouse click. However, if one wants to use
pdfLATEX or X ELATEX instead, this can also be done.

1.1 Using pdfLATEX

The package auto-pst-pdf1 from Will Robertson
works in the same way as pst-pdf2, but doesn’t
need a script or the usual four runs by the user.
Everything is done in one pdflatex run; this re-
quires the shell-escape option to be enabled, to
allow the running of external programs from within
pdflatex. MiKTEX users have to enable the option
enable-write18. This shell-escape option can be
enabled in any GUI, for example TEXstudio:

It is available from the GUI panel via Options →
Configure TeXstudio → Commands.

auto-pst-pdf converts all pspicture environ-
ments into single images which replace the environ-
ment on the fly, in a second run. If there is no
pspicture environment then the PSTricks-related
code must be enclosed in a postscript environment.

For example: the poker card

A
♠

♠
A

♠

internally uses
the pspicture environment. With the postscript

environment it will be converted by auto-pst-pdf,
otherwise it will be missing in the PDF output. Here
is the code for the above:

1 ctan.org/pkg/auto-pst-pdf
2 ctan.org/pkg/pst-pdf

... For example: the poker card

\begin{postscript}

\psset{unit=0.5}\crdAs

\end{postscript}

internally uses ...

The postscript environment can be used as
its own paragraph or within a line.

1.2 Using X ELATEX

X ELATEX always creates an .xdv (extended DVI) file,
which then is automatically converted into a PDF
document. However, there are some cases where
the program xdvipdfmx cannot create the correct
PDF, e.g. nearly all examples from the old package
pst-light3d.

1.3 LuaLATEX

LuaLATEX creates PDF directly, like pdfTEX. There-
fore the first LuaLATEX run needs to specify the op-
tion --output-format=dvi, which is not handled by
the package auto-pst-pdf. However, using the pack-
age dtk-extern from https://ctan.org/pkg/dtk

one can create any kind of TEX document inside a
LuaLATEX document.

2 Old packages with new macros

2.1 pst-barcode

This package has existed for a long time, but now
supports dozens of additional barcodes. Please refer
to the documentation for the complete list. Here’s
an example of usage:

\begin{pspicture}(2in,0.5in)

\psbarcode{(00)030123456789012340|(02)130

12345678909(37)24(10)1234567ABCDEFG}%

{ccversion=c}{gs1-128composite}

\end{pspicture}

2.2 pst-bezier — Bézier curve with
weighted points

A mass point is a weighted point (P ;ω) with ω 6= 0,

or a vector
(−→
P ; 0

)

with a weight equal to 0. A

generic mass point is noted (P ;ω). The package
pst-bezier has a new macro \psRQBCmasse, which
allows drawing a Bézier curve with such weighted
points.

The current state of the PSTricks project, part II

330 TUGboat, Volume 38 (2017), No. 3

Conic Three weighted points Points and vectors

Parabola (P0; 1), (P1; ω)
(

P2; ω
2
)

(P0; 1),
(

−→

P1; 0
) (

−→

P2; 0
)

Ellipse (P0; 1), (P1; ω1), (P2; ω2), ω2 > ω
2
1 (P0; 1),

(

−→

P1; 0
)

(P2; 1)

Hyperbola (P0; 1), (P1; ω1) (P2; ω2), ω2 < ω
2
1 (P0; 1),

(

−→

P1; 0
)

(P2; −1)

(

−→

P0; 0
)

, (P1; 1) and
(

−→

P2; 0
)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

b

−→
P0

P1

−→
P2

\begin{pspicture}[showgrid](-3,-3.4)(3,3)

\psclip{\psframe(-3,-3)(3,3)}

\psRQBCmasse[linecolor=red,

autoTrace](1,1)(0,0)(-1,1){0,1,0}

\uput[r](P0){$\overrightarrow{P_0}$}

\uput[r](0,-0.5){P_1}

\uput[r](P2){$\overrightarrow{P_2}$}

\psRQBCmasse[linecolor=orange,

autoTrace=false](1,1)(0,0)(-1,1){0,-1,0}

\endpsclip

\end{pspicture}

3 The new packages

3.1 pst-am

pst-am allows the simulation of modulated and de-
modulated amplitude of radio waves. You can choose
several possible parameters and plot the following
curves:

• modulated signals;
• wave carrier;
• signal modulation;
• signal recovering;
• signal demodulation.

X

AD6331

3
7

up

um

us

Modulation-Demodulation

timeDiv:5 · 10−4 s/div curve 2:0.5V/div
curve 1:1V/div

Modulation-Demodulation

timeDiv:5 · 10−4 s/div curve 2:1V/div
curve 1:1V/div

Modulation-Demodulation

timeDiv:2 · 10−4 s/div curve 2:1V/div
curve 1:1V/div

\def\noeud(#1){\qdisk(#1){1.5pt}}

\begin{pspicture}(-5,-1)(5,7)

\psline(-5,0)(5,0)\psline(-5,5)(-1,5)

\psline(-2,4)(-1,4)

\pnode(-5,5){E2}\noeud(E2)

\pnode(-2,4){E1}\noeud(E1)

\psline[arrowinset=0,arrowscale=2](1,4.5)(3,4.5)

\psframe[linewidth=1.5\pslinewidth](-1,3.5)(1,5.5)

\rput(0,4.5){\Huge\sffamily X}

\uput[270](0,5.5){\sffamily AD633}

\pnode(-5,0){M1}\pnode(-2,0){M2}

\pnode(0,0){O}\noeud(O)\noeud(M1)\noeud(M2)

\rput(O){\masse}

\uput[0](-1,5){1}

\uput[0](-1,4){3}

\uput[180](1,4.5){7}

\psset{linewidth=0.5\pslinewidth}

\psline{->}(-5,0.1)(-5,4.9)

\uput[0](-5,2.5){u_p}

\psline{->}(-2,0.1)(-2,3.9)

\uput[0](-2,2){u_m}

\psline{->}(2,0.1)(2,4.4)

\uput[0](2,2.25){u_s}

\psset[pst-am]{values=false}

\uput[0](3,4.5){\psscalebox{0.2}{\psAM[SignalModule,

enveloppe,frequencePorteuse=1e4,

voltDivY2=0.5,timeDiv=5e-4,linewidth=2\pslinewidth]}}

\uput[l](-2,4){\psscalebox{0.2}{\psAM[SignalModulant,

timeDiv=5e-4,linewidth=5\pslinewidth]}}

\uput[l](-5,5){\psscalebox{0.2}{\psAM[SignalPorteuse,

timeDiv=2e-4, frequencePorteuse=1e4,

linewidth=5\pslinewidth]}}

\end{pspicture}

Modulation-Demodulation

timeDiv:5 · 10−4 s/div curve 2:0.5V/div
curve 1:1V/div

\psAM[SignalModule,enveloppe,frequencePorteuse=1e4,

voltDivY2=0.5,timeDiv=5e-4]

3.2 pst-cie

Using data (CIE XYZ 1931 and 1964) from the Inter-
national Commission on Illumination (Commission
internationale de l’éclairage) the package pst-cie

proposes to represent the color table and/or the chro-
maticity diagram for different color spaces. The color
spaces available are: Adobe, CIE, ColorMatch, NTSC,
Pal-Secam, ProPhoto, SMPTE and sRGB.

It provides just one macro, which supports sev-
eral optional arguments:
\psChromaticityDiagram[〈options〉]

Herbert Voß

TUGboat, Volume 38 (2017), No. 3 331

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

x

460

470

480

490

500

510
520

530

540

550

560

570

580

590
600

610
620630

380

680

Colorspace Adobe

\begin{pspicture}(-1,-1)(8.5,9.5)

\psChromaticityDiagram[datas=CIE1964,

ColorSpace=Adobe,contrast=0.1,

bgcolor=black!30]

\rput(5.5,8){\footnotesize Colorspace Adobe}

\end{pspicture}

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

x

460
470

480

490

500

510

520
530

540

550

560

570

580

590

600
610

620
630

380

680

\begin{pspicture}(-1,-1)(8.5,9.5)

\psChromaticityDiagram[ColorSpace=Pal-Secam,

bgcolor=yellow!100!black!20,

textcolor=black!70]

\end{pspicture}

3.3 pst-electricfield

Equipotential surfaces and electric field lines can be
drawn by using the package pst-func and the com-
mand \psplotImp[options](x1,y1)(x2,y2). The
Gauss theorem states that the electric flux across a
closed surface S, defined by

ψ =
‹

S

~D · ~undS = Q (1)

is equal to the real charge Q inside S. As a conse-
quence, in places with no charge (Q = 0), the electric
flux is a conserved quantity.

\begin{pspicture*}(-6,-6)(6,6)

\psframe*[linecolor=lightgray!50](-6,-6)(6,6)

%\psgrid[subgriddiv=0,gridcolor=gray,griddots=10]

\psElectricfield[Q={[-1 -2 2][1 2 2]

[-1 2 -2][1 -2 -2]},linecolor=red]

\psEquipotential[Q={[-1 -2 2][1 2 2]

[-1 2 -2][1 -2 -2]},

linecolor=blue](-6.1,-6.1)(6.1,6.1)

\psEquipotential[Q={[-1 -2 2][1 2 2]

[-1 2 -2][1 -2 -2]},linecolor=green,

linewidth=2\pslinewidth,

Vmax=0,Vmin=0](-6.1,-6.1)(6.1,6.1)

\end{pspicture*}

−

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

\begin{pspicture*}(-10,-5)(6,5)

\psframe*[linecolor=lightgray!40](-10,-5)(6,5)

\psgrid[subgriddiv=0,gridcolor=lightgray,griddots=10]

\psElectricfield[

Q={[600 -60 0 false][-4 0 0] },

N=50,points=500,runit=0.8]

\psEquipotential[

Q={[600 -60 0 false][-4 0 0]},

linecolor=blue,Vmax=100,Vmin=50,

stepV=2](-10,-5)(6,5)

\psframe*(-10,-5)(-9.5,5)

\rput(0,0){\textcolor{white}{\large$-$}}

\multido{\rA=4.75+-0.5}{20}{%

\rput(-9.75,\rA){\textcolor{white}{\large$+$}}}

\end{pspicture*}

The current state of the PSTricks project, part II

332 TUGboat, Volume 38 (2017), No. 3

3.4 pst-fit

Curve fitting is the process of constructing a curve,
or mathematical function, that has the best fit to a
series of data points, possibly subject to constraints.
The package pst-fit has many optional arguments
to help achieve the desired interpolated curve. The
following example shows six points of the polynomial

−109 + 294.53x− 142.94x2 + 57.4x3 − 7.26x4

which are marked in the example as dots. The red
and blue lines are two different solutions for a polyno-
mial of 4th order. The internally calculated equations
are plotted.

0

−200

−400

−600

200

400

600

1 2 3 4 5 6 7 8 9

b

b

b

b

b

b

y =500.0-689.4x+359.59x2-43.88x3-0.25x4

R
2
 = 0.33

y =-114.81+305.15x-148.92x2+58.7x3-7.35x4

R
2
 = 1.0

%Poly(-7.26*x^4+57.4*x^3-142.94*x^2+294.53*x-109)

\def\poly{1 93 2 251 3 450 4 597 5 428 6 -498}

\begin{pspicture}(-0.5,-6.5)(13,7.5)

\psset{yunit=0.0075}

\psaxes[arrows=->,Dx=1,Dy=200,

labelFontSize=\scriptstyle,

xsubticks=1,ysubticks=1](0,0)(0,-600)(10,700)

\listplot[plotstyle=dots]{\poly}

\listplot[valuewidth=20,

decimals=2,EqPos=1 -200,

plotstyle=GLLSR,PolyOrder=4,

plotpoints=400,Yint=500,

linecolor=blue]{\poly}

\listplot[linecolor=red,

decimals=2,EqPos=1 -400,

plotstyle=GLLSR,PolyOrder=4,

plotpoints=400]{\poly}

\end{pspicture}

3.5 pst-func

This package has some new macros for distributions,
especially binomial distributions.

0,05

0,10

0,15

0,20

0,25

0,30

0 1 2 3 4 5 6 7 8 9 10 z

P 10
0,8(Z = z)
P 10

0,7(Z = z)n = 10

\begin{pspicture}(-.75,-1.8)(13.2,4.7)%

\psset{yunit=12cm}%

\psset{plotpoints=500,arrowscale=1.3,

arrowinset=0.05,arrowlength=1.9,comma}

\psaxes[labelFontSize=\scriptstyle,xticksize=0 0,

yticksize=0 12,tickcolor=gray!50,Dy=0.05,dy=0.05

]{-}(0,0)(-0.9,0)(10.8,0.34)

\uput[-90](11.9,0){z}

\uput[0](0,0.36){$P_{0,8}^{10}(Z=z)$}

\uput[0](0,0.32){$P_{0,7}^{10}(Z=z)$}

\rput(-0.05,0){\psBinomialC[linecolor=Green,

fillstyle=solid,fillcolor=gray,opacity=0.25,

plotstyle=curve,linestyle=dashed]{10}{0.8}}

\rput(0.05,0){\psBinomialC[linecolor=cyan,

fillstyle=solid,fillcolor=cyan,opacity=0.25,

plotstyle=curve,linestyle=dashed]{10}{0.7}%

\psBinomial[markZeros,linecolor=cyan,

fillstyle=solid,fillcolor=cyan,barwidth=0.2,

opacity=0.85]{0,8,10}{0.7}

\psBinomial[markZeros,linecolor=magenta,

fillstyle=solid,fillcolor=magenta,barwidth=0.2,

opacity=0.85]{9,10,10}{0.7}}

\rput(-0.05,0){%

\psBinomialC[linecolor=Green,fillstyle=solid,

fillcolor=gray,opacity=0.25,plotstyle=curve,

linestyle=dashed]{10}{0.8}

\psBinomial[markZeros,linecolor=DeepSkyBlue4,

fillstyle=solid,fillcolor=DeepSkyBlue4,

barwidth=0.2,opacity=0.85]{0,8,10}{0.8}

\psBinomial[markZeros,linecolor=BrickRed,

fillstyle=solid,fillcolor=BrickRed,barwidth=0.2,

opacity=0.85]{9,10,10}{0.8}}

\psaxes[labels=none,xticksize=-2pt 0,yticksize=-2pt 0,

tickcolor=black!70,Dy=0.05,dy=0.05\psyunit,Dx=1,

dx=1\psxunit]{->}(0,0)(-0.9,0)(12,0.35)

\rput(5,0.33){\psframebox[fillstyle=solid,

fillcolor=orange!30,

linestyle=none]{$n=10$}}

\end{pspicture}

Herbert Voß

TUGboat, Volume 38 (2017), No. 3 333

3.6 pst-geo

In the past the user had to load four different pack-
ages for the different geographical macros. After
rearranging the code, there is now only one package:
pst-geo with only one .sty file and one .pro file
(PostScript code). The Sanson-Flamsted projection
of the world is a sinusoidal projection which is a
pseudo-cylindrical equal area-map:

\begin{pspicture}(-5,-5)(8,5)

\WorldMap[type=4]% Sanson-Flamsted

\end{pspicture}

3.7 pst-geometrictools

For mathematical worksheets in schools this package
provides four macros for the tools which are used for
geometrical constructions.

01234567 1 2 3 4 5 6 7

1

2

3

1

2

3

1
0

2
0

30

40

50

60

70
80 90 100

110
120

130

14
0

15
0

1
6
0

1
7
0

1
7
0

1
6
0

150

140

130

120
110

100 90 80
70

60

50

40

30

2
0

1
0

Ευκλιδ

made in NES

012345678

\begin{pspicture*}(-17,-17)(17,17)

\psProtractor{0}(0,0)% origin of the protractor

\psRuler{0}(0,0)% origin of the ruler

\psPencil{-30}(6,0)% origin of the pencil

\psCompass{3}(2,0)% origin of the compass

\end{pspicture*}

3.8 pst-intersec

This package calculates the intersection points of
Bézier curves and/or arbitrary PostScript paths.

0 1 2 3

0

1

2

b
b

\begin{pspicture}(3,2)

\pssavepath[linecolor=DOrange]%

{MyPath}{\pscurve(0,2)(0,0.5)(3,1)}

\pssavebezier{MyBez}(0,0)(0,1)(1,2)(3,2)(1,0)(3,0)

\psintersect[showpoints]{MyPath}{MyBez}

\end{pspicture}

bbbb
bb

b
b

b

b
b

1
2

3
4 5

6 7 8 9 10 11

\begin{pspicture}(10,4.4)

\pssavepath{A}{%

\psplot[plotpoints=200]%

{0}{10}{x 180 mul sin 1 add 2 mul}}

\pssavepath{B}{%

\psplot[plotpoints=50]%

{0}{10}{2 x neg 0.5 mul exp 4 mul}}

\psintersect[name=C, showpoints]{A}{B}

\multido{\i=1+1}{5}{\uput[210](C\i){\i}}

\multido{\i=6+2,\ii=7+2}{3}{%

\uput[225](C\i){\footnotesize\i}

\uput[-45](C\ii){\footnotesize\ii}}

\end{pspicture}

3.9 pst-magneticfield

This package is similar to pst-electricfield. It
supports the default two-dimensional magnetic field,
density plots and a three-dimensional view of the
field.

[N=1,R=2,nS=0]

Helmholtz

[N=2,R=2,L=2,PasS=0.003,nS=2]

\psset{unit=0.5}

\begin{pspicture*}[showgrid](-7,-8)(7,8)

\psmagneticfield[linecolor={[HTML]{006633}},

The current state of the PSTricks project, part II

334 TUGboat, Volume 38 (2017), No. 3

N=1,R=2,nS=0](-7,-8)(7,8)

\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)

\rput(0,-7.5){\footnotesize[N=1,R=2,nS=0]}

\end{pspicture*}

\begin{pspicture*}[showgrid](-7,-8)(7,8)

\psmagneticfield[linecolor={[HTML]{006633}},

N=2,R=2,L=2,PasS=0.003,nS=2](-7,-8)(7,8)

\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8)

\rput(0,7.5){\footnotesize Helmholtz}

\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)

\rput(0,-7.5){\tiny[N=2,R=2,L=2,PasS=0.003,nS=2]}

\end{pspicture*}

\begin{pspicture}(-6,-4)(6,4)

\psmagneticfield[N=3,R=2,L=2,

StreamDensityPlot](-6,-4)(6,4)

\end{pspicture}

3.10 pst-ode

This package integrates differential equations using
the Runge-Kutta-Fehlberg (RKF45) method with
automatic step size control. Thus, the precision
of the result does not depend on the number of
plot points specified, as would be the case with the
classical Runge-Kutta (RK4) method.

\begin{pspicture}(-8,-4)(6,12)

\pstVerb{ /alpha 10 def /beta 28 def

/gamma 8 3 div def }%

\pstODEsolve[algebraic]{lorenzXYZ}%

{0 1 2}{0}{25}{2501}{10 10 30}%

{ alpha*(x[1]-x[0]) |% x

x[0]*(beta-x[2]) - x[1] |% y

x[0]*x[1] - gamma*x[2] % z

}

\psset{unit=0.17cm,Alpha=160,Beta=15}

\listplotThreeD{lorenzXYZ}% plot the ode-data

\psset{unit=0.425cm,linestyle=dashed}

\pstThreeDNode(0,0,0){O}\pstThreeDNode(0,0,5){Z}

\pstThreeDNode(5,0,0){X}\pstThreeDNode(0,5,0){Y}

\pstThreeDNode(-10,-10,0){A}\pstThreeDNode(-10,-10,20){B}

\pstThreeDNode(-10,10,20){C}\pstThreeDNode(-10,10,0){D}

\pstThreeDNode(10,-10,0){E}\pstThreeDNode(10,-10,20){F}

\pstThreeDNode(10,10,20){G}\pstThreeDNode(10,10,0){H}

\pspolygon(A)(B)(C)(D)\pspolygon(E)(F)(G)(H)

\psline(A)(E)\psline(B)(F)\psline(D)(H)\psline(C)(G)

\psset{linestyle=solid,linecolor=red}

\psline{->}(O)(X)\psline{->}(O)(Y)\psline{->}(O)(Z)

\end{pspicture}

3.11 pst-perspective

\begin{pspicture}(0.5,-0.5)(11.5,8.5)

\begin{psclip}%

{\psframe[linestyle=none](0.25,-0.25)(11.35,8.35)}

\psgrid[subgriddiv=2,gridlabels=0,gridwidth=0.7pt,

gridcolor=black!70,subgridwidth=0.6pt,

subgridcolor=black!40](-1,-1)(13,10)

\end{psclip}

{\psset{translineA=true,translineB=true,

linestyle=dashed,dash=5pt 3pt,linecolor=blue,

linejoin=2}

%------ create octogon -------------

\pstransTS(3,0){A}{A’}\pstransTS(7,0){B}{B’}

\pstransTS(9,2){C}{C’}\pstransTS(9,6){D}{D’}

\pstransTS(7,8){E}{E’}\pstransTS(3,8){F}{F’}

\pstransTS(1,6){G}{G’}\pstransTS(1,2){H}{H’}}

\pspolygon[fillstyle=solid,fillcolor=cyan!30,

opacity=0.4, linecolor=blue]%

(A’)(B’)(C’)(D’)(E’)(F’)(G’)(H’)

\pspolygon[fillstyle=solid,fillcolor=yellow!40,

opacity=0.2,linewidth=0.9pt,

linecolor=red](A)(B)(C)(D)(E)(F)(G)(H)

\pcline[linewidth=1.3pt](0,0|O)(11,0|O)

\end{pspicture}

Herbert Voß

TUGboat, Volume 38 (2017), No. 3 335

3.12 pst-poker

This is mostly a package for fun: it draws single or a
group of poker cards. It can be displayed inline, like
this: A

♣
K
r

Q
q

J
♠

10
♣ or displayed as big cards:

A
♠

♠
A

♠

10
r

r
10

r

r

r

r

r

r

r

r

r

r

7
q

q
7

q

q

q

q

q

q

q

7
♣

♣
7

♣

♣

♣

♣

♣

♣

♣

Q
q

q

Q

q

q

\crdAs

\psset{unit=1.1}\crdtenh \psset{unit=1.2}\crdsevd

\psset{unit=1.3}\crdsevc \psset{unit=1.4}\crdQd

3.13 pst-pulley

This package draws a nice view of a pulley, which
may be of help to physics teachers in schools. There
is only one macro which takes up to four optional
parameters: N=1...6 gives the number of wheels of
the pulley; M=... gives the mass of the weight in kg;
h=... gives the height of the weight in cm from the
bottom.

60kg

FZ = 150 N

∆s = 80,0 cm

60kg

FS = 150 N

FG = 600 N

∆h = 20 cm

\pspulleys[pulleyGrid=false,N=4,M=60,h=20]

3.14 pst-rputover

The macro \ncput* places an object at the middle of
two given nodes. It is a general method to mark lines.
With a background color, it doesn’t look especially
good, as can be seen in the left example with the
default behaviour. The package pst-rputover has
the same effect but without using its own background
color.

b

b

α

b

b

α

\begin{pspicture}(2,2)

\psframe*[linecolor=blue!40](0,0)(2,2)

\pscurve*[linecolor=red!30](0,2)(1,1)(2,2)

\pnode(.5,0){A}\psdot[linecolor=red](A)

\pnode(1.5,2){B}\psdot[linecolor=green](B)

\pcline(A)(B)\ncput*{α}

\end{pspicture}\quad

\begin{pspicture}(2,2)

\psframe*[linecolor=blue!40](0,0)(2,2)

\pscurve*[linecolor=red!30](0,2)(1,1)(2,2)

\pnode(.5,0){A}\psdot[linecolor=red](A)

\pnode(1.5,2){B}\psdot[linecolor=green](B)

\pclineover(A)(B){α}

\end{pspicture}

3.15 pst-ruban

This package draws ribbons (instead of lines) on three
dimensional objects. It is an extension of the package
pst-solides3d allowing you to draw ribbons on
certain solids of revolution: cylinder, torus, sphere,
paraboloid and cone. The width of the ribbon, the
number of turns, the color of the external face as well
as that of the inner face can be optionally specified.

\psset{viewpoint=20 20 70 rtp2xyz,Decran=20,

lightsrc=viewpoint,

resolution=360,unit=0.6}

\begin{pspicture}(-5,-5)(5,5)

\psSpiralRing[incolor=yellow!50,r1=4,r0=1,hue=0 1]

\end{pspicture}

3.16 pst-shell

Geometric modeling of shellfish was carried out by
Michael B. Cortie. In the “Digital Seashells” docu-
ment he gives the parametric equations which are a

The current state of the PSTricks project, part II

336 TUGboat, Volume 38 (2017), No. 3

function of 14 parameters, in order to allow modeling
of a very large number of shells (researchgate.net/

publication/223141547_Digital_seashells).

\begin{pspicture}(-3,-7)(3,0)

\psset{lightsrc=viewpoint,

viewpoint=800 -90 20 rtp2xyz,Decran=50}

\psShell[style=Escalaria,base=0 -7200 -180 180,

ngrid=720 30,incolor=yellow!40,

fillcolor=yellow!20!blue!10,linewidth=0.01pt]

\end{pspicture}

3.17 pst-solarsystem

Position of the visible planets, projected on the plane
of the ecliptic. The following example shows the solar
system on Don Knuth’s next magic birthday, at high
noon.

10/01/2018

γ
0 o

90 o

180 o

270 o

Mercure

Vénus

TerreMars
Jupiter

Saturne

\SolarSystem[Day=10,Month=01,Year=2018,Hour=12,

Minute=0,Second=0,viewpoint=1 -1 2,solarValues=false]

3.18 pst-spinner

This package is just for fun. A fidget spinner is a
type of stress-relieving toy.

\begin{pspicture}(-4,-4)(5,4)

\psFidgetSpinner[fillcolor=cyan!10,linewidth=0.05,

mask=false](0,0)

\end{pspicture}

3.19 pst-spirograph

A spirograph is a geometric drawing toy that pro-
duces mathematical roulette curves that are techni-
cally known as hypotrochoids and epitrochoids. It is
possible to draw inner and outer curves.

\begin{pspicture}(-7,-7)(7,7)

\psset{unit=0.5}

\psSpirograph[thetamax=-1800,Z1=108,Z2=15,

m=0.2,linewidth=0.025,ap=10,

fillstyle=solid,polarangle=54,

linecolor=blue,holenumber=0,

opacity=0.75]

\end{pspicture}

Herbert Voß

TUGboat, Volume 38 (2017), No. 3 337

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

\begin{pspicture}[showgrid=top](-7,-7)(7,7)

\psframe*[linecolor=gray!20](-7,-7)(7,7)

\psSpirograph[thetamax=1800,Z1=36,Z2=30,m=0.15,

linewidth=0.025,ap=20,inner=false,

fillstyle=solid,polarangle=150,

linecolor=blue,holenumber=4,opacity=0.8]

\end{pspicture}

3.20 pst-vehicle

This package provides slipping/rolling vehicles on
curves of any kind of mathematical function, espe-
cially for animations in math and physics.

0 1 2 3 4

-1

0

1

2

3

4

m
< 0

b

\def\FuncA{(x-3)*sin(0.2*(x-1))+1}

\begin{pspicture}(0,-1)(4,4)

\psframe*[linecolor=yellow!10](0,-1)(4,4)

\psgrid[style=quadrillage](0,-1)(4,4)

\psplot{0}{4}{\FuncA}

\psVehicle[vehicle=\Segway,

style=segway]{0.25}{1.2}{\FuncA}

\end{pspicture}

0 1 2 3 4

-1

0

1

2

3

m ≥ 0

bb

\def\FuncA{-0.25*(x-2)^2+0.5}

\begin{pspicture}(0,-1)(4,3)

\psframe*[linecolor=yellow!10](0,-1)(4,3)

\psgrid[style=quadrillage](0,-1)(4,3)

\psplot[yMinValue=0]{0}{4}{\FuncA}

\psVehicle[vehicle=\HighWheeler]%

{0.25}{1.2}{\FuncA}

\end{pspicture}

4 Summary

The Turing-complete PostScript programming lan-
guage is old in computer terms, but provides many
nice and useful graphical features. More information
and many examples of PSTricks can be found on the
following websites:

• http://pstricks.tug.org

• http://pstricks.blogspot.de

References

[1] Bill Casselman. Mathematical Illustrations —
A manual of geometry and PostScript.
Cambridge University Press, Cambridge,
first edition, 2005.

[2] Denis Girou. Présentation de PSTricks.
Cahier GUTenberg, 16:21–70, February 1994.

[3] Frank Mittelbach, Michel Goossens,
Sebastian Rahtz, Denis Roegel, and Herbert
Voß. The LATEX Graphics Companion.
Addison-Wesley, Boston, 2nd edition, 2006.

[4] Herbert Voß. The current state of the
PSTricks project. TUGboat, 31(1):36–49, 2010.
tug.org/TUGboat/tb31-1/tb97voss.pdf.

[5] Timothy Van Zandt and Denis Girou. Inside
PSTricks. TUGboat, 15(3):239–248, September
1994. tug.org/TUGboat/tb15-3/tb44tvz.pdf.

⋄ Herbert Voß
Herbert.Voss (at) fu-berlin dot de

The current state of the PSTricks project, part II

338 TUGboat, Volume 38 (2017), No. 3

Glisterings

Peter Wilson

Our stars must glister with new fire, or be
To daie extinct;

The Two Noble Kinsmen, John

Fletcher (and William Shakespeare?)

The aim of this column has been (see last sections) to
provide odd hints or small pieces of code that might
help in solving a problem or two while hopefully not
making things worse through any errors of mine.

And scribbled lines like fallen hopes
On backs of tattered envelopes.

Instead of a Poet, Francis Hope

1 Reading lines

The \input macro reads a complete file into TEX as
an atomic action. This was not what Lars Madsen
needed when he posted to ctt wanting to be able to
read a file that consisted of blocks of lines of text,
where a block was ended by a blank line, and then
do something with the last non-blank of the block(s).
The impetus for the following was Dan Luecking’s
posting [6], which was one of several responses.

The basis of a solution to Lars’ problem is the
TEX construct

\read 〈stream〉 to \mymacro

which reads one line from the file associated with
〈stream〉 and defines \mymacro to be the contents of
that line.

Let’s start with a file of the kind that Lars is
concerned with. Using the filecontents environ-
ment, putting the following in the preamble will, if it
does not already exist, create the file glines16.txt

which will start with four TEX comment lines written
by filecontents, stating how and when the file was
created; if the filecontents* environment is used
instead then the initial four comment lines are not
output, just the body of the environment as given [7].
\begin{filecontents}{glines16.txt}

This is the file glines16.txt

containing some text lines.

They come in blocks

with blank lines between.

This is the third block

consisting of

three lines.

\end{filecontents}

We need to set up a \read stream and associate it
with a file to be read, making sure that the file does
exist, along the lines of:
\newread\instream \openin\instream= qwr!?.tex

\ifeof\instream

\message{No file ‘qwr!?.tex’!^^J}

\textbf{File ‘qwr!?.tex’ not found!}

\else

\message{File ‘qwr!?.tex’ exists.^^J}

\textbf{File ‘qwr!?.tex’ exists.}

% do something with qwr!?.tex

\fi

\closein\instream

File ‘qwr!?.tex’ not found!

Dan’s statement was that:
If you

\def\ispar{par}

and then
\read <handle> to \myline

you will find that
\ifx\myline\ispar

will be true for a blank line and also true for a \read

taken after that last line of a file (when \ifeof is
also true).

Putting all this together, the next piece of code
produces the result shown afterwards.
\newcommand*{\ispar}{\par}

\newcommand*{\processfile}[1]{%

\openin\instream=#1\relax

\ifeof\instream

\message{No file ‘#1’!^^J}%

\textbf{File ‘#1’ not found!}%

\else

\message{File ‘#1’ exists.^^J}%

\textbf{File ‘#1’ exists!}%

\par\noindent

\loop

\let\lastline\aline

\read\instream to \aline

\ifeof\instream\else

\ifx\aline\empty (commentline) \\ \else

\ifx\aline\ispar

\ifx\lastline\ispar

(blankline) \\

\else

(lastline) \lastline (followed by)\\

(blankline) \\

\fi

\else

(aline) \aline\\

\fi

\fi

\repeat

\fi

\closein\instream}

\processfile{glines16.txt}

Peter Wilson

TUGboat, Volume 38 (2017), No. 3 339

File ‘glines16.txt’ exists.
(commentline)
(commentline)
(commentline)
(commentline)
(aline) This is the file glines16.txt
(aline) containing some text lines.
(lastline) containing some text lines. (followed by)
(blankline)
(aline) They come in blocks
(aline) with blank lines between.
(lastline) with blank lines between. (followed by)
(blankline)
(blankline)
(aline) This is the third block
(aline) consisting of
(aline) three lines.
(lastline) three lines. (followed by)
(blankline)

When to the sessions of sweet silent thought
I summon up remembrance of things past,
I sigh the lack of many a thing I sought,
And with old woes new wail my dear times’ waste.

Sonnet 30, William Shakespeare

2 Paragraph endings

In earlier columns I described several aspects related
to the typesetting of paragraphs [9, 10] and here are
some additions to those.

2.1 Singletons

Andrei Alexandrescu wrote to ctt [1] that:
My publisher has the rule that a single word on a
line should not end a paragraph, as long as reflowing
wouldn’t make things really ugly otherwise. So I
defined this macro:

\newcommand\lastwords[2]{%

#1\leavevmode\penalty500\ \mbox{#2}}

and used it like this:
Lorem ipsum yadda \lastwords{amet}{dolor}.

The macro forces the last word never to be hy-
phenated, and imposes a penalty of 500 for inserting
a line break between the first-to-last and the last word.
My understanding is that 500 is the same penalty as
that of a hyphen (by default).

Things work pretty well, but it turns out quite
a lot of paragraphs need \lastwords — a whole 188
for a 500 page book . . .

Is there an automated means to enact the rule
above?

Suggestions ranged from ignoring the rule, to us-
ing existing code to make the last line at least 〈some
length〉 long (see [9]), to code based on a further sug-
gestion by Andrei and using \everypar that, subject
to many caveats, implements the requirement.

Peter Flynn [2] suggested the macro

\def\E #1 #2.{ \mbox{#1}~\mbox{#2}.}

which would be used like:
Lorem ipsum yadda \E amet dolor.

He observed that it was faster to type and easier to
edit in than \lastword but noted that it might not
handle arguments with embedded commands, spaces,
curly braces, math, etc.

Dan Luecking [5] came up with corrections to
Andrei’s second suggestion, together with an exten-
sion to handle single-word paragraphs.

\usepackage{ifthen}

% handle (one word) paragraph, pass others on

\def\controlorphanword #1 #2\par{%

\ifthenelse{\equal{#2}{}}

{#1\par}% one word para

{\controlorphanwordtwo #1 #2\par}}

% to handle multi-word paragraph

\def\controlorphanwordtwo #1 #2 #3\par{%

\ifthenelse{\equal{#3}{}}

{#1\leavevmode\penalty500\ \mbox{#2}\par}

{#1 \controlorphanwordtwo #2 #3\par}}

Dan noted that these macros will not handle words
separated by ‘\space’ or ‘\’, nor will it work with
\obeyspaces in effect.1 He also commented that the
process seemed very inefficient.2 The code should be
called by using \everypar like:

\begin{document}

Normal paragraph. The macro

\cs{cs}\texttt{\{arg\}} will print \cs{arg}.

Another one, and introducing \cs{everypar}.

\everypar{\controlorphanword}

Almost every place I have ever read about

\cs{everypar} (or redefinition of

\cs{par} or changes to paragraph

parameters) there is this or similar caveat:

(La)TeX may have strange ideas what is

counted as a paragraph. Use at your

own risk, or turn it off in complicated

circumstances.

Turn off orphan word control by putting

\everypar{}

here.

1 For instance, using \verb when \controlorphanword is
in effect will cause LATEX to hiccup violently.

2 The macros would be called for each word in a paragraph.

Glisterings

340 TUGboat, Volume 38 (2017), No. 3

Turn it back on:

\everypar{\controlorphanword}

Sentence.

There was a general consensus among the re-
spondents that the publisher’s requirement was not
particularly sensible, one going so far as to call it
‘crazy’.

(Although not a solution to the problem as
stated, too-short last lines can be mostly avoided in
an entirely different way: \parfillskip=.75\hsize

plus.06\hsize minus.75\hsize, with the numbers
tweaked as desired, and with the usual caveats about
packages resetting this primitive, etc.)

2.2 All is not what it seems

On rare occasions it may be desirable to either fake
the end of a paragraph or to insert an invisible end
of paragraph.

Faking the end is simple:
\newcommand*{\fakepar}{\\[\parskip]%

\hspace*{\parindent}}

and it can be used as:
\ldots the end of a sentence.\fakepar

A new sentence looking as though it starts

a new paragraph\ldots

which will be typeset as:

. . . the end of a sentence.
A new sentence looking as though it starts a

new paragraph. . .

Sometimes it is useful to nudge TEX into break-
ing a page, which it is inclined to do at the end of a
paragraph while keeping the appearance of unbroken
text. From The TEXbook [4, Ex. 14.15] and [12] the
\parnopar macro accomplishes this:
\newcommand*{\parnopar}{{%

\parfillskip=0pt\par\parskip=0pt\noindent}}

TEX typesets paragraph by paragraph, initially
taking no account of any page break. Only after the
text has been set in lines does TEX consider if there
should be a page break within the paragraph. If you
need something different about the setting on the
two pages, then the original paragraph must be split
at the page break.

One application is when using the changepage

package [11] to temporarily change the width or
location of the textblock (e.g., like the quote envi-
ronment). If you are trying to extend the textwidth
into, say, the outer margin, which in two-sided docu-
ments is the left margin on even pages and the right
margin on odd pages and there is a page break in the

shifted text then the results are not what you hoped
for. This can be manually fixed using \parnopar,
and splitting the adjustment into two.
\usepackage{changepage}

...

% move text 4em into outer margin

\begin{adjustwidth*}{0em}{-4em}

... first part of paragraph with the natural

page break at this point\parnopar

\end{adjustwidth*}%

\begin{adjustwidth*}{0em}{-4em}

but the sentence continues on the

following page ...

\end{adjustwidth*}

2.3 Paraddendum

Selon Stan posted to texhax, asking [8]:
Is there a way to fill the last line of a paragraph

with leaders that extend a fixed width beyond the edge
of the paragraph, with right-aligned numbers on the
right? I am trying . . .

Paul Isambert [3] replied with code that I have
cast into the following form:

\def\parend#1{%

\leaders\hbox{\,.\,}\hfill #1\par}

Here’s a sentence.\parend{1}

Here’s a sentence \\

on two lines.\parend{291}

Here’s a sentence. 1
Here’s a sentence

on two lines. 291

The shades of night were falling fast,
The rain was falling faster

When through an Alpine village passed
An Alpine village pastor;

A youth who bore mid snow and ice
With nary a sign of fluster

A banner with a strange device —
‘Glisterings glister with lustre’.

The Shades of Night, A.E.

Housman & Peter Wilson

3 In conclusion

Some years ago, at Barbara Beeton’s suggestion, I
agreed to take over Jeremy Gibbons’ Hey — It works!
column which was published between 1993 and 2000
in, firstly, TEX and TUG News, and then later in
TUGboat. He provided many useful tips for solv-
ing LATEX typesetting problems. Between 2000 and
2011 I managed to write some 15 columns, titled
Glisterings as in ‘All that glisters is not gold’ car-
rying on Jeremy’s work but then found that my
circumstances had changed and I could no longer

Peter Wilson

TUGboat, Volume 38 (2017), No. 3 341

produce a column on a regular basis. Also, the
comp.text.tex newsgroup from which I got most of
my inspiration seemed to be fading away, being re-
placed by tex.stackexchange.com which appealed
to the younger generation but not to a GOM3 like me
where many questions were directed towards prob-
lems with tikz graphics, the beamer package and
‘How do I produce this’.

I wrote a final 16th column trying to wrap ev-
erything up, but the wrapping ended up being so
extensive that it would have taken up most of a
TUGboat issue, so Karl decided that it would be
best to split it up into several pieces and publish
these over the coming years.4

You load sixteen tons and what do you get?
Another day older and deeper in debt.
Say brother, don’ you call me ’cause I can’t go
I owe my soul to the company store.

Sixteen Tons, Merle Travis

4 Sixteen

For what I thought would be that final 16th Glis-
terings column I wrote the following, which perhaps
might still be a suitable closing.

Sixteen is a rather remarkable number in that
it can be expressed in many striking ways.

• In binary sixteen is: 10000
• In octal sixteen is: 20
• In decimal sixteen is: 16
• In hexadecimal sixteen is: 10

In decimal notation, which is the one most peo-
ple are familiar with, there are quite a few ways in
which sixteen can be represented. Among the more
eye-catching ones are:
Powers

• 42 = 16
• 24 = 16
• 222

= 16
Additions

• sum of the first
√

16 odd numbers:
1 + 3 + 5 + 7 = 16

• sum of adjacent numbers:
1 + 2 + 3 + 4 + 3 + 2 + 1 = 16
which can also be expressed as:
1 + 4 + 6 + 4 + 1 = 16

Among other properties sixteen is the smallest
number with exactly 5 divisors — 1, 2, 4, 8 and 16.
It is also the only number that is expressible as both
mn and nm, with m 6= n.

3 Grumpy Old Man
4 I don’t think that either of us thought that ‘coming’

would turn out to be ‘next six’. [Editor’s note: So true.]

5 Acknowledgements

Glisterings would not have been possible without the
support and input of many others. In particular I
thank Jeremy Gibbons for his Hey — It works! and
Barbara Beeton and Karl Berry for their enthusiasm
and editorial improvements to the column. There
are many others who also contributed, often unknow-
ingly, by asking questions on the various TEX related
mailing lists and to those who answered. With my
grateful thanks to all of you.

References

[1] Andrei Alexandrescu. Single word on a line at
end of paragraph. comp.text.tex, 26 April
2010.

[2] Peter Flynn. Re: Single word on a line at end
of paragraph. comp.text.tex, 1 May 2010.

[3] Paul Isambert. Re: [texhax] leaders protruding
a fixed width from end of paragraph? texhax

mailing list, 17 March 2011.
[4] Donald E. Knuth. The TEXbook.

Addison-Wesley, 1984. ISBN 0-201-13448-9.
[5] Dan Luecking. Re: Single word on a line at

end of paragraph. comp.text.tex, 28 April
2010.

[6] Dan Luecking. Re: package for processing text
from external files. comp.text.tex, 23 May
2011.

[7] Scott Pakin. The filecontents package, 2009.
ctan.org/pkg/filecontents.

[8] Selon Stan. [texhax] leaders protruding a fixed
width from end of paragraph? texhax mailing
list, 17 March 2011.

[9] Peter Wilson. Glisterings: Paragraphs
regular, paragraphs particular, paragraphs
Russian. TUGboat, 28(2):229–232, 2007.
tug.org/TUGboat/tb28-2/tb89glister.pdf.

[10] Peter Wilson. Glisterings: More on paragraphs
regular, LATEX’s defining triumvirate, TEX’s
dictator. TUGboat, 29(2):324–327, 2008.
tug.org/TUGboat/tb29-2/tb92glister.pdf.

[11] Peter Wilson. The changepage package, 2009.
ctan.org/pkg/changepage.

[12] Peter Wilson. The memoir class for
configurable typesetting, 2016. ctan.org/pkg/

memoir.

⋄ Peter Wilson
12 Sovereign Close
Kenilworth, CV8 1SQ, UK
herries dot press (at)

earthlink dot net

Glisterings

342 TUGboat, Volume 38 (2017), No. 3

DocVar: Manage and use document
variables

Zunbeltz Izaola and Paulo Ney de Souza

1 Introduction

In book production, we are frequently faced with the
problem of using and reusing the same information
in various locations of the products. Text strings like
the title, author, ISBN, . . . may appear in the book
cover (in the front cover or the spine) and also in the
colophon, as well in the text itself.

It is also desirable to be able to have “place
holders” for this kind of information in templates
that are used to produce each book of a collection. In
the production of each book, ideally, the document
will read these data from a database (or from an
intermediate file derived from a database).

Figure 1 shows two books, members of the “Co-
leção Professor de Matemática” collection. You can
see how they share the same design, while the first
one shows one more piece of information: a subtitle.
These two covers are generated from the same LATEX
file, but loading different metadata files.

Figure 2 shows a full cover of a book in the
“Coleção Projecto Euclides” collection. It shows other
kinds of metadata handled in a similar way (ISBN,
title in the spine, . . .).

2 Usage

The aim of our package is to facilitate the use of such
“place holders” in a document, by making it easier to
create, validate and use a document variable that is
loaded from an external file.

At the beginning, we planned to call this package
metadata because we are dealing with information
that varies from book to book in a collection (au-
thor(s), title, date, subtitles, . . .) and formatting
variations (font size of title, subtitle, author(s), . . .).
But the name metadata has a rather specific mean-
ing in the world of documents and there is already a
package called metadata on CTAN. Therefore, the
name Document Variable or DocVar for short, was
selected.

The usage of document variables is done in three
steps:

Define document variable Typically a class will
define several docvars that individual docu-
ments, applying the class, will set and use.

Set value of document variable The value of all
docvars used by a document is set; typically in
a separate file that is included in the document.

Use value of document variable The docvar is
replaced by the value to which it has been set.

2.1 Define document variables

Each docvar is defined by a unique 〈key〉. This
〈key〉 is the mandatory argument of \definedocvar.
There are optional arguments that control the be-
haviour of the docvar.

The syntax for the \definedocvar macro is:
\definedocvar[〈option〉]{〈key〉}. Table 1 lists all
the options planned for the \definedocvar macro.
At the time of writing, not all the options are yet
implemented.

The docvar can be of different types: integer,
float, string, length. Some variables can have mul-
tiple values and they will be treated as list-type
variables (for example, a book may have multiple
authors). It is possible to transform the value by
applying a macro; e.g., in some book designs the title
is uppercase. The value of a docvar may be defined
by “inheritance” from another variable: In most cases
the name of authors printed on the spine of the book
will be the same as on the cover, but sometimes the
names should be modified (space limitations, design).
It may be useful to define different “error levels” if
the variable is empty. The error levels are the same
as described for the variable validation. The DocVar

package defines a mechanism to validate the values
give to the each key. See section 2.4 for more details.

2.2 Set document variables

The macro sets the value of a previously defined
docvar. The intent is to set the value of the docvars
in a file loaded by a document, or alternatively to
use the macro in the document .tex file itself.

The \setdocvar macro has two mandatory ar-
guments, the docvar key and the value:
\setdocvar{〈key〉}{〈value〉}.

2.3 Use document variables

The macro \getdocvar[〈option〉]{〈key〉} retrieves
the value of the docvar. In general, it will mean to
print the value of the docvar, but docvars can also
be used to set arguments of other macros.

\getdocvar accepts one option, transform; its
value is a macro to be applied to the value of the
〈key〉. This transformation is applied after any other
transformation defined by \setdocvar.

2.4 Data validation

The process of validating data may be complex. On
one hand we can validate the value of isolated 〈key〉s,
while on the other hand, we can validate the correct-
ness of a value related to the value of other 〈key〉s.
For example, if a docvar represents a zip code, we
can validate its format (as a single key value), but

Zunbeltz Izaola and Paulo Ney de Souza

TUGboat, Volume 38 (2017), No. 3 343

C

M

Y

CM

MY

CY

CMY

K

C

M

Y

CM

MY

CY

CMY

K

Este livro é parte do material que foi utilizado nos Cursos
de Aperfeiçoamento para Professores de Matemática do

Ensino Médio, um programa organizado pelo IMPA – Insti-
tuto de Matemática Pura e Aplicada, com patrocínio da VI-
TAE – Apoio à Cultura, Educação e Promoção Social, reali-
zado no princípio dos anos 90.

O tema principal aqui abordado é o uso de coordenadas como
método para estudar Geometria Plana. Isso é feito em três
etapas.

A primeira parte consta de uma apresentação breve e simpli-
ficada da Geometria Analítica Plana. Na segunda parte, são
introduzidos os vetores. Na terceira, a aplicação de coorde-
nadas e vetores para estudar as transformações geométricas
mais simples, como as isometrias, as semelhanças e as trans-
formações afins do plano. Por último, são apresentadas as
soluções dos exercícios propostos, antes editados separada-
mente no livro “Problemas e Soluções Geometria Analítica,
Vetores e Transformações Geométricas”, do mesmo autor e
com o mesmo colaborador.

A exposição é feita de modo bastante elementar, tendo em
vista o público a que se destina: alunos e professores do en-
sino médio, e alunos de licenciatura em Matemática.

aSBM

PANTONE 7722 C

C
oordenadasno

Plano
Elon

LagesLim
a

a

Coordenadas no Plano
com as soluções dos exercícios
Elon Lages Lima
com a colaboração de
Paulo Cezar Pinto Carvalho
Florêncio Ferreira Guimarães Filho

aSBM
COLEÇÃO PROFESSOR DE MATEMÁTICA

C

M

Y

CM

MY

CY

CMY

K

C

M

Y

CM

MY

CY

CMY

K

As Construções Geométricas tiveram enorme importância
no desenvolvimento da Matemática. Esse livro pretende

mostrar ao professor do ensino secundário que as Construções
são instrumento de grande utilidade no ensino da Geometria
e da Álgebra. O texto explora amplamente as duas idéias bá-
sicas utilizadas nas soluções dos problemas: a exploração das
propriedades geométricas das figuras ou a construção a partir
da solução algébrica.

A exposição é feita de forma simples e informal tendo em
vista o público a que se destina: alunos do segundo grau, alu-
nos de licenciatura em Matemática e professores do ensino
médio.

aSBM

PANTONE 326

Eduardo
W

agner
a

Construções Geométricas
Eduardo Wagner
com a colaboração de
José Paulo Q. Carneiro

aSBM
COLEÇÃO PROFESSOR DE MATEMÁTICA

Figure 1: Two examples of covers from the CPM collection.

C

M

Y

CM

MY

CY

CMY

K

C

M

Y

CM

MY

CY

CMY

K

Projeto Euclides

Os livros desta Coleção divulgam
teorias matemáticas relevantes
para a formação de cientistas
e professores. Há um enfoque
especial nos assuntos centrais
dos currículos de pós-graduação
em Matemática, bem como na
apresentação de temas atuais de
pesquisa.

césar camacho

César nasceu no Peru e estudou na Universidade Nacional
de Engenharia em Lima mas, como matemático, foi criado no
Brasil. Fez o Mestrado no IMPA e estudo na Universidade da
California, em Berkeley, doutourou-se e voltou para o IMPA, onde
é Pesquisador. César tem a fotografia como hobby.

alcides lins neto

Alcides é mineiro de nascimento mas foi criado no Rio. onde
graduou-se em Engenharia Eletrônica no Instituto Militar de
Engenharia. Fez também mestrado e doutorado no IMPA onde é
atualmente Pesquisador Associado, com uma tese em Sistemas
Dinâmicos definidos por circuitos elétricos (advinhem quem foi
seu orientador). Os trabalhos de pesquisa de ambos versam
sobre Sistemas Dinâmicos, Folheações e Singularidades de
Formas Integraveis. Esse é o primeiro livro que ambos escrevem
mas consta que Alcides é ghostwriter de alguns capítulos de
outros livros e quando muito pratica um esporádico exercício de
levantamento de copos.

teoria geométrica

das folheações

9 788583 370826

ISBN 978-85-8337-082-6

impa

a Instituto de
Matemática
Pura e Aplicada

PANTONE Solid Coated 178 C

te
o
ri
a
g
e
o
m
é
tr
ic
a
d
a
s
fo
lh
e
a
ç
õ
e
s

c
é
s
a
r
c
a
m
a
c
h
o

a
lc
id
e
s
li
n
s
n
e
to

PROJETO

A
EUCLIDES

césar camacho
alcides lins neto

teoria geométrica
das folheações

PROJETO

A
EUCLIDES

Figure 2: A full cover produced using DocVar

Option value Implemented? Definition

type integer, float, string, length No Type of the variable

multiple true, false No Set to true if the docvar has multiple values

empty No Behaviour of \usedocvar when value is empty

inherit 〈key〉 Yes docvar from which value may be inherited

transform macro Yes Always transform value before using it

Table 1: Options of the \definedocvar macro.

DocVar: Manage and use document variables

344 TUGboat, Volume 38 (2017), No. 3

may also be validated in relation to a “state” docvar,
to which it is related.

Each validation has an “error level”. There are
five levels:1

none Nothing happens.

info Information is logged in the log file.

warning A warning message is logged to the termi-
nal and the log file.

error An error message is logged to the terminal
and the log file, and an error mark is shown in
the document.

critical After issuing a critical error, TEX will stop
reading the current input file. This may halt
the TEX run (if the current file is the main file)
or may abort reading a sub-file.

fatal After issuing a fatal error the TEX run halts.

The validation is defined with the macro:
\setvalidation[〈error〉]{〈keys〉}{〈validation〉}

The macro’s first required argument 〈keys〉 is
a comma-separated list; the list can have just one
element. This is the list of related 〈keys〉 which
will be validated together. The second mandatory
argument is the macro to do the actual test. The
optional argument is the error level associated to
the test. The default value is error.

The package will provide several basic validation
tests. The user-defined 〈validation〉 macro should
accept as many arguments as 〈keys〉 are listed and
it should return a boolean; true if the validation is
passed and false if it fails. The 〈validation〉 macro
will receive its arguments in the order given in 〈keys〉.

Some validations may be too complex to be
programmed efficiently in LATEX. Examples of us-
ing external scripting languages (Lua, Bash, Perl,
Python) will be provided.

When a docvar is used with the \getdocvar

command, the package will execute all the validations
containing the corresponding 〈key〉.2

1 These error levels are modelled after the l3msg package

error levels.
2 This may not be efficient because the same validation

will be run several times. But it seems to be the only way to

show error messages close to the point where the docvar is

used.

3 Availability

The DocVar package is licensed under the LPPL, and
copyrighted by Books in Bytes. The first public
version should appear soon on CTAN; for develop-
ment, see the repository at https://gitlab.com/

booksinbytes/docvar.

⋄ Zunbeltz Izaola

Durango

Spain

zunbeltz (at) gmail dot com

⋄ Paulo Ney de Souza

Berkeley, CA

USA

pauloney (at) gmail dot com,

paulo (at) berkeley.edu

http://booksinbytes.com/

Zunbeltz Izaola and Paulo Ney de Souza

TUGboat, Volume 38 (2017), No. 3 345

Set my (pdf)pages free

David Walden

Experienced (LA)TEX users know that they can do
many things with these systems. However, new users,
for instance only having learned enough to typeset a
thesis, may not think of some of the other possibilities.
Below I describe one (admittedly trivial) use of LATEX
for something other than typesetting a document.

With fair frequency I receive PDF files from
which I wish to extract pages or images but cannot
(my collaborators may not know their word proces-
sors are creating protected files). Maybe if I knew
more about such security settings, I could undo the
protection in other ways. However, I do know that
the following tiny LATEX program has always “set my
PDF pages free” in the way I wanted. The file for
the following program is named select-pages.tex.

\documentclass{article}

\usepackage{pdfpages}

\begin{document}

\includepdf[pages=1-8]% omit for all pages

{name-of-file-to-be-freed.pdf}

\end{document}

I put a copy of the file in the directory with the PDF

I want to set free, and then change the file name
in the \includepdf command to the name of the
file I want to unlock. I compile this little LATEX
program, and rename the result (which initially is
select-pages.pdf) to be whatever I want it to be.
Now I have a file which is no longer protected. (I
don’t know why this works, but it does.)

All the work is done by the pdfpages package
(ctan.org/pkg/pdfpages). In the above example,
pages 1 to 8 of the original document are processed
into the output file. If the optional argument in
square brackets is left out, the entire input document
is processed into the output file. Other options for
the pages parameter are available, and the pdfpages
package has lots of other options; read about it at
the above noted url.

Once the desired “free” pages are in the new
file, I have found I can now extract pages and copy
images which Acrobat and other applications on
my Windows computer previously would not let me
touch except to read.

This is one minuscule example of how (LA)TEX
can do miscellaneous things for you. TUGboat has
published many articles on using (LA)TEX as a more
general purpose computing tool than typesetting
alone, and no doubt would welcome more.

⋄ David Walden
walden-family.com/texland

Automatic generation of herbarium labels
from spreadsheet data using LATEX

R. Sean Thackurdeen and Boris Veytsman

Abstract

LATEX, being a programmable language, has ad-
vanced capabilities for automatic generation of docu-
ments. While these capabilities are often considered
the realm of advanced users, they are also attractive
for entry-level users. The latter can use them to
learn about LATEX while performing a typesetting
task. The goal of this tutorial is to describe a method
to typeset herbarium labels using data stored in a
.csv file. This example is especially relevant for the
botanical research community, where labels must be
generated from standardized data sets to annotate
physical plant collections.

1 Botanical primer

Botanical vouchers are the foundation of the study of
the evolutionary history of plants, known as system-
atics, and the study of their classification, known as
taxonomy. They are the ontological basis on which
botanical theories and hypotheses of evolution are
made. Additionally, the study of specii and their
niches (ecology), and the study of their distributions
across temporal and spatial scales (biogeography)
are allied sciences which draw from these instances
of recorded plant life.

Botanical vouchers are composed of two compo-
nents: 1) a specimen, and 2) a label. The specimen
commonly features fertile plant parts as well as other
distinguishing characteristics, such as leaf arrange-
ment, developmental variation, etc. When combined
with DNA evidence, it is used for classification and
identification of a plant. The label presents informa-
tion grounding a specimen in physical space. It is the
written manifestation of the specimen’s identification,
and includes collection information, geolocality data,
and information about the habitat where the speci-
men was collected, in addition to other information
about the specimen not apparent on the sheet.

Although not directly related to the present
topic, readers may also be interested in the two arti-
cles by Joseph Hogg previously published in TUG-

boat (vol. 26, no. 1 and vol. 35, no. 2) on botanical
typesetting: http://tug.org/TUGboat/Contents/

listauthor.html#Hogg,Joseph.

2 Workflow

While botanists generally proceed by the adage, “by
their fruits ye shall know them”, it can be more apt
to say that “botanists make labels”.

346 TUGboat, Volume 38 (2017), No. 3

Mj Gp,Scientific Name,Family,Genus,Specific Epithet,Taxon Rank,Infraspecific epithet,Scientific Name

Authorship,,IdentifiedBy,Date Identified,Identification Remarks,,Identification Qualifier,,Event Date,

Collector,Associated Collectors,collectorNumberPrefix,collectorNumber,collectorNumberSuffix,habitat,habit

,country,stateProvince,island,locality,localitySecurity,localitySecurityReason,geodeticDatum,

decimalLatitude,decimalLongitude,elevation (m.),,duplicates,numberLabels,preparations, ,tripNumber,

shippingPermit,shippingBox,shippingNote,,vernacularName1,languageName1,notesVernacularName1,

vernacularName2,vernacularLanguage2,notesVernacularName2,plantUse1,plantUseCategory1,plantUse2,

plantUseCategory2,informationWitheld,sourceNames,interviewers,interviewDate,,enteredBy

Angiosperm,Stachytarpheta jamaicensis (L.) Vahl,Verbenaceae,Stachytarpheta,jamaicensis,sp.,,(L.) Vahl,,,,,,,,"

June 7, 2014",Gregory M. Plunkett,"Michael Balick, Kate Armstrong, Sean Thackurdeen, Jean-Pascal Wahe,

Presley Dovo & Joshua Andrew",,2783,,Growing in open area along roadside of disturbed secondary forest.,"

Herb to subshrub, 0.5 m tall, flowers purple.",Vanuatu,Tafea ,Tanna,"West Tanna, just east of Lenakel,

along track to Letakran Village, along creek.",,,WGS84,-19.52803,169.2813,44,,6,6,"DNA, digital image

",,,,,,,,,,,,,,,,,,,,,,

Angiosperm,Ophioglossum reticulatum var. reticulatum L.,Ophioglossaceae,Ophioglossum,reticulatum,var.,

reticulatum,L.,,Gregory M. Plunkett,6/25/2014,,,!,,"June 25, 2014",Gregory M. Plunkett,"Tom Ranker,

Chanel Sam, Jean-Pascal Wahe, Sean Thackurdeen, Kate Armstrong, Laurence Ramon, Frazer Alo, Alexis Tupun,

David Kapwia & Joseph Dabauh.",,2910,,,Terrestrial fern growing in dense forest.,Vanuatu,Tafea ,Tanna,"

Southwest Tanna, along trail from Yenhup to Mount Tukosmera.",,,WGS84,-19.588028,169.366611,559,,6,6,"DNA

, digital image",,,,,,,,,,,,,,,,,,,,,,

Figure 1: A three-line botanical .csv file (indented line breaks are editorial).

In the field, notes of a plant collection are made
on weather resistant paper. At a moment’s rest in
the field, or back at home, data is provisionally trans-
ferred to a spreadsheet. The columns of the spread-
sheet usually correspond to the database schema of
the archival repository. Most often the schema ad-
heres to the biodiversity standard known as Darwin
Core (DwC). From this spreadsheet labels can be
made using Microsoft Word’s mail merge capabilities.
Alternately, data can be uploaded to an intermediary
(e.g., Filemaker) or to an archival repository that
features reporting capabilities.

Producing labels directly from a field sheet al-
lows a greater flexibility, since the labels can be
generated anywhere a user has access to a computer
with the requisite software. Unfortunately, the com-
mon work flow described above is unreliable. Once
a spreadsheet is merged in Microsoft Word, any ad-
ditional edits produce cascading effects which dras-
tically alter the formatting of the document. The
changes require an unnecessary amount of time and
tedious effort. This issue can be alleviated through
a reporting template used in intermediary reposito-
ries, but these systems are less flexible. A portable,
field-ready and reliable solution is required to help
botanists to avoid loss of time and to help them to
make labels. Additionally, a system that is free and
open source may be important for the botanists and
collections managers in countries where herbaria lack
extensive resources.

3 Tutorial

The tutorial which follows is a sequential, step by
step, explanation of the LATEX code which structures
the document. As the tutorial proceeds, lines of code
are grouped according to similarity of function. They
are presented as blocks. While snippets of code are
explained in relation to their function in the given
example, possible alternatives are rarely explained.
More detailed explanations of the options are better
found LATEX tutorials, of which there are many. We
use the .csv file shown in Figure 1 for our examples.

First, a standard article class is called specifying
the font size. The geometry package is used to spec-
ify the margins, and the graphicx and datatool

packages are called to import images and spread-
sheet values, respectively. The datatool package,
authored by Nicola Talbot, is the key to this tuto-
rial. It allows us to manipulate and typeset data
stored in .csv files using LATEX commands. Other
approaches to automated document generation often
rely on multiple programming languages to generate
LATEX code.

\documentclass[12pt]{article}

\usepackage{datatool,graphicx}

\usepackage[right=.2in, left=.2in,

top=.2in,bottom=.2in,

columnsep=.5in]{geometry}

The next portion of the preamble is a function
designed to convert latitudes and longitudes in deci-
mal degrees to degrees-minutes-seconds representa-
tion, for example, −19.588028 latitude to S 19◦31′40′′.

R. Sean Thackurdeen and Boris Veytsman

TUGboat, Volume 38 (2017), No. 3 347

The Darwin Core data standard for biodiversity data
specifies decimal-degrees as the accepted standard
for geographic data. However, this format is less
reader friendly and thus less aesthetically pleasing.
The following function transforms and typesets the
GPS data so as to satisfy readers and data handlers
alike, using datatool (\DTL...) commands.

% #1- negative suffix,

% #2 - positive suffix,

% #3 - lat/lon

\newcommand{\latlontodeg}[3]{%

\DTLifnumlt{#3}{0}{#1}{#2}~%

\DTLabs{\TMPlatlon}{#3}%

\DTLtrunc{\TMPdeg}{\TMPlatlon}{0}%

\DTLsub{\TMPlatlon}{\TMPlatlon}{\TMPdeg}%

\DTLmul{\TMPlatlon}{\TMPlatlon}{60}%

\DTLtrunc{\TMPmin}{\TMPlatlon}{0}%

\DTLsub{\TMPlatlon}{\TMPlatlon}{\TMPmin}%

\DTLmul{\TMPlatlon}{\TMPlatlon}{60}%

\DTLtrunc{\TMPsec}{\TMPlatlon}{0}%

$\TMPdeg^\circ\TMPmin’\TMPsec’’$}

The next code block begins the document envi-
ronment. Immediately, a datatool command is used
to load the spreadsheet data, at which point the
working database is named and the file, residing in
the same directory, is specified.

\begin{document}

\DTLloadrawdb{labels}{labelExample.csv}

Herbarium labels are customarily 4′′ in width,
and approximately 4′′ in length, varying with the
amount of data recorded. One often prints 4 labels
to a US letter page. To typeset multiple labels on a
commonly available US letter sheet, we switch to two
column layout. Two columns of a portrait US letter,
with appropriate margins, produces the desired 4
inches width of herbarium labels.

\twocolumn

There are two parts to the datatool formula
which will generate the labels: assignments and com-
mands. The first will designate identifiers for each
row in the spreadsheet. Once the database is defined,
a working name is assigned to the .csv column name
that is to be typeset. Below is an abbreviated version
of the code. Note the spaces and capitalization on
the right side of the equation, which refer to column
names in your .csv file.

\DTLforeach{labels}{%

\Family=Family,

\Genus=Genus,

\Specie=Specific Epithet,

\Authorship=Scientific Name Authorship}

Thus far we have defined the document size, its
margins, created a multi-column environment, called
a function and set assignments. Now, we begin the
task of organizing the static and dynamic elements
of the label.

While the two column typesetting allows text
to flow from the base of one column to the beginning
of the next one, we do not want an individual label
to be continued on the next column or page. The
text of a given label must be manipulated as a block.
To create this environment we put the label inside a
minipage:

{\noindent

\begin{minipage}{1.0\linewidth}%

\raggedright

\setlength{\parskip}{.5\baselineskip}%

\raisebox{-.5\height}

Next is a set of instructions to typeset a header.
Many herbarium labels simply include a title which
indicates flora of which the specimen is a part. In this
case, an additional header with logos and herbarium
codes is used. This can easily be customized as
needed.

{\includegraphics[height=.8cm]{nybgLogo}}%

\hfill

\parbox[t]{5cm}{\centering\scshape\tiny

New York Botanical Garden: NY\\

Vanuatu National Herbarium: PVNH}%

\hfill

\raisebox{-.5\height}{%

\includegraphics[height=1cm]{pvnhLogo}}%

\par

{\centering \bfseries\itshape\large

The Flora of Vanuatu\par}%

Now we typeset the previously assigned elements.
This is the heart of the approach. Here is an abbre-
viated example:

\DTLifnullorempty{\Family}{}{%

\hfill(\Family)}

\DTLifnullorempty{\Genus}{}{%

\textit{\bfseries\Genus}}

\DTLifnullorempty{\Specie}{}{%

\textit{\bfseries\Specie}}

\DTLifnullorempty{\Authorship}{}{%

\Authorship}

We use \DTLifnullorempty to typeset the data.
The program reads the assignment in the first set of
braces. If the column does not have data, we skip
it, hence the second set of blank braces. If it does
have some data, we typeset it as instructed in the
third set of braces with the additional formatting
instructions.

Automatic generation of herbarium labels from spreadsheet data using LATEX

348 TUGboat, Volume 38 (2017), No. 3

The benefit of using the \DTLifnullorempty

command is that static elements of the text can be
nested in the third set of braces. This text will
then be typeset, but only if the column is present.
Thus we do not include ugly placeholders for missing
information, as in some other approaches.

The last part of the label is an acknowledgment.
This is currently set to be included on every label.
Alternatively, it could be easily incorporated into
the \DTLifnullorempty command and therefore be
included only on specimen labels so designated. After
the acknowledgment there is a command ending the
label block, and a command to include space between
each label. Then we close the document:

\centering\itshape\small

A collaboration of NYBG and PVNH,

funded by The~Christensen~Fund,

The~National~Geographic~Society,

and

The~Critical~Ecosystem~Partnership~Fund.

\end{minipage}%

\vspace{1cm}\par}

\end{document}

A page of example labels is given in Figure 2.

4 Notes on implementation

Many of the users adapting this code for use will
stem from the natural history research community.
Thus, it is worth mentioning a caveat about compil-
ing documents from code. Computer programming
languages, such as LATEX, are exact and precise. If
there are invalid characters in your data set, and
you are unaware, you are sure to find out when you
receive an error message (likely inscrutable) upon
compiling. Similarly, if there are incorrect characters
in your column mapping, an error message will result.
While there are numerous possible errors, here are
few tips to help you along.

• Compile in batches:

– 100 rows returns a quick and sufficiently
large output, while creating a smaller data-
set to troubleshoot.

– If your data set is greater than 100 rows,
use the split command line tool to gen-
erate parts. The resulting files have no
headers and these headers can be specified
as an option to the \DTLloaddb command.

• Consider both \DTLloaddb & \DTLloadrawdb:

– \DTLloaddb requires LATEX special charac-
ters to be treated as such in your .csv

file. A positive benefit to this is that you

can format specific text within cells using
LATEX syntax (e.g., taxon names in habitat
descriptions).

– \DTLloadrawdb is needed when LATEX spe-
cial characters are present in the file. This
command will automatically convert those
special characters to the required LATEX for-
mat.

• Clean code & clean data:
Issues compiling are probably due to either a
syntax error in the code or invalid characters in
your data set.

– Be mindful of stray spaces, generally, and
capitalization when defining the column
mapping.

– Be mindful of the input encoding and the
text encoding.

5 Compile your own

A package including an example .csv file, LATEX tem-
plate, and output PDF will be posted to CTAN. This
template will additionally be published to the online
LATEX compilers Overleaf and ShareLATEX. Should
you have questions regarding the template, feel free
to reach out to the authors. Contact information is
provided below.

⋄ R. Sean Thackurdeen
Institute of Economic Botany
New York Botanical Garden
Bronx, NY 10458 USA
sthackurdeen (at) nybg dot org

http://thackur.org/

⋄ Boris Veytsman
Systems Biology School and

Computational Materials
Science Center

MS 6A2
George Mason University
Fairfax, VA 22030 USA
borisv (at) lk dot net

http://borisv.lk.net/

R. Sean Thackurdeen and Boris Veytsman

TUGboat, Volume 38 (2017), No. 3 349

New York Botanical Garden: NY

Vanuatu National Herbarium: PVNH

The Flora of Vanuatu

(Verbenaceae)

Stachytarpheta jamaicensis (L.) Vahl

Vanuatu: Tafea. Tanna Island. West Tanna, just
east of Lenakel, along track to Letakran Village,
along creek. Growing in open area along roadside of
disturbed secondary forest.

S 19◦31′40′′; E 169◦16′52′′; 44 m elev.

Herb to subshrub, 0.5 m tall, flowers purple. DNA,
digital image. Duplicates: 6.

Gregory M. Plunkett, #2783 June 7, 2014

Michael Balick, Kate Armstrong, Sean Thackurdeen,
Jean-Pascal Wahe, Presley Dovo & Joshua Andrew

A collaboration of NYBG and PVNH, funded by
The Christensen Fund, The National Geographic Society,

and The Critical Ecosystem Partnership Fund.

New York Botanical Garden: NY

Vanuatu National Herbarium: PVNH

The Flora of Vanuatu

(Ophioglossaceae)

Ophioglossum reticulatum L.

Vanuatu: Tafea. Tanna Island. Southwest
Tanna, along trail from Yenhup to Mount
Tukosmera.

S 19◦35′16′′; E 169◦21′59′′; 559 m elev.

Terrestrial fern growing in dense forest. DNA, digital
image. Duplicates: 6.

Gregory M. Plunkett, #2910 June 25, 2014

Tom Ranker, Chanel Sam, Jean-Pascal Wahe, Sean
Thackurdeen, Kate Armstrong, Laurence Ramon,
Frazer Alo, Alexis Tupun, David Kapwia & Joseph
Dabauh.

A collaboration of NYBG and PVNH, funded by
The Christensen Fund, The National Geographic Society,

and The Critical Ecosystem Partnership Fund.

New York Botanical Garden: NY

Vanuatu National Herbarium: PVNH

The Flora of Vanuatu

(Moraceae)

Ficus adenosperma Miq.

Vanuatu: Tafea. Tanna Island. West Tanna, just
east of Lenakel, along track to Letakran Village,
along creek. Growing along roadside of disturbed
secondary forest.

S 19◦31′40′′; E 169◦16′52′′; 44 m elev.

Well branched tree, 12 m tall, 0.5 m dbh, fruits green
turning yellow. DNA, digital image. Duplicates: 6.

Gregory M. Plunkett, #2784 June 7, 2014

Michael Balick, Kate Armstrong, Sean Thackurdeen,
Jean-Pascal Wahe, Presley Dovo & Joshua Andrew.

A collaboration of NYBG and PVNH, funded by
The Christensen Fund, The National Geographic Society,

and The Critical Ecosystem Partnership Fund.

New York Botanical Garden: NY

Vanuatu National Herbarium: PVNH

The Flora of Vanuatu

(Pteridaceae)

Antrophyum alatum Brack.

Vanuatu: Tafea. Tanna Island. West Tanna, just
east of Lenakel, along track to Letakran Village,
along creek.

S 19◦31′40′′; E 169◦16′52′′; 44 m elev.

Epipetric fern growing on boulder in dry stream bed.
DNA, digital image. Duplicates: 6.

Gregory M. Plunkett, #2785 June 7, 2014

Michael Balick, Kate Armstrong, Sean Thackurdeen,
Jean-Pascal Wahe, Presley Dovo & Joshua Andrew.

A collaboration of NYBG and PVNH, funded by
The Christensen Fund, The National Geographic Society,

and The Critical Ecosystem Partnership Fund.

Figure 2: A page of example labels

Automatic generation of herbarium labels from spreadsheet data using LATEX

350 TUGboat, Volume 38 (2017), No. 3

Typesetting actuarial symbols easily and
consistently with actuarialsymbol and
actuarialangle

David Beauchemin and Vincent Goulet

Abstract

Actuarial notation is characterized by subscripts and
superscripts on both sides of a principal symbol, num-
bers positioned above or below subscripts, and some
otherwise unusual symbols. The pair of packages
actuarialsymbol and actuarialangle provides all
the facilities to compose actuarial symbols of life
contingencies and financial mathematics, easily and
consistently.

1 Introduction

Actuaries, the “engineers of insurance”, denote var-
ious quantities of life contingencies using a whole
array of symbols. The highly descriptive, yet com-
pact, notation was standardized as far back as in
1898 [10]. Figure 1 shows a creative use of the no-
tation by the graduating class of 1972 in Actuarial
Science at Université Laval.

As most readers of TUGboat are probably unfa-
miliar with actuarial notation, let us start with the
following examples:

1. the net single premium for an n-year term insur-
ance payable at the end of year of death issued
to a person aged x is A1

x:n ;

2. the monthly premium for an annual life annuity
payable at the beginning of the year, starting n
years from now is P (12)(n|äx);

3. the net reserve at time t for a whole life insurance
payable at death is tV̄ (Āx).

All symbols are for nominal benefits of 1.
Actuarial notation is characterized by auxiliary

symbols positioned in subscript and superscript on
both sides of a principal symbol, something notori-
ously difficult to achieve consistently in LATEX. It also
requires some unusual symbols not found in standard
mathematics packages, like the “angle” denoting a
duration n, as in n , or the overhead angle bracket
xy used to emphasize the joint status of lives x and
y when ambiguity is possible.

The package actuarialsymbol [1] provides a
generic command to position all subscripts and su-
perscripts easily and consistently around a princi-
pal symbol, four commands to position precedence
numbers above and below statuses, and a number of
shortcuts to ease entry of the most common actuarial
functions of financial mathematics and life contingen-
cies. The companion package actuarialangle [3],
separate from actuarialsymbol for historical rea-

Figure 1: “Actuariat” (French for Actuarial Science)
written using actuarial symbols on the 1972 graduating
class mosaic at Université Laval

sons but imported by the latter, provides the angle
and overhead angle bracket symbols.

2 Existing alternatives

Authors often use ad hoc constructions like {}_tA_x
to put subscripts and superscripts in front of a sym-
bol. This notation quickly becomes a nightmare to
parse mentally and the source code has little relation-
ship to the actual significance of the symbol. That
said, the worst practical drawback to this approach
is probably that there is no way to ensure that sub-
scripts and superscripts on either side of the principal
symbol are aligned vertically.

The package mathtools [5] provides a command
\prescript to put a subscript or superscript to the
left of an argument. This works well when the argu-
ment (or principal symbol) has sub- and superscripts
on all four corners, but otherwise the auxiliary sym-
bols may end up at different heights.

Finally, various packages tailored for specific
disciplines offer the possibility to position sub- and
superscripts on the left, for example tensor [7] for
tensors or mhchem [4] for isotopes. There was a previ-
ous attempt at a LATEX package for actuarial notation
[9], but lifecon does not seem to be officially dis-
tributed, either from CTAN or from anywhere else.

3 Actuarial notation

Appendix 4 of [2] offers an excellent overview of the
composition rules for symbols of actuarial functions.
In a nutshell, a principal symbol, say S, is combined
with auxiliary symbols positioned in subscript or in
superscript, to the left or to the right. Schematically,
we thus have:

II

I
S

IV

III
(1)

The principal symbol is in general a single letter.
The letter may be “accented” with a bar (Ā), double
dots (ä) or a circle (̊e). Most commonly, there are
alphanumeric statuses in the lower-right position
III . Numerals can be placed above or below the
individual statuses to show the order of failure; we
will refer to these numerals as precedence numbers.

David Beauchemin and Vincent Goulet

TUGboat, Volume 38 (2017), No. 3 351

Otherwise, auxiliary symbols appear lower-left I ,

upper-left II and upper-right IV , in that order of
frequency.

Symbols for benefit premiums (P), reserves (V)
and amount of reduced paid-up insurance (W), are
combined with benefit symbols unless the benefit is a
level unit insurance payable at the end of the year of
death. In such cases, we have the following symbol
structure (replace P by V or W as needed):

II

I
P

IV (

S
III

)

(2)

4 Additional special symbols

The package actuarialangle defines commands to
draw two special symbols used in actuarial and fi-
nancial notation. In math mode, the command

\angl{〈duration〉}

composes an angle symbol around 〈duration〉 with
some space (thin by default) between 〈duration〉 and
the right descender. The symbol scales gracefully if
the command is used outside of a first-level subscript.

\angl{n} \quad a_{\angl{n}} n an

Commands \angln, \anglr and \anglk are short-
cuts for the common cases \angl{n}, \angl{r} and
\angl{k}, respectively.

The code for \angl and the underlying macro
were given to the second author by a colleague many
years ago. The original author is unknown.

The command

\overanglebracket{〈statuses〉}

composes an angle bracket (“roof”) above 〈statuses〉.
The rule thickness and spacing relative to the statuses
match those of the angle symbol. The command
\group is a convenient alias for \overanglebracket.

\group{xy} \quad

A_{\group{xy}:\angln}
xy Axy :n

5 Construction of actuarial symbols

The package actuarialsymbol provides the generic
command \actsymb to typeset a principal symbol
with surrounding subscripts and superscripts. Its
syntax is somewhat unusual for LATEX, but it serves
well the natural order of the building blocks of a
symbol and their relative prevalence:

\actsymb[〈ll〉][〈ul〉]{〈symbol〉}{〈lr〉}[〈ur〉]

Above, 〈ll〉 identifies the auxiliary symbol in the

lower left subscript position I (following the nota-
tion in the schematic representation (1)); 〈ul〉 is the
upper left superscript II ; 〈symbol〉 is the principal

symbol S; 〈lr〉 is the lower right subscript III ; and

〈ur〉 is the upper right superscript IV . The princi-
pal symbol and the right subscript are required, the
other arguments are optional.

\actsymb{A}{x} Ax

\actsymb[n]{A}{x} nAx

\actsymb[n][2]{A}{x} 2
nAx

\actsymb[n][2]{A}{x}[(m)] 2
nA

(m)
x

The command \actsymb supports one more op-
tional argument, for composing symbols for premi-
ums, reserves and paid-up insurance. The extended
command

\actsymb[〈ll〉][〈ul〉][〈P〉]{〈symbol〉}{〈lr〉}[〈ur〉]

puts the symbol 〈P〉 outside the parentheses in the
schematic representation (2).

\actsymb[][][P]{\bar{A}}{x:\angln} P (Āx:n)

\actsymb[k][][V]{\bar{A}}{x}[\{1\}]
kV

{1}
(Āx)

\actsymb[k][][\bar{W}]{\bar{A}}{x} kW̄ (Āx)

Composing actuarial symbols from scratch using
\actsymb can easily get quite involved. For this
reason, the package defines a large number of shortcut
macros to ease entry of the most common symbols.
Table 1 offers a glimpse of the available shortcuts;
the package documentation has the complete list.

The definition of \actsymb is heavily inspired
by the code of \prescript from package mathtools
which, as reported by the author, is itself based on a
posting to comp.text.tex by Michael J. Downes.

6 Positioning of subscripts

TEX adjusts the position of a subscript downward
when a superscript is present:

Ax A2
x.

Command \actsymb maintains this behavior, some-
thing we believe to be a desirable feature. Therefore,
entering the symbols above using the standard op-
erators ^ and _ or with \actsymb yields the same
result.

A_x \quad A_x^2 Ax A2
x

\actsymb{A}{x} \quad

\actsymb{A}{x}[2]
Ax A2

x

Furthermore, the command ensures that the left and
right subscripts, when both present, are at the same
level, something common ad hoc constructions do
not provide.

{}_tA_x \quad {}_tA_x^2 tAx tA
2
x

\actsymb[t]{A}{x} \quad

\actsymb[t]{A}{x}[2] tAx tA
2
x

Authors who would prefer a uniform subscript
position throughout their document can load the pack-
age subdepth [8].

Typesetting actuarial symbols easily and consistently with actuarialsymbol and actuarialangle

352 TUGboat, Volume 38 (2017), No. 3

Table 1: Sample of shortcuts for life table, insurance and annuity symbols.
All commands accept the optional arguments 〈ll〉, 〈ul〉 and 〈ur〉 of \actsymb.

Definition Example Output

\lx{〈age〉} \lx{x} ℓx
\dx{〈age〉} \dx[n]{x} ndx
\px{〈age〉} \px[t]{x} tpx
\qx{〈age〉} \qx[t]{x} tqx
\eringx{〈lr〉} \eringx{x:\angln} e̊x:n

\Ax{〈lr〉} \Ax{x:\angln} Ax:n

\Ax*{〈lr〉} \Ax*{x:\angln} Āx:n

\Ex{〈lr〉} \Ex[n]{x} nEx

\ax{〈lr〉} \ax{x:\angln} ax:n
\ax*{〈lr〉} \ax*{x:\angln} āx:n
\ax**{〈lr〉} \ax**{x:\angln} äx:n
\aringx{〈lr〉} \aringx{x:\angln} åx:n

7 Precedence numbers

Precedence numbers appear above or below individ-
ual statuses in the right subscript III of a symbol.
The commands

\nthtop[〈length〉]{〈number〉}{〈status〉}
\nthbottom[〈length〉]{〈number〉}{〈status〉}

put a precedence 〈number〉 above (resp. below) a
〈status〉, smashed so that the apparent height of the
status is its normal height.

\actsymb{A}{\nthtop{1}{x}:\angln} A1
x:n

\actsymb{A}{x:\nthtop{1}{\angln}} Ax:
1
n

\actsymb{A}{\nthtop{1}{x}y:%

\nthtop{2}{\angln}} A1
xy:

2
n

\actsymb{A}{\nthtop{3}{x}%

\nthbottom{1}{y}\nthbottom{2}{z}}
A3

xy
1
z
2

As can be seen in the third and fourth examples
above, the constant spacing between the precedence
number and the status can result in numbers placed
at different heights if one status contains a horizontal
rule or a descender. To cope with this situation, we
provide * variants of the commands that always align
precedence numbers vertically.

\actsymb{A}{\nthtop*{1}{x}y:%

\nthtop*{2}{\angln}} A
1
xy:

2
n

\actsymb{A}{\nthtop{3}{x}%

\nthbottom*{1}{y}\nthbottom*{2}{z}}
A3

xy

1

z

2

The fact that top precedence numbers have zero
height means they will clash with a right superscript
IV .

\actsymb{A}{\nthtop{1}{x}:\angln}[(m)] A
(m)1
x:n

For such rare circumstances, we left to the user to
insert a strut in the subscript to push it downward
as needed.

\actsymb{A}{\rule{0pt}{2.3ex}%

\nthtop{1}{x}:\angln}[(m)]
A

(m)
1
x:n

This remark also applies to bottom precedence num-
bers in inline formulas or multiline equations.

The optional argument 〈length〉 of \nthtop and
\nthbottom changes the default spacing between the
number and the status for one symbol. This can also
be changed globally by redefining lengths mentioned
in the documentation of actuarialsymbol.

The package defines shortcuts \itop, \iitop
and \iiitop for first, second and third top prece-
dence (and their analogues for bottom precedence).

The system of precedence numbers builds on
a macro that used to be part of actuarialangle.
As with the code for \angl, the original author is
unknown.

8 Other functionalities

For brevity, we have omitted some additional features
of actuarialsymbol, including macros to typeset
two-letter symbols such as (IA), numerous shortcut
macros and quite fancy utilities to define new ones.
The package documentation provides all the details.

Following [9], the package documentation also
contains a Comprehensive list of life contingencies
symbols. The wording used here should be taken
for its intended purpose, namely to acknowledge
Scott Pakin’s immensely useful Comprehensive LATEX
Symbol List [6].

TUGboat, Volume 38 (2017), No. 3 353

References

[1] David Beauchemin and Vincent Goulet.
Actuarial symbols of life contingencies and
financial mathematics, 2017.
ctan.org/pkg/actuarialsymbol.

[2] Newton L. Bowers, Hans U. Gerber, James C.
Hickman, Donald A. Jones, and Cecil J.
Nesbitt. Actuarial Mathematics. Society of
Actuaries, Shaumburg, IL, second edition,
1997.

[3] Vincent Goulet. Actuarial angle symbol for life
contingencies and financial mathematics, 2017.
ctan.org/pkg/actuarialangle.

[4] Martin Hensel. The mhchem Bundle, 2017.
ctan.org/pkg/mhchem.

[5] Morten Høgholm and Lars Madsen.
The mathtools package, 2015.
ctan.org/pkg/mathtools.

[6] Scott Pakin. The Comprehensive LATEX Symbol
List, 2015. ctan.org/pkg/comprehensive.

[7] Philip G. Ratcliffe. The tensor package for
LATEX2e, 2004. ctan.org/pkg/tensor.

[8] Will Robertson. Unify subscript depths, 2007.
ctan.org/pkg/subdepth.

[9] Eddy Trivedi. Life Contingencies’ Symbols,
2004. lifecon 2.1 User Guide.

[10] Henk Wolthuis. International actuarial
notation. In Jozef Teugels and Bjørn Sundt,
editors, Encyclopedia of Actuarial Science.
Wiley, 2004. onlinelibrary.wiley.com/

book/10.1002/9780470012505.

⋄ David Beauchemin
david.beauchemin.5 (at) ulaval

dot ca

⋄ Vincent Goulet
École d’actuariat
Université Laval
Pavillon Paul-Comtois
2425, rue de l’Agriculture, Bureau

4153
Québec (QC) G1V 0A6
Canada
vincent.goulet (at) act dot

ulaval dot ca

https://vgoulet.act.ulaval.ca

Converting TEX from WEB to cweb

Martin Ruckert

Why translate TEX from WEB to cweb?

A long term goal brought me to construct the pro-
gram web2w that translates TEX from WEB to cweb:
I plan to derive from the TEX sources a new kind of
TEX that is influenced by the means and necessities
of current software and hardware.

The major change in that new kind of TEX will
be the separation of the TEX frontend: the process-
ing of .tex files, from the TEX backend: the render-
ing of paragraphs and pages.

Let’s look, for example, at ebooks: Current
ebooks are of rather modest typographic quality.
Just compiling TEX documents to a standard ebook
format, for example epub, does not work because a
lot of information that is used by TEX to produce
good looking pages is not available in these formats.
So I need to cut TEX in two pieces: a frontend that
reads TEX input, and a backend that renders pixels
on a page. The frontend will not know about the fi-
nal page size because the size of the output medium
may change while we read—for example by turning
a mobile device from landscape to portrait mode.
On the other hand, the computational resources of
the backend are usually limited because a mobile
device has a limited supply of electrical energy. So
we should do as much as we can in the frontend and
postpone only what needs to be postponed to the
backend. In between front and back, we need a nice
new file format that is compact and efficient and
transports the necessary information between both
parts.

For the work described above, I will need to
work with the TEX source code and make substan-
tial changes. The common tool chain from the TEX
Live project uses tangle to convert tex.web into
Pascal code (tex.pas) which is then translated by
web2c into C code. In the course of this process
also other features of a modern TEX distribution
are added. Hence the translation process is not just
a syntactic transformation but also introduces se-
mantic changes. So it seemed not the best solution
for my project. Instead, I wanted to have cweb [7]
source code for TEX, which I could modify and trans-
late to C simply by running ctangle.

The result of my conversion effort was surpris-
ingly good, so I decided to make it available on
ctan.org [10] and to present it here, in the hope
others may find it useful when tinkering with TEX.

How the program web2w was written

On December 9, 2016, I started to implement web2w
with the overall goal to generate a tex.w file that
is as close as possible to the tex.web input file, and
can be used to produce tex.tex and tex.c simply
by running the standard tools ctangle and cweave.

web2w was not written following an established
software engineering workflow as we teach it in our
software engineering classes. Instead the develop-
ment was driven by an ongoing exploration of the
problem at hand where the daily dose of success or
failure would determine the direction I would go on
the next day.

This description of my program development
approach sounds a bit like “rapid prototyping”. But
“prototype” implies the future existence of a “final
version” and I do not intend to produce such a “final
version”. Actually I have no intention to finish the
prototype either, and I might change it in the future
in unpredictable ways. Instead I have documented
the development process as a literate program [6].
So in terms of literature, this is not an epic novel
with a carefully designed plot, but more like the
diary of an explorer who sets out to travel through
yet uncharted territories.

The territory ahead of me was the program
TEX written by Donald E. Knuth using the WEB lan-
guage [4] as a literate program. As such, it contains
snippets of code in the programming language Pas-
cal—Pascal-H to be precise. Pascal-H is Charles
Hedrick’s modification of a compiler for the DEC-
system-10 that was originally developed at the Uni-
versity of Hamburg (cf. [1], see [5]). So I could not
expect to find a pure “Standard Pascal”. But then
the implementation of TEX deliberately does not use
the full set of features that the Pascal language of-
fers. Hence at the beginning, it was unclear to me
what problems I would encounter with the subset of
Pascal that is actually used in TEX.

Further, the problem was not the translation
of Pascal to C. A program that does this is avail-
able as part of the TEX Live project: web2c [11]
translates the Pascal code that is produced using
tangle from tex.web into C code. The C code that
is generated this way cannot, however, be regarded
as human readable source. The following example
might illustrate this: figure 1 shows the WEB code for
the function new null box. The result of translating
it to C by web2c can be seen in figure 3. In contrast,
figure 2 shows what web2w will achieve.

web2c has desugared the sweet code written by
Knuth to make it unpalatable to human beings; the

354 TUGboat, Volume 38 (2017), No. 3

136. The new null box function returns a pointer to

an hlist node in which all subfields have the values cor-

responding to ‘\hbox{}’. The subtype field is set to

min quarterword , since that’s the desired span count

value if this hlist node is changed to an unset node .

function new null box : pointer ;

{ creates a new box node }

var p: pointer ; { the new node }

begin p← get node (box node size);

type (p)← hlist node ; subtype (p)← min quarterword ;

width (p)← 0; depth (p)← 0; height (p)← 0;

shift amount (p)← 0; list ptr (p)← null ;

glue sign (p)← normal ; glue order (p)← normal ;

set glue ratio zero (glue set (p)); new null box ← p;

end;

Fig. 1: WEB code of new null box

136. The new null box function returns a pointer to

an hlist node in which all subfields have the values cor-

responding to ‘\hbox{}’. The subtype field is set to

min quarterword , since that’s the desired span count

value if this hlist node is changed to an unset node .

pointer new null box (void)

/∗ creates a new box node ∗/

{ pointer p; /∗ the new node ∗/

p = get node (box node size); type (p) = hlist node ;

subtype (p) = min quarterword ; width (p) = 0;

depth (p) = 0; height (p) = 0; shift amount (p) = 0;

list ptr (p) = null ; glue sign (p) = normal ;

glue order (p) = normal ;

set glue ratio zero (glue set (p)); return p;

}

Fig. 2: cweb code of new null box

only use you can make of it is feeding it to a C com-
piler. In contrast, web2w tries to create source code
that is as close to the original as possible but still
translates Pascal to C. For example, see the last
statement in the new null box function: where C has
a return statement, Pascal assigns the return value
to the function name. A simple translation, suffi-
cient for a C compiler, can just replace the function
name by “Result” (an identifier that is not used
in the implementation of TEX) and add “return
Result;” at the end of the function (see figure 3). A
translation that strives to produce nice code should,
however, avoid such ugly code.

The structure of web2w

The program web2w works in three phases: First I
run the input file tex.web through a scanner pro-
ducing tokens. The pattern matching is done using
flex. During scanning, information about macros,

Martin Ruckert

halfword

newnullbox (void)

{

register halfword Result; newnullbox_regmem

halfword p ;

p = getnode (7) ;

mem [p].hh.b0 = 0 ;

mem [p].hh.b1 = 0 ;

mem [p + 1].cint = 0 ;

mem [p + 2].cint = 0 ;

mem [p + 3].cint = 0 ;

mem [p + 4].cint = 0 ;

mem [p + 5].hh .v.RH = -268435455L ;

mem [p + 5].hh.b0 = 0 ;

mem [p + 5].hh.b1 = 0 ;

mem [p + 6].gr = 0.0 ;

Result = p ;

return Result ;

}

Fig. 3: web2c code of new null box

identifiers, and modules is gathered and stored. The
tokens then form a doubly linked list, so that later
I can traverse the source file forward and backward.
Further, every token has a link field which is used
to connect related tokens. For example, I link an
opening parenthesis to the matching closing paren-
thesis, and the start of a comment to the end of the
comment.

After scanning comes parsing. The parser is
generated using bison from a modified Pascal gram-
mar [3]. To run the parser, I feed it with tokens,
rearranged to the order that tangle would produce,
expanding macros and modules as I go. While pars-
ing, I gather information about the Pascal code.
At the beginning, I tended to use this information
immediately to rearrange the token sequence just
parsed. Later, I learned the hard way (modules that
were modified on the first encounter would later be
fed to the parser in the modified form) that it is bet-
ter to leave the token sequence untouched and just
annotate it with information needed to transform it
in the next stage.

A technique that proved to be very useful is
connecting the key tokens of a Pascal structure using
the link field. For example, connecting the “case”
token with its “do” token makes it easy to print
the expression that is between these tokens with-
out knowing anything about its actual structure and
placing it between “switch (” and “)”.

The final stage is the generation of cweb output.
Here the token sequence is traversed again in input
file order. This time the traversal will stop at the
warning signs put up during the first two passes,

TUGboat, Volume 38 (2017), No. 3 355

function new character (f : internal font number ;

c : eight bits): pointer ;

label exit ;

var p: pointer ; {newly allocated node }

begin if font bc [f] ≤ c then

if font ec [f] ≥ c then

if char exists (char info(f)(qi (c))) then

begin p← get avail ; font (p)← f ;

character (p)← qi (c); new character ← p;

return;

end;

char warning (f, c); new character ← null ;

exit : end;

Fig. 4: WEB code of new character

pointer new character (internal font number

f, eight bits c)

{ pointer p; /∗newly allocated node ∗/

if (font bc [f] ≤ c)

if (font ec [f] ≥ c)

if (char exists (char info(f)(qi (c)))) {

p = get avail (); font (p) = f ;

character (p) = qi (c); return p;

}

char warning (f, c); return null ;

}

Fig. 5: cweb code of new character

use the information gathered so far, and rewrite the
token sequence as gently and respectfully as possible
from Pascal to C.

Et voilà! tex.w is ready—well, almost. I have
to apply a last patch file, for instance to adapt doc-
umentation relying on webmac.tex so that it will
work with cwebmac.tex, and make changes that
do not deserve a more general treatment. The fi-
nal file is then called ctex.w from which I obtain
ctex.c and ctex.tex merely by applying ctangle

and cweave. Using “cc ctex.c -lm -o ctex”, I
get a running ctex that passes the trip test.

Major challenges

I have already illustrated the different treatment of
function return values in Pascal and C with figures 1
and 2. Of course, replacing “new null box ← p;”
by “return p;” is a valid transformation only if the
assignment is in a tail position. A tail position is
a position where the control flow directly leads to
the end of the function body as illustrated by fig-
ure 4 and 5. It is possible to detect tail positions by
traversing the Pascal parse tree constructed during
phase 2.

The return statement inside the if in figure 5 is
correct because the Pascal code in figure 4 contains

Converting TEX from WEB to cweb

a “return”. This “return”, however, is a macro de-
fined as “goto exit”, and “exit” is a numeric macro
defined as “10”. In C, “return” is a reserved word
and “exit” is a function in the C standard library, so
something has to be done. Fortunately, if all goto-
statements that lead to a given label can be elim-
inated, as is the case in figure 5, the label can be
eliminated as well. So you see no “exit :” preceding
the final “}”.

Another seemingly small problem is the differ-
ent use of semicolons in C and Pascal. While in C
a semicolon follows an expression to make it into
a statement, in Pascal the semicolon connects two
statements into a statement sequence. For example,
if an assignment precedes an “else”, in Pascal you
write “x:=0 else” whereas in C you write “x=0;
else”; but no additional semicolon is needed if a
compound statement precedes the “else”. When
converting tex.web, a total of 1119 semicolons need
to be inserted at the right places. Speaking of the
right place: Consider the following WEB code:

if s ≥ str ptr then s← "???"

{ this can’t happen }

else if s < 256 then

Where should the semicolon go? Directly preceding
the “else”? Probably not! I should insert the semi-
colon after the last token of the assignment. But this
turns out to be rather difficult: assignments can be
spread over several macros or modules which can be
used multiple times; so the right place to insert a
semicolon in one instance can be the wrong place in
another instance. web2w starts at the else, searches
backward, skips the comment and the newlines, and
then places the semicolon like this:

if (s ≥ str ptr) s = 〈 "???" 1381 〉;

/∗ this can’t happen ∗/

else if (s < 256)

But look at what happened to the string "???".
Strings enclosed in C-like double quotes receive a
special treatment by tangle: the strings are col-
lected in a string pool file and are replaced by string
numbers in the Pascal output. No such mechanism
is available in ctangle. My first attempt was to re-
place the string handling of TEX and keep the C-like
strings in the source code. The string pool is, how-
ever, hardwired into the program and it is used not
only for static strings but also for strings created at
runtime, for example to hold the names of control
sequences. So I tried a hybrid approach: keeping
strings that are used only for output (error messages
for example) and translating other strings to string
numbers using the module expansion mechanism of
ctangle, like this:

356 TUGboat, Volume 38 (2017), No. 3

1381.

#define str 256 "???"

〈 "???" 1381 〉 ≡ 256

This code is used in section 59.

I generate for each string a module, that will ex-
pand to the correct number, here 256; and I define a
macro str 256 that I use to initialize the string pool
variables.

In retrospect, seeing how nicely this method
works, I ponder if I should have decided to avoid the
hybrid approach and used modules for all strings. It
would have reduced the number of changes to the
source file considerably.

Another major difference between Pascal and
C is the use of subrange types. In Pascal subrange
types are used to specify the range of valid indices
when defining arrays. While most arrays used in
TEX start with index zero, not all do. In the first
case they can be implemented as C arrays which
always start at index zero; in the latter case, I define
a zero based array having the right size, and add a
“0” to the name. Then I define a constant pointer
initialized by the address of the zero based array
plus/minus a suitable offset so that I can use this
pointer as a replacement for the Pascal array.

When subrange types are used to define vari-
ables, I replace subrange types by the next largest
C standard integer type as defined in stdint.h—
which works most of the time. But consider the code

var p: 0 . . nest size ; { index into nest }
...

for p← nest ptr downto 0 do

where nest size = 40. Translating this to

uint8 t p; /∗ index into nest ∗/

...

for (p = nest ptr ; p ≥ 0; p−−)

would result in an infinite loop because p would
never become less than zero; instead it would wrap
around. So in this (and 21 similar cases), variables
used in for loops must be declared to be of type int.

Related work

As described by Taco Hoekwater in “LuaTEX says
goodbye to Pascal” [2], the source code of TEX was
rewritten as a part of LuaTEX project as a collec-
tion of cweb files. This conversion proceeded in
two steps: first TEX.WEB was converted into separate
plain C files while keeping the comments; at a much
later date, those separate files were converted back

Martin Ruckert

341. Now we’re ready to take the plunge into get next

itself. Parts of this routine are executed more often than

any other instructions of TEX.

define switch = 25 { a label in get next }

define start cs = 26 { another }

procedure get next ;

{ sets cur cmd , cur chr , cur cs to next token }

label restart , { go here to get the next input token }

switch ,

{ go here to eat the next character from a file }

reswitch , { go here to digest it again }

start cs , { go here to start looking for a control

sequence }

found , { go here when a control sequence has been

found }

exit ; { go here when the next input token has

been got }

var k: 0 . . buf size ; { an index into buffer }

t: halfword ; { a token }

cat : 0 . . max char code ;

{ cat code (cur chr), usually }

c, cc : ASCII code ;

{ constituents of a possible expanded code }

d: 2 . . 3; {number of excess characters in an

expanded code }

begin restart : cur cs ← 0;

if state 6= token list then 〈 Input from external file,

goto restart if no input found 343 〉

else 〈 Input from token list, goto restart if end of list

or if a parameter needs to be expanded 357 〉;

〈 If an alignment entry has just ended, take

appropriate action 342 〉;

exit : end;

Fig. 6: WEB code of get next

to cweb format. In this process, not only the spe-
cific extensions of the LuaTEX project were added,
but TEX was also enhanced by adding features using
the ε-TEX, pdfTEX, and Aleph/Omega change files.
These extensions are required for LATEX and mod-
ern, convenient TEX distributions. The conversion
was done manually except for a few global regular
expression replacements. I have included three ver-
sions of the get next function to illustrate the dif-
ferences between the traditional TEX.WEB by Don
Knuth (Fig. 6), my code (Fig. 7), the code found as
part of LuaTEX (Fig. 8).

One can see that web2w has eliminated the la-
bel declarations, but left the comments in the code.
Certainly this is something that could be improved
in a later version of web2w, by moving such com-
ments to the line where the label is defined in C.

TUGboat, Volume 38 (2017), No. 3 357

341. Now we’re ready to take the plunge into get next

itself. Parts of this routine are executed more often than

any other instructions of TEX.

void get next (void)

/∗ sets cur cmd , cur chr , cur cs to next token ∗/

{ /∗ go here to get the next input token ∗/

/∗ go here to eat the next character from a file ∗/

/∗ go here to digest it again ∗/ /∗ go here to

start looking for a control sequence ∗/

/∗ go here when a control sequence has been

found ∗/ /∗ go here when the next input

token has been got ∗/

uint16 t k; /∗ an index into buffer ∗/

halfword t; /∗ a token ∗/

uint8 t cat ; /∗ cat code (cur chr), usually ∗/

ASCII code c, cc ;

/∗ constituents of a possible expanded code ∗/

uint8 t d; /∗number of excess characters in an

expanded code ∗/

restart : cur cs = 0;

if (state 6= token list) 〈 Input from external file,

goto restart if no input found 343 〉

else 〈 Input from token list, goto restart if

end of list or if a parameter needs to be

expanded 357 〉;

〈 If an alignment entry has just ended, take

appropriate action 342 〉;

}

Fig. 7: web2w code of get next

In the LuaTEX version, these comments have dis-
appeared together with the labels, while the com-
ment that follows after the procedure header was
converted into the text of a new section.

web2w retained the definitions of local variables,
converting the subrange types to the closest possible
type from stdint.h. For example, “k: 0 .. buf size”
was converted to “uint16 t k ”. buf size is defined
earlier in ctex.w as buf size = 500. Note that
changing this to buf size = 70000 would not force a
corresponding change to uint32 t in the definition
of k. Only changing the definition in TEX.WEB and
rerunning web2w would propagate this change. This
is an inherent difficulty of the translation from Pas-
cal to C. In the LuaTEX version, the local variables
have disappeared and were moved to the subroutines
called by get next.

The module references present in the original
WEB code (namely 〈Input from external file . . . 〉,
〈Input from token list . . . 〉, 〈If an alignment entry
. . . 〉), are not retained in the LuaTEX version. In-
stead, LuaTEX converts them either to function calls
or expands the modules turning the module name

Converting TEX from WEB to cweb

34. Now we’re ready to take the plunge into get next

itself. Parts of this routine are executed more often than

any other instructions of TEX.

35. sets cur cmd , cur chr , cur cs to next token

void get next (void)

{

RESTART: cur cs = 0;

if (istate 6= token list) { /∗ Input from external

file, goto restart if no input found ∗/

if (¬get next file()) goto RESTART;

}

else {

if (iloc ≡ null) {

end token list ();

goto RESTART;

/∗ list exhausted, resume previous level ∗/

}

else if (¬get next tokenlist ()) {

goto RESTART;

/∗ parameter needs to be expanded ∗/

}

} /∗ If an alignment entry has just ended, take

appropriate action ∗/

if ((cur cmd ≡ tab mark cmd ∨ cur cmd ≡

car ret cmd) ∧ align state ≡ 0) {

insert vj template ();

goto RESTART;

}

}

Fig. 8: LuaTEX code of get next

into a comment. Part of the problem of turning
modules into subroutines is the translation of the
goto restart statements without creating non-local
gotos. LuaTEX solves the problem by using boolean
functions that tell the calling routine through their
return values whether a goto restart is called for. In
contrast, the automatic translation by web2w stays
close to the original code, avoiding this problem by
retaining the modules.

Conclusion

Using the web2w program, the TEX source code can
be converted to the cweb language, designed for
the generation of C code and pretty documentation.
The resulting code is very close to the original code
by Knuth; its readability is surprisingly good. While
manual translation is considerably more work, it of-
fers the possibility (and temptation) of changing the
code more drastically. Automatic translation can be
achieved with limited effort but is less flexible and
its result is by necessity closer to the original code.

358 TUGboat, Volume 38 (2017), No. 3

The web2w.w program itself and the converted
TEX source code, ctex.w, are available on CTAN for
download [8, 10]. Since web2w is a literate program,
you can also buy it as a book [9].

References

[1] C. O. Grosse-Lindemann and H. H. Nagel.
Postlude to a PASCAL-compiler bootstrap
on a DECsystem-10. Software: Practice and
Experience, 6(1):29–42, 1976.

[2] Taco Hoekwater. LuaTEX says goodbye
to Pascal. TUGboat, 30(3):136–140, 2009.
https://tug.org/TUGboat/tb30-3/

tb96hoekwater-pascal.pdf.

[3] Kathleen Jensen and Niklaus Wirth.
PASCAL: User Manual and Report.
Springer Verlag, New York, 1975.

[4] Donald E. Knuth. The WEB system
of structured documentation. Stanford
University, Computer Science Dept.,
Stanford, CA, 1983. STAN-CS-83-980.
https://ctan.org/pkg/cweb.

[5] Donald E. Knuth. TEX: The Program.
Computers & Typesetting, Volume B.
Addison-Wesley, 1986.

[6] Donald E. Knuth. Literate Programming.
CSLI Lecture Notes Number 27. Center for
the Study of Language and Information,
Stanford, CA, 1992.

[7] Donald E. Knuth and Silvio Levy. The CWEB
System of Structured Documentation. Addison
Wesley, 1994. https://ctan.org/pkg/cweb.

[8] Martin Ruckert. ctex.w: A TEX
implementation. http://mirrors.ctan.org/
web/web2w/ctex.w, 2017.

[9] Martin Ruckert. WEB to cweb.
CreateSpace, 2017. ISBN 1-548-58234-4.
https://amazon.com/dp/1548582344.

[10] Martin Ruckert. web2w:
Converting TEX from WEB to cweb.
https://ctan.org/pkg/web2w, 2017.

[11] Web2C: A TEX implementation.
https://tug.org/web2c.

⋄ Martin Ruckert
Hochschule München
Lothstrasse 64
80336 München
Germany
ruckert (at) cs dot hm dot edu

Martin Ruckert

TUGboat, Volume 38 (2017), No. 3 359

dvisvgm: Generating scalable vector
graphics from DVI and EPS files

Martin Gieseking

Abstract

dvisvgm is a command-line utility that converts DVI

and EPS files to the XML-based vector graphics for-
mat SVG, an open standard developed by the W3C.
Today, SVG is supported by many applications in-
cluding text processors, graphics editors, and web
browsers. Therefore, it’s a convenient format with
which to enrich websites and non-TEX documents
with self-contained, arbitrarily scalable TEX output.
This article gives an overview of selected features of
dvisvgm and addresses some challenges faced in its
development.

1 How it all started

In 2005 I was working on a wiki-based cross media
publishing system called media2mult [3], which was
supposed to produce documents in various output for-
mats from a single source without the need to force
the authors to scatter format and layout specific
settings throughout the input document. Since the
conversion back-end was built on the XML format-
ting technology XSL-FO, which at that time didn’t
provide sufficient math support through MathML, I
needed a way to embed scalable TEX output in the
XSL-FO files. The preferred format for this task was
SVG, because it is XML-based and therefore fit nicely
into the other involved XML technologies; for exam-
ple, the files could be post-processed easily by apply-
ing XSLT and XQuery scripts. Furthermore, SVG was
decently supported by Apache’s open-source XSL-FO

processor FOP and the related Batik SVG toolkit.
Fortunately, two DVI to SVG converters were

already available, dvisvg [7] by Rudolf Sabo and
dvi2svg [2] by Adrian Frischauf. Both utilities looked
promising, and created nice results from my initial
test files. dvi2svg even supported color and hyperref
specials, which was another advanced requirement
for my needs. However, the main drawback for the
planned document conversion engine was that both
tools relied on pre-converted SVG font files derived
from a selection of common TEX fonts, notably the
Computer Modern family. There was no simple way
to process DVI files referencing arbitrary fonts sup-
ported by the TEX ecosystem. The latter had to
be generated in advance by some kind of DVI pre-
processing and by extracting the glyph data from
PostScript or TrueType fonts, e.g. as described in [4,
pp. 272–274].

Sadly, around that time, the development of

both utilities apparently stalled, and the website of
dvi2svg disappeared several months later. The al-
ternative approach of creating SVG files from PDF

didn’t work satisfactorily either, due to the missing
conversion of hyperlinks across pages inside the doc-
ument, and the weak support of METAFONT-based
fonts, which were embedded as bitmap fonts if no
vector versions were available.

Since I had already written a couple of small DVI

utilities before and therefore had working DVI and
TFM readers available, I started to build a simple
SVG converter on top of them. The first public
release of dvisvgm was in August 2005. Since then,
it’s been a private free-time project and has evolved
a lot over the years, largely because of wonderful
feedback, detailed bug reports and interesting feature
suggestions. dvisvgm is included in TEX Live and
MiKTEX, and is also available through MacPorts.

2 About dvisvgm and basic usage

dvisvgm is a command-line utility written in C++. It
supports standard DVI files with a version identifier
of 2, as well as DVI files created by pTEX in vertical
mode (version 3) and X ETEX (versions 5 to 7).1 The
latter are also known as XDV files and are created if
X ETEX is called with option -no-pdf.

The basic usage of dvisvgm is straightforward
and similar to other DVI drivers. If no other options
are specified, it converts the first page of the given
DVI file to an SVG file with the same name. If the
DVI file has more than one page, the page number
is appended to the base name. For example,

dvisvgm myfile.dvi

creates the file myfile.svg if myfile.dvi consists
of a single page only, else myfile-01.svg. This
was originally because the initial releases of dvisvgm
could process only single DVI pages in one run; the
behavior is still retained for compatibility. To select a
different page or a sequence of page ranges, the option
--page is required. It accepts a single page number
or a comma-separated list of ranges. Regardless of
whether any page numbers are specified multiple
times, e.g. by overlapping range specification, all
selected pages are converted to separate SVG files
only once. The command

dvisvgm --page=1,3,5-9,8-10 myfile.dvi

is identical to

dvisvgm --page=1,3,5-10 myfile.dvi

and converts the pages 1, 3, and 5 through 10. The
file names get the corresponding number suffixes as

1 When an incompatible change in X ETEX’s XDV format
is made, the DVI version identifier is increased. The recent
X ETEX revision 0.99998 creates DVI files of version 7.

dvisvgm: Generating scalable vector graphics from DVI and EPS files

360 TUGboat, Volume 38 (2017), No. 3

--output=〈pattern〉 SVG file name of page 1

%f myfile.svg

%f-%p myfile-01.svg

newfile-%p newfile-01.svg

%f-%4p-of-%P myfile-0001-of-20.svg

%f-%4(p-1) myfile-0000.svg

%f-%(P-p+1) myfile-20.svg

../%f/svg/%3p ../myfile/svg/001.svg

Table 1: Effect of several output patterns applied to
myfile.dvi consisting of 20 pages.

above. It’s also possible to give open page ranges by
omitting the start or end number:

dvisvgm --page=-5,10-

converts all pages from the beginning up to page 5,
as well as page 10 and all following ones. Regardless
of the number of pages converted, dvisvgm always
prescans the entire DVI file in advance to collect
global data, like font definitions, PostScript headers
and hyperlink targets. In this way it is possible
to convert selected pages correctly even if required
information is located on excluded pages.

In order to change the names of the generated
SVG files, --output can be used. It supports pat-
terns containing the placeholders %f, %p, and %P

which expand to the base name of the DVI file, the
current physical page number, and the total number
of pages in the DVI file, respectively. The command

dvisvgm --output=%f-%p-%P myfile

converts the first page of myfile.dvi to the SVG file
myfile-01-20.svg, given that the DVI file contains
20 pages. The number of digits used for %p is adapted
to that of %P but can be explicitly determined by a
prepended number, e.g., %4p. Table 1 shows some
further examples of specifying the naming scheme of
the generated files. More details can be found in the
dvisvgm manual page.2

Because of the lengthy text-based nature of XML

documents, SVG files tend to be bigger than other
vector graphics formats. To reduce the file size, the
SVG standard specifies gzip- and deflate-compressed
SVG files which normally use the extension .svgz.
To create compressed files on the fly during a DVI

conversion, the option --zip is available.

3 Font support

In contrast to PostScript and PDF, DVI provides no
means to embed fonts into the file. Fonts are speci-
fied merely through their name, size, and a couple
of additional parameters allowing the DVI driver to
retrieve further data from the user’s TEX environ-

2 dvisvgm.sf.net/Manpage#specials

ment. While this approach keeps DVI files compact,
it also reduces their cross-platform portability and
delegates significant processing to the driver. On
the other hand, the requirement for a working TEX
system enables full access to all font data, including
those usually not embedded into PDF files. This
is especially important regarding METAFONT-based
fonts not available in other formats.

Since I was confronted with a wide variety of
documents using a wide variety of fonts, it was impor-
tant to provide dvisvgm with comprehensive font sup-
port including virtual fonts, various font encodings,
CMaps, sub-font definitions, font maps, handling of
glyph names and Japanese fonts which often use an
extended TFM format called JFM. The proper map-
ping of PostScript character names, as used in Type 1
fonts, to corresponding Unicode points, required the
inclusion of the Adobe Glyph List (AGL).3

Furthermore, the generated SVG files needed
to be compatible with XSL-FO converters and SVG

renderers, like web browsers. It turned out that each
type of applications evidently focused on different
aspects of the SVG standard, as some elements are
not evaluated completely, leading to incorrect or in-
complete visual results. To work around this, I added
command-line options to alter the representation of
glyphs and other graphic components in the gen-
erated SVG files as needed. The following sections
cover some of the challenges involved in this area.

3.1 Vectorization of bitmap fonts

Today, many popular fonts used in (LA)TEX docu-
ments are available in OpenType, TrueType or Post-
Script Type 1 format, greatly simplifying their con-
version to SVG as they are already vectorized. This
also includes many fonts originally developed with
METAFONT, such as the beautiful Old German deco-
rative initials by Yannis Haralambous. However, dur-
ing the first releases of dvisvgm, I regularly stumbled
over documents that could not be converted com-
pletely because they relied on fonts only available as
METAFONT source. Some of these were designed by
the document authors to provide special characters
or little drawings.

The problem is that although METAFONT allows
detailed, high-level vectorial descriptions of glyphs,
it doesn’t create vector but bitmap output, in the
form of GF (Generic Font) files. While it’s possible
to utilize bitmap fonts with SVG, the results are not
satisfying, and this approach would not meet our
objectives. Thus, it was necessary to find a way to

3 github.com/adobe-type-tools/agl-specification

Martin Gieseking

TUGboat, Volume 38 (2017), No. 3 361

Figure 1: The Schwabacher “round s” extracted from
GF font yswab.600gf (600 ppi) and the vectorization of
the same glyph based on yswab.2400gf. It’s composed
of three closed oriented paths, with enclosed regions
filled according to the non-zero rule, i.e. areas with a
winding number 6= 0 are considered “inside”.

vectorize the GF fonts during a DVI to SVG conver-
sion without the need to perform this task separately
in advance. Fortunately, there were already some
open-source tracers available that could be incorpo-
rated into dvisvgm to do the hard work. Especially,
the free potrace library [8] by Peter Selinger produces
amazing results from monochromatic bitmaps, like
the glyphs of GF fonts (see figure 1).

To avoid unintentional distortions of the gener-
ated paths, a high-resolution bitmap of the glyph is
required. By default, dvisvgm calls METAFONT to
create a GF font with a resolution of 2400 pixels per
inch, which turned out to be a suitable choice, and
runs potrace on the needed glyphs afterwards. The
computed vector descriptions are then converted to
SVG glyph or path elements and inserted into the
SVG document tree. Furthermore, dvisvgm stores
the vector data in a font cache located in the user’s
home directory to avoid repeated vectorizations of
the same glyphs. When subsequently converting the
same DVI file again, the glyph outlines are read from
the cache, drastically increasing processing speed. In-
formation on the data currently stored in the cache
can be retrieved with the option --cache.

By default, dvisvgm vectorizes only the glyphs
actually used on the processed DVI pages. Hence,
only these are added to the cache. If the document is
modified so that further, currently uncached glyphs
are required, METAFONT and the vectorizer are run
again to create the missing data. If desired, it’s
also possible to vectorize the entire GF font at once
so that all its glyphs are cached instantly, with the
option --trace-all.

While the automatic vectorization of GF fonts
works pretty well, the results can’t beat the manually

optimized glyphs provided by native vector fonts.
Thus, it has been implemented as a fallback routine
only triggered if no vector version of a required font
is available in the user’s TEX environment.

3.2 Font elements vs. graphics paths

The initial release of dvisvgm was designed to embed
font data only in terms of SVG font, font-face,
and glyph elements, as the SVG standard provided
them for this very purpose. Once defined, the glyphs
can be referenced by selecting the font and using
the corresponding UTF-8-encoded characters inside a
text element, as shown in the following SVG excerpt.
Due to the elaborate nature of the XML syntax, only
a single, relatively short glyph element defining a
period is shown here, abridged:

<font-face ascent="751" descent="249"

font-family="yswab" units-per-em="1000"/>

...

<glyph d="m149 151l-59 -59c-7 -7 -15 -14 -20

-23l5 -8l74 -74h1l59 59c7 7 15 14 20 23l-5

8l-75 74z" glyph-name="period" unicode="."

horiz-adv-x="306" vert-adv-y="306"/>

...

...

<text font-family="yswab" font-size="14.35"

x="50" y="100">Hello.</text>

The advantage of this method is that the SVG file
contains both the textual information and the ap-
pearance of the characters. This enables SVG viewers
to provide features such as text search and copying,
which works nicely with Apache’s Squiggle viewer, for
example. Conversion tools, like the XSL-FO proces-
sor FOP, are written to maintain the text properties
and can propagate them to other file formats. On
the other hand, the big disadvantage is that few SVG

renderers actually support font elements. In par-
ticular, all popular web browsers come with partial
SVG support—and none of them evaluate fonts de-
fined as shown above. Therefore, the displayed text
is selectable and searchable but very likely does not
look as expected (see figure 2). As stated by Daan
Leijen [6], this is an irritating problem for applica-
tions like his authoring system Madoko, which would
like to embed math formulas in terms of SVG files
into HTML documents.

A workaround for this issue is to forgo font and
character information and to convert the glyphs to
plain graphic objects in the form of path elements.
These are correctly processed by all SVG renderers
and lead to the desired visual results. If dvisvgm
is called with the option --no-fonts, the above

dvisvgm: Generating scalable vector graphics from DVI and EPS files

362 TUGboat, Volume 38 (2017), No. 3

Figure 2: Screenshots of two SVG files opened in
Firefox. Both were generated from the same DVI file.
The left image uses font, the right path elements.

example is transformed to the following sequence of
SVG elements:

<defs>

...

<path d="m2.14 -2.17l-0.85 0.85c-0.1 0.1

-0.22 0.2 -0.29 0.33l0.07 0.11l1.06 1.06

h0.01l0.85 -0.85c0.1 -0.1 0.22 -0.2 0.29

-0.33l-0.07 -0.1l-1.08 -1.06z" id="g2-46"/>

...

</defs>

...

<use x="50" y="100" xlink:href="#g2-72"/>

<use x="59.8" y="100" xlink:href="#g2-101"/>

<use x="64.3" y="100" xlink:href="#g2-108"/>

<use x="70.5" y="100" xlink:href="#g2-108"/>

<use x="71.1" y="100" xlink:href="#g2-111"/>

<use x="77.8" y="100" xlink:href="#g2-46"/>

Based on font parameters like the partition of the
em square and the font size, all glyph descriptions
are now condensed to isolated graphics path objects
tagged with a unique identifier. The latter is uti-
lized to reference the object through use elements
in order to place instances of it at the appropriate
positions. Although the resulting SVG files no longer
contain textual information, the visual outcome is
indistinguishable from the correctly rendered font
data, while simultaneously maintaining high porta-
bility across SVG renderers.

3.3 Generating WOFF fonts

Although the conversion of glyphs to graphics paths
leads to satisfying visual results, the lack of access to
the text is a considerable disadvantage. Fortunately,
all main web browsers come with full-featured sup-
port of WOFF, WOFF2, and TrueType fonts. The
CSS rule @font-face allows linking the name of a
font family with a font file, which may be either
referenced by its name, or completely embedded into
the CSS code in terms of base64-encoded data.

As of version 2, dvisvgm provides the option
--font-format to select between several different
formats. Currently, it accepts the arguments woff,
woff2, ttf, and (the default) svg. Similar to the

treatment of SVG fonts, all data of the newly sup-
ported font formats is embedded into the SVG files
in order to maximize portability. The alternative
approach, to reference local font files already present
on the user’s system, would clearly significantly de-
crease the size of the generated files, but is avoided
at present due to a couple of drawbacks. Especially,
the fact that SVG relies on Unicode tables provided
by the font files which don’t necessarily have to cover
all glyphs present in the font is a problem. If the
Unicode table doesn’t define a mapping for a certain
glyph, it is inaccessible from the SVG document. This
turns out to be the case for many displaystyle math
operators or character variants defined by several
fonts, like the XITS math font, for example. Thus,
dvisvgm derives a new font from the original one and
assigns random code points in the Unicode Private
Use Area to the “hidden” glyphs. The resulting file is
then embedded into the corresponding SVG file. For
a future version, it might be a nice feature to create
external font files containing all glyphs required for
the entire DVI document and then reference them
inside the various SVG files.

4 Bounding boxes

In contrast to DVI converters like dvips or dvipdfm(x)
which are usually utilized to create self-contained
final documents, the main application scenario of
dvisvgm is to generate graphics files to be embed-
ded into other documents, like web sites, EPUB or
XSL-FO files. A typical example is the alignment
of mathematical formulas typeset by TEX with the
text of an HTML page. Therefore, the generated
SVG graphics normally should get a minimal bound-
ing rectangle that tightly encloses all visible parts
without surrounding space so that the spacing and
positioning of the graphics can be easily controlled
inside the main document. Additional static mar-
gins present in the SVG file would make this more
difficult. For this reason, dvisvgm computes tight
bounding boxes for all converted pages. If a different
bounding box is needed, though, the option --bbox

can be used to add additional space around graphics
(e.g. --bbox=5pt), to set an arbitrary box by speci-
fying the coordinates of two diagonal corners, or to
assign a common paper format, e.g. A4 or letter (e.g.
--bbox=letter).

4.1 Tight text boxes

In order to compute tight bounding boxes, the con-
verter requires information on the extents of each
glyph present on the current page. The easiest way
to get them is either to read the corresponding values
directly from the font file or to use the width, height,

Martin Gieseking

TUGboat, Volume 38 (2017), No. 3 363

and depth values stored in a font’s TFM (TEX Font
Metrics) file. dvisvgm always prefers the latter if
possible, because the TFM data tends to be more
precise and usually leads to better results. This ap-
proach isn’t perfect either, though. TFM files are
primarily designed to provide TEX’s algorithms with
the font metrics needed to determine the optimal
character positions of the processed document. The
actual shapes of the characters don’t matter for these
computations and are in fact never seen by TEX. Fur-
thermore, the character boxes defined by the width,
height, and depth values don’t have to enclose the
characters’ glyphs tightly. The boxes are especially
allowed to be smaller so that parts of the glyphs can
exceed their box as the top and bottom areas of the
letter in the following example:

gbaseline

height

depth

width

Obviously, this box is also somewhat wider than
the enclosed glyph. Depending on the amount of di-
vergence, the computation of the global SVG bound-
ing box based on these values may eventually lead to
visibly cropped characters and/or unwanted space at
the borders of the generated graphics. That’s why
dvisvgm’s option --exact was implemented some
time ago. It tells the converter to trace the outlines
of each glyph present on the page and to calculate
their exact bounds. The path descriptions required
for this task are taken from one of the available vec-
tor font files or, as a fallback, from the results of
the above mentioned vectorization of METAFONT’s
bitmap output. While slightly more time-consuming,
this approach works pretty well and helps to avoid
the described text-related bounding box issues.

4.2 Aligning baselines

Another common problem that needs attention when
embedding graphical LATEX snippets in e.g. HTML

documents is the alignment of the baselines. Since
the total height of the generated graphics comprises
the height and depth of the shown text, the graph-
ics must be shifted down by the depth value in or-
der to properly line up with the surrounding HTML

text. The vertical position can be changed with CSS

property vertical-align, but how do we get the

required depth values? Unfortunately, plain DVI

files don’t provide any high-level information such as
typographic data. They essentially contain only the
positions of single characters and rules. Thus, it’s
not easily possible to extract the baseline position
in a reliable way.4 Especially, two-dimensional math
formulas with characters at several vertical positions,
as shown in the figure below, are difficult to analyze
at the DVI level without further assistance from TEX.

ỹk = x2k

x+1baseline

height

depth

width

One helpful tool to work around this limitation
is the preview package by David Kastrup. Partic-
ularly, its package option tightpage [5, p. 4] en-
riches the DVI file with additional data regarding
height and depth which allows computing the ver-
tical coordinate of the baseline. dvisvgm uses this
information to calculate height and depth of the
previously determined tight bounding box, which
usually differs from the box extents provided by the
preview data due to further preview settings, such
as the length \PreviewBorder. The resulting box
values are printed to the console and can be read
by third-party applications afterwards to adjust the
embedded SVG graphics accordingly. This happens
automatically without the need to request this infor-
mation explicitly. For instance, the conversion of the
unscaled above formula typeset in 10 pt size leads to
the following additional output:

width=39.02pt, height=10.43pt, depth=4.28pt,

where the unit pt denotes TEX points (72.27 pt =
1 in). If dvisvgm should apply the original, unmodi-
fied tightpage extents present in the DVI file, the
command-line option --bbox=preview can be spec-
ified. Of course, the length values reported to the
console then change appropriately as well.

It’s important to consider that the extraction of
the tightpage data requires a dvisvgm binary with
enabled PostScript support (see section 6) because
the preview package adds the box extents in terms
of PostScript specials to the DVI file. If PostScript
support is disabled for some reason, dvisvgm prints a

4 There are some tricks to detect line breaks and the prob-
able locations of the new starting baselines. One approach is
to check the height of the DVI stack every time the virtual
DVI cursor is moved by a positional operation. If the stack
height underruns a certain threshold, a line break most likely
occurred. While this technique works well for splitting hyper-
link markings for example, it doesn’t work reliably enough to
derive the true baseline positions.

dvisvgm: Generating scalable vector graphics from DVI and EPS files

364 TUGboat, Volume 38 (2017), No. 3

corresponding warning message and silently ignores
the preview information and behaves as if no preview
data were present.

A limitation of the current baseline computation
is the restriction to unrotated single-line graphics.
Graphics showing multiple lines of text are usually
difficult to align with surrounding text and need
special treatment not presently covered. The depth
of such graphics is currently set to the depth of the
lowest line, whereas everything above extends into
the height part of the box.

4.3 papersize specials

Another way to define the size of the bounding rectan-
gle is to add papersize specials to the TEX file, e.g.
\special{papersize=5cm,2.5cm}, where the two
comma-separated lengths denote width and height
of the page. Since it’s not very practical to manu-
ally enrich the documents with these commands, a
couple of packages like standalone are available that
compute the extents according to the page content
and insert the specials transparently. Once present
in the DVI file, dvisvgm can be told to evaluate the
papersize specials and to apply the given extents
as bounding box to the generated SVG files. Due
to compatibility reasons with previous releases, this
doesn’t happen automatically but must be enabled
with the option --bbox=papersize.

While the meaning of the papersize special it-
self is almost unambiguous and documented in the
dvips manual, the semantics of multiple instances of
the special present on the same page is not explicitly
specified. Indeed, as recently discussed on the TEX
Live mailing list, different DVI processors handle
sequences of these specials differently. For example,
dvips used to pick the first one on the page and ignore
the rest, whereas dvipdfmx and others apply the last
one—which, unsurprisingly, leads to different results.
Since several popular packages, notably hyperref and
geometry, insert papersize specials, it’s likely that
DVI pages often contain more than one and the user
might stumble over this inconsistency at times. As
of version 5.997 (2017), dvips got the new option -L

to tweak this behavior. By default, it now also uses
the last special, corresponding to -L1, whereas -L0
restores the old behavior. dvisvgm’s papersize sup-
port became available only after this unification effort
and could therefore respect the preferred semantics
without breaking previous behavior. So, it also al-
ways uses the last special present on a DVI page.

A further property of papersize specials is their
global scope. Once applied, the size settings affect
not only the current but also all subsequent pages
until another papersize is seen. Thus, if all pages

should have the same size, it’s sufficient to specify the
special only once at the beginning of the document.

5 Evaluation of specials

Although DVI is a very compact binary format to
describe the visual layout of a typeset document, it
is rather limited regarding the types of objects that
can be placed on a page—only characters and solid
rectangles are supported natively. Color, rotated
text, graphics, hyperlinks and other features to en-
rich the documents are not covered by the format
specification. To handle this, the DVI standard pro-
vides an operation called xxx which corresponds to
TEX’s \special command. It has no inherent seman-
tics but merely holds the expanded, usually textual,
argument of a \special command passed from the
TEX document to the DVI file. Since it also doesn’t
affect the state of the DVI engine, each DVI driver
is allowed to decide whether to evaluate any of the
xxx operations or to ignore them altogether. Based
on this mechanism, authors of LATEX packages and
DVI processors can specify various special commands
with defined syntax and semantics to enhance the
capabilities of plain DVI documents, as already seen
in the previous section about papersize specials.

Over the decades of TEX use, many sets of spe-
cials have been introduced. Some are well established
and used by various packages. These include, among
others, the color, hyperref, and PostScript specials.
The recent version of dvisvgm supports these, as
well as PDF font map specials, tpic specials, and
the line drawing statements of the emTEX specials.
To check the availability of a certain special han-
dler in the current version of dvisvgm, the option
--list-specials can be used. It prints a short sum-
mary of the supported special sets. It’s also possible
to ignore some or all specials during a DVI conversion
with option --no-specials; this accepts an optional
list of comma-separated handler names, which are
identical to those listed by --list-specials, in or-
der to disable only selected specials. For example,
--no-specials=color,html disables the processing
of all color and hyperref specials.

While a detailed description of all supported
special commands is beyond the scope of this article,
the following sections give some brief information on
the hyperref and dvisvgm specials which might be
helpful to know. Aspects of the PostScript handler
are addressed in the subsequent section 6.

5.1 hyperref specials

The hyperref package provides commands to add
hyperlinks to a LATEX document. Depending on the
selected driver, it produces code for dvips, dvipdfmx,

Martin Gieseking

TUGboat, Volume 38 (2017), No. 3 365

--linkmark=〈style〉 visual result

box (default) linked text

box:blue linked text

line linked text

line:#00ff00 linked text

yellow linked text

yellow:violet linked text

none linked text

Table 2: Examples showing the visual effect of
--linkmark on hyperlinked texts.

X ETEX, or any of the many other supported targets.
In order to create hyperlink specials understood by
dvisvgm, hyperref must be told to emit “HyperTEX”
specials, with the package option hypertex.

By default, a linked area in the SVG file is high-
lighted by a box drawn around it in the currently
selected color. On the request of several users, the
option --linkmark was added to allow changing this
behavior. It requires an argument determining the
style of the marking. While box is the default, argu-
ment line underlines the clickable area rather than
framing it, and none suppresses any visual highlight-
ing of hyperlinks completely. A dvips color name
or hexadecimal RGB value appended to these styles
and separated by a colon, assigns a static color to
the box or line. Finally, a style argument of the form
color1:color2 leads to a box filled with color1 and
framed with color2. Table 2 shows some examples
to give an idea of the effect of the style arguments.

5.2 dvisvgm specials

Besides the mentioned sets of special commands,
dvisvgm also provides some of its own to allow au-
thors of LATEX packages to insert additional SVG

fragments into the generated files and to interact
with the computation of the bounding box. Their
general syntax looks like this:

\special{dvisvgm:〈cmd〉 〈params〉}

The cmd denotes the command name and params the
corresponding parameters. For the sake of simplicity,
only the text after the colon is mentioned when
referring to dvisvgm specials herein.

The command raw followed by arbitrary text
appends the text to the group element representing
the current page. The sibling command rawdef does
almost the same but appends the text to the initial
defs element present at the beginning of the SVG

file. Both specials are allowed to insert any string
and thus can contain XML metacharacters, such as
angle brackets, e.g.:

raw <circle cx="{?x}" cy="{?y}" r="5"/>.

The macros {?x} and {?x} expand to the x and y co-
ordinate of the current DVI position in the “big point”
units (72 bp = 1 in) required in SVG files. The entire
character string is then copied to a literal text node
of the SVG tree and not evaluated further. There-
fore, it’s crucial to ensure that the insertions don’t
break the validity of the resulting SVG document,
especially if multiple raw or rawdef commands are
used to assemble complex element structures.

Another aspect to take care of regarding raw
insertions is the adaptation of the bounding box.
As outlined in section 4, dvisvgm computes a tight
bounding box for the generated SVG graphics by
default. Graphical or textual elements inserted via
the raw commands are not taken into account. As
a consequence, the bounding box may be too small,
so that some parts of the graphic lie outside the
viewport. To work around this, dvisvgm offers a
special that allows for intervening in the calculation
of the bounding rectangle. The command

bbox 〈width〉 〈height〉

updates the bounding box so that a virtual rectangle
of the given width and height and located at the
current DVI position will be fully enclosed. It’s also
possible to append an optional depth parameter to
the command:

bbox 〈width〉 〈height〉 〈depth〉

This encloses another rectangle of the same width
but with the negative height depth. At present, the
dimensions must be given as plain floating point
numbers in TEX pt units without a unit specifier. In
a future release, it will be possible to use the various
common length units to ease usage of this command.
For example, to update the bounding box for the
above raw circle element, the two successive dvisvgm
specials bbox 5 5 5 and bbox -5 5 5 can be used.

In addition to these relative bounding box spe-
cials, two absolute variants are supported, which
are only briefly mentioned here. More details about
them can be found on the manual page.

bbox abs 〈x1〉 〈y1〉 〈x2〉 〈y2〉

bbox fix 〈x1〉 〈y1〉 〈x2〉 〈y2〉

The first variant encloses a virtual rectangle given
by the coordinates (x1, y1) and (x2, y2) of two diag-
onal corners, whereas the second one sets the final
coordinates of the SVG bounding box, which will not
be changed or reset afterwards.

6 PostScript support

One of the biggest enhancements of the DVI format
was certainly the introduction of PostScript specials
and their processing by Tomas Rokicki’s dvips. Be-
sides placing advanced drawings in TEX documents,

dvisvgm: Generating scalable vector graphics from DVI and EPS files

366 TUGboat, Volume 38 (2017), No. 3

it supports injecting code between DVI commands,
allowing for the implementation of text transforma-
tions, coloring and much more. While dvips can copy
the code of the PostScript specials almost literally to
the generated files and delegate their processing to
the PostScript interpreter, DVI drivers targeting a
different output format have to evaluate it somehow.

The implementation of a full-featured PostScript
interpreter was certainly out of the scope of dvisvgm.
However, I wanted the utility to be able to prop-
erly convert as many DVI files as possible, ideally
including ones created using PSTricks or TikZ. The
most straightforward approach to achieve this was to
delegate the complex processing of PostScript code
to the free PostScript interpreter Ghostscript and let
it emit a reduced set of easily parsable statements
that dvisvgm could evaluate. This turned out to
work reasonably well, especially as a fair amount
of PostScript code can completely be processed by
Ghostscript without the need to worry about the
involved operations. Only a relatively small set of
operators that affect the graphics state must be over-
ridden and forwarded to dvisvgm in order to create
appropriate SVG components or to update drawing
properties.

In contrast to the other programming libraries
dvisvgm relies on and which are directly linked into
the binary, the Ghostscript library (libgs) can be
tied to dvisvgm in two different ways. Besides dis-
abling PostScript support completely, it’s possible
to either link to the Ghostscript library directly, or
to load it dynamically at runtime. In the first case,
PostScript support is always enabled, while in the
second one it depends on the accessibility of the
Ghostscript library on the user’s system. If libgs
can’t be found or accessed for some reason, dvisvgm
prints a warning message and disables the processing
of PostScript specials, which of course will likely lead
to inaccurate conversion results. To help dvisvgm
locate the library, the option --libgs or environ-
ment variable LIBGS can be used, e.g. to specify the
absolute path of the correct file. More detailed infor-
mation on this topic can be found on the FAQ page
of the project website.5

Although dvisvgm can properly convert a fair
amount of PostScript code, there are still some op-
erators and features it does not support yet. These
include all bitmap-related operations as well as linear,
radial, and function-based shading fills. Furthermore,
text output triggered by PostScript code is always
converted to SVG path elements similar to those de-
scribed in section 3.2. The differentiated handling of

5 dvisvgm.sf.net/FAQ

fonts including the conversion to WOFF only works
in conjunction with DVI font definitions.

6.1 Handling clipping path intersections

In order to restrict the area where drawing commands
lead to visible results, SVG allows the definition of
clipping paths. Every clipping path is defined by a set
of closed vector paths consisting of an arbitrary num-
ber of straight and curved line segments. The regions
enclosed by these paths define the visible area, i.e.
after applying a clipping path, only those portions
of the subsequently drawn graphics that fall inside
the enclosed area are visible, while everything else is
discarded. Clipping is a basic functionality of com-
puter graphics and supported by various formats and
languages, like PostScript, Asymptote, METAPOST,
and TikZ. So why is it mentioned here? Because one
variant of defining clipping paths in SVG may lead
to unpredictable, flawed visual results due to absent
or incomplete support in SVG renderers.

Besides defining the clipping path explicitly,
which is nicely supported by almost all renderers
I know of, it’s also possible to tell the SVG renderer
to compute the intersection of two or more paths
and restrict the subsequent drawing actions to the
resulting area. The following example defines a lens-
shaped path called lens by combining two arcs of 90
degrees. The result is assigned to clipping path clip1.
The second clipping path clip2 reuses path lens but
rotated by 90 degrees clockwise around its center.

<clipPath id="clip1">

<path id="lens" d="

M 0 0

A 50 50 0 0 1 50 50

A 50 50 0 0 1 0 0 Z"/>

</clipPath>

<clipPath id="clip2" clip-path="url(#clip1)">

<use xlink:href="#lens"

transform="rotate(90,25,25)"/>

</clipPath>

The crucial part of this definition is the clip-path
attribute, which restricts the drawing area of clip2
to the interior of clip1 so that the resulting clipping
region leads to a curved square, as shown in figure 3.

Graphic elements restricted to clip2, like the
following rectangle, are now supposed to be clipped
at the border of this square.

<rect x="17" y="0" width="16" height="50"

clip-path="url(#clip2)"/>

Unfortunately, this isn’t the case with all SVG ren-
derers.6 Since successive calls of the PostScript op-
erators clip and eoclip cause consecutive path in-
tersections, which dvisvgm translates to clipPath

6 Examples can be seen at dvisvgm.sf.net/Clipping.

Martin Gieseking

TUGboat, Volume 38 (2017), No. 3 367

Figure 3: Intersection of two lens-shaped paths (left),
and a rectangle clipped on the resulting area.

elements with clip-path attributes by default, the
generated SVG files are not portable either. In order
to prevent the creation of these, the --clipjoin op-
tion was added some time ago. It tells dvisvgm to
compute the path intersections itself with the help of
Angus Johnson’s great Clipper library7, which pro-
vides an implementation of the Vatti polygon clipping
algorithm. For this purpose, dvisvgm approximates
all clipping paths by polygons, runs the Vatti algo-
rithm on them to compute the boundaries of the
intersection areas, and reconstructs the curved seg-
ments of the resulting paths afterwards. In this way,
we usually get a compact yet smoothly approximated
outline of the final clipping paths. The application
of option --clipjoin to clipping path clip2 of the
above example leads to the following self-contained
path definition composed of four cubic Bézier curve
segments:

<clipPath id="clip2">

<path d="

M 43.2 25

C 38.8 32.5 32.5 38.8 25 43.2

C 17.5 38.8 11.2 32.5 6.8 25

C 11.2 17.5 17.5 11.2 25 6.8

C 32.5 11.2 38.8 17.5 43.2 25 Z"/>

</clipPath>

6.2 Approximation of gradient fills

One of the more powerful and impressive PostScript
features is the advanced support of various shading
algorithms to fill a region with smooth transitions of
colors in several color spaces. These algorithms in-
clude Gouraud-shaded triangle meshes, tensor-prod-
uct patch meshes, and flexible function-based shad-
ings, as well as linear and radial gradients. The
current SVG standard 1.1 provides elements to spec-
ify gradient fills too but they are limited to the last
two mentioned above, and are furthermore some-
what less flexible than the PostScript equivalents.
Therefore, it’s not possible to map arbitrary gradient
definitions present in EPS files or PostScript specials
to plain SVG gradient elements. In order to nonethe-

7 angusj.com/delphi/clipper.php

Figure 4: Approximation of tensor product shading
using a grid of 10 × 10 and 30 × 30 color segments,
respectively.

less convert a subset of them, dvisvgm approximates
color gradients by filling the specified area with small
monochromatic segments as shown in figure 4.

Each segment gets the average color of the cov-
ered area according to the selected gradient type
and color space. The maximum number of segments
created per column or row can be changed by option
--grad-segments. Greater values certainly lead to
better approximations, but concurrently increase the
computation time, the size of the SVG file, and,
perhaps most important, the effort required to ren-
der the file. To slightly counteract this drawback,
dvisvgm reduces the level of detail if the extent of
the segments falls below a certain limit. In case
of tensor-product patches, the segments are usually
delimited by four cubic Bézier curves and will then
be simplified to quadrilaterals. The limit at which
this simplification takes place can be set by option
--grad-simplify.

An issue that can occur in conjunction with gra-
dient fills is the phenomenon of visible gaps between
adjacent segments, even though they should touch
seamlessly according to their coordinates. This effect
results from the anti-aliasing applied by most SVG

renderers in order to produce smooth segment con-
tours which usually takes not only the foreground but
also the background color into account. Therefore,
the background color becomes visible at the joints of
the segments. If desired, the option --grad-overlap

can be used to prevent this effect. It tells dvisvgm
to create bigger, overlapping segments that extend
into the region of their right and bottom neighbors.
Since the latter are drawn on top of the overlapping
parts, which now cover the former joint lines, the
visible size of all segments remains unchanged. In
this manner we get visual results similar to those
shown in figure 4.

dvisvgm: Generating scalable vector graphics from DVI and EPS files

368 TUGboat, Volume 38 (2017), No. 3

6.3 Converting EPS files to SVG

Besides the family of special commands provided
to embed literal PostScript code directly into DVI

files, dvips also introduced a special called psfile.
Its purpose is to reference an external PS or EPS

file and insert its content, possibly after some pro-
cessing, at the current location of the document.
The LATEX command \includegraphics from the
graphicx package, for instance, produces a psfile

special if the dvips driver is selected. Also, the vector
graphics language Asymptote [1] uses this special in
its intermediate DVI files to combine the graphical
and typeset components of the resulting drawings.
Because of these major application areas, it was
important to make dvisvgm capable of processing
psfile specials, in order to cover a broader range of
documents.

Since the technical details of the command are
probably not of much interest for general users, they
are not discussed here in more depth. However, one
nice bonus feature that was technically available
instantly after finishing the implementation of the
psfile handler can be mentioned. Due to the han-
dler being able to process separate files, it seemed
natural to make this functionality available through
the command-line interface and so provide an EPS to
SVG converter. Little additional code was required
to realize this. Thus, as of version 1.2, dvisvgm offers
option --eps which tells the converter not to expect
a DVI but an EPS input file and to convert it to SVG.
For example,

dvisvgm --eps myfile

produces the SVG file myfile.svg from myfile.eps.
This is implemented by creating a single psfile spe-
cial called together with the bounding box informa-
tion given in the EPS file’s DSC header. To do the
conversion, only the PostScript handler is required,
with none of the DVI-related routines and associated
functionality, like font and other special processing.

Since there are already some standalone utilities
like ImageMagick and Inkscape available that can
do this, dvisvgm’s EPS to SVG functionality is prob-
ably needed less frequently but might nonetheless be
beneficial for the TEX community.

7 Acknowledgments

I would like to thank Karl Berry, Mojca Miklavec,
and, posthumously, Peter Breitenlohner for their
invaluable work to make dvisvgm available in TEX
Live and help in tracking down several issues. Also,

thank you to Khaled Hosny for implementing the
command-line option --no-merge and for providing
a Python port of my formerly XSLT-based helper
script opt2cpp. I furthermore appreciate the amazing
work of John Bowman and Till Tantau who added
support of dvisvgm to Asymptote and TikZ/PGF,
respectively.

There are many more people whom I can’t list
here individually but who helped enormously to im-
prove the program by reporting bugs, providing code,
and sending feature suggestions. Thank you very
much to all of you.

References

[1] John Bowman. Asymptote: Interactive TEX-aware
3D vector graphics. TUGboat, 31(2):203–205, 2010.
tug.org/TUGboat/tb31-2/tb98bowman.pdf.

[2] Adrian Frischauf and Paul Libbrecht.
dvi2svg: Using LATEX layout on the web.
TUGboat, 27(2):197–201, 2006.
tug.org/TUGboat/tb27-2/tb87frischauf.pdf.

[3] Martin Gieseking and Oliver Vornberger.
media2mult: A wiki-based authoring tool for
collaborative development of multimedial
documents. In Miguel Baptista Nunes and Maggie
McPherson, editors, Proceedings of the IADIS

International Conference on e-Learning, pages
295–303, Amsterdam, Netherlands, 2008.

[4] Michel Goossens and Vesa Sivunen. LATEX, SVG,
Fonts. TUGboat: The Communications of the TEX

Users Group, 22(4):269–280, 2001.
tug.org/TUGboat/tb22-4/tb72goos.pdf.

[5] David Kastrup. The preview package for LATEX.
ctan.org/pkg/preview, April 2017.

[6] Daan Leijen. Rendering mathematics for
the web using Madoko. In Robert Sablatnig
and Tamir Hassan, editors, Proceedings of

the 2016 ACM Symposium on Document

Engineering, pages 111–114, Vienna, Austria, 2016.
www.microsoft.com/en-us/research/wp-content/

uploads/2016/08/doceng16.pdf.

[7] Rudolf Sabo. DVISVG. Master’s thesis,
Masarykova Univerzita, Brno, Czech Republic,
2004. dvisvg.sourceforge.net/dipl.pdf.

[8] Peter Selinger. Potrace: A polygon-based tracing
algorithm. potrace.sourceforge.net, 2003.

⋄ Martin Gieseking
University of Osnabrück
Heger-Tor-Wall 12
49074 Osnabrück, Germany
martin dot gieseking (at) uos dot de

Martin Gieseking

TUGboat, Volume 38 (2017), No. 3 369

Tricky fences

Hans Hagen

Occasionally one of my colleagues notices some sub-
optimal rendering and asks me to have a look at
it. Now, one can argue about “what is right” and
indeed there is not always a best answer to it. Such
questions can even be a nuisance; let’s think of the
following scenario. You have a project where TEX
is practically the only solution. Let it be an XML
rendering project, which means that there are some
boundary conditions. Speaking in 2017 we find that
in most cases a project starts out with the assump-
tion that everything is possible.

Often such a project starts with a folio in mind
and therefore by decent tagging to match the ed-
ucational and esthetic design. When rendering is
mostly automatic and concerns too many (variants)
to check all rendering, some safeguards are used (an
example will be given below). Then different au-
thors, editors and designers come into play and their
expectations, also about what is best, often conflict.
Add to that rendering for the web, and devices and
additional limitations show up: features get dropped
and even more cases need to be compensated (the
quality rules for paper are often much higher). But,
all that defeats the earlier attempts to do well be-
cause suddenly it has to match the lesser format.
This in turn makes investing in improving rendering
very inefficient (read: a bottomless pit because it
never gets paid and there is no way to gain back
the investment). Quite often it is spacing that trig-
gers discussions and questions what rendering is best.
And inconsistency dominates these questions.

So, in case you wonder why I bother with subtle
aspects of rendering as discussed below, the answer is
that it is not so much professional demand but users
(like my colleagues or those on the mailing lists) that
make me look into it and often something that looks
trivial takes days to sort out (even for someone who
knows his way around the macro language, fonts and
the inner working of the engine). And one can be
sure that more cases will pop up.

All this being said, let’s move on to a recent
example. In ConTEXt we support MathML although
in practice we’re forced to a mix of that standard
and ASCIIMATH. When we’re lucky, we even get a
mix with good old TEX-encoded math. One problem
with an automated flow and processing (other than
raw TEX) is that one can get anything and therefore
we need to play safe. This means for instance that
you can get input like this:

f(x) + f(1/x)

or in more structured TEX speak:

$f(x) + f(\frac{1}{x})$

Using TEX Gyre Pagella, this renders as: 𝑓 (𝑥) + 𝑓 (
1

𝑥
),

and when seeing this a TEX user will revert to:

$f(x) + f\left(\frac{1}{x}\right)$

which gives: 𝑓 (𝑥) + 𝑓 (1

𝑥
). So, in order to be robust

we can always use the \left and \right commands,
can’t we?

$f(x) + f\left(x\right)$

which indeed gives 𝑓 (𝑥) + 𝑓 (𝑥), but let’s blow up this
result a bit showing some additional tracing from
left to right, now in Latin Modern:

𝑓(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥)
just characters just characters just characters

𝑓 (𝑥) 𝑓 (𝑥) 𝑓HS:2.000(H__ 𝑥)H__H__

using delimiters using delimiters using delimiters

When we visualize the glyphs and kerns we see
that there’s a space instead of a kern when we use
delimiters. This is because the delimited sequence is
processed as a subformula and injected as a so-called
inner object and as such gets spaced according to the
ordinal (for the f) and inner (“fenced” with delim-
iters x) spacing rules. Such a difference normally will
go unnoticed but as we mentioned authors, editors
and designers being involved, there’s a good chance
that at some point one will magnify a PDF preview
and suddenly notice that the difference between the
f and (is a bit on the large side for simple unstacked
cases, something that in print is likely to go unno-
ticed. So, even when we don’t know how to solve
this, we do need to have an answer ready.

When I was confronted by this example of ren-
dering I started wondering if there was a way out. It
makes no sense to hard code a negative space before
a fenced subformula because sometimes you don’t
want that, especially not when there’s nothing be-
fore it. So, after some messing around I decided to
have a look at the engine instead. I wondered if we
could just give the non-scaled fence case the same
treatment as the character sequence.

Unfortunately here we run into the somewhat
complex way the rendering takes place. Keep in
mind that it is quite natural from the perspective
of TEX because normally a user will explicitly use
\left and \right as needed, while in our case the

Tricky fences

370 TUGboat, Volume 38 (2017), No. 3

fact that we automate and therefore want a generic
solution interferes (as usual in such cases).

Once read in the sequence f(x) can be repre-
sented as a list:
list = {

{

id = "noad", subtype = "ord", nucleus = {

{

id = "mathchar", fam = 0, char = "U+00066",

},

},

},

{

id = "noad", subtype = "open", nucleus = {

{

id = "mathchar", fam = 0, char = "U+00028",

},

},

},

{

id = "noad", subtype = "ord", nucleus = {

{

id = "mathchar", fam = 0, char = "U+00078",

},

},

},

{

id = "noad", subtype = "close", nucleus = {

{

id = "mathchar", fam = 0, char = "U+00029",

},

},

},

}

The sequence f \left(x \right) is also a list
but now it is a tree (we leave out some unset keys):
list = {

{

id = "noad", subtype = "ord", nucleus = {

{ id = "mathchar", fam = 0,

char = "U+00066",},

},

},

{

id = "noad", subtype = "inner", nucleus = {

{

id = "submlist", head = {

{

id = "fence", subtype = "left",

delim = { { id = "delim", small_fam = 0,

small_char = "U+00028", },

},

},

{

id = "noad", subtype = "ord",

nucleus = { { id = "mathchar", fam = 0,

char = "U+00078", },

},

},

{

id = "fence", subtype = "right",

delim = { { id = "delim", small_fam = 0,

small_char = "U+00029", },

},

},

},

},

},

},

}

So, the formula f(x) is just four characters
and stays that way, but with some inter-character
spacing applied according to the rules of TEX math.
The sequence f \left(x \right) however becomes
two components: the f is an ordinal noad,1 and
\left(x \right) becomes an inner noad with a list
as a nucleus, which gets processed independently.
The way the code is written this is what (roughly)
happens:

• A formula starts; normally this is triggered by
one or two dollar signs.

• The f becomes an ordinal noad and TEX goes on.
• A fence is seen with a left delimiter and an inner

noad is injected.
• That noad has a sub-math list that takes the

left delimiter up to a matching right one.
• When all is scanned a routine is called that turns

a list of math noads into a list of nodes.
• So, we start at the beginning, the ordinal f.
• Before moving on a check happens if this char-

acter needs to be kerned with another (but here
we have an ordinal–inner combination).

• Then we encounter the subformula (including
fences) which triggers a nested call to the math
typesetter.

• The result eventually gets packaged into a hlist
and we’re back one level up (here after the ordi-
nal f).

• Processing a list happens in two passes and, to
cut it short, it’s the second pass that deals with
choosing fences and spacing.

• Each time when a (sub)list is processed a second
pass over that list happens.

• So, now TEX will inject the right spaces between
pairs of noads.

• In our case that is between an ordinal and an
inner noad, which is quite different from a se-
quence of ordinals.

1 Noads are the mathematical building blocks. Eventually
they become nodes, the building blocks of paragraphs and
boxed material.

Hans Hagen

TUGboat, Volume 38 (2017), No. 3 371

It’s these fences that demand a two-pass ap-
proach because we need to know the height and
depth of the subformula. Anyway, do you see the
complication? In our inner formula the fences are
not scaled, but this is not communicated back in the
sense that the inner noad can become an ordinal one,
as in the simple f(pair. The information is not only
lost, it is not even considered useful and the only way
to somehow bubble it up in the processing so that
it can be used in the spacing requires an extension.
And even then we have a problem: the kerning that
we see between f(is also lost. It must be noted
that this kerning is optional and triggered by setting
\mathitalicsmode=1. One reason for this is that
fonts approach italic correction differently, and cheat
with the combination of natural width and italic
correction.

Now, because such a workaround is definitely
conflicting with the inner workings of TEX, our ex-
perimenting demands another variable be created:
\mathdelimitersmode. It might be a prelude to
more manipulations but for now we stick to this one
case. How messy it really is can be demonstrated
when we render our example with Cambria.𝑓(𝑥) 𝑓 0.352(𝑥 0.363) 𝑓 0.352(𝑥 0.363)just characters just characters just characters𝑓 (𝑥) 𝑓 (𝑥 0.363) 𝑓HS:2.000(H__ 𝑥 0.363)H__H__using delimiters using delimiters using delimiters

If you look closely you will notice that the paren-
thesis are moved up a bit. Also notice the more
accurate bounding boxes. Just to be sure we also
show Pagella:

𝑓 (𝑥) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

)
just characters just characters just characters

𝑓 (𝑥) 𝑓 (𝑥
0.144

) 𝑓HS:2.000(H__ 𝑥
0.144

)H__H__

using delimiters using delimiters using delimiters

When we really want the unscaled variant to be
somewhat compatible with the fenced one we now
need to take into account:

• the optional axis-and-height/depth related shift
of the fence (bit 1)

• the optional kern between characters (bit 2)
• the optional space between math objects (bit 4)

Each option can be set (which is handy for
testing) but here we will set them all, so, when
\mathdelimitersmode=7, we want cambria to come
out as follows:𝑓(𝑥) 𝑓 0.352(𝑥 0.363) 𝑓 0.352(𝑥 0.363)just characters just characters just characters𝑓(𝑥) 𝑓 0.352(𝑥 0.363) 𝑓 0.352(H__ 𝑥 0.363)H__H__using delimiters using delimiters using delimiters

When this mode is set the following happens:

• We keep track of the scaling and when we use
the normal size this is registered in the noad
(we had space in the data structure for that).

• This information is picked up by the caller of
the routine that does the subformula and stored
in the (parent) inner noad (again, we had space
for that).

• Kerns between a character (ordinal) and sub-
formula (inner) are kept, which can be bad for
other cases but probably less than what we try
to solve here.

• When the fences are unscaled the inner property
temporarily becomes an ordinal one when we
apply the inter-noad spacing.

Hopefully this is good enough but anything more
fancy would demand drastic changes in one of the
most sensitive mechanisms of TEX. It might not
always work out right, so for now I consider it an
experiment, which means that it can be kept around,
rejected or improved.

In case one wonders if such an extension is truly
needed, one should also take into account that auto-
mated typesetting (also of math) is probably one of
the areas where TEX can shine for a while. And while
we can deal with much by using Lua, this is one of
the cases where the interwoven and integrated pars-
ing, converting and rendering of the math machinery
makes it hard. It also fits into a further opening up
of the inner working by modes.

Another objection to such a solution can be that
we should not alter the engine too much. However,
fences already are an exception and treated specially
(tests and jumps in the program) so adding this fits
reasonably well into that part of the design.

Tricky fences

372 TUGboat, Volume 38 (2017), No. 3

In the following examples we demonstrate the
results for Latin Modern, Cambria and Pagella when
\mathdelimitersmode is set to zero or one. First we
show the case where \mathitalicsmode is disabled:

𝑓
1.080

(𝑥) 𝑓 (𝑥) 𝑓
1.080

(𝑥) 𝑓(𝑥)
\mathdelimitersmode =0 \mathdelimitersmode =7

modern𝑓 0.352(𝑥 0.363) 𝑓 (𝑥) 𝑓 0.352(𝑥 0.363) 𝑓(𝑥)
\mathdelimitersmode =0 \mathdelimitersmode =7

cambria

𝑓
1.956

(𝑥
0.144

) 𝑓 (𝑥) 𝑓
1.956

(𝑥
0.144

) 𝑓(𝑥)
\mathdelimitersmode =0 \mathdelimitersmode =7

pagella

When we enable \mathitalicsmode we get:

𝑓
1.080

(𝑥) 𝑓 (𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥)
\mathdelimitersmode =0 \mathdelimitersmode =7

modern𝑓 0.352(𝑥 0.363) 𝑓 (𝑥 0.363) 𝑓 0.352(𝑥 0.363) 𝑓 0.352(𝑥 0.363)
\mathdelimitersmode =0 \mathdelimitersmode =7

cambria

𝑓
1.956

(𝑥
0.144

) 𝑓 (𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

)
\mathdelimitersmode =0 \mathdelimitersmode =7

pagella

So is this all worth the effort? I don’t know,
but at least I got the picture and hopefully now you
have too. It might also lead to some more modes in
future versions of LuaTEX.

In ConTEXt, a regular document can specify
\setupmathfences [method=auto], but in MathML
or ASCIIMATH this feature is enabled by default (so
that we can test it).

We end with a summary of all the modes (as-
suming italics mode is enabled) in the table below.

⋄ Hans Hagen
Pragma ADE
http://pragma-ade.com

𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥)

𝑓 (𝑥) 𝑓 (𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥) 𝑓(𝑥) 𝑓(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥)
ns it ns it or ns or it or ns it or

modern𝑓 0.352(𝑥 0.363) 𝑓 0.352(𝑥 0.363) 𝑓 0.352(𝑥 0.363) 𝑓 0.352(𝑥 0.363) 𝑓 0.352(𝑥 0.363) 𝑓 0.352(𝑥 0.363) 𝑓 0.352(𝑥 0.363) 𝑓 0.352(𝑥 0.363)𝑓 (𝑥 0.363) 𝑓 (𝑥 0.363) 𝑓 0.352(𝑥 0.363) 𝑓 0.352(𝑥 0.363) 𝑓(𝑥 0.363) 𝑓(𝑥 0.363) 𝑓 0.352(𝑥 0.363) 𝑓 0.352(𝑥 0.363)
ns it ns it or ns or it or ns it or

cambria

𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

)

𝑓 (𝑥
0.144

) 𝑓 (𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓(𝑥
0.144

) 𝑓(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

)
ns it ns it or ns or it or ns it or

pagella

Hans Hagen

TUGboat, Volume 38 (2017), No. 3 373

Testing indexes: testidx.sty

Nicola L. C. Talbot

Abstract

The testidx package [10] provides a simple method
of generating a test document with a multi-paged
index for testing purposes. The dummy text and
index produced is designed to replicate problems
commonly encountered in real documents.

The words and phrases indexed cover the basic
Latin set A(a), . . . , Z(z) and some extended Latin
characters, such as Ø(ø), Æ(æ), Œ(œ), Å(å), Þ(þ)
and Ł(ł), to test the indexing application’s ability to
sort according to various Latin alphabets (such as
Swedish or Icelandic). Version 1.1 also includes some
words starting with digraphs, Dd(dd), Dz(dz), Ff(ff),
IJ(ij), Ll(ll), Ly(ly), Ng(ng), and a trigraph Dzs(dzs),
to test alphabets where these are considered separate
letters (such as Welsh, Dutch or Hungarian).

There are also some numbers and symbols in-
dexed that don’t have a natural word order.

1 Introduction

There are a number of problems that can occur when
generating an index using LATEX. These may relate to
the index style (\printindex), the way the indexing
information is written to an external file (\index)
or the way the indexing application (such as xindy

or makeindex) performs. A large document may
have a complicated and slow build process, which
can be frustrating when making minor adjustments
to the index layout. The testidx package provides
a way to create a test document that can be used
to enhance the required style. Section 5 shows how
the sample text can be extended to include tests for
other languages or scripts.

The simplest test document is:
\documentclass{article}

\usepackage{makeidx}

\usepackage{testidx}

\makeindex

\begin{document}

\testidx

\printindex

\end{document}

Version 1.1 of testidx comes with the supplemen-
tary package testidx-glossaries, which uses the inter-
face provided by the glossaries package [9] instead of
testing \index and \printindex. In this case, the
simplest test document is:
\documentclass{article}

\usepackage{testidx-glossaries}

\tstidxmakegloss

\begin{document}

\testidx

\tstidxprintglossaries

\end{document}

2 Intentional issues

The dummy text is designed to introduce issues that
your style or build process may need to guard against.
These allow you to test the document style, the way
the indexing information is written to the external
file, and the way the indexing application processes
that information.

2.1 Stylistic issues

The style issues are those which need addressing
through the use of LATEX code within the document
itself, or in the class or package that deals with the
index style, or within a style file or module used by
the indexing application which controls the LATEX
code that’s written to the output file. The test doc-
ument should load the appropriate document class
and indexing package to match your real document.

2.1.1 Page breaking

There are enough entries for the index to span mul-
tiple pages. If you have letter group headings in
your index style there’s a good chance that there will
be at least one instance of a page or column break
occurring between a heading and the first entry of
that letter group. There’s also a chance that a break
will also occur between a main entry and the first of
its sub-entries.

This does, of course, depend on the font and
page dimensions. You may need to adjust the geome-
try to cause an unwanted break before experimenting
with adjusting the style to prohibit it.

2.1.2 Headers and footers

Since the index spans multiple pages, it’s possible to
test the headers and footers for the first page of the
index as well as subsequent even and odd pages. This
is useful if the header or footer content needs to vary
and you need to check that this is done correctly.

2.1.3 Line breaking

The index contains a mixture of single words, com-
pound words, phrases, names, places and titles. This
means that some of the entries are quite wide, which
can cause line breaking problems in narrow columns.

2.1.4 Whatsits

Some of the entries are indexed immediately before
the term, for example
\index{page break}page break

and some are indexed immediately after the term,
for example

Testing indexes: testidx.sty

374 TUGboat, Volume 38 (2017), No. 3

paragraph\index{paragraph}

The whatsit introduced by \index can cause prob-
lems. This is most noticeable in an example equation
where the indexing interferes with the limits of a sum-
mation. In practice, the \index would need to be
moved to a more suitable location, but the example
provided by the dummy text helps to highlight the
problem.

2.2 Index recording issues

The way that indexing typically works is to write the
entry data (using \index) to an external file that’s
then input and processed by the indexing application.
This write operation can sometimes go wrong causing
incorrect information to be written to the external
file. (There’s no test for incorrect syntax within the
argument of \index. It’s assumed you know how to
correctly index entries. The tests here are for the
underlying operation of \index.)

The glossaries package uses a similar method but
instead of using \index, the file write instruction
is internally performed by commands like \gls and
\glsadd.

2.2.1 Page breaking

The dummy text has some long paragraphs with
indexing scattered about them. This increases the
chance of a page break occurring mid-paragraph
(although again it depends on the font and page
dimensions). TEX’s asynchronous output routine can
cause page numbers to go awry, and this provides a
useful way to check that the page number is written
correctly to the external file.

2.2.2 Extended Latin characters

The indexed entries include terms that contain non-
ASCII letters (either through accent commands like
\’ or using UTF-8 characters). The UTF-8 encoding
isn’t an issue for the modern X ELATEX or LuaLATEX
engines, but it is a problem for the older LATEX
formats. If your engine doesn’t natively support
UTF-8 and you have characters outside the basic
Latin set, then this is something that needs to be
tested. The testidx package has four modes to test
this, depending on your set-up.

1. ASCII with LATEX commands stripped.
(‘Bare ASCII’)

This mode is triggered through the use of
LATEX with testidx’s stripaccents option and
without the inputenc package [2]. This option
is the default, so the first test example above
is in this mode. This mode emulates doing, for
example:
\index{elite@\'elite}

So if this is the way that you’re indexing words
in your real document, this is the mode you need
in the test document.

2. Unmodified ASCII. (‘ASCII Accents’)
This mode is triggered by running LATEX with

testidx’s nostripaccents option and without
the inputenc package. This mode emulates doing
\index{\'elite@\'elite}

Use this mode if in your real document you are
simply doing, for example, \index{\'elite}.

3. Active UTF-8.
This mode is triggered if the inputenc package

with the utf8 option is loaded and testidx is
loaded afterwards with the nosanitize option.
This emulates doing
\index{élite}

Since the inputenc package makes the first octet
of a UTF-8 character active, this causes the entry
to be expanded as it’s written to the index file,
so that it appears as:
\IeC {\'e}lite

Use this mode if in your real document you
are doing, for example, \index{élite} and you
want to test how it’s written to the index file.
(This mode is the default when using X ELATEX
or LuaLATEX, but the characters aren’t active,
so it’s much the same as the next mode.)

4. Sanitized UTF-8.
The three modes listed above are for emu-

lating different \index usage. This last mode
really belongs in the next section as it’s provided
for testing the indexing application’s UTF-8 sup-
port, but is included in this list for completeness.

This mode is triggered if inputenc is loaded
with the utf8 option and testidx is loaded after-
wards with the sanitize option. This emulates
doing
\def\word{élite}\@onelevel@sanitize\word

\expandafter\index\expandafter{\word}

The sanitization isn’t applied to any remain-
ing content of \index, such as the encap. For
example,
\index{ð|see{eth (ð)}}

is implemented such that only the ð part be-
fore the encap is sanitized so this would end up
written to the index file as
ð|see{eth (\IeC {\dh })}

(testidx doesn’t modify the \index command,
but uses the \expandafter approach where the
control sequence has a combination of sanitized
and non-sanitized content.)

There’s no support for other encodings.

Nicola L. C. Talbot

TUGboat, Volume 38 (2017), No. 3 375

2.3 Indexing application issues

An indexing application typically reads the external
file created by LATEX (the input file that contains
data, discussed in the previous section) and produces
another file (the output file that contains typeset-
ting instructions) which can then be read by LATEX
(through commands like \printindex). The termi-
nology here is a little confusing as the input file from
the indexing application’s point of view is an output
file from LATEX’s point of view and vice versa. For
consistency, the indexing application’s point of view
is used here.

The dummy entries are designed to test the in-
dexing application’s ability to collate entries into an
ordered list where each entry has an associated set of
page references (locations) or cross-references. The
list may be sub-divided into letter groups, according
to the initial letter of each entry. The definition of
a ‘letter’ depends on the collation rule. For exam-
ple, ‘aeroplane’, ‘Ängelholm’, ‘Ångstrom̈’ and ‘Aßlar’
may all belong to the ‘A’ letter group according to
one rule (such as English) but may belong to differ-
ent letter groups according to another rule (such as
Swedish). In some languages, a ‘letter’ may actually
be a digraph (such as ‘dz’) or a trigraph (such as
‘dzs’). Entries that don’t belong in any of the recog-
nised letter groups are typically put into a default
or ‘symbols’ group.

2.3.1 Extended Latin characters, digraphs
and trigraphs

As mentioned above, the test entries include some
words with extended Latin characters, digraphs and
a trigraph to test the localisation support of the
indexing application used in the document build
process. There are three digraphs (ll, ij and dz) that
may instead be represented by a single UTF-8 glyph
(ỻ, ĳ and ǳ). The diglyphs option will switch to
using these glyphs instead, but remember that the
document font must support those characters if you
want to try this.

2.3.2 Collation-level homographs

The words ‘resume’ and ‘résumé’ are both indexed.
These should be treated as separate entries even if
the comparator used by the indexing application
considers them identical. Check that both words
appear in the index. Similarly for index/\index and
recover/re-cover.

2.3.3 Compound words

The test entries include space- or hyphen-separated
compound words to test the sort rule. Different rules
have different ways of treating spaces or hyphens.

One rule may ignore those characters (for example,
‘vice-president’ < ‘viceroy’ < ‘vice versa’) whereas
another rule may treat a space as coming before a
hyphen (for example, ‘vice versa’ < ‘vice-president’
< ‘viceroy’).

2.3.4 Numbers

The test entries include some numbers (2, 10, 16, 42,
100). The indexing application may identify these
as numbers and order them numerically, or it may
simply order them as a sequence of non-alphabetical
characters (so 2 would be placed after 100).

2.3.5 Symbols

The test entries include two types of symbol entries.
The first set are mathematical symbols, such as �

(\alpha). The second set are the markers used in the
dummy text to indicate where the indexing is taking
place. The package options prefix and noprefix

determine how these entries are indexed.
The prefix option (default) inserts the charac-

ter > before the sort value for mathematical symbols
and inserts the character < before the sort value for
the markers. For example:
\index{>alpha@α}

for � and
\index

{<tstidxmarker@\csname tstidxmarker\endcsname

\space (\tstidxcsfmt {tstidxmarker})}

for the symbol . produced by testidx’s marker com-
mand \tstidxmarker. This naturally gathers the
two types of symbols. A sophisticated indexing appli-
cation may then be customized to treat the character
> as the ‘maths’ letter group and < as the ‘marker’
letter group.

The noprefix option doesn’t insert these char-
acters. This emulates simply doing
\index{alpha@α}

for � (which puts � in the ‘A’ letter group) and
\index

{tstidxmarker@\csname tstidxmarker\endcsname

\space (\tstidxcsfmt {tstidxmarker})}

for the marker (which puts this symbol in the ‘T’
letter group).

A real document will likely provide syntactic
commands for this type of indexing. For example, to
index a maths symbol that’s produced using a single
control sequence (such as \alpha):
\newcommand{\indexmsym}[1]{%

\index{#1@$\csname #1\endcsname$}}

The symbol is then indexed as, for example,
\indexmsym{alpha}

Testing indexes: testidx.sty

376 TUGboat, Volume 38 (2017), No. 3

The prefix option simply emulates a minor adjust-
ment to such a command to alter the sorting.

There are additional maths symbols that aren’t
governed by the prefix options as they start with
alphabetical characters. These are simply indexed
in the form:

\index{f(x)@$f(\protect\vec{x})$}

so they end up in the associated letter group (‘F’ in
the above example).

There are also terms starting with a hyphen
(command line switches) to test sorting. For example:

\index{-l (makeindex)@\protect

\tstidxappoptfmt{-l}

(\protect\tstidxappfmt{makeindex}}

These again aren’t affected by the prefix options as
the hyphen forms part of the term. Conversely, there
are some terms starting with a backslash that have
the leading backslash omitted from the sort term.
For example

\index{index@\protect\tstidxcsfmt{index}}

2.3.6 Multiple encaps

There are three test commands, which simply change
the text colour, used as page encapsulator (encap)
values. One of the dummy blocks of text has the
same word (‘paragraph’) indexed multiple times with
different encap values. For example, no encap:

\index{paragraph}

The first test encap (\tstidxencapi):

\index{paragraph|tstidxencapi}

Similarly for the second (\tstidxencapii) and third
(\tstidxencapiii) test encaps. If all instances oc-
cur on the same page then this causes an encap clash
for that entry on that page. The indexing application
may or may not have a method for dealing with this
situation.

2.3.7 Inconsistent encap in a range

There are some explicit ranges formed using (and)

at the start of the encap value. For example, block 4
of the dummy text includes

\index{range|(}

which is closed in block 9 with

\index{range|)}

However in block 5, this term is indexed with one of
the test encaps:

\index{range|tstidxencapi}

This can’t be naturally merged into the range and
causes an inconsistency. The indexing application
may or may not have a method for dealing with this.

2.3.8 Cross-referenced terms

Some terms are considered a synonym of another
term. Instead of duplicating the location lists for
both terms, it’s simpler for one term to redirect to
the other in an index. This is typically done with
the see encap. For example:
\index{gobbledegook|see{gibberish}}

The dummy text, like a real world document, will
only index this type of term once so it only has
one location which is encapsulated by \see{⟨other
word⟩}{⟨page⟩}. Since this command ignores the
second argument, no actual location will be visible
in the page list.

The other type of cross-reference is done with
the seealso encap (which has the same syntax as
see). For example
\index{padding|seealso{filler}}

These types of entries will be indexed in other places
as well to create a location list that has both page
references and the cross-referenced term. In some
cases (as in the above example) the encap’s argument
exactly matches the referenced term, but in other
cases it doesn’t. This inconsistency may or may not
cause a problem for the indexing application.

One term in particular that’s tested needs check-
ing. The word ‘lyuk’ is first indexed without an
encap, then indexed with the seealso encap and
later indexed again without an encap. If the index-
ing application simply treats the seealso encap as
just another formatting command, this can end up
with the rather odd occurrence of the cross-reference
appearing in the middle of the location list.

2.3.9 Untidy page lists

Some of the entries are indexed sporadically through-
out the dummy text. Depending on the font size and
page dimensions, this could result in a sequence of
consecutive page numbers that can be concatenated
into a neat range or it could lead to an untidy list
that has odd gaps that prevent a range formation.

3 testidx-glossaries

The supplementary testidx-glossaries package loads
testidx and glossaries. The commands used in the
dummy text are altered to use \glsadd or \gls. The
dummy entries all need to be first defined and the
indexing activated. This is done with
\tstidxmakegloss

The glossary is then displayed with
\tstidxprintglossary

or with
\tstidxprintglossaries

Nicola L. C. Talbot

TUGboat, Volume 38 (2017), No. 3 377

(which will display all defined glossaries using the
analogous command).

There are some minor differences in the package
options shared by both testidx and testidx-glossaries,
and there are some supplementary options only avail-
able with testidx-glossaries:

extra Load the extension package glossaries-extra [8].
nodesc Each entry is defined with an empty descrip-

tion (default). The mcolindexgroup style is set.
You can override this in the usual way. For
example:

\setglossarystyle{mcolindexspannav}

desc Each entry is defined with a description. In
this case, the indexgroup style is set, but again
you can override it.

makeindex This option is passed to glossaries and
ensures that \tstidxmakegloss uses

\makeglossaries

and \tstidxprintglossary uses

\printglossary

The indexing should be done by makeindex, in-
voked directly or via the makeglossaries Perl
script or the makeglossaries-lite Lua script.

xindy This option is passed to glossaries and again
ensures that \tstidxmakegloss uses

\makeglossaries

and \tstidxprintglossary uses

\printglossary

The indexing should be performed by xindy

(again either invoked directly or through one of
the provided scripts).

tex This ensures that \tstidxmakegloss uses

\makenoidxglossaries

and \tstidxprintglossary uses

\printnoidxglossary

The indexing is performed by TEX and is slow —
the document build may appear as though it
has hung.

bib2gls This implicitly specifies extra and also
passes the record option to the glossaries-extra

package. In this case, \tstidxmakegloss uses

\GlsXtrLoadResources[⟨options⟩]
and \tstidxprintglossary uses

\printunsrtglossary

In this case, the indexing should be performed
by bib2gls [7], a Java command line appli-
cation designed to work with glossaries-extra.
The ⟨options⟩ and the number of instances of

\GlsXtrLoadResources varies according to the
package settings (such as prefix or diglyphs).
More detail is provided later on (see page 391).

manual Use this option if you don’t want to use
the helper commands \tstidxmakegloss and
\tstidxprintglossary. You will need to en-
sure you pass the appropriate options to the
glossaries or glossaries-extra package and load
the files containing the entry definitions.

4 Examples

The following examples can be used to test the vari-
ous indexing methods. To compile them, you need to
have at least testidx version 1.1. For the examples us-
ing testidx-glossaries, it’s best to have at least version
4.30 of glossaries and version 1.16 of glossaries-extra.

The letter groups created by each example are
shown in Table 1 (in the order they appear in the
index). In the table, ‘Symbols’ indicates the symbols
group (which in xindy parlance is the default group),
‘Numbers’ indicates the group containing numerical
terms and ‘Other’ indicates a headless group beyond
the end of the alphabet. Some of the examples create
their own custom groups. If a group contains initial
letters that may not be expected to appear in that
group (such as accented versions) then those letters
are included afterwards in parentheses.

The contents of the symbols group for each ex-
ample are shown in Table 2, where ‘markers’ indicates
the marker commands prefixed with <, ‘maths’ in-
dicates the mathematical symbols prefixed with >,
‘switches’ indicates the terms starting with a hyphen,
‘non-ASCII’ indicates the terms where the sort value
starts with a non-letter ASCII character (typically
the backslash \ at the start of accent or ligature
commands, such as \’ or \oe) and ‘UTF-8’ indicates
the terms where the sort value starts with a UTF-8
character that doesn’t fall into any of the recognised
letter groups, according to the indexer’s alphabet.

The ordering of the switches is shown in Ta-
ble 3, and the ordering of the mathematical symbols
is shown in Table 4 with the corresponding sort val-
ues shown in parentheses. These may all be in the
symbols group or in their own group or scattered
throughout the index in the various letter groups, as
indicated in Table 1.

The ordering of the numbers (which may or may
not be in their own group) is shown in Table 5, the
collation-level homographs in Table 6, and a selection
of compound words in Table 7.

The place name Aßlar contains an eszett (ß). In
the bare ASCII mode this is indexed as
\index{Asslar@A\ss lar}

while in the ASCII accents mode it’s indexed as

Testing indexes: testidx.sty

378 TUGboat, Volume 38 (2017), No. 3

\index{A\ss lar}

and in UTF-8 mode it’s indexed as
\index{Aßlar}

Although Aßlar always appears in the ‘A’ group,
its location within that group varies, as shown in
Table 8.

Further tables show location lists:
• Table 9: for the entry with multiple encaps

(‘paragraph’, Section 2.3.6);
• Table 10: for the entry with the explicit range

interruption (‘range’, Section 2.3.7);
• Table 11: for the entry with the mid-seealso

encap (‘lyuk’, Section 2.3.8);
• Table 12: for an entry with a ragged page list

(‘block’, Section 2.3.9).
A shell script was created for each example with

the build process so that the complete document
build could be timed (using the Unix time command).
The elapsed real time ⟨minutes⟩:⟨seconds⟩ for each
example is shown in Tables 13 for testidx and 14 for
testidx-glossaries.

▶ Example 1 (makeindex and bare ASCII mode)
This builds on the example shown earlier with a
makeindex style file to enable the group headings, the
fontenc package [4] to provide the commands \dh (ð),
\th (þ) and \TH (Þ), and the amssymb package [5] to
provide the spin-weighted partial derivative \eth (ð).
These extra packages allow for more test entries that
would otherwise be omitted.
\documentclass{article}

\usepackage[a4paper]{geometry}

\usepackage{filecontents}

\usepackage[T1]{fontenc}

\usepackage{amssymb}

\usepackage{makeidx}

\usepackage{testidx}

\makeindex

\begin{filecontents}{\jobname.ist}

headings_flag 1

heading_prefix "\\heading{"

heading_suffix "}\n"

\end{filecontents}

\newcommand{\heading}[1]{%

\item\textbf{#1}\indexspace}

\begin{document}

\testidx

\printindex

\end{document}

This uses the default settings prefix and (since
there’s no UTF-8 support) stripaccents. The head-
ing command is simplistic as these examples are test-
ing the indexing applications rather than the index
style. The build process is:

pdflatex doc

makeindex -s doc.ist doc

pdflatex doc

(where the file is called doc.tex).
The terms that are placed in the alphabetical

groups have been ordered using a case-insensitive
word comparator, the numbers have been sorted nu-
merically (Table 5) and the symbols have been sorted
using a case-sensitive comparator, as can be seen by
the ordering of the switches (Table 3). Since the
accent commands have been stripped, the words are
all placed in the basic Latin letter groups (Table 1).

▶ Example 2 (makeindex and ASCII accents mode)
This is the same as the previous example except for
the package option:
\usepackage[nostripaccents]{testidx}

This doesn’t strip the accents so, for example, ‘élite’
is indexed as \'elite. This causes all the words
starting with extended Latin characters to appear
in the symbols group (Table 2) due to the leading
backslash in the control sequences. Since \AA ex-
pands to \r A, Å ends up between œ (\oe) and þ
(\th). ‘Aßlar’ is placed at the start of the ‘A’ letter
group before ‘aardvark’ (Table 8) since the second
character in the sort key is a backslash (from the
start of \ss) which comes before ‘a’.

▶ Example 3 (makeindex, bare ASCII mode and no
prefixes)
This is the same as Example 1 except for the package
option:
\usepackage[noprefix]{testidx}

This doesn’t insert the < and > prefixes that kept
the markers and maths together in Example 1. The
markers remain close to each other as they still start
with the same sub-string (now tstidx instead of
<tstidx) but they have been moved to the ‘T’ letter
group. The maths symbols are now scattered about
the index (Table 1), for example, � is in the ‘A’ letter
group (since its sort value is now alpha). Only the
switches remain in the symbols group (Table 2).

▶ Example 4 (makeindex, ASCII accents mode and
no prefixes)
This is the same as Example 2 except for the extra
package option:
\usepackage[nostripaccents,noprefix]{testidx}

As with Example 3, the marker and maths entries
are no longer in the symbols group (Table 1), but as
with Example 2 that group (Table 2) now contains
the terms starting with accent commands (as well as
the switches).

Nicola L. C. Talbot

TUGboat, Volume 38 (2017), No. 3 379

▶ Example 5 (makeindex -l)
This is the same as Example 1 except for the build
process which uses makeindex’s -l switch:
pdflatex doc

makeindex -l -s doc.ist doc

pdflatex doc

This changes the ordering of the compound words
shown in Table 7 (except for ‘yo-yo’). The ordering
is still case-insensitive for words (Table 8) and case-
sensitive for symbols (Table 3).

▶ Example 6 (makeindex and sanitized UTF-8)
This is like Example 1 but UTF-8 support has been
enabled through the inputenc package:
\usepackage[utf8]{inputenc}

The default sanitize option is on, which means that
the UTF-8 characters in the sort key are sanitized
and so don’t expand when writing the input file.
The build process used in Example 1 fails because
makeindex isn’t configured for UTF-8 and the result-
ing output file is corrupt. This can almost be fixed
with iconv except near the end of the file, which
triggers the error
\heading{iconv: illegal input sequence

This is because only the first octet (C3) of a two-octet
character has been put in the argument of \heading.
The only way to avoid this is to omit the headings,
so the build process is:
pdflatex doc

makeindex -o doc.tmp doc

iconv -f utf8 doc.tmp > doc.ind

pdflatex doc

The ‘Other’ groups shown in Table 1 highlight
the way that makeindex is sorting according to each
octet, so the first group after Z contains Á (C3 81), Ä
(C3 84), Å (C3 85), Í (C3 8D), Ö (C3 96), Ø (C3 98),
Ú (C3 9A), Þ (C3 9E), æ (C3 A6), é (C3 A9), ð (C3
B0) and þ (C3 BE). From makeindex’s point of view,
these all belong to the C3 letter group (which is why
it tried to write the character C3 as the argument of
\heading when the headings setting was on).

The next few examples use xindy to perform
the indexing. The makeindex style file (.ist) is no
longer applicable. An xindy module (.xdy) is used
instead. A straight substitution of makeindex with
texindy causes an error message with the sample
entries:
ERROR: Cross-reference-target

("\\tstidxstyfmt {inputenc}") does not exist!

Unlike makeindex, texindy recognises the see and
seealso encaps as cross-references (rather than just
a formatting command). This error is the result of

\index{fontencpackage@\tstidxstyfmt {fontenc}

package|seealso{\tstidxstyfmt {inputenc}}}

(‘fontenc package, see also inputenc’). texindy checks
that the cross-referenced term also exists, but there’s
no exact match here as the cross-referenced term was
indexed slightly differently using
\index{inputenc package@\tstidxstyfmt

{inputenc} package}

(‘inputenc package’). This inconsistency is the result
of a stylistic choice to avoid the repetition of the
word ‘package’ in the exact match ‘fontenc package,
see also inputenc package’.

If you want to ignore these kinds of inconsisten-
cies, you can switch off the automatic verification in
the .xdy file when defining a cross-reference class.
For example:
(define-crossref-class "seealso"

:unverified)

Unfortunately with texindy this causes the error
ERROR: replacing location-reference-class

`"seealso"' is not allowed !

since the seealso class has already been defined (in
the file makeindex.xdy, which is loaded by texindy

to provide compatibility with makeindex). One pos-
sible workaround is to define a custom module and
use xindy directly (instead of using texindy).

In your real document you can circumvent this
issue by ensuring an exact match in your see and
seealso encap arguments or by writing your own
custom xindy module that defines the seealso class
as unverified.

Alternatively, you can create your own custom
cross-reference encap. For example
(define-crossref-class "uncheckedseealso"

:unverified)

(markup-crossref-list

:class "uncheckedseealso"

:open "\seealso" :close "{}")

and use this instead. The testidx package allows you
to try this out by providing a command to set your
own cross-reference encap value. For example:
\tstidxSetSeeAlsoEncap{uncheckedseealso}

The problematic cross-reference now becomes
\index{fontencpackage@\tstidxstyfmt{fontenc}

package|uncheckedseealso{\tstidxstyfmt

{inputenc}}}

which uses uncheckedseealso instead of seealso.
The examples below circumvent this issue by

using xindy directly with a custom module.

▶ Example 7 (xindy and sanitized UTF-8)
The sample xindy style provided here mostly repli-
cates texindy.xdy but doesn’t load makeindex.xdy.

Testing indexes: testidx.sty

380 TUGboat, Volume 38 (2017), No. 3

The cross-reference classes (see and seealso) both
have the verification check switched off. This custom
module also has to define the location classes pro-
vided by makeindex.xdy and define the test encap
values used by testidx.
\documentclass{article}

\usepackage[a4paper]{geometry}

\usepackage{filecontents}

\usepackage[T1]{fontenc}

\usepackage[utf8]{inputenc}

\usepackage{amssymb}

\usepackage{makeidx}

\usepackage{testidx}

\makeindex

\begin{filecontents*}{\jobname.xdy}

(require "latex.xdy")

(require "latex-loc-fmts.xdy")

(require "latin-lettergroups.xdy")

(define-crossref-class "see" :unverified)

(markup-crossref-list :class "see"

:open "\see{" :sep "; " :close "}{}")

(define-crossref-class "seealso" :unverified)

(markup-crossref-list :class "seealso"

:open "\seealso{" :sep "; "

:close "}{}")

(markup-crossref-layer-list :sep ", ")

(define-location-class-order

("roman-page-numbers"

"arabic-page-numbers"

"alpha-page-numbers"

"Roman-page-numbers"

"Alpha-page-numbers"

"see"

"seealso"))

; list of allowed attributes

(define-attributes ((

"tstidxencapi"

"tstidxencapii"

"tstidxencapiii")))

; define format to use for locations

(markup-locref :open "\tstidxencapi{"

:close "}" :attr "tstidxencapi")

(markup-locref :open "\tstidxencapii{"

:close "}" :attr "tstidxencapii")

(markup-locref :open "\tstidxencapiii{"

:close "}" :attr "tstidxencapiii")

; location list separators

(markup-locref-list :sep ", ")

(markup-range :sep "--")

\end{filecontents*}

\begin{document}

\testidx

\printindex

\end{document}

The build process is

pdflatex doc

xindy -M doc -L english -C utf8 -t doc.ilg \

doc.idx

pdflatex doc

The ordering for some of the extended characters
is a little odd with the english setting. For example,
ß comes between ‘n’ and ‘p’ (Table 8) and Á, Ä, Å,
Í and Ú are all in the O letter group (Table 1).
They have not been considered either symbols (like
Ć, which doesn’t occur in English words) or sorted
according to their base letter (like é, which does).
Better results are obtained with the language set to
general, which is used later in Example 17.

The switches aren’t placed in the symbols group
but have instead been placed in the alphabetical
letter groups (ignoring the initial hyphen). The num-
bers (which are now in the symbols group) have been
sorted as strings rather than numerically (Table 5).

The term \index is present, but the word ‘in-
dex’ has been omitted (Table 6) and its page list
has been merged with the \index locations. A real
world document would need to ensure unique sort
keys. (For example, use index.cs as the sort value
for \index.) The other collation-level homographs
‘recover’/‘re-cover’ and ‘resume’/‘résumé’ don’t have
this problem as the sort values for each pair are non-
identical even though the comparator may consider
them equivalent.

▶ Example 8 (xindy, sanitized UTF-8 and letter
order)
The sorting in Example 7 can be adjusted to letter
ordering by adding the following line to the custom
.xdy file:
(require "letter-order.xdy")

This alters the ordering of the compound words
(see Table 7), but this doesn’t quite match the order
produced by makeindex’s letter order option used
in Example 5 for the hyphenated words. The terms
‘\index’ and ‘index’ have again been merged due to
their identical sort values (Table 6), and the switches
are in the alphabetical letter groups (Table 1) but
their locations within those groups have changed as
a result of the spaces being ignored.

▶ Example 9 (xindy, sanitized UTF-8 and ignore
hyphen)
The previous example can be slightly altered by
changing letter-order to ignore-hyphen. There’s
no difference here from Example 8 in the order of the
collation-level homographs ‘recover’ and ‘re-cover’
(Table 6). There is a difference in the ordering of the
compound words shown in Table 7, which is back to
the word order from Example 7, and the switches are

Nicola L. C. Talbot

TUGboat, Volume 38 (2017), No. 3 381

still in the alphabetical groups, so there’s no notice-
able difference between this example and Example 7.
It seems that xindy always ignores hyphens regard-
less of whether or not the ignore-hyphen module is
loaded.

▶ Example 10 (xindy, sanitized UTF-8 and ignore
punctuation)
Another option is to use the ignore-punctuation

module. However, swapping ignore-hyphen in the
previous example for ignore-punctuation causes
an error while reading ignore-punctuation.xdy:
#<OUTPUT STRING-OUTPUT-STREAM>> ends within

a token after multiple escape character

The problem seems to come from the line
(sort-rule "\"" "")

If I remove
(require "ignore-punctuation.xdy")

and replace it with the contents of that file without
the problematic line, the document is able to compile.

This example differs from the previous one, as
it also causes the prefix characters < and > to be
ignored, so this behaves much like the noprefix

option with the maths and markers placed in the
alphabetical letter groups (Table 1).

The sorting is still case-insensitive, but the dif-
ference caused by the ignored punctuation can be
seen in the ordering of the switches. For example, the
term -l (makeindex) is now treated as lmakeindex

(all punctuation stripped) instead of l(makeindex)

(only hyphen and space stripped), so it’s now after -L

icelandic (xindy) (since ‘i’ < ‘m’) whereas in the
previous example it came before -L danish (xindy)

(‘(’ < ‘d’).

▶ Example 11 (xindy, sanitized UTF-8 and numeric
sort)
Example 7 can be easily modified to sort the numbers
numerically by adding the line:
(require "numeric-sort.xdy")

to the start of the .xdy file. A separate group for
the numbers can also be defined in this file:
(define-letter-group "Numbers"

:prefixes ("0" "1" "2" "3" "4" "5" "6"

"7" "8" "9") :before "A")

The ordering of the defined attributes tells xindy

the order of precedence when there’s an encap clash
(see Section 2.3.6). In the previous example, the
tstidxencapi encap took precedence in the conflict
in the ‘paragraph’ entry (see Table 9), but there are
still two instances of page 2 in the location list as the
default encap (where no encap has been specified)
has been kept as well as the dominant tstidxencapi

encap. This can be fixed by adding default to the
end of the list of allowed attributes:
(define-attributes ((

"tstidxencapi" "tstidxencapii"

"tstidxencapiii" "default")))

This will cause a warning
WARNING: ignoring redefinition of

attribute "default" in

(DEFINE-ATTRIBUTES

(("tstidxencapi" "tstidxencapii"

"tstidxencapiii" "default")))

This is because latex-loc-fmts.xdy already con-
tains an attribute list containing default:
(define-attributes (("default" "textbf"

"textit" "hyperpage")))

To remove the warning, delete the line
(require "latex-loc-fmts.xdy")

from the custom .xdy file. Any of the usual LATEX
attributes, such as hyperpage, that are provided in
the file latex-loc-fmts.xdy can be added to the
custom attributes list if required.

▶ Example 12 (xindy, sanitized UTF-8, no prefixes
and numeric sort)
The previous example is modified here so that it
doesn’t use the > and < prefixes. The testidx package
is now loaded using:
\usepackage[noprefix]{testidx}

inputenc is again loaded to enable UTF-8 support.
The markers and maths symbols are now placed in
the letter groups (Table 1). For example, � now has
the sort value alpha, so it’s in the A letter group,
and) has the sort value partial, so it’s in the P
letter group.

▶ Example 13 (xindy, active UTF-8 and numeric
sort)
Example 11 is modified here so that it doesn’t sanitize
the sort value. The testidx package is now loaded
using:
\usepackage[nosanitize]{testidx}

The inputenc package is again loaded to enable UTF-8
support, which means that the first octets of the
UTF-8 characters are active so they are expanded
when written to the index file. This causes the xindy

error
ERROR: CHAR: index 0 should be less than

the length of the string

This error occurs when the sort value is empty.
Recall from Example 7 that the example’s cus-

tom module loads the file latex.xdy. This in turn
loads tex.xdy which strips commands and braces

Testing indexes: testidx.sty

382 TUGboat, Volume 38 (2017), No. 3

from the sort key. This means that the sort keys
that solely consist of commands (such as \IeC{\TH})
collapse to an empty string, which triggers this error.

As a result of the error, no output file is created,
so the document doesn’t contain an index. One way
to force this example document to have an index is
to remove the line

(require "latex.xdy")

and add the content of latex.xdy without the line

(require "tex.xdy")

but this means that all the words starting with ex-
tended characters end up in the symbols group since
the initial backslash in \IeC is a symbol (which is
what we’d get if we use makeindex instead).

An alternative approach is to keep latex.xdy

and add a merge rule for the problematic entries:

(merge-rule "\\TH *" "TH" :eregexp :again)

(merge-rule "\\th *" "th" :eregexp :again)

(and similarly for other commands like \ss and \dh)
before loading latex.xdy.

This example uses this simpler method, which
strips all the \IeC commands but converts the com-
mands (such as \TH) representing characters. This
essentially reduces the sort values to much the same
as the bare ASCII mode in Example 1. In both this
example and Example 1, the sort value for ‘résumé’
becomes ‘resume’. This means that two distinct
terms have identical sort values. In makeindex’s
case, the terms are deemed separate entries as the
actual part is different, but xindy merges entries
with identical sort values, so only one of these two
terms (‘résumé’) appears in the index. (As happens
with ‘index’ and ‘\index’, and again it’s the first
term to be indexed that takes precedence.)

The alphabetical ordering is now reasonable for
English, but not for other languages, such as Swedish
or Icelandic, that have extended characters, such as
ø or þ, that form their own letter groups. (This
wouldn’t change even if the language option specified
with -L changes as there are no actual extended
characters in the index file, just control sequences
representing them.)

This example provides a useful illustration be-
tween using TEX engines that natively support UTF-8
and simply enabling UTF-8 support through inputenc.
Replacing inputenc and fontenc with fontspec and
switching to X ELATEX or LuaLATEX shows a notice-
able difference. It’s therefore not enough to have a
Unicode-aware indexing application, but it’s also nec-
essary to ensure the extended characters are correctly
written to the indexer’s input file.

▶ Example 14 (xindy, sanitized UTF-8, custom
groups and numeric sort)
This example returns to using the sanitize option
so that the UTF-8 characters appear correctly in the
index file. We can build on Example 11 to create two
custom groups that recognise the < and > prefixes:

(define-letter-group "Maths"

:prefixes (">") :before "Numbers")

(define-letter-group "Markers"

:prefixes ("<") :before "Maths")

I also tried to define a similar group for the switches:

(define-letter-group "Switches"

:prefixes ("-"))

but this doesn’t work (Table 1) as the hyphen is by
default ignored (see Example 9). Setting a sort rule
for the hyphen doesn’t seem to make a difference.

Now the default symbols group (Table 2) only
contains the UTF-8 characters that aren’t recognised
by the language module.

▶ Example 15 (xindy -L icelandic, sanitized
UTF-8, custom groups and numeric sort)
It’s time to try out some other languages. This
example uses the same document and style from
Example 14 but substitutes icelandic for english

in the xindy call. This results in some extra letter
groups (see Table 1).

The Icelandic alphabet has ten extra letters (in
addition to the basic Latin set) Á(á), Ð(ð), É(é), Í(í),
Ó(ó), Ú(ú), Ý(ý), Þ(þ), Æ(æ) and Ö(ö). There is a
letter group for the ð entry, but it’s headed with the
lower case ð rather than the upper case Ð. (All the
other letter groups are headed with an upper case
character, including Þ.) There are also letter groups
for Þ, Æ and Ö, but not for the acute accents.

The non-native characters have a more logical
ordering than in the English examples with ß treated
as ‘ss’ (Table 8), but Ä and œ are in the Æ group
(Table 1) and Ø is in the Ö letter group. The symbols
group contains the remaining extended characters
(Table 2).

▶ Example 16 (xindy -L hungarian, sanitized
UTF-8, custom groups and numeric sort)
As above but now using -L hungarian. This also
results in some extra letter groups (such as Ö), but
there are some missing groups that should be in the
Hungarian alphabet, such as the digraphs Dz(dz)
and Ly(ly), and the trigraph Dzs(dzs).

The O letter group contains an odd collection of
extended characters, such as Ä, Å, Þ and ð. As with
the english setting, ß has an unexpected location
between ‘n’ and ‘p’ (Table 8).

Nicola L. C. Talbot

TUGboat, Volume 38 (2017), No. 3 383

In theory it should be possible to add letter
groups for digraphs and trigraphs using a similar
method as the other custom groups:
(define-letter-group "Dz"

:prefixes ("DZ" "Dz" "dz")

:after "D" :before "E")

Unfortunately this doesn’t work as the ‘D’ letter
group takes precedence because it was defined first.
(The language modules are loaded before the cus-
tom module.) A complete new language module is
needed to make this work correctly, which is beyond
the scope of this article. Another possibility is to
use glyphs instead of the digraphs, but this is only
possible for digraphs that have a glyph alternative.

▶ Example 17 (xindy, sanitized UTF-8, selected
digraph glyphs, custom groups and numeric sort)
This example is like Example 14 but the diglyphs

option is used.
\usepackage[diglyphs]{testidx}

This means that instead of using the two characters
‘dz’ in words like ‘dzéta’, the single glyph ǳ is used.
It should now be possible to create the ǲ letter
group as in the example above but with the glyphs
Ǳ, ǲ and ǳ.
(define-letter-group "ǲ"

:prefixes ("Ǳ" "ǲ" "ǳ")

:after "D" :before "E")

Similarly for Ĳ, ĳ and Ỻ, ỻ. There’s no glyph used
in the trigraph dzs.

Since these characters are not easily supported
by inputenc and fontenc, it’s necessary to use X ELATEX
or LuaLATEX instead. This means replacing inputenc

and fontenc with fontspec.
\usepackage{fontspec}

Some fonts don’t support these glyphs (ĳ is the most
commonly supported of this set), so the choice here is
quite limited. Some fonts support the glyphs in only
one family or weight. For example, Linux Libertine
O and FreeSerif support all glyphs in the default
medium weight but the ỻ and Ỻ glyphs are missing
from bold. I’ve chosen DejaVu Serif for the document
font in this example as it has the best support of all
my available fonts:
\setmainfont{DejaVu Serif}

The change in font slightly alters some of the page
lists in the index. The build process is now:
xelatex doc

xindy -M doc -L general -C utf8 \

-t doc.ilg doc.idx

xelatex doc

(I’ve set the language to general to reflect the mix-
ture of alphabets.)

This example generates a warning from xindy:

WARNING: Found a :close-range in the

index that wasn't opened before!

Location-reference is 5 in keyword (range)

I'll continue and ignore this.

The altered page breaking caused by the font change
has resulted in both the opening range produced
with

\index{range|(}

and the interrupting encap produced with

\index{range|tstidxencapi}

to occur on page 2. The open range encap is dropped
in favour of the tstidxencapi encap. This means
that the closing range

\index{range|)}

on page 5 no longer has a matching opening range,
so no range is formed (Table 10).

As can be seen from Table 1, there’s no symbols
group for this example. The markers and maths
have been assigned to their own groups through
the use of their < and > prefixes, the numbers are
in their own number group, the glyphs ǳ, ĳ, and
ỻ have been assigned to separate groups, and the
remaining UTF-8 characters have all been assigned
to the basic Latin letter groups, as a result of the
general language setting. The switches still have
the hyphen ignored and so are in the letter groups.

The trigraph dzs is still unrecognised, as are
the dd, ff, ly and Ng digraphs, which haven’t been
replaced with glyphs. (As most TEX users will know,
there is a glyph for the ff digraph in most fonts, but
although the sequence ff is usually converted to a
ligature when typesetting, it’s written to the index
file as two characters. There’s no corresponding
glyph for the title case version Ff.)

The examples now switch to testidx-glossaries,
which provides extra sorting methods. Some of the
informational blocks of text are altered by this pack-
age, so the page numbers may be different in the
location lists due to the difference in some paragraph
lengths.

Instead of using \index, the terms are first de-
fined using

\newglossaryentry{⟨label⟩}{⟨options⟩}

where ⟨label⟩ (which can’t contain special charac-
ters) uniquely identifies the term and ⟨options⟩ is a
⟨key⟩=⟨value⟩ list. The main keys are name (the way
the term appears in the glossary) and description.
By default the sort value is the same as the name
(as \index when @ isn’t used) but the sort key can

Testing indexes: testidx.sty

384 TUGboat, Volume 38 (2017), No. 3

be used to provide a different value. The files con-
taining these definitions are automatically loaded by
\tstidxmakegloss.

The terms are then displayed and indexed using
commands like \gls{⟨label⟩} throughout the docu-
ment text. This will display the value of the text

key, which if omitted defaults to the same as name.
For example, with the normal indexing methods,

the term f (x⃗) can be displayed and indexed in the
text using
\[f(\vec{x})\index{f(x)@$f(\vec{x})$} \]

whereas with glossaries the term is first defined in
the preamble:
\newglossaryentry{fx}{name={$f(\vec{x})$},

text={f(\vec{x})},

sort={f(x)},

description={}}

and then used in the document:
\[\gls{fx} \]

In the text this does f(\vec{x}) (the value of the
text key), in the index this does $f(\vec{x})$ (the
value of the name key), and it’s sorted by f(x) (the
value of the sort key).

Cross-references are performed using the see

key, for example:
\newglossaryentry{padding}{name={padding},

see={[\seealsoname]filler},description={}}

(where the see value is a comma-separated list of
labels optionally preceded by a tag) or using \glssee,
for example,
\glssee[\seealsoname]{padding}{filler}

The glossaries-extra package provides the seealso

key, which is essentially the same as see with the
tag set to \seealsoname. If this key is detected, it
will be used instead. For example:
\newglossaryentry{padding}{name={padding},

seealso={filler},description={}}

These methods essentially index the reference as:
padding?\glossentry

{padding}|glsseeformat[\seealsoname]{filler}

with Z as the location (the glossaries package uses ?

instead of @ as the actual character).
Since makeindex by default lists upper case al-

phabetical locations last, this automatically moves
the cross-reference to the end of the list.

▶ Example 18 (testidx-glossaries and makeindex)
The basic test document is:
\documentclass{article}

\usepackage[a4paper]{geometry}

\usepackage[T1]{fontenc}

\usepackage{amssymb}

\usepackage{testidx-glossaries}

\tstidxmakegloss

\renewcommand*{\glstreenamefmt}[1]{#1}

\renewcommand*{\glstreegroupheaderfmt}[1]{%

\textbf{#1}}

\begin{document}

\testidx

\tstidxprintglossaries

\end{document}

The mcolindexgroup glossary style sets the name in
bold by default, so I’ve redefined \glstreenamefmt

to prevent this. (There’s no need to distinguish the
name when there are no descriptions.)

For this example, my build process is
pdflatex doc

makeglossaries-lite doc

pdflatex doc

This uses the Lua script rather than the Perl script.
The Lua script simply determines the required in-
dexing application (in this case makeindex) and the
correct options from the .aux file and runs it. The
makeglossaries Perl script does more than this and
is used in the next example.

For comparison, an explicit call to makeindex

was also used:
pdflatex doc

makeindex -t doc.glg -o doc.gls -s doc.ist \

doc.glo

pdflatex doc

The only difference in the result is in the build time,
which is slightly faster. The times for both build
methods are shown in Table 14.

Since the inputenc package isn’t used, accents
are stripped as with Example 1. This means it’s
emulating, for example:
\newglossaryentry{elite}{name={\'elite},

sort={elite},description={}}

There are some differences between the index
produced in this example and that produced in Ex-
ample 1 (aside from the page numbering and the
differences between the index and glossary styles).
The ordering of \index and ‘index’ have changed
(Table 6). In Example 1, the control sequence \index

is indexed as
index@\tstidxcsfmt{index}

and the term ‘index’ is just indexed as index. With
glossaries the control sequence is effectively indexed
as
index?\glossentry{cs.index}

and the term is effectively
index?\glossentry{index}

Nicola L. C. Talbot

TUGboat, Volume 38 (2017), No. 3 385

When makeindex encounters terms with identical
sort values, it seems to give precedence to terms
where the sort value is identical to the actual value.
So in the first example, ‘index’ (which has no separate
sort) comes before \index. With glossaries, both
have a distinct sort and actual value.

A similar thing happens with ‘resume’
resume?\glossentry{resume}

and ‘résumé’
resume?\glossentry{resumee}

Since the accents have been stripped, both terms
have ‘resume’ as the sort value. (Since active char-
acters can’t be used in labels and labels must be
unique, the label for the second term is resumee.)

▶ Example 19 (testidx-glossaries and
makeglossaries)
This example uses the same document as the previous
one above, but uses the makeglossaries Perl script
in the build process instead of the Lua script:
pdflatex doc

makeglossaries doc

pdflatex doc

The difference here can be seen in the location list for
the ‘paragraph’ entry (see Table 9). The script has
detected makeindex’s multiple encap warning and
tried to correct the problem. Version 2.20 incorrectly
gives precedence to a non-range encap over an explicit
range encap which then causes makeindex to trigger
the error

-- Extra range opening operator (.

This is the same problem that occurred with xindy in
Example 17. makeglossaries version 2.21 (provided
with glossaries v4.30) corrects this and gives the range
encaps precedence. The only problem that remains
is just the inconsistent page encapsulator within a
range warning.

▶ Example 20 (testidx-glossaries, bare ASCII mode
and xindy)
The test document from Example 18 can be modified
to use xindy instead of makeindex by adding the
xindy package option:
\usepackage[xindy]{testidx-glossaries}

The glossaries package provides a custom xindy mod-
ule (automatically generated by \makeglossaries).
Minor adjustments can be made before the module
is written using commands or package options. For
example, to add the test encaps:
\GlsAddXdyAttribute{tstidxencapi}

\GlsAddXdyAttribute{tstidxencapii}

\GlsAddXdyAttribute{tstidxencapiii}

Again we can take advantage of the < and > prefixes:

\GlsAddLetterGroup{Maths}{:prefixes (">")

:before "glsnumbers"}

\GlsAddLetterGroup{Markers}{:prefixes ("<")

:before "Maths"}

(The glossaries package provides its own version of
the numbers group called glsnumbers.)

The numeric-sort module isn’t loaded by de-
fault, so it needs to be explicitly added if numerical
ordering is required:

\GlsAddXdyStyle{numeric-sort}

The above lines all need to go before

\tstidxmakegloss

The build process is:

pdflatex doc

makeglossaries doc

pdflatex doc

The Lua alternative can also be used, or a direct call
to xindy:

xindy -L english -I xindy -M doc -o doc.gls \

-t doc.glg doc.glo

The difference between this example and the ear-
lier xindy examples is that the indexing information
is written in xindy’s native format, for example

(indexentry

:tkey (("elite" "\\glossentry{elite}"))

:locref "{}{3}"

:attr "pageglsnumberformat")

(pageglsnumberformat is the default encap used by
glossaries in xindy mode when the format key hasn’t
been set and the page counter is used for the loca-
tions.)

The example document doesn’t load inputenc,
which means the bare ASCII mode is on, which is why
the accent doesn’t appear in the sort field (identified
in :tkey). This means that the sort value for ‘résumé’
is once again ‘resume’ and the conflicting unaccented
‘resume’ is lost (Table 6). The hyphens are again
ignored so the switches are placed in the alphabetical
letter groups (Table 1).

▶ Example 21 (testidx-glossaries, sanitized UTF-8
and xindy)
This example makes a minor adjustment to the pre-
vious one by adding

\usepackage[utf8]{inputenc}

This enables the sanitized UTF-8 mode so the sort
values contain UTF-8 characters. (The glossaries

package automatically sanitizes the sort key by de-
fault, but the testidx-glossaries package will ensure
that its own nosanitize option is honoured, which
just passes sanitizesort=false to glossaries.)

Testing indexes: testidx.sty

386 TUGboat, Volume 38 (2017), No. 3

The build process again uses makeglossaries.
Since the document hasn’t loaded any language pack-
ages, the language option written to the .aux file
defaults to English so makeglossaries calls xindy

with -L english. This means the extended charac-
ters are ordered in the same way as in Example 14
(Table 1).

▶ Example 22 (testidx-glossaries, xindy and
non-standard page numbering)
makeindex can only recognise roman (i, I), arabic
(1) and alphabetic (a, A) locations. xindy has more
flexibility, so this example makes a minor adjustment
to the previous example to use an unusual page num-
ber scheme. This requires etoolbox [3] (automatically
loaded by glossaries) for \newrobustcmd, and the stix

package [1] for the six dice commands \dicei, . . . ,
\dicevi:
\newrobustcmd{\tally}[1]{%

\ifnum\number#1<7

$\csname dice\romannumeral#1\endcsname$%

\else

\dicevi%

\expandafter\tally\expandafter{\numexpr#1-6}%

\fi

}

\renewcommand{\thepage}{\tally{\arabic{page}}}

The page numbers are now represented by dice. For
example, page 2 is ⚁ and page 10 is ⚅⚃.

Since the stix package by default automatically
changes the document font, which will alter the page
breaking, I’ve used the notext option to prevent
this:
\usepackage[notext]{stix}

This allows a better comparison with the previous
example.

The locations are now written to the indexing
file in the form \\tally {⟨n⟩}, where ⟨n⟩ is the page
number. (The backslash is automatically escaped by
glossaries. The space is significant.) xindy needs to
be informed of this new location format:
\GlsAddXdyLocation{tally}{

:sep "\string\tally\space{"

"arabic-numbers" :sep "}"}

Aside from the location presentation, there is one
difference between this example and the previous
one when used with versions of glossaries below 4.30,
and that’s the cross-reference location. For example,
with glossaries v4.29, the ‘lyuk’ entry appears as ‘see
also digraph, ⚁, ⚂’ but for v4.30 it appears as ‘⚁,
⚂, see also digraph’ (Table 11). This is due to a
bug that has been corrected in v4.30.

▶ Example 23 (testidx-glossaries, bare accents mode
and TEX)

If, for some reason, you’re unable or unwilling to
use an external indexing application, the glossaries

package provides a method of alphabetical sorting
using TEX. The document from Example 18 can
be adapted to use this method by adding the tex

option:

\usepackage[tex]{testidx-glossaries}

The accents are stripped by default so the sorting is
just performed on the basic Latin set.

The build process is simply

pdflatex doc

pdflatex doc

This method is considerably longer than the others
(see Table 14) and has the worst results.

There’s no numbers group with this method.
The numbers are included with the symbols (Ta-
ble 2), but are ordered numerically (Table 5). The
ordering of the compound words has changed (Ta-
ble 7) with somewhat eccentric results. There are
no range formations, even for explicit ranges, and
the range interruption (Table 10) interrupts the list
formatting (a space is missing).

The ‘see also’ cross-reference in Table 11 doesn’t
interrupt the location list, but this is only because
the see key was used when defining the entry (which
is why it’s at the start of the list). If \glssee had
been used instead within the document, it would
have produced the same result as Example 1.

▶ Example 24 (testidx-glossaries, bare accents mode
and TEX with letter ordering)
The previous example used the glossaries package’s
default sort=standard setting, which sets the entry
sort key, if omitted, to the name key and optionally
sanitizes it. The command \printnoidxglossary

also accepts a sort key in the optional argument to
allow different ordering for different glossaries. (This
capability is not available with \printglossary.)
The localised sort key allows the values word and
letter for word and letter ordering, so this example
replaces

\tstidxprintglossaries

with

\printnoidxglossary[sort=letter]

to test letter order sorting with TEX. This again
takes a long time (Table 14). The ordering of the
compound words (Table 7) now matches the xindy

letter order in Example 8. There’s a change in the
order of one of the collation-level homographs from
the previous example: ‘re-cover’ is now after ‘recover’
(Table 6). Other than that, this method produces
much the same results as the previous example.

Nicola L. C. Talbot

TUGboat, Volume 38 (2017), No. 3 387

So far the examples have all used alphabetical
ordering for the majority of the entries based on
the value of the sort key (or the name, if sort is
omitted). The glossaries package also allows sorting
according to definition or use. The next few examples
illustrate this.

▶ Example 25 (testidx-glossaries and order of
definition with makeindex)
The glossaries package provides the options sort=def

and sort=use to switch to order of definition or
first use within the document. The code used in
Example 19 needs to be adjusted to pass this option
since glossaries is being loaded implicitly:
\PassOptionsToPackage{sort=def}{glossaries}

\usepackage{testidx-glossaries}

Alternatively (glossaries v4.30):
\usepackage{testidx-glossaries}

\setupglossaries{sort=def}

This method works by overriding the sort value
so that it’s just a number that is incremented ev-
ery time a new entry is defined. This means that
makeindex orders numerically, and all entries are
placed in the numbers group (Table 1). It therefore
makes no sense to use a style with group headings
with this option. The entries that are actual numbers
(Table 5) are no longer in numerical order according
to their value given in the name field.

The build process again uses makeglossaries,
which deals with the conflicting encaps for page 3
(Table 9). This method is faster than Example 18
(Table 14) as it’s simpler to compare two integers
than to perform a case-insensitive word-order com-
parison between two strings.

▶ Example 26 (testidx-glossaries and order of
definition with xindy)
This is like the previous example, but xindy is used:
\PassOptionsToPackage{sort=def}{glossaries}

\usepackage[xindy]{testidx-glossaries}

The attributes (encaps) need to be specified as in
Example 20, but since we’re sorting by order of
definition it’s not possible to define the maths or
markers groups.

Since numeric comparisons are faster than string
comparisons, the numeric-sort style from Exam-
ple 20 is also used (Table 14). This example will
still work without that style as the sort values are
zero-padded to six digits. (If you have 1,000,000 or
more entries, you’ll need numeric-sort to enforce
numerical comparisons.)

The glossaries package automatically defines the
numbers group, so all entries are placed in that. If
the package option glsnumbers=false is also passed

to glossaries, then the entries will instead be placed
in the default group.

There’s no longer a problem with the collation-
level homographs (Table 6) as the sort values are
now unique numbers, so ‘index’ and ‘resume’ have
reappeared in the index.

▶ Example 27 (testidx-glossaries and order of
definition with TEX)
This example makes a minor change to the document
used in Example 24:
\printnoidxglossary[sort=def,nogroupskip,

style=mcolindex]

This orders by definition but no actual sorting is
performed here. The glossaries package keeps track
of which entries have been defined in an internal list
associated with the glossary that contains the given
entry. The entry label is appended to the list when
it’s defined, so the list is already in the correct order.
Each time an entry is used in the document, a record
is added to the .aux file. This also provides a list of
all entries that have been indexed, which is naturally
in the order required by sort=use (order of use). All
that is needed is to iterate over the appropriate list
and display each entry that has a record.

Now that TEX doesn’t have to sort the entries,
the build process is much faster (Table 14). The only
problem here is that the style must be changed to
one that doesn’t use group headings, as otherwise
TEX has to determine the correct heading from the
sort value. Unlike the previous two examples, the
sort key isn’t altered to a numeric value (because
sort=def wasn’t passed as a package option). This
means that a new group will be started with pretty
much every entry unless the entries happen to be
defined in alphabetical order. So in this example
I’ve switched the style to mcolindex and used the
nogroupskip option. The build process is the same
as for Example 23.

This method has a problem with sub-entries.
Unlike makeindex and xindy, there’s no hierarchical
sorting with this method (because there’s no actual
sorting) so if a sub-entry isn’t defined immediately
after its parent is defined then it won’t appear imme-
diately after its parent in the glossary. Furthermore,
if a sub-entry is used, its parent won’t automatically
be indexed.

The dummy text contains a number of top-level
entries that are duplicated as sub-entries. For exam-
ple, the book Ulysses is defined as:
\newglossaryentry{Ulysses}

{name={\tstidxbookfmt{Ulysses}},

sort={Ulysses},description={}

}

Testing indexes: testidx.sty

388 TUGboat, Volume 38 (2017), No. 3

but a sub-entry is defined immediately after:
\newglossaryentry{books.Ulysses}

{name={\tstidxbookfmt{Ulysses}},

parent={books},

sort={Ulysses},description={}

}

These are then referenced using:
\gls{Ulysses}\glsadd{books.Ulysses}

The parent entry (books) hasn’t been used in the
dummy text, so it doesn’t appear in the glossary.
This leads to the rather odd result:

Ulysses 2

Ulysses 2

The first instance is the top-level entry and the sec-
ond instance is the sub-entry. Even if the parent
entry (books) had been used, it would still be sepa-
rated from its sub-entry (books.Ulysses) as it’s not
defined immediately before it, but is one of the first
entries to be defined.

The location ranges (Table 10) have the same
problems as for Example 23, but the build time is
significantly faster, although it’s still slower than
using makeglossaries (Table 14).

This method is essentially for non-hierarchical
symbols that don’t have a natural alphabetical order
and the available build tools are somehow restricted.

The glossaries-extra package extends the base
glossaries package, providing new features (such as
the category key and associated attributes) and re-
implementing existing methods (such as the abbre-
viation handling). This package can automatically
be loaded by testidx-glossaries through the option
extra. This also ensures that each entry is assigned
a category. For example, the Ulysses entry is now:
\newglossaryentry{Ulysses}

{name={\tstidxbookfmt{Ulysses}},

category={book},

sort={Ulysses},description={}

}

(and similarly for the sub-entry). This doesn’t alter
the indexing, but it can be used to modify the way
the entries are displayed.

▶ Example 28 (testidx-glossaries and glossaries-extra

in order of definition)
The glossaries-extra package provides another way of
displaying the list of entries in order of definition.
Unlike the above examples, this includes all entries,
not just the ones that have been indexed. This is
done with
\printunsrtglossary[⟨options⟩]

which simply iterates over all defined entries in that
glossary, displaying each one in turn according to its
handler, so it’s similar to Example 27 but doesn’t
check if the term has been indexed.

This method doesn’t create any external index-
ing files, so \tstidxmakegloss isn’t needed in this
example. The .tex files containing the definitions
for the dummy entries can be loaded using \input

or \loadglsentries, but it’s simpler to just use:

\tstidxloadsamples

which means you don’t have to worry about remem-
bering the file names. However there’s a problem
here. The see key can only be used after the index-
ing has been initialised (through \makeglossaries

or \makenoidxglossaries). This was a precaution-
ary measure introduced because the cross-reference
information can’t be indexed before the associated
file has been opened, and users who defined entries
before using \makeglossaries were puzzled as to
why the cross-references didn’t show up. The error
alerts them to the problem.

The simplest solution is to prevent the use of
the see key in the test entries with the noseekey

option provided by testidx-glossaries.

\documentclass{article}

\usepackage[a4paper]{geometry}

\usepackage[T1]{fontenc}

\usepackage{amssymb}

\usepackage[extra,noseekey]{testidx-glossaries}

\tstidxloadsamples

\setglossarystyle{mcolindex}

\renewcommand*{\glstreenamefmt}[1]{#1}

\begin{document}

\testidx

\printunsrtglossary[nogroupskip]

\end{document}

(An alternative is to pass seenoindex=ignore to the
glossaries package or pass autoseeindex=false to
the glossaries-extra package.) The document build
process is simply:

pdflatex doc

Some terms that are used in the original dummy
text provided by testidx aren’t present in the slightly
altered version produced by testidx-glossaries. (This
is why imakeidx is missing from the glossary exam-
ples listed in Table 6.) These terms are still de-
fined by testidx-glossaries to provide an additional
test, if required, for the treatment of non-indexed

Nicola L. C. Talbot

TUGboat, Volume 38 (2017), No. 3 389

entries. Since \printunsrtglossary includes all en-
tries, imakeidx is once again in the index even though
it’s not in the dummy text.

The most noticeable difference is the absence of
page lists (Tables 9, 10, 12) and cross-references (Ta-
ble 11). No indexing has been performed so there’s
no record of where the entries have been used. There
are no groups (Table 1). This method suffers from
the same problem as Example 27 with the sub-entries
separated from their parents.

This example is faster than all the other ex-
amples using testidx-glossaries (Table 14), but the
build only requires a single LATEX call and doesn’t
perform any sorting, so that’s hardly surprising. It’s
slower than Example 1 (Table 13): makeidx is a small,
simple package and therefore fast to load whereas
glossaries and glossaries-extra are complicated and
rely on a number of other packages.

A few seconds can be shaved off the build time
by adding
\setupglossaries{sort=none}

before the entries are defined. (Only available with
glossaries version 4.30 onwards.) This skips the code
used to set up the sort values (such as sanitizing and
escaping special characters for makeindex or xindy).

The iteration handler recognises three special
fields, group, location and loclist, which don’t
have a key provided by default. The group value
should be a label identifying the letter group, and
will only be checked for by the handler if the group

key is defined. For example:
\glsaddstoragekey{group}{}{\glsgroup}

The location value may contain any valid code that
produces the location list. Although the group field
must have an associated key of the same name for
the handler to recognise it, the location field can
simply be set using \GlsXtrSetField.

The loclist value must be in the same format
as the internal lists provided by etoolbox where each
item is in the format
\glsnoidxdisplayloc{⟨prefix⟩}

{⟨counter⟩}{⟨encap⟩}{⟨location⟩}
for locations, or
\glsseeformat[⟨tag⟩]{⟨label⟩}{}

for cross-references. (This is the same command used
by makeindex and xindy when the see key is used.
The final argument is the location for the benefit
of makeindex but is always ignored.) The loclist

value can’t be provided as a key since it requires a
specific separator used by etoolbox. Instead, each
item can be added to the list using
\glsxtrfieldlistadd{⟨label⟩}{⟨field⟩}{⟨item⟩}

The group value must be a label (no special char-
acters) because it’s used as a hypertarget with the
‘hyper’ or ‘nav’ glossary styles. The corresponding
title can be set using

\glsxtrsetgrouptitle{⟨label⟩}{⟨title⟩}

If not set, the handler will try \⟨label⟩groupname

(for compatibility with glossaries) and if that’s not
defined the label will be used as the title.

If the location field is set then that value will
be used as the location list otherwise if loclist is
set then the list given by that field will be iterated
over using the same method used by the handler for
\printnoidxglossary (which is quite primitive, as
can be seen in the results for Examples 23, 24 and
27 in Table 10).

It’s therefore possible to manually produce a
glossary with groups and locations like this:

\documentclass{article}

\usepackage{glossaries-extra}

\setglossarystyle{indexgroup}

\renewcommand*{\glstreenamefmt}[1]{#1}

\glsaddstoragekey{group}{}{\glsgroup}

\glsxtrsetgrouptitle{42}{B}

\glsxtrsetgrouptitle{D8}{\O}

\newglossaryentry{books}

{name={books},group={42},description={}}

\newglossaryentry{books.Dubliners}

{name={\emph{Dubliners}},parent={books},

description={}}

\GlsXtrSetField{books.Dubliners}{location}

{1--3}

\newglossaryentry{books.Ulysses}

{name={\emph{Ulysses}},parent={books},

description={}}

\GlsXtrSetField{books.Ulysses}{location}{2}

\newglossaryentry{OlstykkeStenlose}

{name={\O lstykke-Stenl\o se},group={D8},

description={}}

\GlsXtrSetField{OlstykkeStenlose}{location}{8}

\newglossaryentry{Oresund}

{name={\O resund},group={D8},description={}}

\GlsXtrSetField{Oresund}{location}

{9, \emph{see also} \O resund Bridge}

\begin{document}

\printunsrtglossary

\end{document}

Testing indexes: testidx.sty

390 TUGboat, Volume 38 (2017), No. 3

This produces:

B
books

Dubliners 1–3
Ulysses 2

Ø
Ølstykke-Stenløse 8
Øresund 9, see also Øresund Bridge

On the face of it, this method seems contrary to
one of LATEX’s biggest advantages in its ability to
automate cross-referencing and indexing. However,
it’s just this method that’s used by bib2gls, which
performs two tasks:

1. fetches entry information from a .bib file;
2. performs hierarchical sorting, optionally assigns

letter groups, collates location lists and writes
the entry definitions to a file that can be input
by \GlsXtrLoadResources.

The first task is akin to using bibtex or biber.
The second task is similar to that performed by
makeindex or xindy.

The LATEX code generated by bib2gls has the
entry definitions written in the order obtained from
sorting, with parent entries defined immediately be-
fore their child entries. The information required
by bib2gls is provided in the .aux file, but this
needs to be enabled by passing the record option to
glossaries-extra.

An additional build may be required to ensure
the locations are up-to-date as the page-breaking may
be slightly different on the first LATEX run due to un-
known references being replaced with ‘??’, which can
be significantly shorter than the actual text produced
when the reference is known.

The command \glsaddall can’t be used in this
mode, but it’s possible to instruct bib2gls to se-
lect all entries. By default it only selects those en-
tries that have been indexed and their dependencies
(which includes their ancestors). Since only the re-
quired entries have been defined and they have been
defined in the correct order, the glossary can be
displayed using \printunsrtglossary.

▶ Example 29 (testidx-glossaries and bib2gls)
This example uses bib2gls, so this needs:
\usepackage[bib2gls]{testidx-glossaries}

The entries are defined in various .bib files provided
with testidx. The test document is:
\documentclass{article}

\usepackage[a4paper]{geometry}

\usepackage[T1]{fontenc}

\usepackage[utf8]{inputenc}

\usepackage{amssymb}

\usepackage[bib2gls]{testidx-glossaries}

\tstidxmakegloss

\renewcommand*{\glstreenamefmt}[1]{#1}

\renewcommand*{\glstreegroupheaderfmt}[1]{%

\textbf{#1}}

\begin{document}

\testidx

\tstidxprintglossaries

\end{document}

The document build process is:
pdflatex doc

bib2gls --group doc

pdflatex doc

The --group switch enables the letter group for-
mation, which is off by default. Note that UTF-8
support is needed with this switch as the groups may
contain extended characters. The build times shown
in Table 14 use the above build sequence for the
bib2gls examples. However, the first instance (or
when new entries are referenced) will need:
pdflatex doc

bib2gls --group doc

pdflatex doc

bib2gls --group doc

pdflatex doc

to ensure the location lists are correct. The .log file
will warn about undefined references on the first run,
so build processes that allow for conditional actions
can perform a check for these warnings. For example,
using arara v4.0:
% arara: pdflatex

% arara: bib2gls if found ("log", "Warning:

Glossary entry")

% arara: pdflatex if found ("log", "Warning:

Glossary entry")

% arara: bib2gls: {group: on}

% arara: pdflatex

The file testidx-glossaries-samples-ascii.bib

contains definitions using commands for extended
characters, for example:
@index{elite,

name={{\'e}lite},

category={word},

description={group of people regarded

as the best of a particular society

or organisation}

}

(The initial \'e is grouped to allow it to work with
the case-changing \Gls.) None of the sample .bib

files provide a sort key, but bib2gls has a primitive

Nicola L. C. Talbot

TUGboat, Volume 38 (2017), No. 3 391

TEX interpreter that recognises accent commands,
so it determines that the sort value for this entry is
élite. This means that it can place this word in the
E letter group (if appropriate to the collation rule).
In the case of \O resund, bib2gls determines that
it belongs to the Ø letter group (again, depending
on the rule). Since with inputenc Ø is an active char-
acter, bib2gls uses numeric identifiers as the group
labels (to avoid problems with hyperref). Although
the entry definition is written with the original \O

used in the .bib file, the letter group title is an ex-
tended character taken from the sort value, which is
why either UTF-8 support is needed or the --group

option should be omitted.
In ASCII mode, \tstidxmakegloss selects the

*-ascii.bib file, whereas with UTF-8 support, this
command selects UTF-8 versions (*-utf8.bib) and
terms such as élite no longer need the interpreter.
(Only terms containing \ { } or $ are passed to the
interpreter.)

The definition of the test interface command
\tstidxmakegloss varies according to the package
options. If you add the verbose option, the tran-
script will list the exact sequence of resource com-
mands. So for this example, the .log file includes:

\GlsXtrLoadResources[

src={testidx-glossaries-mathsym},

group={Maths},

sort={letter-case},

selection={recorded and deps and see},

ignore-fields={description}]

This mimics the prefix setting used in earlier ex-
amples. The maths symbols are defined in the file
testidx-glossaries-mathsym.bib like this:

@symbol{spinderiv,

name={\eth},

text={\eth},

category={mathsymbol},

description={spin-weighted partial

derivative}

}

Entries defined using @symbol or @number fall back
to the label if the sort field is missing. This means
that ð now has a different sort value (spinderiv)
from the earlier examples where it was either >eth or
eth. This is reflected in Table 4 where the ordering
has changed.

The value of the src key identifies the .bib

file (where the extension is omitted). This may be
a comma-separated list. The group key sets the
group field for all the selected entries, which overrides
the default method of obtaining the group from the
entry’s sort value. (This will be ignored if bib2gls is

run without the --group switch.) The sort setting
letter-case indicates case-sensitive letter order.

The selection value recorded and deps and

see instructs bib2gls to select all entries that have
been indexed (recorded) in the document (through
commands like \gls) and their dependencies (such
as parent entries) and their cross-references. This
ensures that sub-entries, such as books.Ulysses,
have their parent entry listed. The hierarchical sort
ensures the sub-entries are defined immediately after
their parent entry to keep them together.

The final key ignore-fields tells bib2gls to
ignore the description field (to honour the default
nodesc package option). The @index entry type
allows a missing description, unlike the @entry type
(not used in any of the provided .bib files) which
requires that field.

The above is the first resource command, which
instructs bib2gls to create a file called doc.glstex

(where the main document file is called doc.tex)
with the required definitions in the appropriate or-
der. A separate file is created for each instance of
\GlsXtrLoadResources. This allows different order-
ing within sub-units of the glossary (or index). The
use of the group key assigns the sub-unit to a single
group.

The next resource command is quite similar:
\GlsXtrLoadResources[

src={testidx-glossaries-markers},

group={Markers},

sort={letter-case},

selection={recorded and deps and see},

ignore-fields={description}]

This loads the .bib file that contains the definitions
of all the markers, again using @symbol. The LATEX
code is written to doc-1.glstex.

The third command is:
\GlsXtrLoadResources[

src={testidx-glossaries-numbers},

sort={integer},

selection={recorded and deps and see},

ignore-fields={description}]

This loads the .bib file that contains the definitions
of all the numbers in the form:
@number{10,

name={10},

category={number},

description={ten}

}

The sort key has been set to integer to order these
entries numerically. This automatically assigns them
to the ‘Numbers’ group so no group option is used
here. The LATEX code for this resource set is written
to doc-2.glstex.

Testing indexes: testidx.sty

392 TUGboat, Volume 38 (2017), No. 3

The final resource command is:
\GlsXtrLoadResources[

src={testidx-glossaries-samples,

testidx-glossaries-samples-utf8,

testidx-glossaries-nodiglyphs-utf8},

selection={recorded and deps and see},

ignore-fields={description}]

The .bib files listed in src vary according to the
testidx-glossaries package options and document en-
coding. There’s no sort option in this resource
set. The glossaries package loads tracklang [11] (de-
scribed in a previous issue of TUGboat [6]). If a
document language is detected, glossaries-extra will
use the tracklang interface to write the locale infor-
mation to the .aux file, which bib2gls will detect
and will use as the default sort. If there is no doc-
ument language (as in this case), bib2gls will fall
back on the operating system’s locale. In my case,
this is en-GB so the entries will be sorted according
British English. Another user with a different locale
may find that the resulting letter groups are different
to those shown in Table 1. The optional argument
of \tstidxmakegloss is appended to this final in-
stance of \GlsXtrLoadResources (but not to any of
the others), so to replicate this example, you can do
\tstidxmakegloss[sort=en-GB]

(or just sort=en).
The non-native (for English) letters Ø and Ł

have been combined into a single group after Z. The
rules used by sort=⟨locale⟩ are in the form ⟨ignore
chars⟩ < ⟨char group 1 ⟩ < ⟨char group 2 ⟩ (You
can see the rule in the transcript by running bib2gls

with the --debug switch.) Any characters that don’t
appear in the rule (such as Ø and Ł) are always placed
at the end of the alphabet. bib2gls determines the
letter group title from the first entry in the group.

The remaining letter groups in this example are
sensible for this locale as they are included in the en

rule. Ð is placed between D and E, and ß is treated
as ‘ss’ (Table 8).

The sort value for each entry is converted to a
set of collation keys, where each key is an integer
representing a ‘letter’ as defined by the collation
rule. The letter may be more than one character, for
example, if the rule includes digraphs or trigraphs.
Ignored characters aren’t included in the key set.
The comparison is performed on this key set rather
than on the sort string.

Group titles are determined by taking the first
collation key from the set and looking up the corre-
sponding sub-string from the sort value. This sub-
string is then converted to lower case and any modi-
fiers are stripped using a normalizer (where possible).
If the result is considered equivalent to the original

sub-string according to the collator, then the normal-
ized version is considered the group title and the first
character is converted to upper case (except for the
Dutch ‘ij’, which is converted to IJ, see Example 33).
For example, the first letter of élite is ‘é’ which is
normalised to ‘e’. Since the sort rule considers é and
e to belong to the same letter group, the group title
becomes E. In the case of Øresund, the result of the
normalisation ‘o’ doesn’t match the original, so the
group title is Ø.

The multiple encap (Table 9) generates a warn-
ing from bib2gls. It gives precedence to the first
non-default of the conflicting set (tstidxencapi, in
this case). Precedence can be given to a different
encap through the --map-format switch.

The range interruption has been moved before
the start of the explicit range (Table 10) but the
explicit range 2–5 (created with the open and close
formats) hasn’t been merged with the individual loca-
tions 1 and 6 on either side of it. The notestencaps

option doesn’t use any of the test encaps, so with
\usepackage[bib2gls,notestencaps]

{testidx-glossaries}

the interrupting entry now has the same format as
the explicit range. This means that it can be ab-
sorbed into the range, but an explicit range doesn’t
merge with neighbouring locations, so the location
list becomes 1, 2–5, 6.

The space and hyphen characters are in the
⟨ignore chars⟩ part of the rule. This means that
the locale sorting naturally used by Java (in which
bib2gls is written) is typically letter order. To im-
plement word-ordering, the sort value is split on
word boundaries and joined with | (which is usually
in its own letter group before digits). For example,
‘sea lion’ becomes sea|lion| (there’s always a fi-
nal marker so ‘seal’ becomes seal|). This ensures
that bib2gls defaults to word ordering, matching
makeindex and xindy (Table 7). Java’s word itera-
tor doesn’t consider hyphens as word boundaries so
‘yo-yo’ becomes yo-yo|.

▶ Example 30 (testidx-glossaries, bib2gls and letter
order)
In this example, the insertion of the break points is
disabled:
\tstidxmakegloss[sort=en-GB,break-at=none]

This results in letter ordering (Table 7). Note that
this isn’t the same as sort=letter-case which sim-
ply sorts according to the Unicode values rather than
according to a rule.

The ‘L’ letter group includes the -l and -L

switches (Table 1), but these are in a different order
(Table 3) than the previous example. In this case

Nicola L. C. Talbot

TUGboat, Volume 38 (2017), No. 3 393

-l (makeindex) appears at the start of the group
whereas in the previous case it came between -L

icelandic (xindy) and -L polish (xindy).

▶ Example 31 (testidx-glossaries, bib2gls and
Icelandic)
For comparison with Example 15, this example sorts
according to the Icelandic alphabet:
\tstidxmakegloss[sort=is]

This correctly identifies all the Icelandic letter groups
as shown in Table 1. (There’s no Ó or Ý letter group
as there are no terms starting with those letters.)
The non-native letters C, Œ, Q, W, Z and Ł have also
been assigned their own letter groups. The ordering
of ‘resume’ and ‘résumé’ (Table 6) is different from
the previous example since É comes after E in the
Icelandic alphabet (and are considered separate let-
ters). They are no longer collation-level homographs.
The non-native ß is treated as ‘ss’ (Table 8).

▶ Example 32 (testidx-glossaries, bib2gls and
Hungarian)
For comparison with Example 16, this example sorts
according to the Hungarian alphabet:
\tstidxmakegloss[sort=hu]

In addition to the basic Latin letters A–Z, the Hun-
garian alphabet also has Á, Cs, Dz, Dzs, É, Gy, Í,
Ly, Ny, Ó Ö, Ő, Sz, Ty, Ú, Ü, Ű and Zs. The sample
entries don’t include any terms starting with Cs, Gy,
Ny, Ő, Sz, Ty, Ü, Ű or Zs. Of the other letters, only
Ly and Ö have correctly formed letter groups (Ta-
ble 1). The non-native letters Ð and Œ have formed
separate groups, ß has been treated as ‘sz’ rather
than ‘ss’ (Table 8), and Ø and Ł are collected at the
end of the alphabet as they aren’t in the rule-set.

This has more success than xindy at forming
a digraph letter group (Ly) but has missed the Dz
digraph and Dzs trigraph.

Since I have Java 8 installed, the above examples
are using the locale rules from the CLDR (Common
Locale Data Repository). The results may differ with
Java 7 which can only use the locale information
provided with the JRE (Java Runtime Environment).
The locale identifier can include a variant as well as
a region, for example, sort=de-CH-1996 indicates
Swiss German new orthography.

▶ Example 33 (testidx-glossaries, bib2gls with
custom rules)
This example requires some customisation, so I can’t
use the convenient \tstidxmakegloss. I need to let
testidx-glossaries know this with the manual option
to prevent an error occurring:

\usepackage[bib2gls,manual]{testidx-glossaries}

I also need to explicitly use
\printunsrtglossary

So far, the maths group (where it has been
formed) only contains symbols such as �. There
are some other maths terms that have a natural al-
phabetic ordering (such as f (x⃗) and E) which have
been placed in the letter groups. This example gath-
ers them all together into a single group. As men-
tioned earlier, terms like � have the category set
to mathsymbol. The other mathematical terms are
in testidx-glossaries-samples.bib and have the
category set to math. It’s possible to apply a filter
so that only these terms are selected:
\GlsXtrLoadResources[

src={testidx-glossaries-mathsym,

testidx-glossaries-samples},

group={Maths},

sort={letter-case},

sort-field={name},

match-op={or},

match={{category=mathsymbol},{category=math}},

selection={recorded and deps and see},

ignore-fields={description}]

I’ve set the sort field to name, which means that
bib2gls will try to interpret the TEX code. It recog-
nises standard maths commands like \alpha and
can also detect a limited number of packages, such
as amssymb. This means that the sort code for ð

becomes the Unicode character F0 (eth).
The markers use the same code shown in Ex-

ample 29. After that is the number group, which
is much the same, but for illustrative purposes, I’ve
inverted the number ordering:
\GlsXtrLoadResources[

src={testidx-glossaries-numbers},

sort={integer-reverse},

selection={recorded and deps and see},

ignore-fields={description}]

Next I want to create a group for the switches.
The switches also occur as sub-entries (under the
name of the application), so I need to select those
switches that don’t have a parent:
\GlsXtrLoadResources[

src={testidx-glossaries-samples},

group={Switches},

sort={letter-nocase},

match-op={and},

match={{category=applicationoption},{parent={}}},

selection={recorded and deps and see},

ignore-fields={description}]

I’ve used the case-insensitive letter sort which first
converts the sort key to lower case and then behaves
like letter-case.

Testing indexes: testidx.sty

394 TUGboat, Volume 38 (2017), No. 3

The remaining entries are the alphabetic terms.
The terms that have been previously selected will be
ignored (with a warning) as duplicates. I’ve used a
custom sort rule here:
\GlsXtrLoadResources[

src={testidx-glossaries-samples,

testidx-glossaries-samples-utf8,

testidx-glossaries-nodiglyphs-utf8},

selection={recorded and deps and see},

ignore-fields={description},

max-loc-diff=3,

sort=custom,

sort-rule={' ' < ',' < '(' < ')' < '/' < '|' < '-'

< a,A & AE,\string\uE6,\string\uC6 % \ae

& \string\uE1,\string\uC1 % \'a

& \string\uE4,\string\uC4 % \"a

& \string\uE5,\string\uC5 % \aa

< b,B

< c,C & \string\u107,\string\u106 % \'c

< d,D < dd,Dd,DD

< dz,Dz,DZ < dzs,Dzs,DZS

< \string\uF0,\string\uD0 % \dh

< e,E & \string\uC9,\string\uE9

< f,F < ff,Ff,FF < g,G < h,H

< i,I & \string\uED,\string\uCD % \'i

< ij,IJ < j,J < k,K < l,L < ll,Ll,LL

< ly,Ly,LY < m,M < n,N < ng,Ng,NG

< o,O & OE,\string\u153,\string\u152 % \oe

& \string\uF6,\string\uD6 % \"O

< p,P < q,Q < r,R

< s,S & SS,\string\uDF

& \string\u15B,\string\u15A % \'s

< t,T

< th,\string\uFE,Th,TH,\string\uDE % \th

< u,U & \string\uFA,\string\uDA % \'U

< v,V < w,W < x,X < y,Y

< z,Z & \string\u17C,\string\u17B % \.Z

< \string\uF8,\string\uD8 % \o

< \string\u142,\string\u141 % \l

}

]

The sort=custom option requires the sort-rule key
to be also set. Extended characters can be identified
with \u⟨hex⟩ but \string is needed to prevent ex-
pansion when the information is written to the .aux

file. With X ELATEX or LuaLATEX the characters can
be written directly.

This rule has only a limited number of punctua-
tion characters for brevity. Extra characters should
be added to the rule if required. This is the only
example that successfully creates the Dzs trigraph
letter group (Table 1). There are also letter groups
for the Welsh Dd, Ff, Ll and Ng digraphs, the Dutch
IJ digraph, and the Hungarian Dz and Ly digraphs
(although the word beginning with ‘ly’ is actually
Polish). There’s also a group for both þ and the
Th digraph. The eszett ß has been treated as ‘ss’
(Table 8).

I’ve listed the hyphen immediately before A
(and after the break point marker), which affects the
ordering of the compound words (Table 7). This

also means that ‘recover’ and ‘re-cover’ are no longer
collation-level homographs (Table 6) since the hy-
phen is no longer ignored.

The additional seealso key provided by v1.16
of glossaries-extra allows bib2gls to treat the see

and seealso cross-references differently. (An en-
try may have one or the other of those fields, but
not both with bib2gls.) The seealso field can
be positioned at the start of the location list us-
ing the resource option seealso=before or omitted
entirely using seealso=omit. The default setting
is seealso=after, which puts it at the end of the
list. The separator between the list and the cross-
reference is given by \bibglsseealsosep, which can
be redefined after the resources are loaded. In this
example, I’ve done:
\renewcommand*{\bibglsseealsosep}{ }

\renewcommand*{\glsxtruseseealsoformat}[1]{%

(\glsseeformat[\seealsoname]{#1}{})}

This puts the ‘see also’ cross-references in parenthe-
ses, but doesn’t affect the ‘see’ cross-references. For
example, ‘range separator’ is defined with the see

field, and the result is ‘range separator see location
list’, but ‘padding’ is defined with the seealso field,
so the result is ‘padding 2 (see also filler)’.

Implicit ranges are formed from consecutive lo-
cations. This can lead to some ragged location lists,
such as 1, 2, 4, 5, 7. A tidier approach is to show this
as 1–7 passim, where ‘passim’ indicates the references
are scattered here and there throughout the range.
The max-loc-diff option indicates the maximum
difference between two locations to consider them
consecutive. The default value is 1, which means
that 2 and 3 are consecutive but 2 and 4 aren’t. I’ve
set the value to 3 in this example, which means that
the location list 2, 5, 6 can be tidied into 2–6 passim.
The ragged list for ‘paragraph’ (Table 9) can’t be
tidied as there are different encaps. The ‘passim’
suffix can be altered or removed as required.

▶ Example 34 (testidx-glossaries, bib2gls and
non-standard page numbering)
This example uses the same custom \tally com-
mand from Example 22 for the page numbering. The
only modification to Example 33 is the addition of:
\usepackage[notext]{stix}

and the definition of \tally and \thepage from
Example 22.

bib2gls will allow any location format. If it
can deduce an associated numeric value, it will try
to determine if a range can be formed, otherwise
the location will be considered an isolated value that
can’t be concatenated. (With glossaries-extra, it’s
possible to override the normal location value when

Nicola L. C. Talbot

TUGboat, Volume 38 (2017), No. 3 395

using thevalue with \gls..., for example, \glsadd

[thevalue={Suppl.\ info.}]{⟨label⟩}.) One of the
patterns bib2gls checks for is \⟨csname⟩{⟨num⟩},
which it interprets as having the numeric value ⟨num⟩.
The regular expression for ⟨num⟩ can detect roman
numerals (I, II, . . . or i, ii, . . .) or numeric values or
single alphabetical characters.

The alphabetic test uses \p{javaUpperCase}

for the upper case version or \p{javaLowerCase}

for the lower case version which not only matches
A, B, etc., or a, b, etc., but also matches alphabetic
characters in other scripts, such as А, Б, etc. The
numeric value representing the location is obtained
from the Unicode value. For example, Latin A has
the value 65 whereas Cyrillic А has the value 1040.

The numeric test uses \p{javaDigit} to match
a digit, which means it not only matches the digits
0, 1, 2, etc., but also digits from other scripts, such
as the Devanagari numbering system ०, १, २, etc.

The results from this example are much the
same as the previous example except for the page
number representation (Tables 9, 10, 11 and 12).

5 Extending the dummy text

New blocks can be added using \tstidxnewblock.
For example:
\tstidxnewblock{The \tstidxword{cat} sat

on the \tstidxword{mat}. The

\tstidxphrase{man in the moon} fell off

the \tstidxphrase{four-poster bed}.}

The starred version can be used to capture the block
number in a control sequence:
\tstidxnewblock*{\moonblock}{The

\tstidxword{cat} sat on the \tstidxword{mat}.

The \tstidxphrase{man in the moon} fell off

the \tstidxphrase{four-poster bed}.}

You can then display just this block with
\testidx[\moonblock]

There are other commands as well, including com-
mands for UTF-8 terms. For example:
\tstindexutfword{ch\^ateau}[chateau]{château}

The first argument is the ASCII version and the
final argument is the UTF-8 version. The optional
argument is the label, which is only used by testidx-

glossaries. If you want this support for the glossaries

package, you’ll need to define the terms as well:
\tstidxnewword{cat}{feline animal}

\tstidxnewword{mat}{piece of material

placed on the floor}

\tstidxnewphrase{man in the moon}{pareidolic

image seen in the moon}

\tstidxnewphrase{four-poster bed}{type of bed}

The UTF-8 example needs to be defined as follows:
\tstidxnewutfword{chateau}{ch\^ateau}{château}

{castle}

where the first argument is the label.
To integrate this with \tstidxmakegloss, just

add the definition file name to the comma-separated
list given by \tstidxtexfiles. For example (us-
ing etoolbox), if the terms are defined in the file
my-samples.tex:
\appto{\tstidxtexfiles}{,my-samples}

With bib2gls, the definitions will need to go
in a .bib file. For example:
@index{cat,

category={word},

description={feline animal}

}

@index{fourposterbed,

category={phrase},

name={four-poster bed},

description={type of bed}

}

(Note that the hyphen and space are stripped from
the name to create the label. The name field may
be omitted if it’s identical to the label.) The UTF-8
support is dealt with by having two separate .bib

files. One contains the ASCII version:
@index{chateau,

category={word},

name={ch\^ateau},

description={castle}

}

and the other contains the UTF-8 version:
@index{chateau,

category={word},

name={château},

description={castle}

}

These can also be integrated into \tstidxmakegloss

as follows. The .bib file that doesn’t require UTF-8
support (the one containing ‘cat’ in the above) needs
to be added to \tstidxbasebibfiles (a comma-
separated list). For example, if that file is called
my-samples.bib then:
\appto{\tstidxbasebibfiles}{,my-samples}

The UTF-8 file (the one containing château) needs
to be added to \tstidxutfbibfiles. For example,
if the file is called my-samples-utf8.bib:
\appto{\tstidxutfbibfiles}{,my-samples-utf8}

and the corresponding ASCII file needs to be added
to \tstidxasciibibfiles. For example, if the file
is called my-samples-ascii.bib:
\appto{\tstidxasciibibfiles}{,my-samples-ascii}

Testing indexes: testidx.sty

396 TUGboat, Volume 38 (2017), No. 3

Table 1: Letter groups
Example Group ordering

1, 5, 18,
19

Symbols Numbers A (inc. æ, Á, Ä, Å) B C (inc. Ć) D (inc. ð) E (inc. é) F G H I (inc. Í) J K L (inc.
Ł) M N O (inc. œ, Ø, Ö) P Q R S (inc. Ś) T (inc. þ, Þ) U (inc. Ú) V W X Y Z (inc. Ż)

2 Symbols Numbers A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

3 Symbols Numbers A (inc. æ, �, Á, Ä, Å) B (inc. �) C (inc. Ć) D (inc. ð) E (inc. é, ð) F G (inc.
) H
I (inc. Í) J K L (inc. Ł) M N O (inc. œ, Ø, Ö) P (inc.)) Q R S (inc. Ś,

∑
) T (inc. þ, Þ) U (inc. Ú)

V W X Y Z (inc. Ż)

4 Symbols Numbers A (inc. �) B (inc. �) C D E (inc. ð) F G (
) H I J K L M N O P (inc.)) Q R S
(inc.

∑
) T U V W X Y Z

6 Symbols Numbers A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Other (Á, Ä, Å, Í,
Ö, Ø, Ú, Þ, æ, é, ð, þ) Other (Ć) Other (Ł, œ, Ś, Ż)

7–9 Symbols A (inc. æ) B C D (inc. ð) E (inc. é) F G (inc. -g) H I J K L (inc. -l, -L) M (inc. -M) N O
(inc. Á, Ä, Å, Í, œ, Ø, Ú, Ö) P Q R S T U V W X Y Z Þ

10 Symbols A (inc. æ, �) B (inc. �) C D (inc. ð) E (inc. é, ð) F G (inc. -g,
) H I J K L (inc. -L, -l) M
(inc. -M) N O (inc. Á, Ä, Å, Í, œ, Ø, Ú, Ö) P (inc.)) Q R S (inc.

∑
) T U V W X Y Z Þ

11 Symbols Numbers A (inc. æ) B C D (inc. ð) E (inc. é) F G (inc. -g) H I J K L (inc. -l, -L) M (inc.
-M) N O (inc. Á, Ä, Å, Í, œ, Ø, Ú, Ö) P Q R S T U V W X Y Z Þ

12 Symbols Numbers A (inc. æ, �) B (inc. �) C D (inc. ð) E (inc. é, ð) F G (inc. -g,
) H I J K L (inc.
-l, -L) M (inc. -M) N O (inc. Á, Ä, Å, Í, œ, Ø, Ú, Ö) P (inc.)) Q R S (inc.

∑
) T U V W X Y Z Þ

13 Symbols Numbers A (inc. æ, Á, Ä, Å) B C (inc. Ć) D (inc. ð) E (inc. é) F G (inc. -g) H I (inc. Í) J
K L (inc. -l, -L, Ł) M (inc. -M) N O (inc. œ, Ø, Ö) P Q R S (inc. Ś) T (inc. þ, Þ) U (inc. Ú) V W X
Y Z (inc. Ż)

14, 21, 22 Symbols Markers Maths Numbers A (inc. æ) B C D (inc. ð) E (inc. é) F G (inc. -g) H I J K L (inc.
-l, -L) M (inc. -M) N O (inc. Á, Ä, Å, Í, œ, Ø, Ú, Ö) P Q R S T U V W X Y Z Þ

15
(Icelandic)

Symbols Markers Maths Numbers A (inc. Á) B C D ð E (inc. é) F G (inc. -g) H I (inc. Í) J K L (inc.
-l, -L) M (inc. -M) N O P Q R S T U (inc. Ú) V W X Y Z Þ Æ (inc. Ä, œ) Ö (inc. Ø) Å

31
(Icelandic)

Maths Markers Numbers A (inc. Ä, Å) Á B C (inc. Ć) D Ð E É F G (inc. -g) H I Í J K L (inc. -L,
-l) M (inc. -M) N O Œ P Q R S (inc. Ś) T U Ú V W X Y Z (inc. Ż) Þ Æ Ö (inc. Ø) Ł

16
(Hungarian)

Symbols Markers Maths Numbers A (inc. Á) B C D (inc. dz, dzs) E (inc. é) F G (inc. -g) H I (inc.
Í) J K L (inc. -l, -L, ly) M (inc. -M) N O (inc. Ä, Å, Ø, Þ, æ, ð, þ) Ö P Q R S T U (inc. Ú) V W X
Y Z

32
(Hungarian)

Maths Markers Numbers A (inc. æ Á Ä Å) B C (inc. Ć) D (inc. dz, dzs) Ð E (inc. é) F G (inc. -g)
H I (inc. Í) J K L (inc. -L, -l) Ly M (inc. -M) N O Ö Œ P Q R S (inc. Ś) T (inc. þ, Þ) U (inc. Ú) V
W X Y Z (inc. Ż) Ø (inc. Ł)

17 Markers Maths Numbers A (inc. æ, Á, Ä, Å) B C (inc. Ć), D (inc. dd and dzs) ǲ E (inc. é) F (inc.
ff) G (inc. -g) H I (inc. Í) Ĳ J K L (inc. -l, -L, Ł, ly) Ỻ M (inc. -M) N (inc. Ng) O (inc. œ, Þ, ð, Ø,
Ö, þ) P Q R S (inc. Ś) T U (inc. Ú) V W X Y Z (inc. Ż)

20 Markers Maths Numbers A (inc. æ, Á, Ä, Å) B C (inc. Ć) D (inc. ð) E (inc. é) F G (inc. -g) H I
(inc. Í) J K L (inc. -l, -L, Ł) M (inc. -M) N O (inc. œ, Ø, Ö) P Q R S (inc. Ś) T (inc. þ, Þ) U (inc.
Ú) V W X Y Z (inc. Ż)

23, 24 Symbols A (inc. æ, Á, Ä, Å) B C (inc. Ć) D (inc. ð) E (inc. é) F G H I (inc. Í) J K L (inc. Ł) M N
O (inc. Ø, Ö) P Q R S (inc. Ś) T (inc. þ, Þ) U (inc. Ú) V W X Y Z (inc. Ż)

29, 30 Maths Markers Numbers A (inc. æ, Á, Ä, Å) B C (inc. Ć) D Ð E (inc. é) F G (inc. -g) H I (inc. Í) J
K L (inc. -L, -l) M (inc. -M) N O (inc. œ, Ö) P Q R S (inc. Ś) T (inc. þ, Þ) U (inc. Ú) V W X Y Z
(inc. Ż) Ø (inc. Ł)

33, 34 Maths Markers Numbers Switches A (inc. æ, Á, Ä, Å) B C (inc. Ć) D Dd Dz Dzs Ð E (inc. é) F Ff
G H I (inc. Í) IJ J K L Ll Ly M N Ng O (inc. œ, Ö) P Q R S (inc. Ś) T Th (inc. þ, Þ) U (inc. Ú) V
W X Y Z (inc. Ż) Ø Ł

25–28 no groups or all entries in one group

Nicola L. C. Talbot

TUGboat, Volume 38 (2017), No. 3 397

Table 2: Symbols

Example Symbol group contents

1, 5, 18,
19

switches markers maths

2 switches markers maths non-ASCII (Ä,
Ö, Á, Ć, Í, Ś, Ú, é, Ż, Ł, Ø, Þ, æ, ð, œ,
Å, þ)

3 switches

4 switches non-ASCII (Ä, Ö, Á, Ć, Í, Ś, Ú,
é, Ż, Ł, Ø, Þ, æ, ð, œ, Å, þ)

6 switches markers maths

7–9 numbers markers maths UTF-8 (Ć, Ł,
Ś, Ż)

10 numbers UTF-8 (Ć, Ł, Ś, Ż)

11 markers maths UTF-8 (Ć, Ł, Ś, Ż)

12, 14, 15,
21, 22

UTF-8 (Ć, Ł, Ś, Ż)

13 markers maths

16 UTF-8 (Ć, Ł, œ, Ś, Ż)

23, 24 switches markers maths numbers

17, 20,
25–34

group missing

Table 3: Switches

Example Switches ordering

1–6, 18,
19, 23, 24

-L -M -g -l

7–9,
11–17,
20–22, 30,
33, 34

-g -l -L -M

10, 29, 31,
32

-g -L -l -M

25–28 order of definition

Table 4: Maths
Example Maths ordering

1, 2, 5–11,
13–24

� (>alpha), � (>beta), ð (>eth),

 (>gamma),) (>partial),

∑
(>sum).

3, 4, 12 � (alpha), � (beta), ð (eth),
 (gamma),
) (partial),

∑
(sum).

29–32 � (alpha), � (beta),
 (gamma),
) (partial), ð (spinderiv),

∑
(sum).

33, 34 E (45), f (x⃗) (66 28 78 20D7 29), n (6E),
ð (F0),) (2202),

∑
(2211), � (1D6FC), �

(1D6FD),
 (1D6FE).
25–28 order of definition

Table 5: Numbers
Example Number ordering

1–6,
11–24,
29–32

2, 10, 16, 42, 100

7–10 10, 100, 16, 2, 42
33, 34 100, 42, 16, 10, 2
25–28 order of definition

Table 6: Collation-level homographs
Example Ordering

1–6 imakeidx package, index, \index,
indexing application

7–17 imakeidx package, \index, indexing
application (‘index’ omitted)

18, 19, 23,
24, 29–34

illustration, \index, index, indexing
application

20–22 illustration, \index, indexing application
(‘index’ omitted)

1–6, 18,
19, 23, 33,
34

range separator, re-cover, recover,
reference

7–17, 24,
20–22,
29–32

range separator, recover, re-cover,
reference

1, 3, 5,
7–12,
14–17, 21,
22, 31

repetition, resume, résumé, rhinoceros

18, 19, 23,
24, 29, 30,
32–34

repetition, résumé, resume, rhinoceros

2, 4 (start of group) résumé, Rødovre, raft,
. . . , repetition, resume, rhinoceros

6 repetition, resume, rhinoceros, . . . ,
roundabout, résumé, Rødovre

13, 20 repetition, résumé, rhinoceros (‘resume’

omitted)

25–28 order of definition

Testing indexes: testidx.sty

398 TUGboat, Volume 38 (2017), No. 3

Table 7: Compound words

Example Ordering

1–4, 6, 7,
9–22, 29,
31–34

sea, sea lion, seaborne, seal, sealant gun

5, 8, 24,
30

sea, seaborne, seal, sealant gun, sea lion

23 sea, sealant gun, sea lion, seaborne, seal

1–4, 6, 7,
9–22, 29,
31–34

vice admiral, vice chancellor, vice versa,
vice-president, viceregal, viceroy

5 vice-president, vice admiral, vice
chancellor, viceregal, viceroy, vice versa

8, 24, 30 vice admiral, vice chancellor,
vice-president, viceregal, viceroy,
vice versa

23 vice chancellor, viceregal, vice versa, vice
admiral, vice-president, viceroy

1–6, 18,
19, 33, 34

yawn, yo-yo, yoghurt

7–17,
20–22, 24,
29–32

youthful, yo-yo, yuck

23 yoghurt, yo-yo, youthful

25–28 order of definition

Table 8: Eszett (‘Aßlar’)

Example Ordering

1, 3, 5,
13, 15,
17–20, 23,
24, 29–31,
33, 34

assailed, Aßlar, astounded

2, 4 (start of group) Aßlar, aardvark

6 attributes, Aßlar (end of group)

7–12, 14,
16, 21, 22

anonymous reviewer, Aßlar, applications

32 astounded, Aßlar, attaché case

25–28 order of definition

Table 9: Multiple encap (‘paragraph’)
Example Location List

1–6 2, 2, 2, 2, 3, 5

7–10 2, 2, 3, 5

11–16 2, 3, 5

17 2, 3, 4, 6

18 2, 3, 3, 3, 3, 4, 6

19, 25 2, 3, 4, 6

20, 21, 26,
29–33

2, 3, 4, 6

22, 34 ⚁, ⚂, ⚃, ⚅

23, 24, 27 2, 2, 2, 2, 3, 6

28 locations missing

Table 10: Explicit range interruption (‘range’)
Example Location List

1–6 2, 1–4, 6

7–16 1–4, 2, 6

17 1, 2, 6

18, 19, 25 3, 1–6

20, 21, 26 1–6, 3

22 ⚀–⚅, ⚂

23, 24, 27 1, 2, 2,5, 6

29–33 1, 3, 2–5, 6

34 ⚀, ⚂, ⚁–⚄, ⚅

28 locations missing

Table 11: Cross-reference interruption (‘lyuk’)
Example Location List

1–6, 1, see also digraph, 3

7–17 1, 3, see also digraph

18–21, 25,
26, 29–32

2, 3, see also digraph

22 ⚁, ⚂, see also digraph

23, 24, 27 see also digraph, 1, 3

33 2, 3 (see also digraph)

34 ⚁, ⚂ (see also digraph)

28 locations missing

Table 12: Ragged page list (‘block’)
Example Location List

1–16 1, 2, 4–6

17–21,
23–27,
29–32

2, 5, 6

22 ⚁, ⚄, ⚅

33 2–6 passim

34 ⚁–⚅ passim

28 locations missing

Nicola L. C. Talbot

TUGboat, Volume 38 (2017), No. 3 399

Table 13: Build time (testidx)

Example Elapsed real time External tool

1 0:00.73 makeindex

2 0:00.64 makeindex

3 0:00.64 makeindex

4 0:00.69 makeindex

5 0:00.56 makeindex

6 0:00.61 makeindex

7 0:01.17 xindy

8 0:01.13 xindy

9 0:01.07 xindy

10 0:01.13 xindy

11 0:01.12 xindy

12 0:01.32 xindy

13 0:01.38 xindy

14 0:01.19 xindy

15 0:01.13 xindy

16 0:01.17 xindy

17 0:02.43 xindy

Table 14: Build time (testidx-glossaries)

Example Elapsed External tool

real time

18 0:02.45 makeglossaries-lite

0:02.08 makeindex (explicit)
19 0:02.42 makeglossaries

(makeindex)
20 0:03.19 makeglossaries

(xindy)
21 0:03.18 makeglossaries

(xindy)
22 0:03.29 makeglossaries

(xindy)
23 3:31.69 none

24 3:34.38 none

25 0:02.24 makeglossaries

(makeindex)
26 0:03.18 makeglossaries

(xindy)
27 0:03.79 none

28 0:01.57 none

29 0:05.33 bib2gls

30 0:05.08 bib2gls

31 0:05.03 bib2gls

32 0:05.06 bib2gls

33 0:06.04 bib2gls

34 0:05.50 bib2gls

References

[1] STI Pub Companies. The stix package, 2015.
ctan.org/pkg/stix.

[2] Alan Jeffrey and Frank Mittelbach. The
inputenc package, 2015.
ctan.org/pkg/inputenc.

[3] Philipp Lehman and Joseph Wright. The
etoolbox package, 2015.
ctan.org/pkg/etoolbox.

[4] Frank Mittelbach, Robin Fairbairns, and
Werner Lemberg. The fontenc package, 2016.
ctan.org/pkg/fontenc.

[5] American Mathematical Society. The amssymb

package, 2013. ctan.org/pkg/amsfonts.
[6] Nicola Talbot. Localisation of TEX documents:

tracklang. TUGboat, 37(3):337–351, 2016.
tug.org/TUGboat/tb37-3/tb117talbot.pdf.

[7] Nicola Talbot. bib2gls: A command line
Java application to convert .bib files to
glossaries-extra.sty resource files, 2017.

[8] Nicola Talbot. The glossaries-extra package,
2017. ctan.org/pkg/glossaries-extra.

[9] Nicola Talbot. The glossaries package, 2017.
ctan.org/pkg/glossaries.

[10] Nicola Talbot. The testidx package, 2017.
ctan.org/pkg/testidx.

[11] Nicola Talbot. The tracklang package, 2017.
ctan.org/pkg/tracklang.

⋄ Nicola L. C. Talbot
School of Computing Sciences
University of East Anglia
Norwich Research Park
Norwich
NR4 7TJ
United Kingdom
N.Talbot (at) uea dot ac dot uk

http://www.dickimaw-books.com/

Testing indexes: testidx.sty

A note on \linepenalty

Udo Wermuth

Abstract

This article analyzes the effect of the line-breaking
parameter \linepenalty. First, its rôle in the prob-
lem of typesetting a text in one line or in two lines is
studied theoretically. Then the effect of different val-
ues for \linepenalty are demonstrated for longer
paragraphs. Finally, \linepenalty is compared to
\looseness.

1 Introduction

The line-breaking algorithm of TEX selects a short-
est path in a network of possible breakpoints ([2]
or the reprint in [7], p. 107) using a cost function
that calculates demerits. For every line, four values
are involved in the computation of its demerits and
then the sum of all line demerits stands for the total
demerits of a paragraph. Three of the four values
are directly related to the characteristics of the cre-
ated line, while the fourth value is a constant for all
lines of a paragraph: the \linepenalty. In TEX78
this constant was hard-coded into the program but
with TEX82 it became an integer parameter that the
user can change ([5], or the reprint in [6], pp. 273–
274). The plain format sets the default value of
\linepenalty.

The next section gives a brief overview of the
rules by which TEX’s line-breaking algorithm calcu-
lates the demerits. It also introduces some notation
in accordance with [9] but as there are only a few
symbols in this article the conventions are not re-
peated here. Section 3 analyzes what happens to a
text, for example, a heading, that can be typeset
either in one line or in two lines. Even this simple
case gets rather complex and Section 4 summarizes
some of the theoretical results and applies them to
normal text. The fifth section looks at longer para-
graphs and finds some insights when the value of
\linepenalty is changed. Section 6 compares the
effects of the two integer parameters \linepenalty
and \looseness.

The phrases “(possible) solution” or “path in
the network”, etc., refer to the network of line breaks
[2, Fig. 13] that exists for the given text. They do
not mean either that this is the shortest path in
the network and thus the typeset solution of the
line-breaking problem, or that the path is part of
the network which is actually created by TEX’s line-
breaking algorithm. Usually, this algorithm removes

400 TUGboat, Volume 38 (2017), No. 3

the initial segment of a path and thus the path from
its memory as soon as it learns that this begin-
ning cannot lead to the shortest path. The phrases
here state only that a certain path exists in the
whole network.

2 Calculation of demerits

Section 2 of [8] contains a detailed description of
the rules that TEX uses to compute the demerits.
In order to introduce the notation for this article a
brief summary of these rules follows.

The formula ([3], p. 98) that computes the de-
merits of a line, stated as Λ, is

Λ = (λ+ β)2 + sgn(π)π2 + δ (1)

which names the four parameters with Greek letters.

λ is the \linepenalty, a constant value set in
the plain TEX format to 10.

The badness assigned to the line is called β. The
badness is itself the result of a computation which
looks at the ratio of used and available stretch- or
shrinkability in the line ([3], p. 97). It is a nonneg-
ative number ≤ \pretolerance in the first pass;
otherwise ≤ \tolerance.

Depending on the type of line break a penalty
π is charged for the break ([3], p. 96). The value
is squared but the sign is kept so that the line de-
merits are lowered when a negative penalty is given.
Penalties lie in the range −10000 < π ≤ 10000;
π = −10000 forces a break but does not add to the
line demerits. A break at glue gets π = 0; otherwise
a break at a hyphen uses either \hyphenpenalty

or \exhyphenpenalty, a break in math mode ei-
ther \binoppenalty or \relpenalty, and a break
at an explicit \penalty command uses the given
value. The plain TEX format sets the value of the
four mentioned parameters to 50, 50, 700, and 500,
respectively.

The last parameter is named the additional de-
merits δ. Lines interact with their predecessors: If
visually incompatible lines would be output or if
two hyphens in a row occur or if the penultimate
line of the paragraph ends with a hyphen then ad-
ditional demerits are added. The term δ is the sum
of the parameters for these three mentioned cases:
\adjdemerits, \doublehyphendemerits, and only
for the last line \finalhyphendemerits. The de-
fault values in plain TEX are 10000, 10000, and 5000,
respectively.

The Pascal code in [4, §859] shows that the first
summand on the right hand side of equation (1)
takes a minimum of two numbers and involves the
absolute value of λ + β. Actually the summand is

Udo Wermuth

coded as
(

min(10000, |λ+ β|)
)2
.

Of course, in the plain TEX format λ + β < 10000;
but the code states that the value

10000−max(\pretolerance, \tolerance)−1 (2)

builds an upper limit for a positive \linepenalty.
If the line demerits are calculated for line num-

ber ι then Λ, β, π, and δ receive ι as a subscript.
So the total demerits Λt of a paragraph with µ lines
is given by

Λt =

µ
∑

ι=1

Λι =

µ
∑

ι=1

(

(λ+ βι)
2 + sgn(πι)π

2
ι + δι

)

= µλ2 + 2λB +

µ
∑

ι=1

(

β2
ι + sgn(πι)π

2
ι + δι

)

(3)

where the sum of all badness values is called B for
short, i.e., B :=

∑µ
ι=1 βι.

The total demerits of a paragraph sum certain
values that are associated with the path through
the network of line breaks that TEX has identified
as the shortest path according to its cost function.
This calculation can be performed for any path in
this network so the notation Λp for path demerits

is introduced.
If the value of \linepenalty is important it is

given as an argument to Λt or Λp, for example, the
left hand side of (3) can be written as Λt(λ).

The total demerits also have an upper limit. In
[4, §833] this limit is coded and it is best to have

Λt < 230 − 1 = 1,073,741,823 (4)

otherwise TEX might output overfull lines although
line breaks seem to be possible. TEX does not stop
working but except for the end of the paragraph it
does not create useful feasible breakpoints that are
required for TEX’s line-breaking decisions [4, §835].

In order to get familiar with the notation a sim-
ple lemma is proved. (The symbol ‘ ’ marks the end
of a proof or of an example.)

Lemma 1. If \linepenalty ≥ 0 and if for a line

that has neither penalties nor additional demerits

the line demerits are larger than the line demerits of

a second line with a penalty ≥ 0, additional demerits

≥ 0, and a summand ǫ ≥ 0 then the badness of the

first line is larger than the badness of the second.

Proof : With (1) the lemma claims for two lines with
line demerits Λ and Λ′ that with ǫ ≥ 0

Λ > Λ′ + ǫ =⇒ β > β′

if there are no penalties and additional demerits in
Λ, i.e., π = 0 and δ = 0, and if π′ ≥ 0 and δ′ ≥ 0.

Λ > Λ′ + ǫ

(β + λ)2 > (β′ + λ)2 + sgn(π′)π′2 + δ′ + ǫ⇐⇒

TUGboat, Volume 38 (2017), No. 3 401

by (1). The sum sgn(π′)π′2 + δ′+ ǫ is ≥ 0 as π′ ≥ 0,
δ′ ≥ 0, and ǫ ≥ 0. It follows that

(β + λ)2 − (β′ + λ)2 > π′2 + δ′ + ǫ

(β − β′)(β + β′ + 2λ) > 0.=⇒
Badness values are ≥ 0 and λ ≥ 0 so that the

term β+β′+2λ must be > 0. Its product with β−β′

is greater than 0 so that β − β′ > 0 or β > β′.

Next another well-known property of plain TEX
is stated as a lemma.

Lemma 2. In plain TEX the last line of a para-

graph that does not end with a penalty item of value

−10000 has either badness 0 or its glue shrinks.
Proof : If the last line contains infinite glue the bad-
ness is 0 ([3], p. 97).

Otherwise all glue is finite. In plain TEX the
\parfillskip is defined as 0pt plus 1fil. With-
out the \parfillskip, which is added by TEX af-
ter removing the last glue item in a paragraph ([3,
pp. 99–100]), the last line either contains only text
or its glue stretches, or shrinks, or has its natural
width. In the first two cases the stretchability of
\parfillskip makes the badness 0. In the last two
cases it does not change anything; a line in which
the glue has its natural width has badness 0.

3 When is a single line broken by TEX?

Let’s start with perhaps the simplest case in which
the effect of \linepenalty as a factor for TEX’s line-
breaking decisions can be analyzed: The network of
breakpoints allows TEX to typeset either a single line
or a pair of lines. Under what conditions does TEX
prefer two lines?

Three assumptions are made in this section:

1. The \linepenalty is nonnegative, i.e., ≥ 0.
2. The \parfillskip is 0pt plus 1fil.
3. The line width of the second line for the para-

graph is wider than the width of the material
that is moved from the first to the second line.

Negative values for \linepenalty are discussed in
Section 5. The reason for the (quite natural) third
assumption, which states that a line break produces
at most one additional line, is explained in Section 4.

The line demerits of the single line are called Λ1.
The two-line solution is marked with a prime and its
line demerits are called Λ′

1 and Λ′
2.

Note that the network must be built from the
first pass of the line-breaking algorithm, as a sin-
gle line is a valid solution. Of course, the single line
must shrink its glue, as a line with badness 0 is never
a candidate to be typeset in two lines if the user has
not entered a \penalty command with a negative

A note on \linepenalty

value. Without such a penalty a line with badness 0
has the line demerits Λ1 = λ2 and a two-line so-
lution must have at least this value for its second
line alone: Λ′

2 ≥ λ2. The first line adds the positive
value Λ′

1 to the path demerits as no negative penal-
ties are involved, making a two-line solution worse
than the one-line result. There is no other case for
the glue of the single line as by Lemma 2 the glue
cannot stretch.

But let’s look at the general case. The path
demerits of the single line are computed as

Λp = Λ1 = (λ+ β1)
2 (5)

because no penalty is added in a first pass; i.e., π1 =
0. δ1 = 0 except if the line is very loose but that
cannot happen by Lemma 2; so this summand can
be dropped too.

For the two-line solution the calculation is

Λ′
p = Λ′

1 + Λ′
2

= (λ+ β′
1)

2 + sgn(π′
1)π

′
1
2 + δ′1 + λ2 + δ′2 (6)

because β′
2 = π′

2 = 0 as the second line must have
badness 0 because of the assumptions about the line
width and the \parfillskip. At a break with a
hyphen π′

1 is either the value of \exhyphenpenalty
if the hyphen is part of the text or \hyphenpenalty
for user entered discretionary hyphens. In both cases
the additional demerits of the second line, δ′2, must
contain the value of \finalhyphendemerits, called
δf . And δ′1 is either 0, or if this line is very loose
\adjdemerits, named δa. In this case δ′2 contains
δa too. A break in math or at an explicit \penalty
does not influence the additional demerits.

TEX will break the text into two lines if and
only if Λt = Λ′

p < Λp.

Case 1: No penalty. This means π′
1 = 0 and δ′2

does not contain δf ; thus (6) simplifies to

Λ′
p = (λ+ β′

1)
2 + δ′1 + λ2 + δ′2. (7)

A path that generates two lines is preferred by
TEX if the right hand side of (7) is smaller than the
right hand side of (5):

(λ+ β1)
2 > (λ+ β′

1)
2 + δ′1 + λ2 + δ′2. (8)

To make this inequality true β′
1 must be smaller than

β1 by Lemma 1; the difference is called the “change”
χ of badness for the two-line solution, i.e., β1 −χ =
β′
1 with χ > 0. As the badness β′

1 is greater than or
equal to 0 one more inequality is known

β1 ≥ χ. (9)

All solutions must have a badness of the single line
that lies on or above the identity function g(χ) = χ.

Now β′
1 < 100 so the first line of the pair is

not very loose, thus δ′1 = δ′2 = 0 and inequality (8)

402 TUGboat, Volume 38 (2017), No. 3

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

f(χ) = ⌈(10− χ)2/(2χ)⌉

g(χ) = χ

change χ

\linepenalty = 10

b
ad

n
es
s
of

th
e
si
n
gl
e
li
n
e

Figure 1: Graphs for functions of Theorem 1

becomes with β′
1 = β1−χ

(λ+ β1)
2 > (λ+ β1 − χ)2 + λ2 (10)

⇐⇒ 2β1χ > (λ− χ)2. (11)

As χ > 0, inequality (11) can be written as

β1 >
(λ− χ)2

2χ
. (12)

With (9) the left hand side of (11) is kept equal or
made smaller when β1 is replaced by χ. If this new
inequality holds then (12) holds too.

2χ2 > (λ− χ)2

⇐⇒
√
2χ > λ− χ ∨

√
2χ > χ− λ

⇐⇒ χ > (
√
2− 1)λ ∨ χ > −(

√
2 + 1)λ.

The right-side inequality doesn’t say anything new,
as χ > 0. If λ = 0 both inequalities state χ > 0 so
that only (12) counts.

This computation proves the following theorem.

Theorem 1. In plain TEX with \linepenalty ≥ 0
a text that fits into one line is typeset in two lines

containing a line break without penalties if the dif-

ference between the badness of the single line and

the badness of the first line of the pair is larger than

(
√
2− 1)\linepenalty

or this difference, named “change”, is larger than

zero and the badness of the single line is larger than

(\linepenalty − change)2/(2× change).

When plain TEX’s settings are used the value 10
can be plugged in for \linepenalty. Thus the iden-
tity function is used as lower limit for the badness
when the change is larger than 4 as (

√
2− 1)× 10 ≈

Udo Wermuth

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

λ = 10

λ = 100

λ = 200

change χ

λ := \linepenalty
b
ad

n
es
s
of

th
e
si
n
gl
e
li
n
e

Figure 2: Solution sets for three \linepenalty values

4.14. For (1, 2, 3, 4) the badness of the single line
must be larger than or equal to (41, 17, 9, 5), respec-
tively; see (12). Figure 1 shows the graphs of two
functions for the integer values from 1 to 100. First,
the identity is shown as g. The second function f
represents in essence the formula of the right hand
side of (12). If the badness of the single line lies on
or above the thick points for a given χ then two lines
are typeset. The gray area forms the solution set.

Of course, the \linepenalty can be changed.
Figure 2 shows the solution sets for three different
values of \linepenalty: For λ = 10 all three gray
areas count (compare the areas to the solution set
shown in Fig. 1), for λ = 100 the light-colored area is
excluded, and for λ = 200 only the dark area builds
the solution set.

Case 2a: Break at hyphen. This important spe-
cial case of a break with penalties is treated first.
The break must be either at an explicit hyphen in
the text or at an inserted discretionary break as the
network is built from the first pass of TEX’s line-
breaking algorithm. This means that π′

1 equals ei-
ther \exhyphenpenalty or \hyphenpenalty and as
explained above there are additional demerits δ′2 =
\finalhyphendemerits = δf .

Now (10) and thus (12) get additional constant
terms on their right hand sides; (12) becomes:

β1 >
(λ− χ)2 + sgn(π′

1)π
′
1
2 + δf

2χ
.

As in plain TEX π′
1 = 50 and δf = 5000, the

sum sgn(π′
1)π

′
1
2 + δf is 7500. A graph for the above

inequality similar to Fig. 1 is shown in Fig. 3. The

TUGboat, Volume 38 (2017), No. 3 403

change must be at least 43 to get two lines. With
β1 = 78 the change must be larger than 75. The
comparison of Figs. 1 and 3 shows that in essence the
point from which the identity function dominates
the other function is moved on this line to a higher
value. (The same effect occurs in Fig. 2.)

Case 2b: Break at positive penalty. Lemma 1 is
applicable. So starting in (10) with an ǫ ≥ 0, which
is the sum of the penalty of the first line of the pair
and the additional demerits of both lines added to
the right hand side, the equivalent of (12) is

β1 >
(λ− χ)2 + ǫ

2χ
.

Similarly, starting with inequality (11) and replacing
β1 by χ gives

2χ2 > (λ− χ)2 + ǫ

⇐⇒ (χ+ λ)2 > 2λ2 + ǫ

⇐⇒ χ >
√

2λ2 + ǫ− λ ∨ χ < −
√

2λ2 + ǫ− λ.

Obviously the second inequality is not relevant.
Thus a generalization of Theorem 1 is proved:

Theorem 2. Given a text that fits into one line or

can be typeset in two lines with a line break that

has the value ǫ ≥ 0 as the sum of penalties and

additional demerits. Let \linepenalty ≥ 0.
The two-line solution is used by plain TEX if

the change > 0 is either at least
√

2\linepenalty2 + ǫ− \linepenalty

or the badness of the single line is larger than
(

(\linepenalty − change)2 + ǫ
)

/(2× change).

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

h(χ)=⌈((10−χ)2+7500)/(2χ)⌉

g(χ) = χ

change χ

\linepenalty = 10

b
ad

n
es
s
of

th
e
si
n
gl
e
li
n
e

Figure 3: Graphs of functions for a break at hyphen

A note on \linepenalty

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

ǫ = 102

ǫ = 502

ǫ = 902

change χ

\linepenalty = 10
b
ad

n
es
s
of

th
e
si
n
gl
e
li
n
e

Figure 4: Solution sets for three different penalties

Figure 4 compares the solution sets for three
different ǫ similar to Fig. 2.

When the \linepenalty is increased to 100
the solution set shrinks as shown in Fig. 2. But
Theorem 2 mentions two limits, and the formula
√

2λ2 + ǫ−λ gives for the three penalties 10, 50, and
90, i.e., the three ǫ amounts 102, 502, and 902:

ǫ = 102 502 902

λ = 10 =⇒
√
200 + ǫ− 10 ≈ 7.3 41.9 81.1

λ = 100 =⇒
√
20000 + ǫ− 100 ≈ 41.7 50 67.6

Thus the values of the limit get larger for ǫ =
102 and ǫ = 502 when λ is changed to 100 but for
ǫ = 902 it is smaller! Its solution set is not a subset
of the solution set when λ = 10. Figure 5 shows the
solution sets for the three values of ǫ with λ = 100.

Case 2c: Negative penalties. In this case, the
inequality (8) is changed to

(λ+ β1)
2 > (λ+ β′

1)
2 + δ′1 + λ2 − ǫ (13)

in which ǫ > 0 stands for the sum of penalties of the
first line and additional demerits of the second line
as in case 2b. That means δ′2 is contained in ǫ and
thus not mentioned in (13). δ′1 = 0 except the first
line of the two-line solution, named L′1, is very loose.
Then δ′1 is the value of \adjdemerits = δa. The
bracket notation is used to identify this summand:
δa[L

′
1 very loose]. And this means the additional de-

merits of the second line contains δa too. But ǫ is
not changed; instead the term δa is added twice.

Lemma 1 is not applicable and β′
1 can be larger

than β1. For some “change” χ, −100 ≤ χ ≤ 100, let
β1−χ = β′

1. In other words: Instead of (9), now two

404 TUGboat, Volume 38 (2017), No. 3

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

ǫ = 102
ǫ = 502

ǫ = 902

change χ

\linepenalty = 100

b
ad

n
es
s
of

th
e
si
n
gl
e
li
n
e

Figure 5: Like Fig. 4 for larger \linepenalty

limits for the badness of the single line are required:

β1 ≥ χ, if χ > 0; (14a)

β1 ≤ 100 + χ, if χ < 0. (14b)

Inequality (13) becomes

(λ+β1)
2 > (λ+β1−χ)2+2δa[L

′
1 very loose]+λ2−ǫ

or after the usual transformations

2β1χ > (χ− λ)2 + 2δa[L
′
1 very loose]− ǫ.

If χ = 0 this inequality states that ǫ must be
larger than λ2+2δa[L

′
1 very loose] in order to typeset

two lines.
If χ > 0 then β′

1 6= 100, i.e., L′1 cannot be very
loose and

β1 >
(χ− λ)2 − ǫ

2χ
. (15)

As before χ is used to replace β1 with (14a) to get

2χ2 > χ2 − 2λχ+ λ2 − ǫ

(χ+ λ)2 > 2λ2 − ǫ⇐⇒

χ >
√

2λ2 − ǫ− λ ∨ χ < −
√

2λ2 − ǫ− λ.⇐⇒
Only the first inequality states something new: If
ǫ ≥ 2λ2 two lines are typeset. Otherwise ǫ < 2λ2

and either χ >
√

2λ2 − ǫ − λ or the badness of the
first line fulfilling (15) are needed to get two lines.

If χ < 0 the first line of the two-line solution
might be very loose and χmust obey (14b).

First, the inequality (15) changes to

β1 <
(χ− λ)2 + 2δa[L

′
1 very loose]− ǫ

2χ
. (16)

Starting from

2β1χ > (χ− λ)2 + 2δa[L
′
1 very loose]− ǫ

Udo Wermuth

as above, now (14b) must be used to replace β1:

2(100 + χ)χ > (χ− λ)2 + 2δa[L
′
1 very loose]− ǫ.

With the usual transformations this leads to the rel-
evant solution

χ >
√

(100 + λ)2 + λ2 + 2δa[L
′
1 very loose]− ǫ

− 100− λ.

Thus a somewhat complex third theorem is proved:

Theorem 3. Given a text that fits into one line or

can be typeset in two lines with a line break that

has the value −ǫ < 0 as the sum of penalties and

additional demerits except for \adjdemerits if the

first line is very loose. Let \linepenalty ≥ 0.
If the change is 0 then there are two cases: If

the first line of the pair is very loose ǫ must be

larger than \linepenalty2 + 2\adjdemerits; oth-
erwise ǫ > \linepenalty2 is sufficient.

If the change is > 0 then ǫ ≥ 2\linepenalty2

typeset two lines; otherwise if ǫ < 2\linepenalty2

then either the change must be larger than
√

2\linepenalty2 − ǫ− \linepenalty

or the badness of the single line is larger than

(change− \linepenalty)2 − ǫ

2× change
(∗)

to output two lines.

If the change is smaller than 0 but the first line

is not very loose and ǫ ≥ (100 + λ)2 + λ2 then two

lines are created. Otherwise if ǫ is smaller then either

the change must be larger than
√

(100 + \linepenalty)2 + \linepenalty2 − ǫ

− 100− \linepenalty

or the badness of the single line must be smaller

than (∗) to output two lines.

If the first line of the pair is very loose then two

lines are typeset if either the change is smaller than
√

(100 + \linepenalty)2 + \linepenalty2

+ 2\adjdemerits − ǫ

− 100− \linepenalty

and (∗) + \adjdemerits/change is larger than the

badness of the single line or ǫ is larger than

(100 + \linepenalty)2 + \linepenalty2

+ 2\adjdemerits.

Figure 6 shows in the style of previous figures
three instances of negative penalties. All gray areas
represent the solution set if ǫ = 1592. The dots show
the limit when the first line of the pair is very loose.
If the dots and the lightest gray area are excluded
the diagram shows the solution set for ǫ = 682. It

TUGboat, Volume 38 (2017), No. 3 405

0

10

20

30

40

50

60

70

80

90

100

−100 −50 0 50 100

ǫ = 52

ǫ = 682

ǫ = 1592

dots: L′1 is
very loose

change χ

\linepenalty = 10

b
ad

n
es
s
of

th
e
si
n
gl
e
li
n
e

Figure 6: Solution sets for three negative values

doesn’t capture all negative change but the small-
est positive values build the identity function. If
ǫ = 52 only the darkest area counts and even for
positive change the identity function is not achieved
for small values.

Setting \linepenalty = 100 makes all areas
smaller, the dots disappear, and for ǫ = 1592 the
left edge of the solution set drops from (−43, 57)
to (−59, 0).

4 A few consequences of the theorems

The developed theory helps to understand certain
cases for plain TEX when a single line can be broken.

Theorem 1 shows how the two-line solution
can be made more likely when no penalties are in-
volved: Reduce the value of \linepenalty! The as-
signment 2 requires a change that must be larger
than 2(

√
2 − 1) < 1 for all badness values, i.e., a

change of 1 or more typesets the two lines.
Theorem 1 also states that with a large value of

\linepenalty TEX will typeset a single line, for ex-
ample, with a value 242 the line break is impossible
as the change must be larger than 242(

√
2−1) > 100.

Theorem 2 makes, among other things, state-
ments about penalties. It proves that a penalty of
110 forces the single line as

(

(10−100)2+1102
)

/(2×
100) > 100.

Theorem 3 implies that a \penalty of −180
typesets always two lines even if the first line of this
pair is very loose and \adjdemerits are involved.

Larger \linepenalty might break a single line.
One interesting consequence of Theorem 2 is that a

A note on \linepenalty

larger \linepenalty in combination with a posi-
tive \penalty breaks a line that would be kept as
a single line if the default value of \linepenalty is
used. See the discussion after Theorem 2 comparing
Figs. 4 and 5.

Example 1: Description
A single line is broken when \linepenalty is increased.

TEX input

\toks0={\noindent It’s a surprise, but it’s true.

See for yourself now. So~it\penalty95\ is.}

\linepenalty=10 \the\toks0\par

\linepenalty=100 \the\toks0\par

TEX output

It’s a surprise, but it’s true. See for yourself now. So it is.
It’s a surprise, but it’s true. See for yourself now. So it
is.

The single line has badness 86 and without the
“is.” the badness drops to 0, that is, the first line of
the two-line solution produces a change of 86. Using
the formula of Theorem 2, once the values 10 and
952 and 100 and 952 are used for \linepenalty and
for ǫ, respectively, the results are that the change
must be larger than 86 in the first case and larger
than 70 in the second to create two lines. Thus, in
the first case the break is avoided and in the second
it is made.

Instead of an explicit penalty a hyphen can be
the reason for a line break:

Example 1 continued: TEX input

\toks0={Bob, tell us, what made you

want to look up {\sl run-in\/}?}

\linepenalty=10 \the\toks0\par

\linepenalty=100 \the\toks0\par

TEX output

Bob, tell us, what made you want to look up run-in?
Bob, tell us, what made you want to look up run-

in?

Three lines with one line break. The theory was
developed with the starting point that a line break
generates two lines; see assumption 3 in Section 3.
But TEX is very flexible and a user can construct
situations in which a line break generates two addi-

tional lines.

Example 2: Description
An unusual \parshape is presented that otherwise is not
considered in this article.

TEX input

\def\weirdparshape{\setbox0=\hbox{\ninerm is}

\parshape 3 0pt \hsize 0pt \wd0 0pt \hsize

Do! not! do! it! Never! No!

This \cs{parshape} is bad.}

\linepenalty=242 \weirdparshape\par

\linepenalty=10 \weirdparshape\par

406 TUGboat, Volume 38 (2017), No. 3

TEX output

Do! not! do! it! Never! No! This \parshape is bad.

Do! not! do! it! Never! No! This \parshape

is
bad.

Of course, the theory could be extended, but
it does not seem worth the effort. Such settings of
\parshape are never applied to normal text. The
author wants to generate a certain effect and con-
trols the situation.

Longer paragraphs. The theoretical results do
not apply without change to paragraphs with more
than one line because the penultimate line in a long
paragraph might be changed too when the last line
is broken, i.e., (Lµ−1, Lµ) → (L′µ−1, L

′
µ, L

′
µ+1) with

Lµ−1 6= L′µ−1. And even if it stays unchanged, i.e.,
Lµ−1 = L′µ−1, the line characteristic might influence
the next line through additional demerits in different
ways. Finally, the paragraph might be broken in the
second pass of TEX’s line-breaking algorithm, thus
the badness of L′µ might be larger than the badness
of Lµ even if the change is positive.

OK, enough warning notices: There are never-
theless cases in which the theory is applicable to
longer paragraphs.

Example 3: Description

Typeset a short text twice with plain TEX. First with
the default settings, next with \linepenalty = 2.

TEX output

When you start to count where do you start? With zero
or with one? Hmm, I start at 1! A CS nerd uses a 0, or?
When you start to count where do you start? With zero
or with one? Hmm, I start at 1! A CS nerd uses a 0,
or?

Later in Section 5 it is shown that the value 4
for \linepenalty is sufficient. It turns out that the
value −2 works in this case too; see Section 6.

Next the technique with the penalty of 110 is
used. The example also demonstrates that a large
\linepenalty does not break the last line if the the-
ory is applicable. Here the minimal required value
for \linepenalty is used.

Example 4: Description
Typeset a short text thrice with plain TEX. First with
plain TEX’s default settings, second with a \penalty110

inserted between the last two words and a third time
without this penalty but with \linepenalty = 199.

TEX definitions

\toks0{\noindent This text can be typeset, yes,

either in two or in three lines and the theory

of this section applies to the}

\toks1={\the\toks0{} last line.}

\toks2={\the\toks0{} last\penalty110\ line.}

Udo Wermuth

TEX input

\linepenalty=10 \the\toks1\par \the\toks2\par

\linepenalty=199 \the\toks1\par

TEX output

This text can be typeset, yes, either in two or in three
lines and the theory of this section applies to the last
line.
This text can be typeset, yes, either in two or in three
lines and the theory of this section applies to the last line.
This text can be typeset, yes, either in two or in three
lines and the theory of this section applies to the last line.

As expected the \penalty110 prevents the line
break. A tie would do the job too but if the text later
grows, a break at the \penalty is still possible.

On the other hand if the text is typeset twice in
one paragraph the theory is not applicable; with a
line break in the last line the word “three” is moved
from the penultimate line of the four-line paragraph
to the penultimate line of the five-line paragraph.

Example 5: Description
Typeset the paragraph of example 4 two times as one
paragraph: once with plain TEX’s defaults and once with
\linepenalty = 385.

TEX input

\linepenalty=10 \the\toks1{} \the\toks1\par

\linepenalty=385 \the\toks1{} \the\toks1\par

TEX output

This text can be typeset, yes, either in two or in three
lines and the theory of this section applies to the last
line. This text can be typeset, yes, either in two or in
three lines and the theory of this section applies to the
last line.
This text can be typeset, yes, either in two or in three
lines and the theory of this section applies to the last line.
This text can be typeset, yes, either in two or in three
lines and the theory of this section applies to the last line.

In order to bring this paragraph to four lines
\linepenalty must be set to 385.

5 Changing the value of \linepenalty

The parameter \linepenalty can be changed by
the user. In this section an analysis is made when
a different \linepenalty results in different line
breaks and what the trade-offs are.

Example 6: Description
Typeset a paragraph several times with different values
for \linepenalty. Start with TEX’s default settings.

TEX definitions

\linepenalty=10

TEX output

The line-breaking algorithm of TEX selects a short-
est path in a network of feasible breakpoints using a
cost function that calculates demerits. For every line

TUGboat, Volume 38 (2017), No. 3 407

four values are used to compute the demerits for this
line and then the sum of all line demerits stands for the
total demerits of a paragraph.

The line-breaking decisions of TEX are listed in
the log file if \tracingparagraphs is set to 1. This
output helps to explain the effect on the line breaks
when \linepenalty is changed; therefore the trace
data is shown. See The TEXbook [3], pp. 98–99, or
[8], Section 3, for a description of this data.

Example 6 continued: \tracingparagraphs’ data

1. @firstpass

2. @secondpass

3. []\ninerm The line-breaking al-go-rithm of

T[]X se-lects a short-

4. @\discretionary via @@0 b=5 p=50 d=2725

5. @@1: line 1.2- t=2725 -> @@0

6. est path in a net-work of fea-si-ble break-

points us-ing a

7. @ via @@1 b=82 p=0 d=8464

8. @@2: line 2.1 t=11189 -> @@1

9. cost

10. @ via @@1 b=20 p=0 d=900

11. @@3: line 2.3 t=3625 -> @@1

12. func-tion that cal-cu-lates \ninesl

de-mer-its\ninerm . For ev-ery line

13. @ via @@2 b=48 p=0 d=3364

14. @@4: line 3.1 t=14553 -> @@2

15. four

16. @ via @@3 b=45 p=0 d=13025

17. @@5: line 3.1 t=16650 -> @@3

18. val-

19. @\discretionary via @@3 b=83 p=50 d=11149

20. @@6: line 3.3- t=14774 -> @@3

21. ues are used to com-pute the de-mer-its for

this

22. @ via @@4 b=39 p=0 d=2401

23. @@7: line 4.1 t=16954 -> @@4

24. line

25. @ via @@4 b=36 p=0 d=12116

26. @ via @@5 b=63 p=0 d=5329

27. @@8: line 4.1 t=21979 -> @@5

28. @@9: line 4.3 t=26669 -> @@4

29. and

30. @ via @@5 b=20 p=0 d=10900

31. @ via @@6 b=5 p=0 d=225

32. @@10: line 4.2 t=14999 -> @@6

33. then the sum of all line de-mer-its stands

for

34. @ via @@7 b=84 p=0 d=8836

35. @@11: line 5.1 t=25790 -> @@7

36. the

37. @ via @@7 b=0 p=0 d=100

38. @ via @@8 b=114 p=0 d=15376

39. @ via @@9 b=114 p=0 d=25376

40. @@12: line 5.2 t=17054 -> @@7

41. to-

42. @\discretionary via @@8 b=0 p=50 d=2600

43. @\discretionary via @@9 b=0 p=50 d=2600

A note on \linepenalty

44. @@13: line 5.2- t=24579 -> @@8

45. tal

46. @ via @@8 b=15 p=0 d=10625

47. @ via @@9 b=15 p=0 d=625

48. @ via @@10 b=46 p=0 d=3136

49. @@14: line 5.1 t=18135 -> @@10

50. @@15: line 5.3 t=27294 -> @@9

51. de-

52. @\discretionary via @@10 b=3 p=50 d=2669

53. @@16: line 5.2- t=17668 -> @@10

54. mer-its of a para-graph.

55. @\par via @@11 b=0 p=-10000 d=100

56. @\par via @@12 b=0 p=-10000 d=100

57. @\par via @@13 b=0 p=-10000 d=5100

58. @\par via @@14 b=0 p=-10000 d=100

59. @\par via @@15 b=0 p=-10000 d=100

60. @\par via @@16 b=0 p=-10000 d=5100

61. @@17: line 6.2- t=17154 -> @@12

62.

Here are a few reasons why this paragraph is a
good candidate to see the effect of different values
for \linepenalty.

Reason 1: The first line breaks at a hyphen so
the paragraph needs a second pass; see lines 1–2
of the listing. Thus penalties might occur, the ad-
ditional demerits are not limited to \adjdemerits,
and very loose lines are possible.

Reason 2: There are many possible paths in the
network; see lines 55–60. (Of course, this is normal
for most longer paragraphs.) Thus there are other
ways to typeset the text.

Reason 3: Some lines have a rather high bad-
ness, but it is possible by adding a word from the
neighboring line to lower the badness dramatically;
for example, see lines 6–10. The shortest path con-
tains some lines that have one of those large badness
values; see lines 4, 7, 13, 22, 37.

Reason 4: Some of the possible line breaks for a
penultimate line makes this line end with a hyphen
(lines 51–53 and 60 as well as lines 41–44 and 57). So
\finalhyphendemerits are available as additional
demerits.

Reason 5: On the other hand, some possible
lines avoiding the hyphen at the end of the penulti-
mate line are very loose; see lines 38–40. Thus very
loose lines are indeed available, and not just a pos-
sibility as stated in reason 1.

Reasons 1–4 are useful to see an effect for higher
positive values of \linepenalty, the last one to see
an effect if the value is negative.

Table 1 summarizes the paths identified in lines
55–60 of the trace data. The table shows in the
first two columns the information of the @@-lines:
the sequence number and the fitness class abbrevi-
ated to the first letter of very loose, loose, decent, or
tight. Then six columns for the possible paths are

408 TUGboat, Volume 38 (2017), No. 3

Table 1: Badness, penalties, and additional demerits
of the line breaks for the six paths of the trace listing

\par via @@ (* is typeset)
@@ Class 110 *120 130 140 150 160

1 d 550 550 550 550 550 550
2 l 82 82 82
3 t 20 20 20
4 l 48 48 48
5 l 45a

6 t 8350 8350
7 l 39 39
8 l 63
9 t 36a

10 d 5 5
11 l 84
12 d 0
13 d 050
14 l 46
15 t 15
16 d 350
17 d 0 0 0f 0 0 0f

µ = 6 6 6 6 6 6
B = 258 174 133 159 186 116

Λp(10) = 25890 17154 29679 18235 27394 22768

presented (lines 55–60); the heading gives the se-
quence number after the “via @@”; the subscript 0
is explained later. The table entries are the bad-
ness values. A subscript signals that a penalty oc-
curs at the break, a superscript of ‘f’ or ‘a’ that
\finalhyphendemerits or \adjdemerits, respec-
tively, are applied. Line 61 of the listing reports that
the line breaks follow the path of the column la-
beled 120. The column head contains an asterisk to
indicate this selection by TEX.

The last three rows state the number of lines,
µ, the sum of the badness values of the path, B, and
the path demerits Λp. These values are not found
directly in the trace data. They have been computed
from the information in the columns.

The theory. An increase of λ by κ > 0 changes
the first summand of the formula (1) for the line
demerits

(λ+ κ+ β)2 = (λ+ β)2 + 2βκ+ 2λκ+ κ2.

The two summands 2λκ and κ2 form a “constant”
that is added to every line and therefore they do not
change the line-breaking decisions by TEX—as long
as the limits (2) and (4) are obeyed. The third sum-
mand 2βκ increases the influence of the badness β.
That means, the penalties and the additional demer-
its in (1) are less important: If κ is large enough TEX
selects a path for which more penalties or additional
demerits are charged if only the badness values can
be made smaller.

Udo Wermuth

In fact, the increment that is necessary to go
from one path to another can be calculated with (1)
and (3). The path demerits become

Λp(λ+ κ) =

µ
∑

ι=1

(

(λ+ κ+ βι)
2 + sgn(πι)π

2
ι + δι

)

= µ(λ+ κ)2 + 2κB+ Λp(λ)− µλ2.

The task is to determine κ > 0 to change the total
line demerits to a path with a lower sum of bad-
ness—this path gets all subscripted variables and
their sums primed. Therefore starting with B′ < B
and Λt(λ) = Λp(λ) < Λ′

p(λ) find κ > 0 such that

Λp(λ+ κ) > Λ′
p(λ+ κ) = Λt(λ+ κ).

In the longer form the inequality is

µ(λ+ κ)2 + 2κB+ Λp(λ)− µλ2 >

µ′(λ+ κ)2 + 2κB′ + Λ′
p(λ)− µ′λ2.

A few simple transformations when µ = µ′ give

2κ(B− B′) > Λ′
p(λ)− Λp(λ)

or as B > B′

κ >
Λ′
p(λ)− Λp(λ)

2(B− B′)
. (17)

Its application. Table 1 shows that there are three
paths with a lower sum of badness value than col-
umn 120: 140 with sum 159, 130 with sum 133, and
160 with sum 116. Inequality (17) states the follow-
ing conditions for κ:

Path (Column) 130 140 160

κ > 152 36 48

(Note, only integer parts of the numbers are shown.)
So κ = 37 (or λ = 47) typesets the path of col-

umn 140. The path of column 130 cannot be reached:
160 has a lower sum of badness and needs a lower κ.

Example 6 continued: TEX definitions

\linepenalty=47

TEX output

The line-breaking algorithm of TEX selects a short-
est path in a network of feasible breakpoints using a cost
function that calculates demerits. For every line four val-
ues are used to compute the demerits for this line and
then the sum of all line demerits stands for the total
demerits of a paragraph.

Of course, the typeset result has one more hy-
phenated line. Low badness values have been traded
in for more penalties. A value κ > 48 selects the
path of column 160 but it might not be the value 49.
The formula does not know that there is a column in
between; so 49 still creates the path of column 140.
Using (17) the calculation of κ to go from column 140

to column 160 gives κ = 53 or λ = 63.

TUGboat, Volume 38 (2017), No. 3 409

Example 6 continued: TEX definitions

\linepenalty=63

TEX output

The line-breaking algorithm of TEX selects a short-
est path in a network of feasible breakpoints using a cost
function that calculates demerits. For every line four val-
ues are used to compute the demerits for this line and
then the sum of all line demerits stands for the total de-
merits of a paragraph.

All paths with a smaller sum of badness have
been used. But these are not all possible paths as
TEX ignores a path that cannot become the short-
est. Except \linepenalty 6= 10 might change TEX’s
viewpoint but unfortunately the path is not shown
explicitly in the available trace. In total there are six
more paths hidden in the data; Table 1′ lists them.
The paths are still named by the par information
and now the subscript identifies the variant. The
notations (10) and (t) mean that the correspond-
ing @-line does not have its own @@-line in the trace
and @@10 follows next. With this data all values of
κ for the transitions to a path with a smaller sum
of badness can be computed if the paths are sorted
by their sum of badness values B:

161 160 130 141 151 140 131 120

161 0
160 272 0
130 70 −204 0
141 52 −201 −185 0
151 23 −156 −101 −80 0
140 129 52 220 272 657 0
131 6 −106 −62 −52 −37 −673 0
120 112 48 152 179 299 36 2869 0

As noted above 36 is the smallest number in the
last row, selecting path 140. In the row for 140 52 is
the smallest number selecting 160 and in its row 272
is selecting 161. So only one more path can be shown
for κ > 272, i.e., κmust be 273 and λ = κ+10 = 283.

Example 6 continued: TEX definitions

\linepenalty=283

TEX output

The line-breaking algorithm of TEX selects a short-
est path in a network of feasible breakpoints using a cost
function that calculates demerits. For every line four
values are used to compute the demerits for this line and
then the sum of all line demerits stands for the total de-
merits of a paragraph.

Negative values. A negative amount for the inte-
ger \linepenalty does not act directly as a bonus
if a line is created, as the sum with the badness is
squared in equation (1). But a negative value re-
verts the meaning of badness! For example, a value

A note on \linepenalty

Table 1′: Badness, penalties, and additional demerits
of the line breaks for not-shown paths of the trace listing

variant of \par via @@

@@ Class 122 121 131 141 151 161

1 d 550 550 550 550 550 550
2 l 82 82
3 t 20 20 20 20
4 l 48 48
5 l 45a 45a 45a 45a

8 l 63 63
9 t 36a 36a

(10) (t) 20a 20a

(12) (v) 114a 114
13 d 050
14 l 46
15 t 15a

16 d 350
17 d 0a 0 0f 0 0 0f

µ = 6 6 6 6 6 6
B = 285 247 171 136 148 93

Λp(10) = 62145 37455 34369 30786 32704 35319

of −110 for \linepenalty assigns lines with bad-
ness 0 the same demerits as lines with badness 100
get with plain TEX’s default settings. And a line
with badness 100 gets the value that previously a
line with badness 0 received. TEX creates lines that
have large badness values if possible! Higher nega-
tive values retain this effect, so they act differently
from large positive values.

Tables 1 and 1′ show that there are paths that
have a larger sum of badness than the path of col-
umn 120. Inequality (17) is changed as in this case
B < B′. Thus division by 2(B− B′) < 0 inverts the
relation:

κ <
Λ′
p(λ)− Λp(λ)

2(B− B′)
. (18)

As in the case of smaller sum of badness values
a diagonal matrix with values that are larger than
B of 120 can be built.

120 150 121 110 122

120 0 −426 −139 −52 −202
150 0 −82 11 −175
121 0 526 −324
110 0 −671
122 0

So this time κ = −53, i.e., λ = −43, selects col-
umn 110.

Example 6 continued: TEX definitions

\linepenalty=-43

TEX output

The line-breaking algorithm of TEX selects a short-
est path in a network of feasible breakpoints using a
cost function that calculates demerits. For every line

410 TUGboat, Volume 38 (2017), No. 3

four values are used to compute the demerits for this
line and then the sum of all line demerits stands for
the total demerits of a paragraph.

The matrix states that from row 110 the value
κ = −672 moves on to path 122.

Example 6 continued: TEX definitions

\linepenalty=-662

TEX output

The line-breaking algorithm of TEX selects a short-
est path in a network of feasible breakpoints using a
cost function that calculates demerits. For every line
four values are used to compute the demerits for this line
and then the sum of all line demerits stands for the
total demerits of a paragraph.

The limit. The \linepenalty has a limit as stated
in (2). The setting of 10000 is larger than this limit
and the badness values are completely ignored—
they do not even have a “little influence” [1, p. 171].
(The effects that are shown in [1] can neither be re-
produced with the font cmr10 nor are they explained
by the developed theory.) As badness plays no rôle
anymore, TEX tries to avoid hyphens and visually
incompatible lines as they add to the line demerits;
see (1). In the current example the same line breaks
as with \linepenalty = 10 are used.

But other paragraphs, with a \linepenalty

value above the limit (2), switch to a path that oth-
erwise can be reached only by a negative penalty.

Table 2: Badness, penalties, and additional demerits
of the line breaks for the two paths of example 7

\par via @@ (* is typeset)
@@ Class *6 7

1 v
2 d 050
3 t 68
4 d 0
5 d 5
6 l 32
7 d 0
8 d 0 0

µ = 4 4
B = 32 73

Λp(10) = 4564 6509

Example 7: Description
Typeset a paragraph three times in a forced second pass,
i.e., \pretolerance = −1: first with \linepenalty =
10, second with \linepenalty = −14, and third with
\linepenalty = 10000.

TEX output

Hi! TEX! Tell me: How is the following long word bro-
ken ‘pneumonoultramicroscopicsilicovolcanoconiosis’? I
am sure that you are an expert in hyphenation, right
TEX? Or shall I ask Siri?

Udo Wermuth

Hi! TEX! Tell me: How is the following long word broken
‘pneumonoultramicroscopicsilicovolcanoconiosis’? I am
sure that you are an expert in hyphenation, right TEX?
Or shall I ask Siri?

Hi! TEX! Tell me: How is the following long word broken
‘pneumonoultramicroscopicsilicovolcanoconiosis’? I am
sure that you are an expert in hyphenation, right TEX?
Or shall I ask Siri?

Table 2 shows: κ < −23.7 ≈ (6509−4564)/−82
by (18), that is λ = −14, selects the path in col-
umn 7. As the path in column 6 contains a hyphen a
\linepenalty of 10000 selects the path in column 7,
which has no penalties or additional demerits.

Paths with fewer lines. In example 5, the param-
eter \linepenalty must be set to a large value in
order to reduce the number of lines that are typeset
from five to four. This is not covered by (17) as now
µ = µ′ + 1.

To determine the κ that selects a path with
fewer lines the initial inequality must distinguish be-
tween µ and µ′ = µ− 1:

µ(λ+ κ)2 + 2κB+ Λp(λ)− µλ2 >

(µ− 1)(λ+ κ)2 + 2κB′ + Λ′
p(λ)− (µ− 1)λ2.

The difference between µ and µ′ adds the summand
(λ + κ)2 − λ2 to the left hand side and this allows
that the sum of badness can be larger for the shorter
paragraph.

A simple rearrangement of the terms gives

κ2 + 2κ(λ+B− B′) > Λ′
p(λ)− Λp(λ). (19)

Addition of (λ + B − B′)2 to both sides gives a
quadratic term on the left

(κ+ λ+B− B′)2 > (λ+B− B′)2 +Λ′
p(λ)− Λp(λ)

and as the right hand side is positive, the square
root can be taken. Therefore the following relevant
inequality is found

κ > B′ − B− λ

+
√

(λ+B− B′)2 + Λ′
p(λ)− Λp(λ) .

(20)

Table 3 shows the data of the corresponding
trace listing for the text of example 5. The notation
(10) is explained above; see also “No information in
the trace data” in [8], p. 370ff. The path of column 8

is typeset and it has the lowest value for the sum of
badness B. Using this data inequality (20) gives κ >
374.8 . . . for column 6. The required \linepenalty

must be set to 385—as mentioned after example 5.

Paths with more lines. In example 3 the parame-
ter \linepenalty was set to 2 to enlarge the number
of typeset lines. So this case should be analyzed too.

TUGboat, Volume 38 (2017), No. 3 411

Table 3: Badness, penalties, and additional demerits
of the line breaks for the four paths of example 5

\par via @@ (* is typeset)
@@ Class 6 7 *8 9

1 d 2 2 2 2
2 l 19 19
3 t 96 96
4 l 87
5 d 5
6 d 2 2
7 l 13
8 d 1
9 l 19110
(10) (t) 96
10 d 0 0 0

µ = 4 5 5 5
B = 196 121 27 119

Λp(10) = 22760 11023 1431 24565

This time κ > 0 is subtracted from λ:

Λp(λ− κ) =

µ
∑

ι=1

(

(λ− κ+ βι)
2 + sgn(πι)π

2
ι + δι

)

= µ(λ− κ)2 − 2κB+ Λp(λ)− µλ2.

Thus the inequality for the path demerits becomes

µ(λ− κ)2 − 2κB+ Λp(λ)− µλ2 <

µ′(λ− κ)2 − 2κB′ + Λ′
p(λ)− µ′λ2

and with µ′ = µ+ 1 this is

Λp(λ)− Λ′
p(λ) < κ2 − 2κ(B− B′ − λ).

This time add the term (λ + B′ − B)2 to both
sides and take square roots; then the useful result is

κ > λ+B′ − B

−
√

(λ+B′ − B)2 + Λp(λ)− Λ′
p(λ) .

(21)

The data of Table 4 gives for the transition from
the path of column 2 to 6 with (21): κ > 5.3. There-
fore \linepenalty = 10−6 = 4 typesets three lines
as mentioned above.

Table 4: Badness, penalties, and additional demerits
of the line breaks for the five paths of example 3

\par via @@ (* is typeset)
@@ Class *2 3 4 5 6

1 l 86 86
2 d 4 4 4
3 d 4
4 l 57
5 d 0
6 d 6
7 d 7
(7) (d) 0 0 0 0

µ = 2 3 3 3 3
B = 11 100 61 86 10

Λp(10) = 485 9512 4785 9416 552

A note on \linepenalty

Summary. When the \linepenalty value is in-
creased, TEX’s line-breaking algorithm focuses more
on the badness values. If a path exists in the network
of line breaks that has the same number of lines but
a lower sum of badness compared to the path se-
lected with the default settings, that path might be
chosen with the larger \linepenalty. This means
that more breaks in mathematics and/or at positive
\penalty commands and/or more hyphens and/or
more stacks of hyphens and/or more visually incom-
patible lines are typeset and at least one of these
items is increased.

If a path exists that uses fewer lines for the
paragraph, this path can be selected with a large
\linepenalty even if its sum of badness is higher
than that of the paragraph with the default settings.
Similarly a path can be selected that has more lines
if \linepenalty stays positive but is made smaller
than 10.

Negative values for \linepenalty typically cre-
ate rather ugly paragraphs as TEX then prefers large
badness values for the lines. This effect is not nor-
mally desirable for justified text.

6 \linepenalty versus \looseness

The TEXbook has an exercise in which the value 100
for the parameter \linepenalty is suggested as a
replacement for a negative \looseness in an ap-
plication to a single paragraph ([3], exercise 14.25).
The reason refers to efficiency to “achieve almost the
same result” if the user is not willing to pay the cost
that a nonzero \looseness generates. (\looseness
is explained in [3], pp. 103–104 or see Section 5 of [8]
for an analysis of this parameter.)

Figure 2 shows that there are a lot of cases in
which two lines are typeset instead of only one if
\linepenalty = 100. And example 1 proves that
the increase of \linepenalty can make a paragraph
longer. Therefore this parameter might not only fail
to reduce the number of lines it might be coun-
terproductive. Although passes can have different
numbers of lines for the shortest path, with a small
enough negative \looseness a paragraph can never
get more lines than it has in the earliest pass that
typesets it if \pretolerance ≤ \tolerance, as the
paths of the first pass are part of the network of line
breaks of the second pass.

Inequality (19) can be used to determine in
which cases a \linepenalty of 100, i.e., κ = 90, can
be successful in general. Here the plain TEX values
are used:

902 + 2 · 90(10 + B− B′) > Λ′
p(10)− Λt(10)

9900− 180(B′ − B) > Λ′
p(10)− Λt(10).⇐⇒

412 TUGboat, Volume 38 (2017), No. 3

Therefore the difference between the sum of bad-
ness values must be less than 55 = 9900/180, but of
course it must often be much smaller as the differ-
ence of the path demerits on the right hand side is
positive and usually not very small.

Although Theorem 1 proves that the value 242
for \linepenalty acts like \looseness = −1 for a
single line the scenario represents only a special case.
For example, as noted in Section 3, the single line
is always typeset by TEX’s line-breaking algorithm
in the first pass. In general these two parameters
behave quite differently.

Second pass. This is the fundamental difference
between these two parameters: \looseness will try
hyphenation, i.e., the second pass, if it is not suc-
cessful in the first.

Thus, hyphens might be introduced at the end
of the lines if \looseness is used although no re-
duction of the number of lines is achieved.

Example 8: Description
Typeset the text of example 7 twice: first with plain
TEX’s defaults and second with \looseness = −1.

TEX output

Hi! TEX! Tell me: How is the following long word broken
‘pneumonoultramicroscopicsilicovolcanoconiosis’? I am
sure that you are an expert in hyphenation, right TEX?
Or shall I ask Siri?
Hi! TEX! Tell me: How is the following long word bro-
ken ‘pneumonoultramicroscopicsilicovolcanoconiosis’? I
am sure that you are an expert in hyphenation, right
TEX? Or shall I ask Siri?

The change of \linepenalty never forces TEX’s
line-breaking algorithm to execute another pass. It
uses the pass that is necessary to break the lines
when \linepenalty = 10.

Example 9: Description
Typeset a paragraph twice: first with \linepenalty =
9799 and second with the default \linepenalty = 10
and \looseness = −1.

TEX output

A short text that cannot be typeset in two lines
although looseness does it in the 2nd pass. A surprise!
Or?

A short text that cannot be typeset in two lines al-
though looseness does it in the 2nd pass. A surprise! Or?

TEX typesets the text of the first paragraph in
the first pass. The line-breaking algorithm cannot
eliminate the third line in this pass. On the other
hand this means that the first pass is a failure in
TEX’s view if \looseness = −1. But the second
pass is a success: Although it also prefers three lines,
there is a way to output only two. The demerits for
the three line solution are 6926, those for the pair of
lines 15773.

Udo Wermuth

Different cost functions. This leads to the next
difference: \looseness can choose a line-breaking
solution that does not represent the shortest path
in the network. This never happens for any setting
of \linepenalty; it must pick the shortest path.

As \looseness has a different cost function
to be optimized, penalties larger than −10000 and
smaller than 10000 mark places that are as good as
others for a line break.

Example 10: Description

A text with two penalties is typeset twice: first with
\linepenalty = 9799 and second with \looseness =
−1 and \linepenalty = 10.

TEX input

OK! Even 4-digit penalties, positive or negative,

are\penalty9999\ not important for looseness but

linepenalty obeys\penalty-9999\ them.

TEX output

OK! Even 4-digit penalties, positive or negative,
are not important for looseness but linepenalty obeys
them.

OK! Even 4-digit penalties, positive or negative, are
not important for looseness but linepenalty obeys them.

Both paragraphs are typeset in the first pass.
The \linepenalty must pick the shortest path in
the network with the cost function of demerits and
thus TEX typesets three lines. This cost function is
not relevant for \looseness if the number of lines
of the paragraph can be changed. Only if this is
not possible does TEX select the shortest path in
the current pass as usual. This means a parameter
that does not inhibit some behavior does not count
if \looseness can be successful.

Success rate. No single value of \linepenalty

works for all paragraphs but \looseness is always
successful if the paragraph can be typeset with fewer
lines.

Example 4 shows a text that can be typeset in
two or three lines; a pair is output if \linepenalty
is set to 199. Example 5 typesets the text twice and
it needs \linepenalty = 385 to keep four lines.
Each additional repetition of the original text re-
quires a larger \linepenalty:

number of copies 1 2 3 4 5 6 7
\linepenalty = 199 385 557 738 918 1098 1278

Of course, this is a constructed example, but
nevertheless with 25 iterations the \linepenalty

must be 4519. The next step, i.e., a paragraph with
only 52 lines in the shortest form, cannot be typeset
with a \linepenalty of 4541 anymore and it would
need 4599 if the progression continues as before. It
violates TEX’s limit for the total demerits, see (4),

TUGboat, Volume 38 (2017), No. 3 413

and the text is not typeset correctly. With the de-
fault \linepenalty together with \looseness =
−1 no problem occurs.

Note: The large value 9799 for \linepenalty,
which was used in the last two examples, can be
applied for paragraphs with at most ten lines. In
order to demonstrate certain effects in examples its
usage is needed, but such a large value would not be
used for normal copy.

Quality of output. If the number of lines of a
paragraph cannot be lowered then \looseness still
tries to find a line-breaking solution that avoids vis-
ually incompatible lines and stacks of hyphens, i.e.,
it obeys the additional demerits \adjdemerits and
\doublehyphendemerits if possible.

But Section 5 shows that \linepenalty trades
the smaller sum of badness for penalties and addi-
tional demerits. This means that a text that con-
tains no math, no explicit \penalty command, and
no explicit hyphens must get visually incompatible
lines in a first pass if TEX changes the line breaks.

In the second pass \linepenalty considers hy-
phens as \looseness does. The latter treats the pa-
rameters \double... and \finalhyphendemerits

as usual while the former parameter trades them like
\adjdemerits for a smaller sum of badness values.
That is, TEX not only might typeset more hyphens,
but also there might be more visually incompatible
lines, more stacks of hyphens, and more hyphenated
penultimate lines.

Efficiency. The advantage of increasing the pa-
rameter \linepenalty instead of using \looseness
is that \linepenalty’s value is always added in the
code of the line-breaking algorithm—even if it is
zero. A nonzero \looseness invokes otherwise un-
used code and thus slows the algorithm down [4,
§§ 873, 875]. As expected, this loss in efficiency is
hardly noticed in normal copy with modern equip-
ment.

My outdated computer from 2011 (a 1.8GHz
Dual-Core i7) with my own TEX installation shows
the following factors by which the runtime increases.
The reference value 1 is used for the time needed by
plain TEX to typeset the two lines of example 4 with
\looseness = 0.

copies \looseness = 0 \looseness = −1
1 1 1

100 3 11
225 6 100

But even the abnormally long paragraph of the
last case with 450 lines needs only one second to get
typeset if \looseness = −1.

A note on \linepenalty

\looseness can be positive. A value larger than
zero for the parameter \looseness tries to make the
paragraph longer.

Negative values for \linepenalty usually type-
set low quality paragraphs. This was proved in Sec-
tion 5. Thus it is not a good idea to use them except
when they would lengthen paragraphs; Section 5
shows that values < 10 can be succesful.

Example 3 uses the value 2 for \linepenalty

to typeset three instead of two lines. It happens that
the \linepenalty can be −2 (but not −3).
Example 11: Description
Typeset example 3 with \linepenalty = −2.

TEX output

When you start to count where do you start? With zero
or with one? Hmm, I start at 1! A CS nerd uses a 0,
or?

The next example uses a small positive and a
high negative value for \linepenalty. But even in a
forced second pass (used by \looseness = 1) these
values do not make TEX typeset an additional line.

Example 12: Description
Typeset a paragraph four times: first with plain TEX’s
settings, second with \looseness = 1, third in a forced
second pass with \linepenalty = 1, and finally, still in
the second pass, with a \linepenalty of −9999.

TEX output

This is a short paragraph and two words can have
a hyphen in it. The rest of the text is made up of short
words only. Well, I think the first sentence is wrong.
Wait then one more must be wrong. Two are wrong.

This is a short paragraph and two words can have
a hyphen in it. The rest of the text is made up of
short words only. Well, I think the first sentence is
wrong. Wait then one more must be wrong. Two are
wrong.

This is a short paragraph and two words can have
a hyphen in it. The rest of the text is made up of short
words only. Well, I think the first sentence is wrong.
Wait then one more must be wrong. Two are wrong.

This is a short paragraph and two words can have a
hyphen in it. The rest of the text is made up of short
words only. Well, I think the first sentence is wrong.
Wait then one more must be wrong. Two are wrong.

Summary. TEX must work harder if \looseness
is negative but a large value of \linepenalty is
not a replacement. A large value for the parame-
ter \linepenalty might even increase the number
of lines output for a paragraph.
• If a paragraph can be typeset with fewer lines

than TEX’s default settings produce then

\looseness = n for some n ≤ −1 is successful;
\linepenalty > 10 might be successful but only if

the pass has not to be changed; otherwise the
paragraph is treated like an unsuccessful case.

414 TUGboat, Volume 38 (2017), No. 3

• If fewer lines for the paragraph are impossible

\looseness tries the final pass and thus might in-
sert hyphens but outputs the shortest path;

\linepenalty outputs the (new) shortest path that
might now have lines with lower badness, but
then more breaks in mathematics or at positive
\penalty commands or more hyphens or more
stacks of hyphens or more visually incompatible
lines are used.

Both parameters might have a “negative im-
pact” on paragraphs that cannot be shortened but
the outcome with a large \linepenalty seems to be
worse. Its only advantage is that it does not change
the pass and that it obeys other TEX parameters.

References

[1] David Bausum, TEX Reference Manual, Norwell,
Massachusetts: Kluwer Academic Publishers, 2002
tug.org/utilities/plain/cseq.html#linepenalty-rp

[2] Donald E. Knuth and Michael F. Plass, “Breaking
paragraphs into lines”, Software—Practice and

Experience 11 (1981), 1119–1184; reprinted with
an addendum as Chapter 3 in [7], 67–155

[3] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984

[4] Donald E. Knuth, TEX : The Program, Volume B
of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986

[5] Donald E. Knuth, “The Errors of TEX”, Software—
Practice and Experience 19 (1989), 607–685;
reprinted as Chapter 10 in [6], 243–291

[6] Donald E. Knuth, Literate Programming, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 27, 1992

[7] Donald E. Knuth, Digital Typography, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 78, 1999

[8] Udo Wermuth, “Tracing paragraphs”, TUGboat

37:3 (2016), 358–373
tug.org/TUGboat/tb37-3/tb117wermuth.pdf

[9] Udo Wermuth, “The optimal value for
\emergencystretch”, TUGboat 38:1 (2017), 64–86
tug.org/TUGboat/tb38-1/tb118wermuth.pdf

⋄ Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

Errata for previous articles. Here are two correc-
tions for errors that are not merely typographical.

In [8], p. 365, left column, the \hsize of the books
The Art of Computer Programming by D. E. Knuth
should be 348 pt.

In [9], p. 75, left column no. 10, the value of t is
wrong; the stated value represents 2t.

Udo Wermuth

TUGboat, Volume 38 (2017), No. 3 415

TheTreasure Chest

This is a selection of the new packages posted to
CTAN (ctan.org) from August–October 2017, with
descriptions based on the announcements and edited
for extreme brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package
can be found at ctan.org/pkg/pkgname. A few
entries which the editors subjectively believe to be
of especially wide interest or otherwise notable are
starred; of course, this is not intended to slight the
other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. See also ctan.org/topic. Com-
ments are welcome, as always.

⋄ Karl Berry
tugboat (at) tug dot org

fonts

* coelacanth in fonts

LATEX support for Coelacanth, inspired by the
classic Centaur design.

dejavu-otf in fonts

Support for TrueType DejaVu font family.
spark-otf in fonts

Support OpenType sparkline fonts.

graphics

dynkin-diagrams in graphics/pgf/contrib

Draw mathematical Dynkin diagrams with TikZ.
endofproofwd in graphics

An additional end-of-proof symbol.
istgame in graphics/pgf/contrib

Draw game trees with TikZ.
tikzducks in graphics/pgf/contrib

Rubber ducks, with adornments, in TikZ.

info

* amscls-doc in info

Comprehensive user documentation for AMS

document classes.
latex-refsheet in info

Cheat sheet for KOMA-Script thesis.

macros/generic

fixjfm in macros/generic

Work around bugs in pTEX’s JFM format.
ifxptex in macros/generic

Detect pTEX and its derivatives.

simplekv in macros/generic

Key/value system for (LA)TEX.
upzhkinsoku in macros/generic

Supplementary Chinese kinsoku (line breaking
rules, etc.) for Unicode.

macros/latex/contrib

abnt in macros/latex/contrib

Brazil’s ABNT rules for academic texts.
algobox in macros/latex/contrib

Typeset Algobox programs.
beilstein in macros/latex/contrib

LATEX and BibTEX support for the Beilstein Journal

of Nanotechnology.
cesenaexam in macros/latex/contrib

Typeset examinations.
cheatsheet in macros/latex/contrib

Class to typeset cheat sheets.
dijkstra in macros/latex/contrib

Dijkstra’s algorithm for weighted graphs in LATEX.
ducksay in macros/latex/contrib

Draw ASCII art of animals saying a message.
eq-save in macros/latex/contrib

Save and return to exerquiz quizzes.
eqnnumwarn in macros/latex/contrib

Warn about displaced equation number in amsmath

environments.
fetchcls in macros/latex/contrib

Fetch current class name.
forms16be in macros/latex/contrib

Initialize form strings using BigEndian UTF-16BE.
hithesis in macros/latex/contrib

Harbin Institute of Technology thesis template.
komacv-rg in macros/latex/contrib

Help creating CVs based on the komacv class.
ku-template in macros/latex/contrib

Include Copenhagen University logos.
limecv in macros/latex/contrib

CV class for X ELATEX and LuaLATEX.
mensa-tex in macros/latex/contrib

Typeset simple school cafeteria menus.
multilang in macros/latex/contrib

Maintaining multiple translations of a document.
musicography in macros/latex/contrib

Accessing symbols for music writing in pdfLATEX.
notestex in macros/latex/contrib

Note-taking package for students.
octave in macros/latex/contrib

Typeset musical pitches with octave designations.
pm-isomath in macros/latex/contrib

Poor man’s ISO math for pdfLATEX.
termcal-de in macros/latex/contrib

German localization for the termcal package.
theatre in macros/latex/contrib

Sophisticated support for typesetting stage plays.
witharrows in macros/latex/contrib

Typeset arrows on right side of math alignments.

macros/latex/contrib/witharrows

416 TUGboat, Volume 38 (2017), No. 3

* xltabular in macros/latex/contrib

Combine longtable and tabularx: header/footer
definitions, X specifier, possible page breaks.

zhlipsum in macros/latex/contrib

Dummy Chinese text, using UTF-8.

macros/latex/contrib/beamer-contrib

hackthefootline in m/l/c/beamer-contrib

Arbitrary footline selection for standard themes.

macros/luatex

fontloader-luaotfload in macros/luatex/generic

Offer a few alternative font loaders.

macros/xetex/latex

na-box in macros/xetex/latex

Arabic-aware version of pas-cours.
na-position in macros/xetex/latex

Tables of relative positions of curves and asymptotes
or tangents in Arabic documents.

xechangebar in macros/xetex/latex

Version of changebar for X ELATEX.

support

bib2gls in support

Java application to extract glossary information
from .bib files; see article in this issue, pp. 373–399.

web

web2w in web

Convert Knuth’s tex.web to CWEB; see article in
this issue, pp. 353–358.

Another seasonal puzzle: XII take II

David Carlisle

^^5clet~^^5ccatcode~‘j0~90 13~‘"1~‘Y2~77 6jdef ZM1"~‘#113jdef

YZXXM1M2"M2iM1YZRR"ppYZVV"QuYZWW"aliYZ::"erYZ55M1M2"aM2M1Y~‘@

11Z++"jdefY+jif@"YZ99"j@if"bXg"YY"sXpkYYZ33"luYZ <<M1"jedefjx

"j@if"uR:Y"c5esY"#1YYjxYZ^ ^"iceYZ&&"yeYZ//"SeYZ88"DuYZ;;"s Y

Z--M1M2"M2M1YZ77"e-tneYZ66"inYZzzM1M2"anM2M1YZQQ"O-tcYZOO"NoY

Z44"j@if b&YZ__"j.WYZ22"eYZ00"iYZSS"rY+jj", -St-YZee"!YZ!!"uY

Z=="jparY+jv"s,=Y+j|"-2dXmcYZ‘‘"DY+jw"z2tY"jbf<"-!doj| X2d;-a

nt50 lsY9Y+j.M1 "o X2d -2f-tsM1 -ma5otS m0 Xsm0t=YZAAM1"P:dXc

S2m 6 XSpoM19YZ??"8oYZ**"‘2cYZ[["E!YZ]]"CoYZ$$"B!YZBB"8a;co3-

bm5AjvYZCC"-ST2;-SFzocg5ll65BjvYZDD"V5tt-o!S p5ss:-!cl5CjvYZE

E"V6q!’ 5S!zl!ojvDYZFF"/x z2sS2;paS7jvEYZGG"/pt2m -yccno;nat-

jvjwFYZHH"Qo -!p2ll5m;!lg7jvGYZII"Ovj,as5tljwjvHYZJJ"*j,o-x2-

-sl!tjwjvIYZKK"Unj| Xbt^n2;6fljwjvJYZLL"?j| -ytmpaXsnt5p;!ls-

jvjwKY+j,M1"2m d-mo6M1;YPXmSj.W A./c-n!dj.o B.T:Xj.tW C.V5tS_

D.V- t6j.W E./xtj.W F./pt-m0j.o G. -5Qj.-vo H.Onj.W I.*-m0j.o

J.-nUj|j.o K.?j|j.o Le+jk")Y("Xtj@if [-^n $SS]!-hcjjlzs.Yjk4

Seasons greetings to all.
This code should be input to plain TEX,

not LATEX. For those without patience to
figure out what the output will be, and to save
the fingers and sanity of anyone who would
like to try it out, the file can be found via
https://ctan.org/pkg/xii.

Enjoy!

[1] Carlisle, David, “XII”. TUGboat 19:4 (1993).
tug.org/TUGboat/tb19-4/tb61carl.pdf

Comics by John Atkinson (http://wronghands1.com).

TUGboat, Volume 38 (2017), No. 3 417

Book reviews: Shady Characters and
The Book, by Keith Houston

Peter Wilson

Keith Houston, Shady Characters: Ampersands,

Interrobangs and Other Typographical Curiosities.
Penguin; 2015, xiv+340pp, ill. Softcover. First
published by Norton in 2013. £9.99. ISBN
978-0-718-19388-1. http://books.wwnorton.com/
books/Shady-Characters/

Keith Houston, The Book: A Cover-to-Cover

Exploration of the Most Powerful Object of Our

Time. Norton; 2016, xviii+428pp, ill. Hardback.
First edition. $29-95. ISBN 978-0-393-24479-3.
http://books.wwnorton.com/books/detail.

aspx?ID=4294990748

To my chagrin these are books that I had not
heard of until I was asked if I would like to review
them. I answered in the affirmative and am very glad
that I did so, as I have thoroughly enjoyed reading
them while also learning a great deal.

In Shady Characters the author Keith Houston,
who hails from the UK, has written with a twinkle
in his eye about the fascinating history and use, or

not, of punctuation marks, delving back to the time
of the great library at Alexandria.

For instance, Aristophanes of Byzantium, a 3rd
century bc librarian at Alexandria introduced a sys-
tem of dots (...) to indicate the length of pauses a
speaker should make when reading aloud. The inter-
mediate dot (.) was used for a short pause after the
komma rhetorical unit, the low dot (.) for a medium
pause after the kolon unit and the high dot (.) for
a long pause after the periodos unit. In time these
became the now familiar comma (,) and colon (:) and
period (.) marks. I had always wondered why a (.)
was called a full stop in the UK but a period in the
USA, and this explains the latter. For the former the
2nd century bc grammarian Dionysius Thrax wrote:

... the full [or high dot (.)] ... marks the com-
pletion of the sense ...

which presumably lead to the term ‘full stop’.
¶ As Houston explains in his preface, it was the
pilcrow (¶), though rarely used now, that first caught
his attention. Early writing used no punctuation
running all the words, sentences and paragraphs
together with not a space to be seen. Gradually
the idea of delineating the words by inserting spaces
between them took hold. The pilcrow was later
introduced to indicate the start of a paragraph, at
first within a line but later as the first character of
a paragraph which was started on a new line. In
medieval times the pilcrow was usually rubricated
(coloured red) to enhance its visibility.
¶When printing started, a space was left at the start
of paragraphs for a hand rubricated pilcrow to be in-
serted later. Then as more and more documents were
printed and costs had to be minimised the pilcrow,
as the author states, ‘[It] committed typographical
suicide.’ The rubricators were thrown out of work
but the initial space at the start of paragraphs re-
mained. Thus the initial indentation of the first line
of a paragraph.

Houston is a brave man in that he criticised
Robert Bringhurst’s explanation in his The Elements
of Typographical Style of the octothorpe (#) as:

. . . In cartography, [#] is a traditional symbol
for village: eight fields around a central square.
That is the source of its name. Octothorpe
means eight fields.

Houston says that typographically speaking, the
octothorpe came into being by scribes in the 14th
century as a hastily scrawled form of ‘lb’ (for libra
or ‘pound in weight’). Nowadays it has many names
and uses, the most common being pound sign, num-
ber sign and hash tag, and in music notation, the
sharp (♯) sign.

Book reviews: Shady Characters and The Book, by Keith Houston

418 TUGboat, Volume 38 (2017), No. 3

Altogether Shady Characters treats ten symbols
with, typically, a chapter devoted to each. The ones
not mentioned so far are: the interrobang (!?) which
was created by Martin Speckter in 1962 to convey
a mixture of surprise and doubt but to my relief
appears to be going out of fashion; the ampersand
(&) derived from the Latin et meaning and ; the com-
mercial at symbol (@); a chapter on the asterisk (*)
and dagger (†) symbols which are used to indicate
footnotes;1 two chapters on the hyphen (which in-
cludes six pages about TEX) and other dashes; the
manicule (☞);2 and quotation marks (“ ”). There
is a further chapter on possible marks to indicate
irony or sarcasm.

Houston says that the manicule is not much
used nowadays but he uses it as the first character in
the captions to the illustrations, which are plentiful.
Many of them are reproductions of manuscripts and
early printing; unfortunately, the contrast in these
between the characters and the background is low.
In a few of them I had difficulty, even after using
a magnifying glass, to make out the symbols being
illustrated.3

Shady Characters is set in Hoefler Text but
many other fonts are used in demonstrating the char-
acters of the title. There is a comprehensive index
and 70 pages of Notes, which I would have called
References. Chapters start on recto pages with a
large representation of the character in question on
the otherwise blank facing verso page. The overall
layout is attractive.

−− ∗ − −
After I retired I saw that one of the community

colleges near Seattle was offering evening courses in
Papermaking, then Letterpress Printing and finish-
ing with Book Binding and I took advantage. In
The Book Keith Houston has followed the same tra-
jectory, writing with another twinkle in his eye, about
all aspects of the making of books from the process of
making Egyptian papyrus to the modern day. Along
the way he talks about the origin of the expres-
sion ‘Line in the sand’ and that ‘The Egyptian King
Ptolemy clapped the librarian in irons to ensure his
continued loyalty’.

The Book is divided into four main Parts, each
consisting of three or four chapters, entitled ‘The
Page’, ‘The Text’, ‘Illustrations’ and ‘Form’. The
first Part provides a brief history of the development

1 I don’t like the * in running text as it makes a dark blob
on the page.

2 Not to be confused with manciple (a steward) or manacles
(o⌣o).

3 I think that my eyesight is good but my wife keeps urging
me to see an optician.

of materials to write on, from Egyptian papyrus
through vellum and parchment and onwards. Al-
though vellum is now out of fashion it appears that
the Queen’s speech at the opening of the UK’s par-
liament must be written on it and the latest opening
was delayed partly due to a dearth of prepared vel-
lum. The Chinese invented paper; at the Battle of
Talas in 751 between the Chinese and the Arabs
some Chinese papermakers were captured leading
to the diffusion of papermaking through the Arab
world.4

Writing and printing are dealt with in the sec-
ond Part, covering much between the invention of
cuneiform around 5000 years ago by the Sumerians
and the development of the Linotype and Monotype
printing presses in the 19th century.

Part 3, ‘Illustrations’, is mainly concerned with
producing pictures in books. The earliest illustration
shown is a facsimile from the Egyptian The Book of
the Dead of Hunefer where the original is dated to

4 Nowadays there is a Brooklyn-based company called
Talas selling supplies for book makers and conservators.

Peter Wilson

TUGboat, Volume 38 (2017), No. 3 419

about 1275bc. Then it rapidly moves on to the mag-
nificent illuminated manuscripts such as the Book of
Kells. These were, of course, incredibly expensive,
and woodcuts, a technology imported from the East,
became a commonplace means of including illustra-
tions within a book. These were followed by etchings
which enabled much finer detail to be shown. These
were then followed in turn by lithography, photogra-
phy and now modern book, and magazine, printing
technology.

Having made this progression through what
might be termed the interior physical components of
a book, Part 4 goes into some detail about how they
are all assembled into a whole book. This starts off
with precursors, such as scrolls, that we now (and
I assume then), have found not too comfortable to
read.5 Nowadays books are in the form of a ‘codex’,
of which The Book is a example. One of the exam-
ples used is St Cuthbert Gospel, made at the end of
the seventh century. By coincidence for those who
are interested, a facsimile of this has recently been
created with full details of its construction.6

5 I have recently bound a ‘book’ in accordion style that
when opened extends to 17 feet (5.2m) in length.

6 Kathy Sedar, The St Cuthbert Gospel—The Making of

a Facsimile, Bookbinder, v. 30, pp. 5–16, 2016.

The Book is set in 11pt Adobe Jenson Pro Light
created by Robert Slimbach with some examples
of other scripts, such as hieroglyphs, Chinese and
Insular. The overall layout is striking as perhaps can
be seen from the illustration of the cover and the
first page of a chapter. Throughout the book all the
technical aspects are noted and named as exampled
on the cover in black but in gray in the interior.
Chapter numbers are followed by an ornament, both
printed in red ink, while the chapter titles are black.
The first line of each chapter is preceded by a 5-line
ornament and a 3-line drop cap, both in red. Sections
are initiated by a red section break incorporating
a pair of the chapter number ornament; the initial
word of the first line consists of a 3-line elevated
cap followed by the remaining letters in a font size
intermediate between the cap and the body of the
text, all in red.

I took the opportunity to show The Book to a
group where we were taking letterpress printing and
bookbinding courses to see what they thought. The
niggles first. The cover appears to be made of some
kind of cardboard and by the time everyone had pe-
rused it the cover was showing definite signs of wear.
There was some 60 plus pages headed ‘Notes’ which
to most of us should have been called ‘References’ or
‘Bibliography’ as they did not expand on the text,
but rather pointed at other people’s work.

On the bright side the declarations and demon-
strations of the technical terms throughout the book
were much appreciated by the printers. Several on
the courses, including at least one of the instructors,
claimed that they would make sure that they would
buy a copy of The Book.

I’m looking forward to Keith Houston’s next
book. Having written one on the minutiae of writing
and another on books, then the obvious next topic
will be libraries, but Houston appears to delight in
the non-obvious.

The web site ShadyCharacters.co.uk has been
set up by Keith Houston so that you can explore and
participate in more of his interests.

⋄ Peter Wilson
12 Sovereign Close
Kenilworth, CV8 1SQ
UK
herries dot press (at)

earthlink dot net

Book reviews: Shady Characters and The Book, by Keith Houston

420 TUGboat, Volume 38 (2017), No. 3

Die TEXnische Komödie 3/2017

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).
(Non-technical items are omitted.)

Elke Schubert, Definition eines neuen
Gliederungsbefehls mit KOMA-Script [How
to define a new sectioning command in
KOMA-Script]; pp. 8–16

In this article we show how one can use KOMA-

Script’s \DeclareNewSectionCommand to define a
new sectioning command, and how existing com-
mands can be modified. In addition, we give an
overview of the changes in KOMA-Script 3.24.

Markus Kohm, Verzeichnisse ohne neue
Umgebung [listof... without new
environments]; pp. 16–21

For many years the tocbasic KOMA-Script

package offers ways to define new “tables of” resp.
“lists of”. This way has been extended since KOMA-

Script 3.06 in 2006. Using a small modification from
KOMA-Script 3.23 we can also provide a new solution
for an old question of separated lists/tables for the
appendix.

Christine Römer, Strukturbäume für
Kategorialgrammatiken [Structural trees for
category grammars]; pp. 21–31

In linguistics, the term “categorial grammars”
refers to an explanation of sentences, where the com-
ponents of the sentences are assigned to syntactical
categories. In this article we show how syntactical
structure trees can visualize categorial grammars.

Rainer-Maria Fritsch, Ein Workflow für ein
Sachbuch [A workflow for a non-fiction book];
pp. 31–39

In this article we describe the workflow for a
non-fiction book. This workflow defined the creation
of my first non-fiction book, while recognizing that
there are other ways to define such a workflow.

Publishing a non-fiction book requires good
project management. Some parts had already been
structured before, some parts resulted from errors
and iterative improvements during writing.

[Received from Herbert Voß.]

MAPS 47 (2017)

MAPS is the publication of NTG, the Dutch language
TEX user group (http://www.ntg.nl).

Michael Guravage, Redactioneel [From the
editor]; pp. 1–2

Kai Eigner, Using HarfBuzz as OpenType engine
in LuaTEX; pp. 3–8

Frans Absil, Music document publishing with
LATEX; pp. 9–20

This article presents an overview of how to cre-
ate various document types about music, such as
articles, e-books and web presentations. It discusses
the workflow, the setup of a specific typesetting en-
vironment with definitions, tools and additional soft-
ware.

Hans van der Meer, Block line-up—Putting
items inline or on top; pp. 21–28

A module for the placement of items either on
the same horizontal line or on top of each other.
Alignment and separation of the items can be varied
in horizontal and vertical direction as required. Titles
can be added and their location, style and color
specified.

Hans van der Meer, Take Notes—Notes
handling module; pp. 29–32

A module for processing notes. Notes are classi-
fied according to category and contain information
about subject, date of intake, etc. The presentation
of notes can be filtered according to several criteria.

Frans Goddijn, Profiling Coffee / the hidden
formula—Which goes to show how little we know;
pp. 33–44

W. Egger, Violin making—Setting up ConTEXt
for typesetting the book; pp. 45–57

Woodworking is one of my passions. The project
of making my own violin is some kind of crown
to the whole development. Throughout the violin
making lessons notes were made, sketches drawn and
photos taken. At home all sketches were turned into
drawings. All information is put together in a Con-
TEXt project from which it is possible to compile/
typeset a book. This article describes the setup of
the book in ConTEXt, shows the functioning of some
macros and presents two chapters of the book.

[Received from Michael Guravage.]

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
tug.org/consultants.html. If you’d like to be listed,
please see there.

Aicart Martinez, Mercè
Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our
web site.

Dangerous Curve
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. We take special care to typeset
mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

de Bari, Onofrio and Dominici, Massimiliano
Email: info (at) typotexnica.it

Web: http://www.typotexnica.it

Our skills: layout of books, journals, articles; creation
of LATEX classes and packages; graphic design;
conversion between different formats of documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for documents
in Italian, English, or French. Let us know the work
plan and details; we will find a customized solution.
Please check our website and/or send us email for
further details.

TUGboat, Volume 38 (2017), No. 3 421

TEXConsultants

Hendrickson, Amy
57 Longwood Ave. #8
Brookline, MA 02446
+1 617-738-8029
Email: amyh (at) texnology.com

Web: http://texnology.com

LATEX Macro Writing: Complete packages for Print
and E-Publishing; Sophisticated documentation for
users. Book and journal packages distributed on-line to
thousands of authors. Graphic design; Software
documentation; LATEX used for Data Visualization, and
automated report generation; E-Publishing, design and
implementation; and LATEX training, customized to
your needs, on-site or remote.

More than 30 years’ experience, for major publishing
companies, scientific organizations, leading universities,
and international clients. See the TEXnology website
for examples. Call or send email: I’ll be glad to discuss
your project with you.

Latchman, David
2005 Eye St. Suite #4
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com

LATEX consultant specializing in the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized packages
to meet your needs. Call or email to discuss your
project or visit my website for further details.

Peter, Steve
+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge,
and Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens
of languages, into beautiful camera-ready copy. In
addition, I’ve helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.

Sofka, Michael
8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Personalized, professional TEX and LATEX consulting
and programming services.

I offer 30 years of experience in programming, macro
writing, and typesetting books, articles, newsletters,
and theses in TEX and LATEX: Automated document
conversion; Programming in Perl, C, C++ and other
languages; Writing and customizing macro packages in
TEX or LATEX, knitr.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

TEXtnik
Spain
Email: textnik.typesetting@gmail.com

Do you need personalised LATEX class or package
creation? Maybe help to finalise your current
typesetting project? Any problems compiling your
current files or converting from other formats to
LATEX? We offer +15 years of experience as advanced
LATEX user and programmer. Our experience with
other programming languages (scripting, Python
and others) allows building systems for automatic
typesetting, integration with databases, . . . We can
manage scientific projects (Physics, Mathematics, . . .)
in languages such as Spanish, English, German and
Basque.

422 TUGboat, Volume 38 (2017), No. 3

Veytsman, Boris
132 Warbler Ln.
Brisbane, CA 94005
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about two decades of experience in
TEX and three decades of experience in teaching &
training. I have authored several packages on CTAN,
Perl packages on CPAN, R packages on CRAN,
published papers in TEX related journals, and
conducted several workshops on TEX and related
subjects.

Webley, Jonathan
2/4 31 St Andrews St
Glasgow, G1 5PB, UK
07914344479
Email: jonathan.webley (at) gmail.com

I’m a proofreader, copy-editor, and LATEX typesetter.
I specialize in math, physics, and IT. However, I’m
comfortable with most other science, engineering and
technical material and I’m willing to undertake most
LATEX work. I’m good with equations and tricky
tables, and converting a Word document to LATEX.
I’ve done hundreds of papers for journals over the
years. Samples of work can be supplied on request.

BachoTEX2018

Bachotek

Poland

April 29–May 3, 2018

gust.org.pl/bachotex

TUG2018

Rio de Janeiro

Brazil

July 20–22, 2018

tug.org/tug2018

Practical TEX 2018

June 25–27, 2018

Rensselaer Polytechnic Institute

Troy, New York, USA

Special guest: Kris Holmes

Workshops: Introduction to LATEX Calligraphy R+knitr+LATEX

May 1—presentation proposal deadline

May 1—early bird registration deadline

May 23—hotel reservation discount deadline

June 25–27—conference

July 4—deadline for final papers for proceedings

http://tug.org/practex2018 practex2018@tug.org

Sponsored by the TEX Users Group.

2017

Oct 21 GuIT Meeting 2017,
XIII Annual Conference, Mestre, Italy.
www.guitex.org/home/en/meeting

Oct 23 Award Ceremony: The Updike Prize
for Student Type Design,
Speaker: Nina Stössinger,
Providence Public Library,
Providence, Rhode Island.
www.provlib.org/updikeprize

Oct 27 – 29 Crafting Type: Introductions to type
design around the world, University of
Alberta, Edmonton, Canada.
(Special rate for TUG members.)
craftingtype.com

2018

Mar 16 TUGboat 39:1 (regular issue),
submission deadline.

Apr 4 – 6 DANTE 2018 Frühjahrstagung and

58th meeting, Passau, Germany.
www.dante.de/events.html

Apr 12 – 14 TYPO Labs 2018, “How far can we go?”,
Berlin, Germany. typotalks.com/labs

Apr 29 –
May 3

BachoTEX2018, 26th BachoTEX
Conference, Bachotek, Poland.
www.gust.org.pl/bachotex

May 1 TUG2018 deadline for abstracts
for presentation proposals.
tug.org/tug2018

May 1 Practical TEX 2018 deadlines:
abstracts for presentation proposals,
early bird registration.
tug.org/practicaltex2018

Jun 4 – 15 Mills College Summer Institute for
Book and Print Technologies, Oakland,
California. millsbookartsummer.org

424 TUGboat, Volume 38 (2017), No. 3

Calendar

Jun 24 – 30 Digital Humanities 2018, Alliance of
Digital Humanities Organizations, El
Colegio de México and Universidad
Nacional Autónoma de México (UNAM),
Mexico City. adho.org/conference

Jun 25 – 27 Practical TEX 2018, Rensselaer
Polytechnic Institute, Troy, New York.
tug.org/practicaltex2018

Jun 25 – 29 SHARP 2018, “From First to Last: Texts,
Creators, Readers, Agents”. Society
for the History of Authorship, Reading
& Publishing. Sydney, Australia.
www.sharpweb.org/main

July 1 TUG2018 deadline for preprints for
printed program. tug.org/tug2018

Jul 5 – 7 Sixteenth International Conference
on New Directions in the Humanities
(formerly Books, Publishing, and
Libraries), University of Pennsylvania,
Philadelphia, USA. thehumanities.com/

2018-conference

TUG2018 (satellite conference to the
International Congress of Mathematicians)
Rio de Janeiro, Brazil.

Jul 20 – 22 The 39th annual meeting of the
TEX Users Group.
tug.org/tug2018

Jul 30 –
Aug 3

Balisage: The Markup Conference,
Rockville, Maryland. www.balisage.net

Aug 12 – 16 SIGGRAPH 2018, “Generations”,
Vancouver, Canada. s2018.siggraph.org

Sep 9 – 14 XML Summer School, St Edmund Hall,
Oxford University, Oxford, UK.
xmlsummerschool.com

Status as of 20 October 2017

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

User group meeting announcements are posted at lists.tug.org/tex-meetings. In-
terested users can subscribe and/or post to the list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

Calendar for 2018: An attractive calendar, with images of old manuscript pages from
1225–1800, has been prepared by Peter Wilson, and can be downloaded from

tug.org/calendar/18.

TUGBOAT Volume 38 (2017), No. 3

Introductory

291 Barbara Beeton / Editorial comments
• typography and TUGboat news

299 Hans Hagen / Advertising TEX
• TEX, Word, natural languages, recursion

301 Carla Maggi / The DuckBoat—News from TEX.SE: Asking effective questions
• creating minimal working examples, accepting answers on StackExchange, and more

291 Boris Veytsman / From the president
• conferences, EduTEX group, LATEX wikibook, institutional memberships

293 David Walden / Collecting memories of the beginnings of desktop publishing
• informal report of a meeting of desktop publishing pioneers

345 David Walden / Set my (pdf)pages free
• using the pdfpages package to overcome inadvertent protection

294 David Walden / Interview: Michael Sharpe
• long-time user of TEX and recently active in the TEX fonts world

Intermediate

350 David Beauchemin and Vincent Goulet / typesetting actuarial symbols easily and consistently
with actuarialsymbol and actuarialangle

• including correct pre/post sub-/super-script positioning around principal symbols

415 Karl Berry / The treasure chest
• new CTAN packages, August–October 2017

306 Charles Bigelow / Review and summaries: The History of Typographic Writing—The 20th century,
Volume 2 (ch. 6–8+)

• third of three installments; chapter-by-chapter summaries for vol. 2 (1950–2000), ch. 6–8 and end materials

315 Willi Egger / ConTEXt for beginners
• tutorial introduction to ConTEXt: page layout, headers, tables, figures, fonts

359 Martin Gieseking / dvisvgm: Generating scalable vector graphics from DVI and EPS files
• thorough discussion of dvisvgm’s development and notable features

324 Marcel Herbst / Art Concret, Basic Design and meta-design
• history and programs linking l’art concret, Basic Design, and MetaPost

342 Zunbeltz Izaola and Paulo Ney de Souza / DocVar: Manage and use document variables
• package to handle general document metadata

345 R. Sean Thackurdeen and Boris Veytsman / Automatic generation of herbarium labels from spreadsheet data using LATEX
• using datatool and more to automatically create standard herbarium labels

312 Antonis Tsolomitis / Serifed Greek type: Is it “Greek”?
• origin and discussion of Athenais, a new titling font based on a pedestal in the Athens Parthenon

329 Herbert Voß / The current state of the PSTricks project, part II
• new PSTricks packages and features

338 Peter Wilson / Glisterings: Reading lines; paragraph endings; in conclusion
• reading external files, paragraph final lines, concluding the Glisterings

Advanced

416 David Carlisle / Another seasonal puzzle: XII take II
• fun with plain TEX

369 Hans Hagen / Tricky fences
• extensible delimiters, regular characters, and controlling spacing differences in LuaTEX

353 Martin Ruckert / Converting TEX from WEB to cweb
• automatic conversion to CWEB, with comparisons to Web2C and LuaTEX

373 Nicola Talbot / Testing indexes: testidx.sty
• test methodology and exhaustive comparisons of makeindex, xindy, glossaries, and more

400 Udo Wermuth / A note on \linepenalty
• thorough analysis of how \linepenalty affects line breaking, with comparison with \looseness

Reports and notices

420 From other TEX journals: Die TEXnische Komödie 31/2017; MAPS 47 (2017)

416 John Atkinson / Comics: Typeface; Elefonts

417 Peter Wilson / Book reviews: Shady Characters and The Book by Keith Houston
• review of these two books on the history and present of typography and books

290 Institutional members

421 TEX consulting and production services

423 Practical TEX 2018 announcement

424 Calendar

