
TUGboat, Volume 38 (2017), No. 2 203

Variable fonts

Hans Hagen

1 Introduction

History shows the tendency to recycle ideas. Often
quite some effort is made by historians to figure
out what really happened, not just long ago, when
nothing was written down and we have to do with
stories or pictures at most, but also in recent times.
Descriptions can be conflicting, puzzling, incomplete,
partially lost, biased, . . .

Just as language was invented (or evolved) sev-
eral times, so were scripts. The same might be true
for rendering scripts on a medium. Semaphores came
and went within decades and how many people know
now that they existed and that encryption was in-
volved? Are the old printing presses truly the old
ones, or are older examples simply gone? One of the
nice aspects of the internet is that one can now more
easily discover similar solutions for the same problem,
but with a different (and independent) origin.

So, how about this “new big thing” in font tech-
nology: variable fonts. In this case, history shows
that it’s not that new. For most TEX users the names
METAFONT and MetaPost will ring bells. They
have a very well documented history so there is not
much left to speculation. There are articles, books,
pictures, examples, sources, and more around for
decades. So, the ability to change the appearance
of a glyph in a font depending on some parameters
is not new. What probably is new is that creating
variable fonts is done in the natural environment
where fonts are designed: an interactive program.
The METAFONT toolkit demands quite some insight
in programming shapes in such a way that one can
change look and feel depending on parameters. There
are not that many meta fonts made and one reason is
that making them requires a certain mind- and skill
set. On the other hand, faster computers, interactive
programs, evolving web technologies, where real-time
rendering and therefore more or less real-time tweak-
ing of fonts is a realistic option, all play a role in
acceptance.

But do interactive font design programs make
this easier? You still need to be able to translate
ideas into usable beautiful fonts. Taking the common
shapes of glyphs, defining extremes and letting a
program calculate some interpolations will not always
bring good results. It’s like morphing a picture of
your baby’s face into yours of old age (or that of your
grandparent): not all intermediate results will look
great. It’s good to notice that variable fonts are a
revival of existing techniques and ideas used in, for

instance, multiple master fonts. The details might
matter even more as they can now be exaggerated
when some transformation is applied.

There is currently (March 2017) not much in-
formation about these fonts so what I say next may
be partially wrong or at least different from what is
intended. The perspective will be one from a TEX
user and coder. Whatever you think of them, these
fonts will be out there and for sure there will be
nice examples circulating soon. And so, when I ran
into a few experimental fonts, with PostScript and
TrueType outlines, I decided to have a look at what
is inside. After all, because it’s visual, it’s also fun
to play with. Let’s stress that at the moment of this
writing I only have a few simple fonts available, fonts
that are designed for testing and not usage. Some
recommended tables were missing and no complex
OpenType features are used in these fonts.

2 The specification

I’m not that good at reading specifications, first of
all because I quickly fall asleep with such documents,
but most of all because I prefer reading other stuff
(I do have lots of books waiting to be read). I’m also
someone who has to play with something in order to
understand it: trial and error is my modus operandi.
Eventually it’s my intended usage that drives the
interface and that is when everything comes together.

Exploring this technology comes down to: locate
a font, get the OpenType 1.8 specification from the
Microsoft website, and try to figure out what is in the
font. When I had a rough idea the next step was to
get to the shapes and see if I could manipulate them.
Of course it helped that in ConTEXt we already can
load fonts and play with shapes (using MetaPost).
I didn’t have to install and learn other programs.
Once I could render them, in this case by creating a
virtual font with inline PDF literals, a next step was
to apply variation. Then came the first experiments
with a possible user interface. Seeing more variation
then drove the exploration of additional properties
needed for typesetting, like features.

The main extension to the data packaged in a
font file concerns the (to be discussed) axis along
which variable fonts operate and deltas to be applied
to coordinates. The gdef table has been extended
and contains information that is used in gpos fea-
tures. There are new hvar, vvar and mvar tables
that influence the horizontal, vertical and general
font dimensions. The gvar table is used for TrueType
variants, while the cff2 table replaces the cff table
for OpenType PostScript outlines. The avar and
stat tables contain some meta-information about
the axes of variations.

Variable fonts



204 TUGboat, Volume 38 (2017), No. 2

It must be said that because this is new tech-
nology the information in the standard is not always
easy to understand. The fact that we have two ren-
dering techniques, PostScript cff and TrueType ttf,
also means that we have different information and
perspectives. But this situation is not much different
from OpenType standards a few years ago: it takes
time but in the end I will get there. And, after all,
users also complain about the lack of documentation
for ConTEXt, so who am I to complain? In fact, it will
be those ConTEXt users who will provide feedback
and make the implementation better in the end.

3 Loading

Before we discuss some details, it will be useful to
summarize what the font loader does when a user
requests a font at a certain size and with specific
features enabled. When a font is used the first time,
its binary format is converted into a form that makes
it suitable for use within ConTEXt and therefore Lua-
TEX. This conversion involves collecting properties
of the font as a whole (official names, general di-
mensions like x-height and em-width, etc.), of glyphs
(dimensions, Unicode properties, optional math prop-
erties), and all kinds of information that relates to
(contextual) replacements of glyphs (small caps, old-
style, scripts like Arabic) and positioning (kerning,
anchoring marks, etc.). In the ConTEXt font loader
this conversion is done in Lua.

The result is stored in a condensed format in a
cache and the next time the font is needed it loads in
an instant. In the cached version the dimensions are
untouched, so a font at different sizes has just one
copy in the cache. Often a font is needed at several
sizes and for each size we create a copy with scaled
glyph dimensions. The feature-related dimensions
(kerning, anchoring, etc.) are shared and scaled when
needed. This happens when sequences of characters
in the node list get converted into sequences of glyphs.
We could do the same with glyph dimensions but
one reason for having a scaled copy is that this copy
can also contain virtual glyphs and these have to be
scaled beforehand. In practice there are several layers
of caching in order to keep the memory footprint
within reasonable bounds.1

When the font is actually used, interaction be-
tween characters is resolved using the feature-related
information. When for instance two characters need
to be kerned, a lookup results in the injection of a

1 In retrospect one can wonder if that makes sense; just
look at how much memory a browser uses when it has been
open for some time. In the beginning of LuaTEX users won-
dered about caching fonts, but again, just look at how much
browsers cache.

kern, scaled from general dimensions to the current
size of the font.

When the outlines of glyphs are needed in Meta-
fun the font is also converted from its binary form
to something in Lua, but this time we filter the
shapes. For a cff this comes down to interpreting
the charstrings and reducing the complexity to
moveto, lineto and curveto operators. In the pro-
cess subroutines are inlined. The result is something
that MetaPost is happy with but that also can be
turned into a piece of a PDF.

We now come to what a variable font actually
is: a basic design which is transformed along one or
more axes. A simple example is wider shapes:

We can also go taller and retain the width:

Here we have a linear scaling but glyphs are not
normally done that way. There are font collections
out there with lots of intermediate variants (say from
light to heavy) and it’s more profitable to sell each
variant independently. However, there is often some
logic behind it, probably supported by programs that
designers use, so why not build that logic into the font
and have one file that represents many intermediate
forms. In fact, once we have multiple axes, even when
the designer has clear ideas of the intended usage,
nothing will prevent users from tinkering with the
axis properties in ways that will fulfil their demands
but hurt the designers’ eyes. We will not discuss that
dilemma here.

When a variable font follows the route described
above, we face a problem. When you load a TrueType
font it will just work. The glyphs are packaged in
the same format as static fonts. However, a variable
font has axes and on each axis a value can be set.
Each axis has a minimum, maximum and default.
It can be that the default instance also assumes
some transformations are applied. The standard
recommends adding tables to describe these things
but the fonts that I played with each lacked such
tables. So that leaves some guesswork. But still, just
loading a TrueType font gives some sort of outcome,
although the dimensions (widths) might be weird
due to lack of a (default) axis being applied.

An OpenType font with PostScript outlines is
different: the internal cff format has been upgraded
to cff2 which on the one hand is less complicated
but on the other hand has a few new operators —

Hans Hagen



TUGboat, Volume 38 (2017), No. 2 205

which results in programs that have not been adapted
complaining or simply quitting on them.

One could argue that a font is just a resource
and that one only has to pass it along but that’s
not what works well in practice. Take LuaTEX. We
can of course load the font and apply axis values so
that we can process the document as we normally
do. But at some point we have to create a PDF. We
can simply embed the TrueType files but no axis
values are applied. This is because, even if we add
the relevant information, there is no way in current
PDF formats to deal with it. For that, we should
be able to pass all relevant axis-related information
as well as specify what values to use along these
axes. And for TrueType fonts this information is
not part of the shape description so then we in fact
need to filter and pass more. An OpenType Post-
Script font is much cleaner because there we have the
information needed to transform the shape mostly
in the glyph description. There we only need to
carry some extra information on how to apply these
so-called blend values. The region/axis model used
there only demands passing a relatively simple table
(stripped down to what we need). But, as said above,
cff2 is not backward-compatible so a viewer will
(currently) simply not show anything.

Recalling how we load fonts, how does that trans-
late with variable changes? If we have two characters
with glyphs that get transformed and that have a
kern between them, the kern may or may not trans-
form. So, when we choose values on an axis, then not
only glyph properties change but also relations. We
no longer can share positional information and scale
afterwards because each instance can have different
values to start with. We could carry all that infor-
mation around and apply it at runtime but because
we’re typesetting documents with a static design it’s
more convenient to just apply it once and create an
instance. We can use the same caching as mentioned
before but each chosen instance (provided by the
font or made up by user specifications) is kept in the
cache. As a consequence, using a variable font has
no overhead, apart from initial caching.

So, having dealt with that, how do we proceed?
Processing a font is not different from what we al-
ready had. However, I would not be surprised if users
are not always satisfied with, for instance, kerning,
because in such fonts a lot of care has to be given to
this by the designer. Of course I can imagine that
programs used to create fonts deal with this, but
even then, there is a visual aspect to it too. The
good news is that in ConTEXt we can manipulate
features so in theory one can create a so-called font
goodie file for a specific instance.

4 Shapes

For OpenType PostScript shapes we always have
to do a dummy rendering in order to get the right
bounding box information. For TrueType this in-
formation is already present but not when we use a
variable instance, so I had to do a bit of coding for
that. Here we face a problem. For TEX we need the
width, height and depth of a glyph. Consider the
following case:

The shape has a bounding box that fits the
shape. However, its left corner is not at the origin.
So, when we calculate a tight bounding box, we
cannot use it for actually positioning the glyph. We
do use it (for horizontal scripts) to get the height and
depth but for the width we depend on an explicit
value. In OpenType PostScript we have the width
available and how the shape is positioned relative to
the origin doesn’t much matter. In a TrueType shape
a bounding box is part of the specification, as is the
width, but for a variable font one has to use so-called
phantom points to recalculate the width and the test
fonts I had were not suitable for investigating this.

At any rate, once I could generate documents
with typeset text using variable fonts it became time
to start thinking about a user interface. A variable
font can have predefined instances but of course a
user also wants to mess with axis values. Take one
of the test fonts: Adobe Variable Font Prototype. It
has several instances:

extralight It looks like this! weight=0 contrast=0
light It looks like this! weight=150 contrast=0
regular It looks like this! weight=394 contrast=0
semibold It looks like this! weight=600 contrast=0
bold It looks like this! weight=824 contrast=0
black high contrast It looks like this! weight=1000 contrast=100
black medium contrast It looks like this! weight=1000 contrast=50
black It looks like this! weight=1000 contrast=0

Such an instance is accessed with:

\definefont[MyLightFont]

[name:adobevariablefontprototypelight*default]

The Avenir Next variable demo font (currently)
provides:

regular It looks like this! weight=400 width=100
medium It looks like this! weight=500 width=100
bold It looks like this! weight=700 width=100
heavy It looks like this! weight=900 width=100
condensed It looks like this! weight=400 width=75
medium condensed It looks like this! weight=500 width=75
bold condensed It looks like this! weight=700 width=75
heavy condensed It looks like this! weight=900 width=75

Variable fonts



206 TUGboat, Volume 38 (2017), No. 2

Before we continue I will show a few examples
of variable shapes. Here we use some Metafun magic.
Just take these definitions for granted.

\startMPcode

draw outlinetext.b ("\definedfont

[name:adobevariablefontprototypeextralight]%

foo@bar")

(withcolor "gray")

(withcolor red withpen pencircle scaled 1/10)

xsized .45TextWidth ;

\stopMPcode

\startMPcode

draw outlinetext.b ("\definedfont

[name:adobevariablefontprototypelight]%

foo@bar")

(withcolor "gray")

(withcolor red withpen pencircle scaled 1/10)

xsized .45TextWidth ;

\stopMPcode

\startMPcode

draw outlinetext.b ("\definedfont

[name:adobevariablefontprototypebold]%

foo@bar")

(withcolor "gray")

(withcolor red withpen pencircle scaled 1/10)

xsized .45TextWidth ;

\stopMPcode

\startMPcode

draw outlinetext.b

("\definefontfeature[whatever]%

[axis={weight:350}]%

\definedfont

[name:adobevariablefontprototype*whatever]%

foo@bar")

(withcolor "gray")

(withcolor red withpen pencircle scaled 1/10)

xsized .45TextWidth ;

\stopMPcode

The results are shown in figure 1. What we see
here is that as long as we fill the shape everything
will look as expected but using an outline only won’t.
The crucial (control) points are moved to different
locations and as a result they can end up inside the
shape. Giving up outlines is the price we evidently
need to pay. Of course this is not unique for variable
fonts although in practice static fonts behave better.
To some extent we’re back to where we were with
METAFONT and (for instance) Computer Modern:
because these originate in bitmaps (and probably
use similar design logic) we also can have overlap
and bits and pieces pasted together and no one will
notice that. The first outline variants of Computer
Modern also had such artifacts while in the static
Latin Modern successors, outlines were cleaned up.

The fact that we need to preprocess an instance
but only know how to do that when we have got-

Figure 1: Four variants

ten the information about axis values from the font
means that the font handler has to be adapted to
keep caching correct. Another definition is:

\definefontfeature[lightdefault]

[default]

[axis={weight:230,contrast:50}]

\definefont[MyLightFont]

[name:adobevariablefontprototype*lightdefault]

Here the complication is that where normally
features are dealt with after loading, the axis feature
is part of the preparation (and caching). If you want
the virtual font solution you can do this:

\definefontfeature[inlinelightdefault]

[default]

[axis={weight:230,contrast:50},

variableshapes=yes]

\definefont[MyLightFont]

[name:adobevariablefontprototype

*inlinelightdefault]

When playing with these fonts it was hard to see
if loading was done right. For instance not all values
make sense. It is beyond the scope of this article, but
axes like weight, width, contrast and italic values get
applied differently to so-called regions (subspaces).
So say that we have an x coordinate with value
50. This value can be adapted in, for instance, four
subspaces (regions), so we actually get:

x′ = x + s1 × x1 + s2 × x2 + s3 × x3 + s4 × x4

The (here) four scale factors sn are determined
by the axis value. Each axis has some rules about
how to map the values 230 for weight and 50 for
contrast to such a factor. And each region has its
own translation from axis values to these factors.
The deltas x1, . . . , x4 are provided by the font. For
a PostScript-based font we find sequences like:

1 〈setvstore〉
120 [10 -30 40 -60] 1 〈blend〉 ... 〈operator〉
100 120 [10 -30 40 -60] [30 -10 -30 20]

2 〈blend〉 ... 〈operator〉
A store refers to a region specification. From

there the factors are calculated using the chosen
values on the axis. The deltas are part of the glyph
specification. Officially there can be multiple region
specifications, but how likely it is that they will be
used in real fonts is an open question.

Hans Hagen



TUGboat, Volume 38 (2017), No. 2 207

For TrueType fonts the deltas are not in the
glyph specification but in a dedicated gvar table.

apply x deltas [10 -30 40 -60] to x 120

apply y deltas [30 -10 -30 20] to y 100

Here the deltas come from tables outside the
glyph specification and their application is triggered
by a combination of axis values and regions.

The following two examples use Avenir Next
Variable and demonstrate that kerning is adapted to
the variant.

\definefontfeature[default:shaped][default]

[axis={width:10}]

\definefont[SomeFont]

[file:avenirnextvariable*default:shaped]

C
-0.144

oming back to the use of typefaces in electr
-0.072

onic publishing: many of the new
typogr

-0.072

aphers r
-0.072

eceive their knowledge and informa
-0.120

tion about the rules of typogr
-0.072

a-
phy fr

-0.072

om book
-0.072

s, fr
-0.072

om computer magazines or the instruction manuals which they
get with the pur

-0.072

chase of a PC or sof
-0.144

twar
-0.072

e. T
-0.072

her
-0.072

e is not so much basic instruction,
as of now

-0.432

, as ther
-0.072

e was in the old days, showing the dif
-0.144

fer
-0.072

ences between good and
bad typogr

-0.072

aphic design. Many people ar
-0.072

e just fascina
-0.120

ted by their PC’
-0.432

s trick
-0.072

s, and
think tha

-0.120

t a widely--pr
-0.072

aised pr
-0.072

ogr
-0.072

am, called up on the scr
-0.072

een, will mak
-0.144

e everything
automa

-0.120

tic fr
-0.072

om now on. Hermann Z
-0.144

apf

\definefontfeature[default:shaped][default]

[axis={width:100}]

\definefont[SomeFont]

[file:avenirnextvariable*default:shaped]

C
-0.144

oming back to the use of typefaces in electr
-0.216

onic publishing:
many of the new typogr

-0.144

aphers r
-0.216

eceive their knowledge and in-
forma

-0.120

tion about the rules of typogr
-0.144

aphy fr
-0.216

ombook
-0.072

s, fr
-0.216

omcom-
puter magazines or the instructionmanuals which they get with
the pur

-0.216

chase of a PC or sof
-0.144

twar
-0.216

e. T
-0.216

her
-0.216

e is not somuch basic in-
struction, as of now

-0.432

, as ther
-0.216

e was in the old days, showing the
dif

-0.216

fer
-0.216

ences between good and bad typogr
-0.144

aphic design. Many
people ar

-0.216

e just fascina
-0.120

ted by their PC’
-0.576

s trick
-0.072

s, and think tha
-0.120

t
a widely--pr

-0.144

aised pr
-0.216

ogr
-0.144

am, called up on the scr
-0.216

een, will mak
-0.216

e
everything automa

-0.120

tic fr
-0.216

om now on. Hermann Z
-0.144

apf

5 Embedding

Once we’re done typesetting and a PDF file has to
be created there are three possible routes:

• We can embed the shapes as PDF images (inline
literal) using virtual font technology. We cannot
use so-called xforms here because we want to
support color selectively in text.

• We can wait till the PDF format supports such
fonts, which might happen but even then we
might be stuck for years with viewers getting
there. Also documents need to get printed, and
when printer support might arrive is another
unknown.

• We can embed a regular font with shapes that
match the chosen values on the axis. This solu-
tion is way more efficient than the first.

Once I could interpret the right information in
the font, the first route was the way to go. A side

effect of having a converter for both outline types
meant that it was trivial to create a virtual font
at runtime. This option will stay in ConTEXt as
pseudo-feature variableshapes.

When trying to support variable fonts I tried to
limit the impact on the backend code. Also, process-
ing features and such was not touched. The inclusion
of the right shapes is done via a callback that re-
quests the blob to be injected in the cff or glyf

table. When implementing this I actually found out
that the LuaTEX backend also does some juggling
of charstrings, to serve the purpose of inlining sub-
routines. In retrospect I could have learned a few
tricks faster by looking at that code but I never re-
alized that it was there. Looking at the code again,
it strikes me that the whole inclusion could be done
with Lua code and some day I will give that a try.

6 Conclusion

When I first heard about variable fonts I was confi-
dent that when they showed up they could be sup-
ported. Of course a specimen was needed to prove
this. A first implementation demonstrates that in-
deed it’s no big deal to let ConTEXt with LuaTEX
handle such fonts. At the conference Adam Twar-
doch demonstrated the website axis-praxis.org,
and we currently can support most of the fonts there
quite well.

Of course we need to fill in some gaps which can
be done once we have complete fonts. And then of
course users will demand more control. In the mean-
time the helper script that deals with identifying
fonts by name has been extended and the relevant
code has been added to the distribution. At some
point the ConTEXt Garden will provide the LuaTEX
binary that has the callback.

I end with a warning. On the one hand this tech-
nology looks promising but on the other hand one can
easily get lost. Probably most such fonts operate over
a well-defined domain of values but even then one
should be aware of complex interactions with features
like positioning or replacements. Not all combina-
tions can be tested. It’s probably best to stick to
fonts that have all the relevant tables and don’t de-
pend on properties of a specific rendering technology.

Although support is now present in the core
of ConTEXt the official release will happen at the
ConTEXt meeting in 2017. By then I hope to have
tested more fonts. Maybe the interface has also been
extended by then because after all, TEX is about
control.

� Hans Hagen
Pragma ADE
http://pragma-ade.com

Variable fonts


